201
|
Dotov D, Froese T. Entraining chaotic dynamics: A novel movement sonification paradigm could promote generalization. Hum Mov Sci 2018; 61:27-41. [PMID: 30005845 DOI: 10.1016/j.humov.2018.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/14/2018] [Accepted: 06/27/2018] [Indexed: 11/30/2022]
Abstract
Tasks encountered in daily living may have instabilities and more dimensions than are sampled by the senses such as when carrying a cup of coffee and only the surface motion and overall momentum are sensed, not the fluid dynamics. Anticipating non-periodic dynamics is difficult but not impossible because mutual coordination allows for chaotic processes to synchronize to each other and become periodic. A chaotic oscillator with random period and amplitude affords being stabilized onto a periodic trajectory by a weak input if the driver incorporates information about the oscillator. We studied synchronization with predictable and unpredictable stimuli where the unpredictable stimuli could be non-interactive or interactive. The latter condition required learning to control a chaotic system. We expected better overall performance with the predictable but more learning and generalization with unpredictable interactive stimuli. Participants practiced an auditory-motor synchronization task by matching their sonified hand movements to sonified tutors: the Non-Interactive Predictable tutor (NI-P) was a sinusoid, the Non-Interactive Unpredictable (NI-U) was a chaotic system, the Interactive Unpredictable (I-U) was the same chaotic system with an added weak input from the participant's movement. Different pre/post-practice stimuli evaluated generalization. Quick improvement was seen in NI-P. Synchronization, dynamic similarity, and causal interaction increased with practice in I-U but not in NI-U. Generalization was seen for few pre-post stimuli in NI-P, none in NI-U, and most stimuli in I-U. Synchronization with novel chaotic dynamics is challenging but mutual interaction enables the behavioral control of such dynamics and the practice of complex motor skills.
Collapse
Affiliation(s)
- Dobromir Dotov
- Center for Complexity Science (C3), Universidad Nacional Autónoma de México (UNAM), Mexico; Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Mexico.
| | - Tom Froese
- Center for Complexity Science (C3), Universidad Nacional Autónoma de México (UNAM), Mexico; Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Mexico
| |
Collapse
|
202
|
Auditory Statistical Learning During Concurrent Physical Exercise and the Tolerance for Pitch, Tempo, and Rhythm Changes. Motor Control 2018; 22:233-244. [PMID: 28872415 DOI: 10.1123/mc.2017-0006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous studies suggest that statistical learning is preserved when acoustic changes are made to auditory sequences. However, statistical learning effects can vary with and without concurrent exercise. The present study examined how concurrent physical exercise influences auditory statistical learning when acoustical and temporal changes are made to auditory sequences. Participants were presented with the 500-tone sequences based on a Markov chain while cycling or resting in ignored and attended conditions. Learning effects were evaluated using a familiarity test with four types of short tone series: tone series in which stimuli were same as 500-tone sequence and three tone series in which frequencies, tempo, or rhythm was changed. We suggested that, regardless of attention, concurrent exercise interferes with tolerance in statistical learning for rhythm, rather than tempo changes. There may be specific relationships among statistical learning, rhythm perception, and motor system underlying physical exercise.
Collapse
|
203
|
Caravaglios G, Castro G, Muscoso EG, Crivelli D, Balconi M. Beta Responses in Healthy Elderly and in Patients With Amnestic Mild Cognitive Impairment During a Task of Temporal Orientation of Attention. Clin EEG Neurosci 2018; 49:258-271. [PMID: 27807013 DOI: 10.1177/1550059416676144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies demonstrated that beta oscillations are elicited during cognitive processes. To investigate their potential as electrophysiological markers of amnestic mild cognitive impairment (aMCI), we recorded beta EEG activity during resting and during an omitted tone task in patients and healthy elderly. Thirty participants were enrolled (15 patients, 15 healthy controls). In particular, we investigated event-related spectral perturbation and intertrial coherence indices. Analyses showed that ( a) healthy elderly presented greater beta power at rest than patients with aMCI patients; ( b) during the task, healthy elderly were more accurate than aMCI patients and presented greater beta power than aMCI patients; ( c) both groups showed qualitatively similar spectral perturbation responses during the task, but different spatiotemporal response patterns; and ( d) aMCI patients presented greater beta phase locking than healthy elderly during the task. Results indicate that beta activity in healthy elderly differs from that of patients with aMCI. Furthermore, the analysis of task-related EEG activity extends evidences obtained during resting and suggests that during the prodromal phase of Alzheimer's disease there is a reduced efficiency in information exchange by large-scale neural networks. The study for the first time shows the potential of task-related beta responses as early markers of aMCI impairments.
Collapse
Affiliation(s)
- Giuseppe Caravaglios
- 1 Department of Neurology, Center for AD Diagnosis and Care, Cannizzaro Hospital, Catania, Italy
| | - Giuseppe Castro
- 2 Local Health Department of Catania, Semi-residential Center for Dementia of Acireale, Acireale (CT), Italy
| | - Emma Gabriella Muscoso
- 1 Department of Neurology, Center for AD Diagnosis and Care, Cannizzaro Hospital, Catania, Italy
| | - Davide Crivelli
- 3 Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.,4 Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Michela Balconi
- 3 Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.,4 Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
204
|
Chang A, Bosnyak DJ, Trainor LJ. Beta oscillatory power modulation reflects the predictability of pitch change. Cortex 2018; 106:248-260. [PMID: 30053731 DOI: 10.1016/j.cortex.2018.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/19/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Humans process highly dynamic auditory information in real time, and regularities in stimuli such as speech and music can aid such processing by allowing sensory predictions for upcoming events. Auditory sequences contain information about both the identity of sounds (what) and their timing (when they occur). Temporal prediction in isochronous sequences is reflected in neural oscillatory power modulation in the beta band (∼20 Hz). Specifically, power decreases (desynchronization) after tone onset and then increases (resynchronization) to reach a maximum around the expected time of the next tone. The current study investigates whether the predictability of the pitch of a tone (what) is also reflected in beta power modulation. We presented two isochronous auditory oddball sequences, each with 20% of tones at a deviant pitch. In one sequence the deviant tones occurred regularly every fifth tone (predictably), but in the other sequence they occurred pseudorandomly (unpredictably). We recorded the electroencephalogram (EEG) while participants listened passively to these sequences. The results showed that auditory beta power desynchronization was larger prior to a predictable than an unpredictable pitch change. A single-trial correlation analysis using linear mixed-effect (LME) models further showed that the deeper the pre-deviant beta desynchronization depth, the smaller the event-related P3a amplitude following the deviant, and this effect only occurred when the pitch change was predictable. Given that P3a is associated with attentional response to prediction error, larger beta desynchronization depth indicates better prediction of an upcoming deviant pitch. Thus, these findings suggest that beta oscillations reflect predictions for what in additional to when during dynamic auditory information processing.
Collapse
Affiliation(s)
- Andrew Chang
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Dan J Bosnyak
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada; McMaster Institute for Music and the Mind, McMaster University, Hamilton, ON, Canada
| | - Laurel J Trainor
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada; McMaster Institute for Music and the Mind, McMaster University, Hamilton, ON, Canada; Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada.
| |
Collapse
|
205
|
Ghai S, Ghai I. Effects of Rhythmic Auditory Cueing in Gait Rehabilitation for Multiple Sclerosis: A Mini Systematic Review and Meta-Analysis. Front Neurol 2018; 9:386. [PMID: 29942278 PMCID: PMC6004404 DOI: 10.3389/fneur.2018.00386] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Rhythmic auditory cueing has been shown to enhance gait performance in several movement disorders. The "entrainment effect" generated by the stimulations can enhance auditory motor coupling and instigate plasticity. However, a consensus as to its influence over gait training among patients with multiple sclerosis is still warranted. A systematic review and meta-analysis was carried out to analyze the effects of rhythmic auditory cueing in studies gait performance in patients with multiple sclerosis. This systematic identification of published literature was performed according to PRISMA guidelines, from inception until Dec 2017, on online databases: Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE, and PROQUEST. Studies were critically appraised using PEDro scale. Of 602 records, five studies (PEDro score: 5.7 ± 1.3) involving 188 participants (144 females/40 males) met our inclusion criteria. The meta-analysis revealed enhancements in spatiotemporal parameters of gait i.e., velocity (Hedge's g: 0.67), stride length (0.70), and cadence (1.0), and reduction in timed 25 feet walking test (-0.17). Underlying neurophysiological mechanisms, and clinical implications are discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance gait performance in the multiple sclerosis community.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute of Sports Science, Leibniz University Hanover, Hanover, Germany
| | - Ishan Ghai
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| |
Collapse
|
206
|
Zuk NJ, Carney LH, Lalor EC. Preferred Tempo and Low-Audio-Frequency Bias Emerge From Simulated Sub-cortical Processing of Sounds With a Musical Beat. Front Neurosci 2018; 12:349. [PMID: 29896080 PMCID: PMC5987030 DOI: 10.3389/fnins.2018.00349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
Prior research has shown that musical beats are salient at the level of the cortex in humans. Yet below the cortex there is considerable sub-cortical processing that could influence beat perception. Some biases, such as a tempo preference and an audio frequency bias for beat timing, could result from sub-cortical processing. Here, we used models of the auditory-nerve and midbrain-level amplitude modulation filtering to simulate sub-cortical neural activity to various beat-inducing stimuli, and we used the simulated activity to determine the tempo or beat frequency of the music. First, irrespective of the stimulus being presented, the preferred tempo was around 100 beats per minute, which is within the range of tempi where tempo discrimination and tapping accuracy are optimal. Second, sub-cortical processing predicted a stronger influence of lower audio frequencies on beat perception. However, the tempo identification algorithm that was optimized for simple stimuli often failed for recordings of music. For music, the most highly synchronized model activity occurred at a multiple of the beat frequency. Using bottom-up processes alone is insufficient to produce beat-locked activity. Instead, a learned and possibly top-down mechanism that scales the synchronization frequency to derive the beat frequency greatly improves the performance of tempo identification.
