201
|
Han Y, Hou G, Suiter CL, Ahn J, Byeon IJL, Lipton AS, Burton S, Hung I, Gor'kov PL, Gan Z, Brey W, Rice D, Gronenborn AM, Polenova T. Magic angle spinning NMR reveals sequence-dependent structural plasticity, dynamics, and the spacer peptide 1 conformation in HIV-1 capsid protein assemblies. J Am Chem Soc 2013; 135:17793-803. [PMID: 24164646 DOI: 10.1021/ja406907h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A key stage in HIV-1 maturation toward an infectious virion requires sequential proteolytic cleavage of the Gag polyprotein leading to the formation of a conical capsid core that encloses the viral RNA genome and a small complement of proteins. The final step of this process involves severing the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into the capsid shell. The details of the overall mechanism, including the conformation of the SP1 peptide in CA-SP1, are still under intense debate. In this report, we examine tubular assemblies of CA and the CA-SP1 maturation intermediate using magic angle spinning (MAS) NMR spectroscopy. At magnetic fields of 19.9 T and above, outstanding quality 2D and 3D MAS NMR spectra were obtained for tubular CA and CA-SP1 assemblies, permitting resonance assignments for subsequent detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two CA protein sequence variants reveals that, unexpectedly, the conformations of the SP1 tail, the functionally important CypA loop, and the loop preceding helix 8 are modulated by residue variations at distal sites. These findings provide support for the role of SP1 as a trigger of the disassembly of the immature CA capsid for its subsequent de novo reassembly into mature cores and establish the importance of sequence-dependent conformational plasticity in CA assembly.
Collapse
Affiliation(s)
- Yun Han
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Matreyek KA, Yücel SS, Li X, Engelman A. Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog 2013; 9:e1003693. [PMID: 24130490 PMCID: PMC3795039 DOI: 10.1371/journal.ppat.1003693] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/24/2013] [Indexed: 12/13/2022] Open
Abstract
Lentiviruses can infect non-dividing cells, and various cellular transport proteins provide crucial functions for lentiviral nuclear entry and integration. We previously showed that the viral capsid (CA) protein mediated the dependency on cellular nucleoporin (NUP) 153 during HIV-1 infection, and now demonstrate a direct interaction between the CA N-terminal domain and the phenylalanine-glycine (FG)-repeat enriched NUP153 C-terminal domain (NUP153C). NUP153C fused to the effector domains of the rhesus Trim5α restriction factor (Trim-NUP153C) potently restricted HIV-1, providing an intracellular readout for the NUP153C-CA interaction during retroviral infection. Primate lentiviruses and equine infectious anemia virus (EIAV) bound NUP153C under these conditions, results that correlated with direct binding between purified proteins in vitro. These binding phenotypes moreover correlated with the requirement for endogenous NUP153 protein during virus infection. Mutagenesis experiments concordantly identified NUP153C and CA residues important for binding and lentiviral infectivity. Different FG motifs within NUP153C mediated binding to HIV-1 versus EIAV capsids. HIV-1 CA binding mapped to residues that line the common alpha helix 3/4 hydrophobic pocket that also mediates binding to the small molecule PF-3450074 (PF74) inhibitor and cleavage and polyadenylation specific factor 6 (CPSF6) protein, with Asn57 (Asp58 in EIAV) playing a particularly important role. PF74 and CPSF6 accordingly each competed with NUP153C for binding to the HIV-1 CA pocket, and significantly higher concentrations of PF74 were needed to inhibit HIV-1 infection in the face of Trim-NUP153C expression or NUP153 knockdown. Correlation between CA mutant viral cell cycle and NUP153 dependencies moreover indicates that the NUP153C-CA interaction underlies the ability of HIV-1 to infect non-dividing cells. Our results highlight similar mechanisms of binding for disparate host factors to the same region of HIV-1 CA during viral ingress. We conclude that a subset of lentiviral CA proteins directly engage FG-motifs present on NUP153 to affect viral nuclear import. Lentiviruses such as HIV-1 possess mechanisms to bypass the nuclear envelope and reach the nuclear interior for viral DNA integration. Numerous nuclear transport proteins are important for HIV-1 infection, suggesting the viral nucleoprotein complex enters the nucleus by passing through nuclear pore complexes. HIV-1 was previously found to utilize cellular nucleoporin (NUP) 153 protein in a manner determined by the viral capsid protein. Here, we show HIV-1 capsid directly binds NUP153 in a phenylalanine-glycine motif-dependent manner; such motifs form the general selectivity barrier that restricts transport through the nuclear pore. We find that NUP153 binds a hydrophobic pocket found on capsid proteins from both primate and equine lentiviruses, suggesting an evolutionary predilection for this interaction. The pocket on HIV-1 capsid also binds phenylalanine moieties present in a small molecule inhibitor of HIV-1 infection, as well as a separate host factor implicated in the nuclear import pathway. We found that these molecules compete for NUP153 binding, providing insight into their mechanisms of action during HIV-1 infection. These results demonstrate a previously unknown interaction important for HIV-1 nuclear trafficking, and posit direct binding of viral capsids with phenylalanine-glycine motifs as a novel example of viral hijacking of a fundamental cellular process.