Collapse
Affiliation(s)
- Nathaniel J. Zuk
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Laurel H. Carney
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Edmund C. Lalor
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
207
|
Wiener M, Parikh A, Krakow A, Coslett HB. An Intrinsic Role of Beta Oscillations in Memory for Time Estimation. Sci Rep 2018; 8:7992. [PMID: 29789611 PMCID: PMC5964239 DOI: 10.1038/s41598-018-26385-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
The neural mechanisms underlying time perception are of vital importance to a comprehensive understanding of behavior and cognition. Recent work has suggested a supramodal role for beta oscillations in measuring temporal intervals. However, the precise function of beta oscillations and whether their manipulation alters timing has yet to be determined. To accomplish this, we first re-analyzed two, separate EEG datasets and demonstrate that beta oscillations are associated with the retention and comparison of a memory standard for duration. We next conducted a study of 20 human participants using transcranial alternating current stimulation (tACS), over frontocentral cortex, at alpha and beta frequencies, during a visual temporal bisection task, finding that beta stimulation exclusively shifts the perception of time such that stimuli are reported as longer in duration. Finally, we decomposed trialwise choice data with a drift diffusion model of timing, revealing that the shift in timing is caused by a change in the starting point of accumulation, rather than the drift rate or threshold. Our results provide evidence for the intrinsic involvement of beta oscillations in the perception of time, and point to a specific role for beta oscillations in the encoding and retention of memory for temporal intervals.
Collapse
|
208
|
Jenson D, Reilly KJ, Harkrider AW, Thornton D, Saltuklaroglu T. Trait related sensorimotor deficits in people who stutter: An EEG investigation of μ rhythm dynamics during spontaneous fluency. Neuroimage Clin 2018; 19:690-702. [PMID: 29872634 PMCID: PMC5986168 DOI: 10.1016/j.nicl.2018.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/28/2018] [Accepted: 05/20/2018] [Indexed: 01/09/2023]
Abstract
Stuttering is associated with compromised sensorimotor control (i.e., internal modeling) across the dorsal stream and oscillations of EEG mu (μ) rhythms have been proposed as reliable indices of anterior dorsal stream processing. The purpose of this study was to compare μ rhythm oscillatory activity between (PWS) and matched typically fluent speakers (TFS) during spontaneously fluent overt and covert speech production tasks. Independent component analysis identified bilateral μ components from 24/27 PWS and matched TFS that localized over premotor cortex. Time-frequency analysis of the left hemisphere μ clusters demonstrated significantly reduced μ-α and μ-β ERD (pCLUSTER < 0.05) in PWS across the time course of overt and covert speech production, while no group differences were found in the right hemisphere in any condition. Results were interpreted through the framework of State Feedback Control. They suggest that weak forward modeling and evaluation of sensory feedback across the time course of speech production characterizes the trait related sensorimotor impairment in PWS. This weakness is proposed to represent an underlying sensorimotor instability that may predispose the speech of PWS to breakdown.
Collapse
Affiliation(s)
- David Jenson
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States.
| | - Kevin J Reilly
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - Ashley W Harkrider
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - David Thornton
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - Tim Saltuklaroglu
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| |
Collapse
|
209
|
Alternating Modulation of Subthalamic Nucleus Beta Oscillations during Stepping. J Neurosci 2018; 38:5111-5121. [PMID: 29760182 PMCID: PMC5977446 DOI: 10.1523/jneurosci.3596-17.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/02/2018] [Accepted: 04/24/2018] [Indexed: 01/05/2023] Open
Abstract
Gait disturbances in Parkinson's disease are commonly refractory to current treatment options and majorly impair patient's quality of life. Auditory cues facilitate gait and prevent motor blocks. We investigated how neural dynamics in the human subthalamic nucleus of Parkinsons's disease patients (14 male, 2 female) vary during stepping and whether rhythmic auditory cues enhance the observed modulation. Oscillations in the beta band were suppressed after ipsilateral heel strikes, when the contralateral foot had to be raised, and reappeared after contralateral heel strikes, when the contralateral foot rested on the floor. The timing of this 20–30 Hz beta modulation was clearly distinct between the left and right subthalamic nucleus, and was alternating within each stepping cycle. This modulation was similar, whether stepping movements were made while sitting, standing, or during gait, confirming the utility of the stepping in place paradigm. During stepping in place, beta modulation increased with auditory cues that assisted patients in timing their steps more regularly. Our results suggest a link between the degree of power modulation within high beta frequency bands and stepping performance. These findings raise the possibility that alternating deep brain stimulation patterns may be superior to constant stimulation for improving parkinsonian gait. SIGNIFICANCE STATEMENT Gait disturbances in Parkinson's disease majorly reduce patients' quality of life and are often refractory to current treatment options. We investigated how neural activity in the subthalamic nucleus of patients who received deep brain stimulation surgery covaries with the stepping cycle. 20–30 Hz beta activity was modulated relative to each step, alternating between the left and right STN. The stepping performance of patients improved when auditory cues were provided, which went along with enhanced beta modulation. This raises the possibility that alternating stimulation patterns may also enhance beta modulation and may be more beneficial for gait control than continuous stimulation, which needs to be tested in future studies.
Collapse
|
210
|
Trainor LJ, Chang A, Cairney J, Li Y. Is auditory perceptual timing a core deficit of developmental coordination disorder? Ann N Y Acad Sci 2018; 1423:30-39. [PMID: 29741273 PMCID: PMC6099217 DOI: 10.1111/nyas.13701] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/13/2018] [Accepted: 03/08/2018] [Indexed: 12/03/2022]
Abstract
Time is an essential dimension for perceiving and processing auditory events, and for planning and producing motor behaviors. Developmental coordination disorder (DCD) is a neurodevelopmental disorder affecting 5-6% of children that is characterized by deficits in motor skills. Studies show that children with DCD have motor timing and sensorimotor timing deficits. We suggest that auditory perceptual timing deficits may also be core characteristics of DCD. This idea is consistent with evidence from several domains, (1) motor-related brain regions are often involved in auditory timing process; (2) DCD has high comorbidity with dyslexia and attention deficit hyperactivity, which are known to be associated with auditory timing deficits; (3) a few studies report deficits in auditory-motor timing among children with DCD; and (4) our preliminary behavioral and neuroimaging results show that children with DCD at age 6 and 7 have deficits in auditory time discrimination compared to typically developing children. We propose directions for investigating auditory perceptual timing processing in DCD that use various behavioral and neuroimaging approaches. From a clinical perspective, research findings can potentially benefit our understanding of the etiology of DCD, identify early biomarkers of DCD, and can be used to develop evidence-based interventions for DCD involving auditory-motor training.
Collapse
Affiliation(s)
- Laurel J. Trainor
- Department of Psychology, Neuroscience and BehaviourMcMaster UniversityHamiltonOntarioCanada
- McMaster Institute for Music and the MindMcMaster UniversityHamiltonOntarioCanada
- Rotman Research InstituteBaycrest HospitalTorontoOntarioCanada
| | - Andrew Chang
- Department of Psychology, Neuroscience and BehaviourMcMaster UniversityHamiltonOntarioCanada
| | - John Cairney
- Infant and Child Health (INCH) Lab, Department of Family MedicineMcMaster UniversityHamiltonOntarioCanada
- Faculty of Kinesiology and Physical EducationUniversity of TorontoTorontoOntarioCanada
| | - Yao‐Chuen Li
- Infant and Child Health (INCH) Lab, Department of Family MedicineMcMaster UniversityHamiltonOntarioCanada
- Child Health Research Center, Institute of Population Health SciencesNational Health Research InstitutesMiaoliTaiwan
| |
Collapse
|
211
|
Ross JM, Iversen JR, Balasubramaniam R. The Role of Posterior Parietal Cortex in Beat-based Timing Perception: A Continuous Theta Burst Stimulation Study. J Cogn Neurosci 2018; 30:634-643. [DOI: 10.1162/jocn_a_01237] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There is growing interest in how the brain's motor systems contribute to the perception of musical rhythms. The Action Simulation for Auditory Prediction hypothesis proposes that the dorsal auditory stream is involved in bidirectional interchange between auditory perception and beat-based prediction in motor planning structures via parietal cortex [Patel, A. D., & Iversen, J. R. The evolutionary neuroscience of musical beat perception: The Action Simulation for Auditory Prediction (ASAP) hypothesis. Frontiers in Systems Neuroscience, 8, 57, 2014]. We used a TMS protocol, continuous theta burst stimulation (cTBS), that is known to down-regulate cortical activity for up to 60 min following stimulation to test for causal contributions to beat-based timing perception. cTBS target areas included the left posterior parietal cortex (lPPC), which is part of the dorsal auditory stream, and the left SMA (lSMA). We hypothesized that down-regulating lPPC would interfere with accurate beat-based perception by disrupting the dorsal auditory stream. We hypothesized that we would induce no interference to absolute timing ability. We predicted that down-regulating lSMA, which is not part of the dorsal auditory stream but has been implicated in internally timed movements, would also interfere with accurate beat-based timing perception. We show ( n = 25) that cTBS down-regulation of lPPC does interfere with beat-based timing ability, but only the ability to detect shifts in beat phase, not changes in tempo. Down-regulation of lSMA, in contrast, did not interfere with beat-based timing. As expected, absolute interval timing ability was not impacted by the down-regulation of lPPC or lSMA. These results support that the dorsal auditory stream plays an essential role in accurate phase perception in beat-based timing. We find no evidence of an essential role of parietal cortex or SMA in interval timing.
Collapse
|
212
|
Yoshida T, Masani K, Zabjek K, Popovic MR, Chen R. Dynamic cortical participation during bilateral, cyclical ankle movements: Effects of Parkinson's disease. PLoS One 2018; 13:e0196177. [PMID: 29698430 PMCID: PMC5919457 DOI: 10.1371/journal.pone.0196177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/06/2018] [Indexed: 11/19/2022] Open
Abstract
Parkinson’s disease (PD) is known to increase asymmetry and variability of bilateral movements. However, the mechanisms of such abnormalities are not fully understood. Here, we aimed to investigate whether kinematic abnormalities are related to cortical participation during bilateral, cyclical ankle movements, which required i) maintenance of a specific frequency and ii) bilateral coordination of the lower limbs in an anti-phasic manner. We analyzed electroencephalographic and electromyographic signals from nine men with PD and nine aged-matched healthy men while they sat and cyclically dorsi- and plantarflexed their feet. This movement was performed at a similar cadence to normal walking under two conditions: i) self-paced and ii) externally paced by a metronome. Participants with PD exhibited reduced range of motion and more variable bilateral coordination. However, participants with and without PD did not differ in the magnitude of corticomuscular coherence between the midline cortical areas and tibialis anterior and medial gastrocnemius muscles. This finding suggests that either the kinematic abnormalities were related to processes outside linear corticomuscular communication or PD-related changes in neural correlates maintained corticomuscular communication but not motor performance.
Collapse
Affiliation(s)
- Takashi Yoshida
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Applied Surgical and Rehabilitation Technology Lab, Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Lower Saxony, Germany
| | - Kei Masani
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - Karl Zabjek
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Milos R. Popovic
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson’s Disease, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
213
|
Ghai S, Schmitz G, Hwang TH, Effenberg AO. Auditory Proprioceptive Integration: Effects of Real-Time Kinematic Auditory Feedback on Knee Proprioception. Front Neurosci 2018; 12:142. [PMID: 29568259 PMCID: PMC5852112 DOI: 10.3389/fnins.2018.00142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/22/2018] [Indexed: 01/23/2023] Open
Abstract
The purpose of the study was to assess the influence of real-time auditory feedback on knee proprioception. Thirty healthy participants were randomly allocated to control (n = 15), and experimental group I (15). The participants performed an active knee-repositioning task using their dominant leg, with/without additional real-time auditory feedback where the frequency was mapped in a convergent manner to two different target angles (40 and 75°). Statistical analysis revealed significant enhancement in knee re-positioning accuracy for the constant and absolute error with real-time auditory feedback, within and across the groups. Besides this convergent condition, we established a second divergent condition. Here, a step-wise transposition of frequency was performed to explore whether a systematic tuning between auditory-proprioceptive repositioning exists. No significant effects were identified in this divergent auditory feedback condition. An additional experimental group II (n = 20) was further included. Here, we investigated the influence of a larger magnitude and directional change of step-wise transposition of the frequency. In a first step, results confirm the findings of experiment I. Moreover, significant effects on knee auditory-proprioception repositioning were evident when divergent auditory feedback was applied. During the step-wise transposition participants showed systematic modulation of knee movements in the opposite direction of transposition. We confirm that knee re-positioning accuracy can be enhanced with concurrent application of real-time auditory feedback and that knee re-positioning can modulated in a goal-directed manner with step-wise transposition of frequency. Clinical implications are discussed with respect to joint position sense in rehabilitation settings.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
214
|
Gelding RW, Sun Y. Commentary: Sound-making actions lead to immediate plastic changes of neuromagnetic evoked responses and induced β-band oscillations during perception. Front Neurosci 2018; 12:50. [PMID: 29467612 PMCID: PMC5808282 DOI: 10.3389/fnins.2018.00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/22/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rebecca W. Gelding
- Centre of Excellence in Cognition and its Disorders (ARC), Sydney, Australia
- Department of Cognitive Science, Macquarie University, Sydney, Australia
- *Correspondence: Rebecca W. Gelding
| | - Yanan Sun
- Centre of Excellence in Cognition and its Disorders (ARC), Sydney, Australia
- Department of Psychology, Macquarie University, Sydney, Australia
| |
Collapse
|
215
|
Yellamsetty A, Bidelman GM. Low- and high-frequency cortical brain oscillations reflect dissociable mechanisms of concurrent speech segregation in noise. Hear Res 2018; 361:92-102. [PMID: 29398142 DOI: 10.1016/j.heares.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 12/09/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Parsing simultaneous speech requires listeners use pitch-guided segregation which can be affected by the signal-to-noise ratio (SNR) in the auditory scene. The interaction of these two cues may occur at multiple levels within the cortex. The aims of the current study were to assess the correspondence between oscillatory brain rhythms and determine how listeners exploit pitch and SNR cues to successfully segregate concurrent speech. We recorded electrical brain activity while participants heard double-vowel stimuli whose fundamental frequencies (F0s) differed by zero or four semitones (STs) presented in either clean or noise-degraded (+5 dB SNR) conditions. We found that behavioral identification was more accurate for vowel mixtures with larger pitch separations but F0 benefit interacted with noise. Time-frequency analysis decomposed the EEG into different spectrotemporal frequency bands. Low-frequency (θ, β) responses were elevated when speech did not contain pitch cues (0ST > 4ST) or was noisy, suggesting a correlate of increased listening effort and/or memory demands. Contrastively, γ power increments were observed for changes in both pitch (0ST > 4ST) and SNR (clean > noise), suggesting high-frequency bands carry information related to acoustic features and the quality of speech representations. Brain-behavior associations corroborated these effects; modulations in low-frequency rhythms predicted the speed of listeners' perceptual decisions with higher bands predicting identification accuracy. Results are consistent with the notion that neural oscillations reflect both automatic (pre-perceptual) and controlled (post-perceptual) mechanisms of speech processing that are largely divisible into high- and low-frequency bands of human brain rhythms.
Collapse
Affiliation(s)
- Anusha Yellamsetty
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| | - Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; Univeristy of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| |
Collapse
|
216
|
Periodicity versus Prediction in Sensory Perception. J Neurosci 2018; 36:7343-5. [PMID: 27413145 DOI: 10.1523/jneurosci.1335-16.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/06/2016] [Indexed: 11/21/2022] Open
|
217
|
Ghai S, Ghai I, Schmitz G, Effenberg AO. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis. Sci Rep 2018; 8:506. [PMID: 29323122 PMCID: PMC5764963 DOI: 10.1038/s41598-017-16232-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023] Open
Abstract
The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany.
| | - Ishan Ghai
- School of Life Sciences, Jacobs University Bremen, Bremen, Germany
| | - Gerd Schmitz
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Alfred O Effenberg
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
218
|
Bouwer FL, Burgoyne JA, Odijk D, Honing H, Grahn JA. What makes a rhythm complex? The influence of musical training and accent type on beat perception. PLoS One 2018; 13:e0190322. [PMID: 29320533 PMCID: PMC5761885 DOI: 10.1371/journal.pone.0190322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022] Open
Abstract
Perception of a regular beat in music is inferred from different types of accents. For example, increases in loudness cause intensity accents, and the grouping of time intervals in a rhythm creates temporal accents. Accents are expected to occur on the beat: when accents are "missing" on the beat, the beat is more difficult to find. However, it is unclear whether accents occurring off the beat alter beat perception similarly to missing accents on the beat. Moreover, no one has examined whether intensity accents influence beat perception more or less strongly than temporal accents, nor how musical expertise affects sensitivity to each type of accent. In two experiments, we obtained ratings of difficulty in finding the beat in rhythms with either temporal or intensity accents, and which varied in the number of accents on the beat as well as the number of accents off the beat. In both experiments, the occurrence of accents on the beat facilitated beat detection more in musical experts than in musical novices. In addition, the number of accents on the beat affected beat finding more in rhythms with temporal accents than in rhythms with intensity accents. The effect of accents off the beat was much weaker than the effect of accents on the beat and appeared to depend on musical expertise, as well as on the number of accents on the beat: when many accents on the beat are missing, beat perception is quite difficult, and adding accents off the beat may not reduce beat perception further. Overall, the different types of accents were processed qualitatively differently, depending on musical expertise. Therefore, these findings indicate the importance of designing ecologically valid stimuli when testing beat perception in musical novices, who may need different types of accent information than musical experts to be able to find a beat. Furthermore, our findings stress the importance of carefully designing rhythms for social and clinical applications of beat perception, as not all listeners treat all rhythms alike.
Collapse
Affiliation(s)
- Fleur L. Bouwer
- Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - J. Ashley Burgoyne
- Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Daan Odijk
- Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Henkjan Honing
- Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Jessica A. Grahn
- Brain and Mind Institute, Department of Psychology, University of Western Ontario, London (ON), Canada
| |
Collapse
|
219
|
Ghai S, Ghai I, Effenberg AO. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis. Neuropsychiatr Dis Treat 2018; 14:43-59. [PMID: 29339922 PMCID: PMC5746070 DOI: 10.2147/ndt.s148053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults) met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge's g=0.9), gait velocity (1.1), cadence (0.3), and stride length (0.5). This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to enhance gait performance in people with cerebral palsy.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute for Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Ishan Ghai
- School of Life Sciences, Jacobs University, Bremen, Germany
| | - Alfred O Effenberg
- Institute for Sports Science, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
220
|
Rhythmic entrainment: Why humans want to, fireflies can't help it, pet birds try, and sea lions have to be bribed. Psychon Bull Rev 2017; 23:1647-1659. [PMID: 26920589 DOI: 10.3758/s13423-016-1013-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Until recently, the literature on rhythmic ability took for granted that only humans are able to synchronize body movements to an external beat-to entrain. This assumption has been undercut by findings of beat-matching in various species of parrots and, more recently, in a sea lion, several species of primates, and possibly horses. This throws open the question of how widespread beat-matching ability is in the animal kingdom. Here we reassess the arguments and evidence for an absence of beat-matching in animals, and conclude that in fact no convincing case against beat-matching in animals has been made. Instead, such evidence as there is suggests that this capacity could be quite widespread. Furthermore, mutual entrainment of oscillations is a general principle of physical systems, both biological and nonbiological, suggesting that entrainment of motor systems by sensory systems may be a default rather than an oddity. The question then becomes, not why a few privileged species are able to beat-match, but why species do not always do so-why they vary in both spontaneous and learned beat-matching. We propose that when entrainment is not driven by fixed, mandatory connections between input and output (as in the case of, e.g., fireflies entraining to each others' flashes), it depends on voluntary control over, and voluntary or learned coupling of, sensory and motor systems, which can paradoxically lead to apparent failures of entrainment. Among the factors that affect whether an animal will entrain are sufficient control over the motor behavior to be entrained, sufficient perceptual sophistication to extract the entraining beat from the overall sensory environment, and the current cognitive state of the animal, including attention and motivation. The extent of entrainment in the animal kingdom potentially has widespread implications, not only for understanding the roots of human dance, but also for understanding the neural and cognitive architectures of animals.