Collapse
Affiliation(s)
- Kenneth A. Matreyek
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara S. Yücel
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiang Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
203
|
Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 2013; 5:2483-511. [PMID: 24103892 PMCID: PMC3814599 DOI: 10.3390/v5102483] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 02/07/2023] Open
Abstract
Retroviruses integrate their reverse transcribed genomes into host cell chromosomes as an obligate step in virus replication. The nuclear envelope separates the chromosomes from the cell cytoplasm during interphase, and different retroviral groups deal with this physical barrier in different ways. Gammaretroviruses are dependent on the passage of target cells through mitosis, where they are believed to access chromosomes when the nuclear envelope dissolves for cell division. Contrastingly, lentiviruses such as HIV-1 infect non-dividing cells, and are believed to enter the nucleus by passing through the nuclear pore complex. While numerous virally encoded elements have been proposed to be involved in HIV-1 nuclear import, recent evidence has highlighted the importance of HIV-1 capsid. Furthermore, capsid was found to be responsible for the viral requirement of various nuclear transport proteins, including transportin 3 and nucleoporins NUP153 and NUP358, during infection. In this review, we describe our current understanding of retroviral nuclear import, with emphasis on recent developments on the role of the HIV-1 capsid protein.
Collapse
|
204
|
Liu Z, Pan Q, Ding S, Qian J, Xu F, Zhou J, Cen S, Guo F, Liang C. The Interferon-Inducible MxB Protein Inhibits HIV-1 Infection. Cell Host Microbe 2013; 14:398-410. [DOI: 10.1016/j.chom.2013.08.015] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/14/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022]
|
205
|
New insights in the role of nucleoporins: a bridge leading to concerted steps from HIV-1 nuclear entry until integration. Virus Res 2013; 178:187-96. [PMID: 24051001 DOI: 10.1016/j.virusres.2013.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/01/2013] [Accepted: 09/02/2013] [Indexed: 11/22/2022]
Abstract
Human Immunodeficiency virus type 1 (HIV-1), as well as many other viruses that depend on nuclear entry for replication, has developed an evolutionary strategy to dock and translocate through the nuclear pore complex (NPC). In particular, the nuclear pore is not a static window but it is a dynamic structure involved in many vital cellular functions, as nuclear import/export, gene regulation, chromatin organization and genome stability. This review aims to shed light on viral mechanisms developed by HIV-1 to usurp cellular machinery to favor viral gene expression and their replication. In particular, it will be reviewed both what is known and what is speculated about the link between HIV translocation through the nuclear pore and the proviral integration in the host chromatin.
Collapse
|
206
|
Taltynov O, Demeulemeester J, Christ F, De Houwer S, Tsirkone VG, Gerard M, Weeks SD, Strelkov SV, Debyser Z. Interaction of transportin-SR2 with Ras-related nuclear protein (Ran) GTPase. J Biol Chem 2013; 288:25603-25613. [PMID: 23878195 DOI: 10.1074/jbc.m113.484345] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) and other lentiviruses are capable of infecting non-dividing cells and, therefore, need to be imported into the nucleus before integration into the host cell chromatin. Transportin-SR2 (TRN-SR2, Transportin-3, TNPO3) is a cellular karyopherin implicated in nuclear import of HIV-1. A model in which TRN-SR2 imports the viral preintegration complex into the nucleus is supported by direct interaction between TRN-SR2 and HIV-1 integrase (IN). Residues in the C-terminal domain of HIV-1 IN that mediate binding to TRN-SR2 were recently delineated. As for most nuclear import cargoes, the driving force behind HIV-1 preintegration complex import is likely a gradient of the GDP- and GTP-bound forms of Ran, a small GTPase. In this study we offer biochemical and structural characterization of the interaction between TRN-SR2 and Ran. By size exclusion chromatography we demonstrate stable complex formation of TRN-SR2 and RanGTP in solution. Consistent with the behavior of normal nuclear import cargoes, HIV-1 IN is released from the complex with TRN-SR2 by RanGTP. Although in concentrated solutions TRN-SR2 by itself was predominantly present as a dimer, the TRN-SR2-RanGTP complex was significantly more compact. Further analysis supported a model wherein one monomer of TRN-SR2 is bound to one monomer of RanGTP. Finally, we present a homology model of the TRN-SR2-RanGTP complex that is in excellent agreement with the experimental small angle x-ray scattering data.