Collapse
|
221
|
Abstract
Implicit expectations induced by predictable stimuli sequences affect neuronal response to upcoming stimuli at both single cell and neural population levels. Temporally regular sensory streams also phase entrain ongoing low frequency brain oscillations but how and why this happens is unknown. Here we investigate how random recurrent neural networks without plasticity respond to stimuli streams containing oddballs. We found the neuronal correlates of sensory stream adaptation emerge if networks generate chaotic oscillations which can be phase entrained by stimulus streams. The resultant activity patterns are close to critical and support history dependent response on long timescales. Because critical network entrainment is a slow process stimulus response adapts gradually over multiple repetitions. Repeated stimuli generate suppressed responses but oddball responses are large and distinct. Oscillatory mismatch responses persist in population activity for long periods after stimulus offset while individual cell mismatch responses are strongly phasic. These effects are weakened in temporally irregular sensory streams. Thus we show that network phase entrainment provides a biologically plausible mechanism for neural oddball detection. Our results do not depend on specific network characteristics, are consistent with experimental studies and may be relevant for multiple pathologies demonstrating altered mismatch processing such as schizophrenia and depression.
Collapse
Affiliation(s)
- Adam Ponzi
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.
| |
Collapse
|
222
|
Auksztulewicz R, Friston KJ, Nobre AC. Task relevance modulates the behavioural and neural effects of sensory predictions. PLoS Biol 2017; 15:e2003143. [PMID: 29206225 PMCID: PMC5730187 DOI: 10.1371/journal.pbio.2003143] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 12/14/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
The brain is thought to generate internal predictions to optimize behaviour. However, it is unclear whether predictions signalling is an automatic brain function or depends on task demands. Here, we manipulated the spatial/temporal predictability of visual targets, and the relevance of spatial/temporal information provided by auditory cues. We used magnetoencephalography (MEG) to measure participants’ brain activity during task performance. Task relevance modulated the influence of predictions on behaviour: spatial/temporal predictability improved spatial/temporal discrimination accuracy, but not vice versa. To explain these effects, we used behavioural responses to estimate subjective predictions under an ideal-observer model. Model-based time-series of predictions and prediction errors (PEs) were associated with dissociable neural responses: predictions correlated with cue-induced beta-band activity in auditory regions and alpha-band activity in visual regions, while stimulus-bound PEs correlated with gamma-band activity in posterior regions. Crucially, task relevance modulated these spectral correlates, suggesting that current goals influence PE and prediction signalling. As natural environments change, animals need to continuously learn and update predictions about their current context to optimize behaviour. According to predictive coding, a general principle of brain function is the propagation of both neural predictions from hierarchically higher to lower brain regions and of the ensuing prediction-errors back up the cortical hierarchy. We show that the neural activity that signals internal predictions and prediction-errors depends on the current task or goals. We applied magnetoencephalography and computational modelling of behavioural data to a study in which human participants could generate spatial and temporal predictions about upcoming stimuli, while performing spatial or temporal tasks. We found that current context (task relevance) modulated the influence of predictions on behavioural and neural responses. At the level of behavioural responses, only the task-relevant predictions led to improvement in task performance. At the level of neural responses, we found that predictions and prediction-errors correlated with activity in different brain regions and in dissociable frequency bands—reflecting synchronized neural activity. Crucially, these specific neural signatures of prediction and prediction-error signalling were strongly modulated by their contextual relevance. Thus, our results show that current goals influence prediction and prediction-error signalling in the brain.
Collapse
Affiliation(s)
- Ryszard Auksztulewicz
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
- * E-mail:
| | - Karl J. Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Anna C. Nobre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
223
|
Gompf F, Pflug A, Laufs H, Kell CA. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing. Front Hum Neurosci 2017; 11:582. [PMID: 29249950 PMCID: PMC5714933 DOI: 10.3389/fnhum.2017.00582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/17/2017] [Indexed: 11/13/2022] Open
Abstract
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.
Collapse
Affiliation(s)
- Florian Gompf
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anja Pflug
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Helmut Laufs
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Christian-Albrechts- Universität zu Kiel, Kiel, Germany
| | - Christian A Kell
- Cognitive Neuroscience Group, Department of Neurology, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
224
|
Ravignani A, Madison G. The Paradox of Isochrony in the Evolution of Human Rhythm. Front Psychol 2017; 8:1820. [PMID: 29163252 PMCID: PMC5681750 DOI: 10.3389/fpsyg.2017.01820] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/30/2017] [Indexed: 01/04/2023] Open
Abstract
Isochrony is crucial to the rhythm of human music. Some neural, behavioral and anatomical traits underlying rhythm perception and production are shared with a broad range of species. These may either have a common evolutionary origin, or have evolved into similar traits under different evolutionary pressures. Other traits underlying rhythm are rare across species, only found in humans and few other animals. Isochrony, or stable periodicity, is common to most human music, but isochronous behaviors are also found in many species. It appears paradoxical that humans are particularly good at producing and perceiving isochronous patterns, although this ability does not conceivably confer any evolutionary advantage to modern humans. This article will attempt to solve this conundrum. To this end, we define the concept of isochrony from the present functional perspective of physiology, cognitive neuroscience, signal processing, and interactive behavior, and review available evidence on isochrony in the signals of humans and other animals. We then attempt to resolve the paradox of isochrony by expanding an evolutionary hypothesis about the function that isochronous behavior may have had in early hominids. Finally, we propose avenues for empirical research to examine this hypothesis and to understand the evolutionary origin of isochrony in general.
Collapse
Affiliation(s)
- Andrea Ravignani
- Language and Cognition Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.,Veterinary and Research Department, Sealcentre Pieterburen, Pieterburen, Netherlands.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Madison
- Department of Psychology, Umeå University, Umeå, Sweden
| |
Collapse
|
225
|
Nicolaou N, Malik A, Daly I, Weaver J, Hwang F, Kirke A, Roesch EB, Williams D, Miranda ER, Nasuto SJ. Directed Motor-Auditory EEG Connectivity Is Modulated by Music Tempo. Front Hum Neurosci 2017; 11:502. [PMID: 29093672 PMCID: PMC5651276 DOI: 10.3389/fnhum.2017.00502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/02/2017] [Indexed: 11/18/2022] Open
Abstract
Beat perception is fundamental to how we experience music, and yet the mechanism behind this spontaneous building of the internal beat representation is largely unknown. Existing findings support links between the tempo (speed) of the beat and enhancement of electroencephalogram (EEG) activity at tempo-related frequencies, but there are no studies looking at how tempo may affect the underlying long-range interactions between EEG activity at different electrodes. The present study investigates these long-range interactions using EEG activity recorded from 21 volunteers listening to music stimuli played at 4 different tempi (50, 100, 150 and 200 beats per minute). The music stimuli consisted of piano excerpts designed to convey the emotion of “peacefulness”. Noise stimuli with an identical acoustic content to the music excerpts were also presented for comparison purposes. The brain activity interactions were characterized with the imaginary part of coherence (iCOH) in the frequency range 1.5–18 Hz (δ, θ, α and lower β) between all pairs of EEG electrodes for the four tempi and the music/noise conditions, as well as a baseline resting state (RS) condition obtained at the start of the experimental task. Our findings can be summarized as follows: (a) there was an ongoing long-range interaction in the RS engaging fronto-posterior areas; (b) this interaction was maintained in both music and noise, but its strength and directionality were modulated as a result of acoustic stimulation; (c) the topological patterns of iCOH were similar for music, noise and RS, however statistically significant differences in strength and direction of iCOH were identified; and (d) tempo had an effect on the direction and strength of motor-auditory interactions. Our findings are in line with existing literature and illustrate a part of the mechanism by which musical stimuli with different tempi can entrain changes in cortical activity.
Collapse
Affiliation(s)
- Nicoletta Nicolaou
- Brain Embodiment Laboratory, Biomedical Engineering Section, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Asad Malik
- Brain Embodiment Laboratory, Biomedical Engineering Section, School of Biological Sciences, University of Reading, Reading, United Kingdom.,School of Psychology, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, United Kingdom
| | - Ian Daly
- Brain-Computer Interfacing and Neural Engineering Laboratory, Department of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - James Weaver
- Brain Embodiment Laboratory, Biomedical Engineering Section, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Faustina Hwang
- Brain Embodiment Laboratory, Biomedical Engineering Section, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Alexis Kirke
- Interdisciplinary Centre for Computer Music Research, University of Plymouth, Plymouth, United Kingdom
| | - Etienne B Roesch
- School of Psychology, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, United Kingdom
| | - Duncan Williams
- Interdisciplinary Centre for Computer Music Research, University of Plymouth, Plymouth, United Kingdom
| | - Eduardo R Miranda
- Interdisciplinary Centre for Computer Music Research, University of Plymouth, Plymouth, United Kingdom
| | - Slawomir J Nasuto
- Brain Embodiment Laboratory, Biomedical Engineering Section, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
226
|
Neural processing of musical meter in musicians and non-musicians. Neuropsychologia 2017; 106:289-297. [DOI: 10.1016/j.neuropsychologia.2017.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 11/17/2022]
|
227
|
Fujioka T, Ross B. Beta-band oscillations during passive listening to metronome sounds reflect improved timing representation after short-term musical training in healthy older adults. Eur J Neurosci 2017; 46:2339-2354. [DOI: 10.1111/ejn.13693] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Takako Fujioka
- Center for Computer Research in Music and Acoustics; Department of Music; Stanford University; 660 Lomita Ct. Stanford CA 94305 USA
- Stanford Neurosciences Institute; Stanford University; Stanford CA USA
| | - Bernhard Ross
- Rotman Research Institute; Baycrest Centre; Toronto ON Canada
- Department of Medical Biophysics; University of Toronto; Toronto ON Canada
| |
Collapse
|
228
|
Abstract
In behavior, action and perception are inherently interdependent. However, the actual mechanistic contributions of the motor system to sensory processing are unknown. We present neurophysiological evidence that the motor system is involved in predictive timing, a brain function that aligns temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection and optimizing behavior. In a magnetoencephalography experiment involving auditory temporal attention, participants had to disentangle two streams of sound on the unique basis of endogenous temporal cues. We show that temporal predictions are encoded by interdependent delta and beta neural oscillations originating from the left sensorimotor cortex, and directed toward auditory regions. We also found that overt rhythmic movements improved the quality of temporal predictions and sharpened the temporal selection of relevant auditory information. This latter behavioral and functional benefit was associated with increased signaling of temporal predictions in right-lateralized frontoparietal associative regions. In sum, this study points at a covert form of auditory active sensing. Our results emphasize the key role of motor brain areas in providing contextual temporal information to sensory regions, driving perceptual and behavioral selection.
Collapse
|
229
|
Herrojo Ruiz M, Maess B, Altenmüller E, Curio G, Nikulin VV. Cingulate and cerebellar beta oscillations are engaged in the acquisition of auditory-motor sequences. Hum Brain Mapp 2017; 38:5161-5179. [PMID: 28703919 PMCID: PMC6866917 DOI: 10.1002/hbm.23722] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022] Open
Abstract
Singing, music performance, and speech rely on the retrieval of complex sounds, which are generated by the corresponding actions and are organized into sequences. It is crucial in these forms of behavior that the serial organization (i.e., order) of both the actions and associated sounds be monitored and learned. To investigate the neural processes involved in the monitoring of serial order during the initial learning of sensorimotor sequences, we performed magnetoencephalographic recordings while participants explicitly learned short piano sequences under the effect of occasional alterations of auditory feedback (AAF). The main result was a prominent and selective modulation of beta (13-30 Hz) oscillations in cingulate and cerebellar regions during the processing of AAF that simulated serial order errors. Furthermore, the AAF-induced modulation of beta oscillations was associated with higher error rates, reflecting compensatory changes in sequence planning. This suggests that cingulate and cerebellar beta oscillations play a role in tracking serial order during initial sensorimotor learning and in updating the mapping of the sensorimotor representations. The findings support the notion that the modulation of beta oscillations is a candidate mechanism for the integration of sequential motor and auditory information during an early stage of skill acquisition in music performance. This has potential implications for singing and speech. Hum Brain Mapp 38:5161-5179, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- María Herrojo Ruiz
- Neurophysics GroupDepartment of Neurology, Campus Benjamin Franklin, Charité – Universitätsmedizin BerlinBerlin12203Germany
- Department of PsychologyWhitehead Building, Goldsmiths, University of LondonLondonSE14 6NWUnited Kingdom
| | - Burkhard Maess
- Research Group “MEG and cortical networks”Max Planck Institute for Human, Cognitive and Brain SciencesLeipzigD‐04103Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musicians' MedicineHanover University of Music, Drama, and MediaHanoverGermany
| | - Gabriel Curio
- Neurophysics GroupDepartment of Neurology, Campus Benjamin Franklin, Charité – Universitätsmedizin BerlinBerlin12203Germany
- Bernstein Center for Computational NeuroscienceBerlin10115Germany
| | - Vadim V. Nikulin
- Neurophysics GroupDepartment of Neurology, Campus Benjamin Franklin, Charité – Universitätsmedizin BerlinBerlin12203Germany
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigD‐04103Germany
- Center for Cognition and Decision MakingNational Research University Higher School of EconomicsRussian Federation
| |
Collapse
|
230
|
Puyjarinet F, Bégel V, Lopez R, Dellacherie D, Dalla Bella S. Children and adults with Attention-Deficit/Hyperactivity Disorder cannot move to the beat. Sci Rep 2017; 7:11550. [PMID: 28912422 PMCID: PMC5599521 DOI: 10.1038/s41598-017-11295-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
Children and adults with Attention-Deficit Hyperactivity Disorder (ADHD) fail in simple tasks like telling whether two sounds have different durations, or in reproducing single durations. The deficit is linked to poor reading, attention, and language skills. Here we demonstrate that these timing distortions emerge also when tracking the beat of rhythmic sounds in perceptual and sensorimotor tasks. This contrasts with the common observation that durations are better perceived and produced when embedded in rhythmic stimuli. Children and adults with ADHD struggled when moving to the beat of rhythmic sounds, and when detecting deviations from the beat. Our findings point to failure in generating an internal beat in ADHD while listening to rhythmic sounds, a function typically associated with the basal ganglia. Rhythm-based interventions aimed at reinstating or compensating this malfunctioning circuitry may be particularly valuable in ADHD, as already shown for other neurodevelopmental disorders, such as dyslexia and Specific Language Impairment.
Collapse
Affiliation(s)
- Frédéric Puyjarinet
- EuroMov Laboratory, University of Montpellier, 700 Av. du Pic Saint Loup, 34090, Montpellier, France
| | - Valentin Bégel
- EuroMov Laboratory, University of Montpellier, 700 Av. du Pic Saint Loup, 34090, Montpellier, France.,NaturalPad, SAS, 700 Av. du Pic Saint Loup, 34090, Montpellier, France
| | - Régis Lopez
- National reference center for narcolepsy and idiopathic hypersomnia, specialized in adult ADHD, Gui-de-Chauliac University Hospital, 80 Av. Augustin Fliche, 34295, Montpellier, France.,Inserm Unit U1061, La Colombière University Hospital, 39 Av. Charles Flahault, 34093, Montpellier, France
| | - Delphine Dellacherie
- Department of Psychology, PSITEC-EA 4072 Laboratory, University of Lille, Domaine Universitaire Pont de bois, 59653, Villeneuve d'Ascq, France.,University Hospital of Lille, Department of Pediatric Neurology, 2 Av. Oscar Lambret, 59037, Lille, France
| | - Simone Dalla Bella
- EuroMov Laboratory, University of Montpellier, 700 Av. du Pic Saint Loup, 34090, Montpellier, France. .,International Laboratory for Brain, Music and Sound Research (BRAMS), 1430 Boulevard du Mont-Royal, Montreal, QC H2V 2J2, Canada. .,Institut Universitaire de France, 1 Rue Descartes, 75231, Paris, France. .,Department of Cognitive Psychology, WSFiZ in Warsaw, Ul. Pawia 55, 01-030, Warsaw, Poland.
| |
Collapse
|
231
|
Białuńska A, Dalla Bella S. Music and speech distractors disrupt sensorimotor synchronization: effects of musical training. Exp Brain Res 2017; 235:3619-3630. [PMID: 28889178 DOI: 10.1007/s00221-017-5080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 09/02/2017] [Indexed: 11/29/2022]
Abstract
Humans display a natural tendency to move to the beat of music, more than to the rhythm of any other auditory stimulus. We typically move with music, but rarely with speech. This proclivity is apparent early during development and can be further developed over the years via joint dancing, singing, or instrument playing. Synchronization of movement to the beat can thus improve with age, but also with musical experience. In a previous study, we found that music perturbed synchronization with a metronome more than speech fragments; music superiority disappeared when distractors shared isochrony and the same meter (Dalla Bella et al., PLoS One 8(8):e71945, 2013). Here, we examined if the interfering effect of music and speech distractors in a synchronization task is influenced by musical training. Musicians and non-musicians synchronized by producing finger force pulses to the sounds of a metronome while music and speech distractors were presented at one of various phase relationships with respect to the target. Distractors were familiar musical excerpts and fragments of children poetry comparable in terms of beat/stress isochrony. Music perturbed synchronization with the metronome more than speech did in both groups. However, the difference in synchronization error between music and speech distractors was smaller for musicians than for non-musicians, especially when the peak force of movement is reached. These findings point to a link between musical training and timing of sensorimotor synchronization when reacting to music and speech distractors.
Collapse
Affiliation(s)
- Anita Białuńska
- Department of Cognitive Psychology, WSFiZ, Warsaw, Poland.
- Department of Rehabilitation Sciences, College of Health Sciences, University of Texas at El Paso, 1101 Campbell Street, El Paso, TX, 79902, USA.
| | - Simone Dalla Bella
- Department of Cognitive Psychology, WSFiZ, Warsaw, Poland.
- EuroMov, University of Montpellier, 700 Avenue du Pic St Loup, 34090, Montpellier, France.
- Institut Universitaire de France, Paris, France.
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada.
| |
Collapse
|
232
|
Great Expectations: Is there Evidence for Predictive Coding in Auditory Cortex? Neuroscience 2017; 389:54-73. [PMID: 28782642 DOI: 10.1016/j.neuroscience.2017.07.061] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/26/2017] [Indexed: 11/21/2022]
Abstract
Predictive coding is possibly one of the most influential, comprehensive, and controversial theories of neural function. While proponents praise its explanatory potential, critics object that key tenets of the theory are untested or even untestable. The present article critically examines existing evidence for predictive coding in the auditory modality. Specifically, we identify five key assumptions of the theory and evaluate each in the light of animal, human and modeling studies of auditory pattern processing. For the first two assumptions - that neural responses are shaped by expectations and that these expectations are hierarchically organized - animal and human studies provide compelling evidence. The anticipatory, predictive nature of these expectations also enjoys empirical support, especially from studies on unexpected stimulus omission. However, for the existence of separate error and prediction neurons, a key assumption of the theory, evidence is lacking. More work exists on the proposed oscillatory signatures of predictive coding, and on the relation between attention and precision. However, results on these latter two assumptions are mixed or contradictory. Looking to the future, more collaboration between human and animal studies, aided by model-based analyses will be needed to test specific assumptions and implementations of predictive coding - and, as such, help determine whether this popular grand theory can fulfill its expectations.