Collapse
Affiliation(s)
- Oliver Taltynov
- From the Laboratory for Molecular Virology and Gene Therapy and
| | | | - Frauke Christ
- From the Laboratory for Molecular Virology and Gene Therapy and
| | | | - Vicky G Tsirkone
- Laboratory for Biocrystallography, KU Leuven, B-3000 Leuven, Belgium
| | - Melanie Gerard
- From the Laboratory for Molecular Virology and Gene Therapy and
| | - Stephen D Weeks
- Laboratory for Biocrystallography, KU Leuven, B-3000 Leuven, Belgium
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, KU Leuven, B-3000 Leuven, Belgium
| | - Zeger Debyser
- From the Laboratory for Molecular Virology and Gene Therapy and.
| |
Collapse
|
207
|
Discovery of novel small-molecule HIV-1 replication inhibitors that stabilize capsid complexes. Antimicrob Agents Chemother 2013; 57:4622-31. [PMID: 23817385 DOI: 10.1128/aac.00985-13] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The identification of novel antiretroviral agents is required to provide alternative treatment options for HIV-1-infected patients. The screening of a phenotypic cell-based viral replication assay led to the identification of a novel class of 4,5-dihydro-1H-pyrrolo[3,4-c]pyrazol-6-one (pyrrolopyrazolone) HIV-1 inhibitors, exemplified by two compounds: BI-1 and BI-2. These compounds inhibited early postentry stages of viral replication at a step(s) following reverse transcription but prior to 2 long terminal repeat (2-LTR) circle formation, suggesting that they may block nuclear targeting of the preintegration complex. Selection of viruses resistant to BI-2 revealed that substitutions at residues A105 and T107 within the capsid (CA) amino-terminal domain (CANTD) conferred high-level resistance to both compounds, implicating CA as the antiviral target. Direct binding of BI-1 and/or BI-2 to CANTD was demonstrated using isothermal titration calorimetry and nuclear magnetic resonance (NMR) chemical shift titration analyses. A high-resolution crystal structure of the BI-1:CANTD complex revealed that the inhibitor bound within a recently identified inhibitor binding pocket (CANTD site 2) between CA helices 4, 5, and 7, on the surface of the CANTD, that also corresponds to the binding site for the host factor CPSF-6. The functional consequences of BI-1 and BI-2 binding differ from previously characterized inhibitors that bind the same site since the BI compounds did not inhibit reverse transcription but stabilized preassembled CA complexes. Hence, this new class of antiviral compounds binds CA and may inhibit viral replication by stabilizing the viral capsid.
Collapse
|
208
|
Abstract
Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies. The HIV-1 capsid protein (CA) is absolutely essential for viral replication and there is, therefore, intense evolutionary pressure for HIV-1 CA to conserve its functions. However, HIV-1 CA is also a key target of the host immune response, which should provide evolutionary pressure to diversify CA sequence. Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to preserve function in the face of sequence changes. Thus, it should be advantageous to HIV-1 CA to evolve genetic robustness. Here, we present the results of extensive, random mutagenesis of single amino acids in CA that reveal an extreme genetic fragility. Although CA participates in several steps in HIV-1 replication, the biological basis for its genetic fragility was primarily the need to participate in the efficient and proper assembly of mature virion particles. The extreme genetic fragility of HIV-1 CA may be one reason why immune responses to it correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies.
Collapse
|
209
|
McCarthy KR, Schmidt AG, Kirmaier A, Wyand AL, Newman RM, Johnson WE. Gain-of-sensitivity mutations in a Trim5-resistant primary isolate of pathogenic SIV identify two independent conserved determinants of Trim5α specificity. PLoS Pathog 2013; 9:e1003352. [PMID: 23675300 PMCID: PMC3649984 DOI: 10.1371/journal.ppat.1003352] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 03/25/2013] [Indexed: 11/18/2022] Open
Abstract
Retroviral capsid recognition by Trim5 blocks productive infection. Rhesus macaques harbor three functionally distinct Trim5 alleles: Trim5αQ, Trim5αTFP and Trim5CypA. Despite the high degree of amino acid identity between Trim5αQ and Trim5αTFP alleles, the Q/TFP polymorphism results in the differential restriction of some primate lentiviruses, suggesting these alleles differ in how they engage these capsids. Simian immunodeficiency virus of rhesus macaques (SIVmac) evolved to resist all three alleles. Thus, SIVmac provides a unique opportunity to study a virus in the context of the Trim5 repertoire that drove its evolution in vivo. We exploited the evolved rhesus Trim5α resistance of this capsid to identify gain-of-sensitivity mutations that distinguish targets between the Trim5αQ and Trim5αTFP alleles. While both alleles recognize the capsid surface, Trim5αQ and Trim5αTFP alleles differed in their ability to restrict a panel of capsid chimeras and single amino acid substitutions. When mapped onto the structure of the SIVmac239 capsid N-terminal domain, single amino acid substitutions affecting both alleles mapped to the β-hairpin. Given that none of the substitutions affected Trim5αQ alone, and the fact that the β-hairpin is conserved among retroviral capsids, we propose that the β-hairpin is a molecular pattern widely exploited by Trim5α proteins. Mutations specifically affecting rhesus Trim5αTFP (without affecting Trim5αQ) surround a site of conservation unique to primate lentiviruses, overlapping the CPSF6 binding site. We believe targeting this site is an evolutionary innovation driven specifically by the emergence of primate lentiviruses in Africa during the last 12 million years. This modularity in targeting may be a general feature of Trim5 evolution, permitting different regions of the PRYSPRY domain to evolve independent interactions with capsid. TRIM5α is an intrinsic immunity protein that blocks retrovirus infection through a specific interaction with the viral capsid. Uniquely among primates, rhesus macaques harbor three functionally distinct kinds of Trim5 alleles: rhTrim5αTFP, rhTrim5αQ and rhTrim5CypA. SIVmac239, a simian immunodeficiency virus that causes AIDS in rhesus macaques, is resistant to all three, whereas its relative, the human AIDS virus HIV-1, is inhibited by rhTrim5αTFP and rhTrim5αQ alleles. We exploited this difference between these two retroviruses to figure out how Trim5α proteins recognize viral capsids. By combining mutagenesis, structural biology and evolutionary data we determined that both rhTrim5αTFP and rhTrim5αQ recognize a conserved structure common to all retroviral capsids. However, we also found evidence suggesting that rhTrim5αTFP evolved to recognize an additional target that is specifically conserved among primate immunodeficiency viruses. Molecular evolutionary analysis indicates that this expanded function appeared in a common ancestor of modern African monkeys sometime between 9–12 million years ago, and that it thereafter continued to be modified by strong evolutionary pressure. Our results provide insight into the evolutionary flexibility of Trim5α-capsid interactions, and support the notion that viruses related to modern HIV and SIV have been present in Africa for millions of years.
Collapse
Affiliation(s)
- Kevin R. McCarthy
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Aaron G. Schmidt
- Laboratory of Molecular Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrea Kirmaier
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Allison L. Wyand
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Ruchi M. Newman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Welkin E. Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
210
|
A carboxy-terminally truncated human CPSF6 lacking residues encoded by exon 6 inhibits HIV-1 cDNA synthesis and promotes capsid disassembly. J Virol 2013; 87:7726-36. [PMID: 23658440 DOI: 10.1128/jvi.00124-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Since HIV-1 replication is modulated at multiple stages by host cell factors, identification and characterization of those host cell factors are expected to contribute to the development of novel anti-HIV therapeutics. Previous studies showed that a C-terminally truncated cytosolic form of cleavage and polyadenylation-specific factor 6 (CPSF6-358) inhibits HIV-1 infection through interference with HIV-1 trafficking to the nucleus. Here we identified and characterized a different configuration of C-terminally truncated human CPSF6 (hCPSF6-375) through cDNA expression cloning coupled with ganciclovir-mediated lethal selection. Notably, hCPSF6-375, but not mouse CPSF6-358 (mCPSF6-358) as previously reported, remarkably interfered with viral cDNA synthesis after HIV-1 infection. Moreover, we found that hCPSF6-375 aberrantly accelerated the disassembly of the viral capsid in target cells, while CPSF6-358 did not. Sequence comparison of CPSF6-375 and CPSF6-358 cDNAs showed a lack of exon 6 and additional coding sequence for 54 amino acid residues in the C terminus of hCPSF6-375. Mutational analyses revealed that the residues encoded by exon 6, but not the C-terminal 54 residues in hCPSF6-375, is responsible for impaired viral cDNA synthesis by hCPSF6-375. This is the first report demonstrating a novel mode of HIV-1 inhibition by truncated forms of CPSF6 that involves rapid capsid disassembly and inhibition of viral cDNA synthesis. These findings could facilitate an increased understanding of viral cDNA synthesis in light of the viral capsid disassembly.