Collapse
|
233
|
Stober S. Toward Studying Music Cognition with Information Retrieval Techniques: Lessons Learned from the OpenMIIR Initiative. Front Psychol 2017; 8:1255. [PMID: 28824478 PMCID: PMC5541010 DOI: 10.3389/fpsyg.2017.01255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 07/10/2017] [Indexed: 12/05/2022] Open
Abstract
As an emerging sub-field of music information retrieval (MIR), music imagery information retrieval (MIIR) aims to retrieve information from brain activity recorded during music cognition–such as listening to or imagining music pieces. This is a highly inter-disciplinary endeavor that requires expertise in MIR as well as cognitive neuroscience and psychology. The OpenMIIR initiative strives to foster collaborations between these fields to advance the state of the art in MIIR. As a first step, electroencephalography (EEG) recordings of music perception and imagination have been made publicly available, enabling MIR researchers to easily test and adapt their existing approaches for music analysis like fingerprinting, beat tracking or tempo estimation on this new kind of data. This paper reports on first results of MIIR experiments using these OpenMIIR datasets and points out how these findings could drive new research in cognitive neuroscience.
Collapse
Affiliation(s)
- Sebastian Stober
- Machine Learning in Cognitive Science Lab, Research Focus Cognitive Sciences, University of PotsdamPotsdam, Germany
| |
Collapse
|
234
|
Kumagai Y, Arvaneh M, Tanaka T. Familiarity Affects Entrainment of EEG in Music Listening. Front Hum Neurosci 2017; 11:384. [PMID: 28798673 PMCID: PMC5526927 DOI: 10.3389/fnhum.2017.00384] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Music perception involves complex brain functions. The relationship between music and brain such as cortical entrainment to periodic tune, periodic beat, and music have been well investigated. It has also been reported that the cerebral cortex responded more strongly to the periodic rhythm of unfamiliar music than to that of familiar music. However, previous works mainly used simple and artificial auditory stimuli like pure tone or beep. It is still unclear how the brain response is influenced by the familiarity of music. To address this issue, we analyzed electroencelphalogram (EEG) to investigate the relationship between cortical response and familiarity of music using melodies produced by piano sounds as simple natural stimuli. The cross-correlation function averaged across trials, channels, and participants showed two pronounced peaks at time lags around 70 and 140 ms. At the two peaks the magnitude of the cross-correlation values were significantly larger when listening to unfamiliar and scrambled music compared to those when listening to familiar music. Our findings suggest that the response to unfamiliar music is stronger than that to familiar music. One potential application of our findings would be the discrimination of listeners' familiarity with music, which provides an important tool for assessment of brain activity.
Collapse
Affiliation(s)
- Yuiko Kumagai
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and TechnologyKoganei-shi, Japan
| | - Mahnaz Arvaneh
- Department of Automatic Control and Systems Engineering, University of SheffieldSheffield, United Kingdom
| | - Toshihisa Tanaka
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and TechnologyKoganei-shi, Japan.,RIKEN Brain Science InstituteWako-shi, Japan
| |
Collapse
|
235
|
θ-Band and β-Band Neural Activity Reflects Independent Syllable Tracking and Comprehension of Time-Compressed Speech. J Neurosci 2017; 37:7930-7938. [PMID: 28729443 DOI: 10.1523/jneurosci.2882-16.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 11/21/2022] Open
Abstract
Recent psychophysics data suggest that speech perception is not limited by the capacity of the auditory system to encode fast acoustic variations through neural γ activity, but rather by the time given to the brain to decode them. Whether the decoding process is bounded by the capacity of θ rhythm to follow syllabic rhythms in speech, or constrained by a more endogenous top-down mechanism, e.g., involving β activity, is unknown. We addressed the dynamics of auditory decoding in speech comprehension by challenging syllable tracking and speech decoding using comprehensible and incomprehensible time-compressed auditory sentences. We recorded EEGs in human participants and found that neural activity in both θ and γ ranges was sensitive to syllabic rate. Phase patterns of slow neural activity consistently followed the syllabic rate (4-14 Hz), even when this rate went beyond the classical θ range (4-8 Hz). The power of θ activity increased linearly with syllabic rate but showed no sensitivity to comprehension. Conversely, the power of β (14-21 Hz) activity was insensitive to the syllabic rate, yet reflected comprehension on a single-trial basis. We found different long-range dynamics for θ and β activity, with β activity building up in time while more contextual information becomes available. This is consistent with the roles of θ and β activity in stimulus-driven versus endogenous mechanisms. These data show that speech comprehension is constrained by concurrent stimulus-driven θ and low-γ activity, and by endogenous β activity, but not primarily by the capacity of θ activity to track the syllabic rhythm.SIGNIFICANCE STATEMENT Speech comprehension partly depends on the ability of the auditory cortex to track syllable boundaries with θ-range neural oscillations. The reason comprehension drops when speech is accelerated could hence be because θ oscillations can no longer follow the syllabic rate. Here, we presented subjects with comprehensible and incomprehensible accelerated speech, and show that neural phase patterns in the θ band consistently reflect the syllabic rate, even when speech becomes too fast to be intelligible. The drop in comprehension, however, is signaled by a significant decrease in the power of low-β oscillations (14-21 Hz). These data suggest that speech comprehension is not limited by the capacity of θ oscillations to adapt to syllabic rate, but by an endogenous decoding process.
Collapse
|
236
|
When Synchronizing to Rhythms Is Not a Good Thing: Modulations of Preparatory and Post-Target Neural Activity When Shifting Attention Away from On-Beat Times of a Distracting Rhythm. J Neurosci 2017; 36:7154-66. [PMID: 27383591 DOI: 10.1523/jneurosci.4619-15.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/18/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Environmental rhythms potently drive predictive resource allocation in time, typically leading to perceptual and motor benefits for on-beat, relative to off-beat, times, even if the rhythmic stream is not intentionally used. In two human EEG experiments, we investigated the behavioral and electrophysiological expressions of using rhythms to direct resources away from on-beat times. This allowed us to distinguish goal-directed attention from the automatic capture of attention by rhythms. The following three conditions were compared: (1) a rhythmic stream with targets appearing frequently at a fixed off-beat position; (2) a rhythmic stream with targets appearing frequently at on-beat times; and (3) a nonrhythmic stream with matched target intervals. Shifting resources away from on-beat times was expressed in the slowing of responses to on-beat targets, but not in the facilitation of off-beat targets. The shifting of resources was accompanied by anticipatory adjustment of the contingent negative variation (CNV) buildup toward the expected off-beat time. In the second experiment, off-beat times were jittered, resulting in a similar CNV adjustment and also in preparatory amplitude reduction of beta-band activity. Thus, the CNV and beta activity track the relevance of time points and not the rhythm, given sufficient incentive. Furthermore, the effects of task relevance (appearing in a task-relevant vs irrelevant time) and rhythm (appearing on beat vs off beat) had additive behavioral effects and also dissociable neural manifestations in target-evoked activity: rhythm affected the target response as early as the P1 component, while relevance affected only the later N2 and P3. Thus, these two factors operate by distinct mechanisms. SIGNIFICANCE STATEMENT Rhythmic streams are widespread in our environment, and are typically conceptualized as automatic, bottom-up resource attractors to on-beat times-preparatory neural activity peaks at rhythm-on-beat times and behavioral benefits are seen to on-beat compared with off-beat targets. We show that this behavioral benefit is reversed when targets are more frequent at off-beat compared with on-beat times, and that preparatory neural activity, previously thought to be driven by the rhythm to on-beat times, is adjusted toward off-beat times. Furthermore, the effect of this relevance-based shifting on target-evoked brain activity was dissociable from the automatic effect of rhythms. Thus, rhythms can act as cues for flexible resource allocation according to the goal relevance of each time point, instead of being obligatory resource attractors.
Collapse
|
237
|
EEG Oscillations Are Modulated in Different Behavior-Related Networks during Rhythmic Finger Movements. J Neurosci 2017; 36:11671-11681. [PMID: 27852775 DOI: 10.1523/jneurosci.1739-16.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/28/2016] [Accepted: 09/10/2016] [Indexed: 11/21/2022] Open
Abstract
Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. SIGNIFICANCE STATEMENT EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from movement phase-related amplitude modulations. We separate these two EEG source elements motivated by our previous findings in gait. Here, we found two types of large-scale networks, representing the right fingers in distinction from the time sequence of the movements. These findings suggest that EEG source amplitudes reconstructed in a cortical patch are the superposition of these simultaneously present network activities. Separating these frequency-specific networks is relevant for studying function and possible dysfunction of the cortical sensorimotor system in humans as well as to provide more advanced features for brain-computer interfaces.
Collapse
|
238
|
Gallotto S, Sack AT, Schuhmann T, de Graaf TA. Oscillatory Correlates of Visual Consciousness. Front Psychol 2017; 8:1147. [PMID: 28736543 PMCID: PMC5500655 DOI: 10.3389/fpsyg.2017.01147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/23/2017] [Indexed: 11/21/2022] Open
Abstract
Conscious experiences are linked to activity in our brain: the neural correlates of consciousness (NCC). Empirical research on these NCCs covers a wide range of brain activity signals, measures, and methodologies. In this paper, we focus on spontaneous brain oscillations; rhythmic fluctuations of neuronal (population) activity which can be characterized by a range of parameters, such as frequency, amplitude (power), and phase. We provide an overview of oscillatory measures that appear to correlate with conscious perception. We also discuss how increasingly sophisticated techniques allow us to study the causal role of oscillatory activity in conscious perception (i.e., ‘entrainment’). This review of oscillatory correlates of consciousness suggests that, for example, activity in the alpha-band (7–13 Hz) may index, or even causally support, conscious perception. But such results also showcase an increasingly acknowledged difficulty in NCC research; the challenge of separating neural activity necessary for conscious experience to arise (prerequisites) from neural activity underlying the conscious experience itself (substrates) or its results (consequences).