Collapse
|
211
|
Abstract
Capsid proteins are obligatory components of infectious virions. Their primary structural function is to protect viral genomes during entry and exit from host cells. Evidence suggests that these proteins can also modulate the activity and specificity of viral replication complexes. More recently, it has become apparent that they play critical roles at the virus–host interface. Here, we discuss how capsid proteins of RNA viruses interact with key host cell proteins and pathways to modulate cell physiology in order to benefit virus replication. Capsid–host cell interactions may also have implications for viral disease. Understanding how capsids regulate virus–host interactions may lead to the development of novel antiviral therapies based on targeting the activities of cellular proteins.
Collapse
Affiliation(s)
- Steven Willows
- Department of Cell Biology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| | - Shangmei Hou
- Department of Cell Biology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| | - Tom C Hobman
- Department of Li Ka Shing Institute of Virology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| |
Collapse
|
212
|
Fricke T, Valle-Casuso JC, White TE, Brandariz-Nuñez A, Bosche WJ, Reszka N, Gorelick R, Diaz-Griffero F. The ability of TNPO3-depleted cells to inhibit HIV-1 infection requires CPSF6. Retrovirology 2013; 10:46. [PMID: 23622145 PMCID: PMC3695788 DOI: 10.1186/1742-4690-10-46] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/12/2013] [Indexed: 12/17/2022] Open
Abstract
Background Expression of the cellular karyopherin TNPO3/transportin-SR2/Tnp3 is necessary for HIV-1 infection. Depletion of TNPO3 expression in mammalian cells inhibits HIV-1 infection after reverse transcription but prior to integration. Results This work explores the role of cleavage and polyadenylation specificity factor subunit 6 (CPSF6) in the ability of TNPO3-depleted cells to inhibit HIV-1 infection. Our findings showed that depletion of TNPO3 expression inhibits HIV-1 infection, while the simultaneous depletion of TNPO3 and CPSF6 expression rescues HIV-1 infection. Several experiments to understand the rescue of infectivity by CPSF6 were performed. Our experiments revealed that the HIV-1 capsid binding ability of the endogenously expressed CPSF6 from TNPO3-depleted cells does not change when compared to CPSF6 from wild type cells. In agreement with our previous results, depletion of TNPO3 did not change the nuclear localization of CPSF6. Studies on the formation of 2-LRT circles during HIV-1 infection revealed that TNPO3-depleted cells are impaired in the integration process or exhibit a defect in the formation of 2-LTR circles. To understand whether the cytosolic fraction of CPSF6 is responsible for the inhibition of HIV-1 in TNPO3-depleted cells, we tested the ability of a cytosolic full-length CPSF6 to block HIV-1 infection. These results demonstrated that overexpression of a cytosolic full-length CPSF6 blocks HIV-1 infection at the nuclear import step. Fate of the capsid assays revealed that cytosolic expression of CPSF6 enhances stability of the HIV-1 core during infection. Conclusions These results suggested that inhibition of HIV-1 by TNPO3-depleted cells requires CPSF6.
Collapse
Affiliation(s)
- Thomas Fricke
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, New York, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Veillette M, Bichel K, Pawlica P, Freund SMV, Plourde MB, Pham QT, Reyes-Moreno C, James LC, Berthoux L. The V86M mutation in HIV-1 capsid confers resistance to TRIM5α by abrogation of cyclophilin A-dependent restriction and enhancement of viral nuclear import. Retrovirology 2013; 10:25. [PMID: 23448277 PMCID: PMC3598646 DOI: 10.1186/1742-4690-10-25] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/21/2013] [Indexed: 11/22/2022] Open
Abstract
Background HIV-1 is inhibited early after entry into cells expressing some simian orthologues of the tripartite motif protein family member TRIM5α. Mutants of the human orthologue (TRIM5αhu) can also provide protection against HIV-1. The host protein cyclophilin A (CypA) binds incoming HIV-1 capsid (CA) proteins and enhances early stages of HIV-1 replication by unknown mechanisms. On the other hand, the CA-CypA interaction is known to increase HIV-1 susceptibility to restriction by TRIM5α. Previously, the mutation V86M in the CypA-binding loop of HIV-1 CA was found to be selected upon serial passaging of HIV-1 in cells expressing Rhesus macaque TRIM5α (TRIM5αrh). The objectives of this study were (i) to analyze whether V86M CA allows HIV-1 to escape mutants of TRIM5αhu, and (ii) to characterize the role of CypA in the resistance to TRIM5α conferred by V86M. Results We find that in single-cycle HIV-1 vector transduction experiments, V86M confers partial resistance against R332G-R335G TRIM5αhu and other TRIM5αhu variable 1 region mutants previously isolated in mutagenic screens. However, V86M HIV-1 does not seem to be resistant to R332G-R335G TRIM5αhu in a spreading infection context. Strikingly, restriction of V86M HIV-1 vectors by TRIM5αhu mutants is mostly insensitive to the presence of CypA in infected cells. NMR experiments reveal that V86M alters CypA interactions with, and isomerisation of CA. On the other hand, V86M does not affect the CypA-mediated enhancement of HIV-1 replication in permissive human cells. Finally, qPCR experiments show that V86M increases HIV-1 transport to the nucleus of cells expressing restrictive TRIM5α. Conclusions Our study shows that V86M de-couples the two functions associated with CA-CypA binding, i.e. the enhancement of restriction by TRIM5α and the enhancement of HIV-1 replication in permissive human cells. V86M enhances the early stages of HIV-1 replication in restrictive cells by improving nuclear import. In summary, our data suggest that HIV-1 escapes restriction by TRIM5α through the selective disruption of CypA-dependent, TRIM5α-mediated inhibition of nuclear import. However, V86M does not seem to relieve restriction of a spreading HIV-1 infection by TRIM5αhu mutants, underscoring context-specific restriction mechanisms.
Collapse
Affiliation(s)
- Maxime Veillette
- Department of Medical Biology, Laboratory of retrovirology and GROEM, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, CP500, Trois-Rivières, QC G9A 5H7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
De Iaco A, Santoni F, Vannier A, Guipponi M, Antonarakis S, Luban J. TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm. Retrovirology 2013; 10:20. [PMID: 23414560 PMCID: PMC3599327 DOI: 10.1186/1742-4690-10-20] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/11/2013] [Indexed: 11/30/2022] Open
Abstract
Background Despite intensive investigation the mechanism by which HIV-1 reaches the host cell nucleus is unknown. TNPO3, a karyopherin mediating nuclear entry of SR-proteins, was shown to be required for HIV-1 infectivity. Some investigators have reported that TNPO3 promotes HIV-1 nuclear import, as would be expected for a karyopherin. Yet, an equal number of investigators have failed to obtain evidence that supports this model. Here, a series of experiments were performed to better elucidate the mechanism by which TNPO3 promotes HIV-1 infectivity. Results To examine the role of TNPO3 in HIV-1 replication, the 2-LTR circles that are commonly used as a marker for HIV-1 nuclear entry were cloned after infection of TNPO3 knockdown cells. Potential explanation for the discrepancy in the literature concerning the effect of TNPO3 was provided by sequencing hundreds of these clones: a significant fraction resulted from autointegration into sites near the LTRs and therefore were not bona fide 2-LTR circles. In response to this finding, new techniques were developed to monitor HIV-1 cDNA, including qPCR reactions that distinguish 2-LTR circles from autointegrants, as well as massive parallel sequencing of HIV-1 cDNA. With these assays, TNPO3 knockdown was found to reduce the levels of 2-LTR circles. This finding was puzzling, though, since previous work has shown that the HIV-1 determinant for TNPO3-dependence is capsid (CA), an HIV-1 protein that forms a mega-dalton protein lattice in the cytoplasm. TNPO3 imports cellular splicing factors via their SR-domain. Attention was therefore directed towards CPSF6, an SR-protein that binds HIV-1 CA and inhibits HIV-1 nuclear import when the C-terminal SR-domain is deleted. The effect of 27 HIV-1 capsid mutants on sensitivity to TNPO3 knockdown was then found to correlate strongly with sensitivity to inhibition by a C-terminal deletion mutant of CPSF6 (R2 = 0.883, p < 0.0001). TNPO3 knockdown was then shown to cause CPSF6 to accumulate in the cytoplasm. Mislocalization of CPSF6 to the cytoplasm, whether by TNPO3 knockdown, deletion of the CPSF6 nuclear localization signal, or by fusion of CPSF6 to a nuclear export signal, resulted in inhibition of HIV-1 replication. Additionally, targeting CPSF6 to the nucleus by fusion to a heterologous nuclear localization signal rescued HIV-1 from the inhibitory effects of TNPO3 knockdown. Finally, mislocalization of CPSF6 to the cytoplasm was associated with abnormal stabilization of the HIV-1 CA core. Conclusion TNPO3 promotes HIV-1 infectivity indirectly, by shifting the CA-binding protein CPSF6 to the nucleus, thus preventing the excessive HIV-1 CA stability that would otherwise result from cytoplasmic accumulation of CPSF6.