Collapse
Affiliation(s)
- Stefano Gallotto
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands.,Maastricht Brain Imaging CentreMaastricht, Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands.,Maastricht Brain Imaging CentreMaastricht, Netherlands
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands.,Maastricht Brain Imaging CentreMaastricht, Netherlands
| | - Tom A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands.,Maastricht Brain Imaging CentreMaastricht, Netherlands
| |
Collapse
|
239
|
Pisauro MA, Fouragnan E, Retzler C, Philiastides MG. Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-fMRI. Nat Commun 2017; 8:15808. [PMID: 28598432 PMCID: PMC5472767 DOI: 10.1038/ncomms15808] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/04/2017] [Indexed: 01/18/2023] Open
Abstract
Current computational accounts posit that, in simple binary choices, humans accumulate evidence in favour of the different alternatives before committing to a decision. Neural correlates of this accumulating activity have been found during perceptual decisions in parietal and prefrontal cortex; however the source of such activity in value-based choices remains unknown. Here we use simultaneous EEG–fMRI and computational modelling to identify EEG signals reflecting an accumulation process and demonstrate that the within- and across-trial variability in these signals explains fMRI responses in posterior-medial frontal cortex. Consistent with its role in integrating the evidence prior to reaching a decision, this region also exhibits task-dependent coupling with the ventromedial prefrontal cortex and the striatum, brain areas known to encode the subjective value of the decision alternatives. These results further endorse the proposition of an evidence accumulation process during value-based decisions in humans and implicate the posterior-medial frontal cortex in this process. Parietal and prefrontal cortices gather information to make perceptual decisions, but it is not known if the same is true for value-based choices. Here, authors use simultaneous EEG-fMRI and modelling to show that during value- and reward-based decisions this evidence is accumulated in the posterior medial frontal cortex.
Collapse
Affiliation(s)
- M Andrea Pisauro
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Elsa Fouragnan
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Chris Retzler
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Department of Behavioural &Social Sciences, University of Huddersfield, Huddersfield, UK
| | | |
Collapse
|
240
|
Neural Entrainment to the Beat: The "Missing-Pulse" Phenomenon. J Neurosci 2017; 37:6331-6341. [PMID: 28559379 DOI: 10.1523/jneurosci.2500-16.2017] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 11/21/2022] Open
Abstract
Most humans have a near-automatic inclination to tap, clap, or move to the beat of music. The capacity to extract a periodic beat from a complex musical segment is remarkable, as it requires abstraction from the temporal structure of the stimulus. It has been suggested that nonlinear interactions in neural networks result in cortical oscillations at the beat frequency, and that such entrained oscillations give rise to the percept of a beat or a pulse. Here we tested this neural resonance theory using MEG recordings as female and male individuals listened to 30 s sequences of complex syncopated drumbeats designed so that they contain no net energy at the pulse frequency when measured using linear analysis. We analyzed the spectrum of the neural activity while listening and compared it to the modulation spectrum of the stimuli. We found enhanced neural response in the auditory cortex at the pulse frequency. We also showed phase locking at the times of the missing pulse, even though the pulse was absent from the stimulus itself. Moreover, the strength of this pulse response correlated with individuals' speed in finding the pulse of these stimuli, as tested in a follow-up session. These findings demonstrate that neural activity at the pulse frequency in the auditory cortex is internally generated rather than stimulus-driven. The current results are both consistent with neural resonance theory and with models based on nonlinear response of the brain to rhythmic stimuli. The results thus help narrow the search for valid models of beat perception.SIGNIFICANCE STATEMENT Humans perceive music as having a regular pulse marking equally spaced points in time, within which musical notes are temporally organized. Neural resonance theory (NRT) provides a theoretical model explaining how an internal periodic representation of a pulse may emerge through nonlinear coupling between oscillating neural systems. After testing key falsifiable predictions of NRT using MEG recordings, we demonstrate the emergence of neural oscillations at the pulse frequency, which can be related to pulse perception. These findings rule out alternative explanations for neural entrainment and provide evidence linking neural synchronization to the perception of pulse, a widely debated topic in recent years.
Collapse
|
241
|
Sound-Making Actions Lead to Immediate Plastic Changes of Neuromagnetic Evoked Responses and Induced β-Band Oscillations during Perception. J Neurosci 2017; 37:5948-5959. [PMID: 28539421 DOI: 10.1523/jneurosci.3613-16.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/18/2017] [Accepted: 05/13/2017] [Indexed: 11/21/2022] Open
Abstract
Auditory and sensorimotor brain areas interact during the action-perception cycle of sound making. Neurophysiological evidence of a feedforward model of the action and its outcome has been associated with attenuation of the N1 wave of auditory evoked responses elicited by self-generated sounds, such as talking and singing or playing a musical instrument. Moreover, neural oscillations at β-band frequencies have been related to predicting the sound outcome after action initiation. We hypothesized that a newly learned action-perception association would immediately modify interpretation of the sound during subsequent listening. Nineteen healthy young adults (7 female, 12 male) participated in three magnetoencephalographic recordings while first passively listening to recorded sounds of a bell ringing, then actively striking the bell with a mallet, and then again listening to recorded sounds. Auditory cortex activity showed characteristic P1-N1-P2 waves. The N1 was attenuated during sound making, while P2 responses were unchanged. In contrast, P2 became larger when listening after sound making compared with the initial naive listening. The P2 increase occurred immediately, while in previous learning-by-listening studies P2 increases occurred on a later day. Also, reactivity of β-band oscillations, as well as θ coherence between auditory and sensorimotor cortices, was stronger in the second listening block. These changes were significantly larger than those observed in control participants (eight female, five male), who triggered recorded sounds by a key press. We propose that P2 characterizes familiarity with sound objects, whereas β-band oscillation signifies involvement of the action-perception cycle, and both measures objectively indicate functional neuroplasticity in auditory perceptual learning.SIGNIFICANCE STATEMENT While suppression of auditory responses to self-generated sounds is well known, it is not clear whether the learned action-sound association modifies subsequent perception. Our study demonstrated the immediate effects of sound-making experience on perception using magnetoencephalographic recordings, as reflected in the increased auditory evoked P2 wave, increased responsiveness of β oscillations, and enhanced connectivity between auditory and sensorimotor cortices. The importance of motor learning was underscored as the changes were much smaller in a control group using a key press to generate the sounds instead of learning to play the musical instrument. The results support the rapid integration of a feedforward model during perception and provide a neurophysiological basis for the application of music making in motor rehabilitation training.
Collapse
|
242
|
Varlet M, Wade A, Novembre G, Keller PE. Investigation of the effects of transcranial alternating current stimulation (tACS) on self-paced rhythmic movements. Neuroscience 2017; 350:75-84. [PMID: 28323009 DOI: 10.1016/j.neuroscience.2017.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 11/27/2022]
Abstract
Human rhythmic movements spontaneously entrain to external rhythmic stimuli. Such sensory-motor entrainment can attract movements to different tempi and enhance their efficiency, with potential clinical applications for motor rehabilitation. Here we investigate whether entrainment of self-paced rhythmic movements can be induced via transcranial alternating current stimulation (tACS), which uses alternating currents to entrain spontaneous brain oscillations at specific frequencies. Participants swung a handheld pendulum at their preferred tempo with the right hand while tACS was applied over their left or right primary motor cortex at frequencies equal to their preferred tempo (Experiment 1) or in the alpha (10Hz) and beta (20Hz) ranges (Experiment 2). Given that entrainment generally occurs only if the frequency difference between two rhythms is small, stimulations were delivered at frequencies equal to participants' preferred movement tempo (≈1Hz) and ±12.5% in Experiment 1, and at 10Hz and 20Hz, and ±12.5% in Experiment 2. The comparison of participants' movement frequency, amplitude, variability, and phase synchrony with and without tACS failed to reveal entrainment or movement modifications across the two experiments. However, significant differences in stimulation-related side effects reported by participants were found between the two experiments, with phosphenes and burning sensations principally occurring in Experiment 2, and metallic tastes reported marginally more often in Experiment 1. Although other stimulation protocols may be effective, our results suggest that rhythmic movements such as pendulum swinging or locomotion that are low in goal-directedness and/or strongly driven by peripheral and mechanical constraints may not be susceptible to modulation by tACS.
Collapse
Affiliation(s)
- Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia.
| | - Alanna Wade
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| | - Giacomo Novembre
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia; Department of Neuroscience, Physiology, and Pharmacology, University College London, United Kingdom
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| |
Collapse
|
243
|
Abstract
The cultural and technological achievements of the human species depend on complex social interactions. Nonverbal interpersonal coordination, or joint action, is a crucial element of social interaction, but the dynamics of nonverbal information flow among people are not well understood. We used joint music making in string quartets, a complex, naturalistic nonverbal behavior, as a model system. Using motion capture, we recorded body sway simultaneously in four musicians, which reflected real-time interpersonal information sharing. We used Granger causality to analyze predictive relationships among the motion time series of the players to determine the magnitude and direction of information flow among the players. We experimentally manipulated which musician was the leader (followers were not informed who was leading) and whether they could see each other, to investigate how these variables affect information flow. We found that assigned leaders exerted significantly greater influence on others and were less influenced by others compared with followers. This effect was present, whether or not they could see each other, but was enhanced with visual information, indicating that visual as well as auditory information is used in musical coordination. Importantly, performers' ratings of the "goodness" of their performances were positively correlated with the overall degree of body sway coupling, indicating that communication through body sway reflects perceived performance success. These results confirm that information sharing in a nonverbal joint action task occurs through both auditory and visual cues and that the dynamics of information flow are affected by changing group relationships.
Collapse
|
244
|
Yoshida T, Masani K, Zabjek K, Chen R, Popovic MR. Dynamic Increase in Corticomuscular Coherence during Bilateral, Cyclical Ankle Movements. Front Hum Neurosci 2017; 11:155. [PMID: 28420971 PMCID: PMC5378765 DOI: 10.3389/fnhum.2017.00155] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/15/2017] [Indexed: 11/13/2022] Open
Abstract
In humans, the midline primary motor cortex is active during walking. However, the exact role of such cortical participation is unknown. To delineate the role of the primary motor cortex in walking, we examined whether the primary motor cortex would activate leg muscles during movements that retained specific requirements of walking (i.e., locomotive actions). We recorded electroencephalographic and electromyographic signals from 15 healthy, young men while they sat and performed bilateral, cyclical ankle movements. During dorsiflexion, near-20-Hz coherence increased cyclically between the midline primary motor cortex and the co-contracting antagonistic pair (i.e., tibialis anterior and medial gastrocnemius muscles) in both legs. Thus, we have shown that dynamic increase in corticomuscular coherence, which has been observed during walking, also occurs during simple bilateral cyclical movements of the feet. A possible mechanism for such coherence is corticomuscular communication, in which the primary motor cortex participates in the control of movement. Furthermore, because our experimental task isolated certain locomotive actions, the observed coherence suggests that the human primary motor cortex may participate in these actions (i.e., maintaining a specified movement frequency, bilaterally coordinating the feet, and stabilizing the posture of the feet). Additional studies are needed to identify the exact cortical and subcortical interactions that cause corticomuscular coherence and to further delineate the functional role of the primary motor cortex during bilateral cyclical movements such as walking.