Collapse
Affiliation(s)
- Alberto De Iaco
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
215
|
Fassati A. Multiple roles of the capsid protein in the early steps of HIV-1 infection. Virus Res 2012; 170:15-24. [PMID: 23041358 DOI: 10.1016/j.virusres.2012.09.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 11/22/2022]
Abstract
The early steps of HIV-1 infection starting after virus entry into cells up to integration of its genome into host chromosomes are poorly understood. From seminal work showing that HIV-1 and oncoretroviruses follow different steps in the early stages post-entry, significant advances have been made in recent years and an important role for the HIV-1 capsid (CA) protein, the constituent of the viral core, has emerged. CA appears to orchestrate several events, such as virus uncoating, recognition by restriction factors and the innate immune system. It also plays a role in nuclear import and integration of HIV-1 and has become a novel target for antiretroviral drugs. Here we describe the different functions of CA and how they may be integrated into one or more coherent models that illuminate the early events in HIV-1 infection and their relations with the host cell.
Collapse
Affiliation(s)
- Ariberto Fassati
- The Wohl Virion Centre and MRC Centre for Medical & Molecular Virology, Division of Infection and Immunity, University College London, Cruciform Building, 90 Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
216
|
The host proteins transportin SR2/TNPO3 and cyclophilin A exert opposing effects on HIV-1 uncoating. J Virol 2012; 87:422-32. [PMID: 23097435 DOI: 10.1128/jvi.07177-11] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Following entry of the HIV-1 core into target cells, productive infection depends on the proper disassembly of the viral capsid (uncoating). Although much is known regarding HIV-1 entry, the actions of host cell proteins that HIV-1 utilizes during early postentry steps are poorly understood. One such factor, transportin SR2 (TRN-SR2)/transportin 3 (TNPO3), promotes infection by HIV-1 and some other lentiviruses, and recent studies have genetically linked TNPO3 dependence of infection to the viral capsid protein (CA). Here we report that purified recombinant TNPO3 stimulates the uncoating of HIV-1 cores in vitro. The stimulatory effect was reduced by RanGTP, a known ligand for transportin family members. Depletion of TNPO3 in target cells rendered HIV-1 less susceptible to inhibition by PF74, a small-molecule HIV-1 inhibitor that induces premature uncoating. In contrast to the case for TNPO3, addition of the CA-binding host protein cyclophilin A (CypA) inhibited HIV-1 uncoating and reduced the stimulatory effect of TNPO3 on uncoating in vitro. In cells in which TNPO3 was depleted, HIV-1 infection was enhanced 4-fold by addition of cyclosporine, indicating that the requirement for TNPO3 in HIV-1 infection is modulated by CypA-CA interactions. Although TNPO3 was localized primarily to the cytoplasm, depletion of TNPO3 from target cells inhibited HIV-1 infection without reducing the accumulation of nuclear proviral DNA, suggesting that TNPO3 facilitates a stage of the virus life cycle subsequent to nuclear entry. Our results suggest that TNPO3 and cyclophilin A facilitate HIV-1 infection by coordinating proper uncoating of the core in target cells.
Collapse
|