Collapse
Affiliation(s)
- Takashi Yoshida
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health NetworkToronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of TorontoToronto, ON, Canada
| | - Kei Masani
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health NetworkToronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of TorontoToronto, ON, Canada
| | - Karl Zabjek
- Department of Physical Therapy, University of TorontoToronto, ON, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of TorontoToronto, ON, Canada.,Krembil Research Institute, University Health NetworkToronto, ON, Canada
| | - Milos R Popovic
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health NetworkToronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of TorontoToronto, ON, Canada
| |
Collapse
|
245
|
Merchant H, Bartolo R. Primate beta oscillations and rhythmic behaviors. J Neural Transm (Vienna) 2017; 125:461-470. [DOI: 10.1007/s00702-017-1716-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/19/2017] [Indexed: 11/24/2022]
|
246
|
Edagawa K, Kawasaki M. Beta phase synchronization in the frontal-temporal-cerebellar network during auditory-to-motor rhythm learning. Sci Rep 2017; 7:42721. [PMID: 28225010 PMCID: PMC5320498 DOI: 10.1038/srep42721] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/13/2017] [Indexed: 11/16/2022] Open
Abstract
Rhythm is an essential element of dancing and music. To investigate the neural mechanisms underlying how rhythm is learned, we recorded electroencephalographic (EEG) data during a rhythm-reproducing task that asked participants to memorize an auditory stimulus and reproduce it via tapping. Based on the behavioral results, we divided the participants into Learning and No-learning groups. EEG analysis showed that error-related negativity (ERN) in the Learning group was larger than in the No-learning group. Time-frequency analysis of the EEG data showed that the beta power in right and left temporal area at the late learning stage was smaller than at the early learning stage in the Learning group. Additionally, the beta power in the temporal and cerebellar areas in the Learning group when learning to reproduce the rhythm were larger than in the No Learning group. Moreover, phase synchronization between frontal and temporal regions and between temporal and cerebellar regions at late stages of learning were larger than at early stages. These results indicate that the frontal-temporal-cerebellar beta neural circuits might be related to auditory-motor rhythm learning.
Collapse
Affiliation(s)
- Kouki Edagawa
- Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, Tsukuba-shi, Ibaraki 305-8573, Japan
| | - Masahiro Kawasaki
- Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, Tsukuba-shi, Ibaraki 305-8573, Japan
- Rhythm-based Brain Information Processing Unit, RIKEN BSI-TOYOTA Collaboration Center, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
247
|
Henry MJ, Herrmann B, Grahn JA. What can we learn about beat perception by comparing brain signals and stimulus envelopes? PLoS One 2017; 12:e0172454. [PMID: 28225796 PMCID: PMC5321456 DOI: 10.1371/journal.pone.0172454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/06/2017] [Indexed: 01/30/2023] Open
Abstract
Entrainment of neural oscillations on multiple time scales is important for the perception of speech. Musical rhythms, and in particular the perception of a regular beat in musical rhythms, is also likely to rely on entrainment of neural oscillations. One recently proposed approach to studying beat perception in the context of neural entrainment and resonance (the "frequency-tagging" approach) has received an enthusiastic response from the scientific community. A specific version of the approach involves comparing frequency-domain representations of acoustic rhythm stimuli to the frequency-domain representations of neural responses to those rhythms (measured by electroencephalography, EEG). The relative amplitudes at specific EEG frequencies are compared to the relative amplitudes at the same stimulus frequencies, and enhancements at beat-related frequencies in the EEG signal are interpreted as reflecting an internal representation of the beat. Here, we show that frequency-domain representations of rhythms are sensitive to the acoustic features of the tones making up the rhythms (tone duration, onset/offset ramp duration); in fact, relative amplitudes at beat-related frequencies can be completely reversed by manipulating tone acoustics. Crucially, we show that changes to these acoustic tone features, and in turn changes to the frequency-domain representations of rhythms, do not affect beat perception. Instead, beat perception depends on the pattern of onsets (i.e., whether a rhythm has a simple or complex metrical structure). Moreover, we show that beat perception can differ for rhythms that have numerically identical frequency-domain representations. Thus, frequency-domain representations of rhythms are dissociable from beat perception. For this reason, we suggest caution in interpreting direct comparisons of rhythms and brain signals in the frequency domain. Instead, we suggest that combining EEG measurements of neural signals with creative behavioral paradigms is of more benefit to our understanding of beat perception.
Collapse
Affiliation(s)
- Molly J. Henry
- Brain and Mind Institute, Department of Psychology The University of Western Ontario, London, ON, Canada
| | - Björn Herrmann
- Brain and Mind Institute, Department of Psychology The University of Western Ontario, London, ON, Canada
| | - Jessica A. Grahn
- Brain and Mind Institute, Department of Psychology The University of Western Ontario, London, ON, Canada
| |
Collapse
|
248
|
Te Woerd ES, Oostenveld R, de Lange FP, Praamstra P. Impaired auditory-to-motor entrainment in Parkinson's disease. J Neurophysiol 2017; 117:1853-1864. [PMID: 28179479 DOI: 10.1152/jn.00547.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/23/2017] [Accepted: 02/05/2017] [Indexed: 11/22/2022] Open
Abstract
Several electrophysiological studies suggest that Parkinson's disease (PD) patients have a reduced tendency to entrain to regular environmental patterns. Here we investigate whether this reduced entrainment concerns a generalized deficit or is confined to movement-related activity, leaving sensory entrainment intact. Magnetoencephalography was recorded during a rhythmic auditory target detection task in 14 PD patients and 14 control subjects. Participants were instructed to press a button when hearing a target tone amid an isochronous sequence of standard tones. The variable pitch of standard tones indicated the probability of the next tone to be a target. In addition, targets were occasionally omitted to evaluate entrainment uncontaminated by stimulus effects. Response times were not significantly different between groups and both groups benefited equally from the predictive value of standard tones. Analyses of oscillatory beta power over auditory cortices showed equal entrainment to the tones in both groups. By contrast, oscillatory beta power and event-related fields demonstrated a reduced engagement of motor cortical areas in PD patients, expressed in the modulation depth of beta power, in the response to omitted stimuli, and in an absent motor area P300 effect. Together, these results show equally strong entrainment of neural activity over sensory areas in controls and patients, but, in patients, a deficient translation of the adjustment to the task rhythm to motor circuits. We suggest that the reduced activation reflects not merely altered resonance to rhythmic external events, but a compromised recruitment of an endogenous response reflecting internal rhythm generation.NEW & NOTEWORTHY Previous studies suggest that motor cortical activity in PD patients has a reduced tendency to entrain to regular environmental patterns. This study demonstrates that the deficient entrainment in PD concerns the motor system only, by showing equally strong entrainment of neural activity over sensory areas in controls and patients but, in patients, a deficient translation of this adjustment to the task rhythm to motor circuits.
Collapse
Affiliation(s)
- Erik S Te Woerd
- Radboud University Medical Centre, Dept. of Neurology, Radboud University, Nijmegen, The Netherlands; and.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Peter Praamstra
- Radboud University Medical Centre, Dept. of Neurology, Radboud University, Nijmegen, The Netherlands; and .,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
249
|
Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia 2017; 96:96-110. [DOI: 10.1016/j.neuropsychologia.2017.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 12/10/2016] [Accepted: 01/06/2017] [Indexed: 01/04/2023]
|
250
|
Breska A, Deouell LY. Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment. PLoS Biol 2017; 15:e2001665. [PMID: 28187128 PMCID: PMC5302287 DOI: 10.1371/journal.pbio.2001665] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/13/2017] [Indexed: 11/18/2022] Open
Abstract
Predicting the timing of upcoming events enables efficient resource allocation and action preparation. Rhythmic streams, such as music, speech, and biological motion, constitute a pervasive source for temporal predictions. Widely accepted entrainment theories postulate that rhythm-based predictions are mediated by synchronizing low-frequency neural oscillations to the rhythm, as indicated by increased phase concentration (PC) of low-frequency neural activity for rhythmic compared to random streams. However, we show here that PC enhancement in scalp recordings is not specific to rhythms but is observed to the same extent in less periodic streams if they enable memory-based prediction. This is inconsistent with the predictions of a computational entrainment model of stronger PC for rhythmic streams. Anticipatory change in alpha activity and facilitation of electroencephalogram (EEG) manifestations of response selection are also comparable between rhythm- and memory-based predictions. However, rhythmic sequences uniquely result in obligatory depression of preparation-related premotor brain activity when an on-beat event is omitted, even when it is strategically beneficial to maintain preparation, leading to larger behavioral costs for violation of prediction. Thus, while our findings undermine the validity of PC as a sign of rhythmic entrainment, they constitute the first electrophysiological dissociation, to our knowledge, between mechanisms of rhythmic predictions and of memory-based predictions: the former obligatorily lead to resonance-like preparation patterns (that are in line with entrainment), while the latter allow flexible resource allocation in time regardless of periodicity in the input. Taken together, they delineate the neural mechanisms of three distinct modes of preparation: continuous vigilance, interval-timing-based prediction and rhythm-based prediction.
Collapse
Affiliation(s)
- Assaf Breska
- Department of Psychology, Hebrew University, Jerusalem, Israel
| | - Leon Y. Deouell
- Department of Psychology, Hebrew University, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|