201
|
Iftimia-Mander A, Hourd P, Dainty R, Thomas RJ. Mesenchymal Stem Cell Isolation from Human Umbilical Cord Tissue: Understanding and Minimizing Variability in Cell Yield for Process Optimization. Biopreserv Biobank 2013; 11:291-8. [DOI: 10.1089/bio.2013.0027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Andreea Iftimia-Mander
- Centre for Biological Engineering, Healthcare Research Group, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, United Kingdom
| | - Paul Hourd
- Centre for Biological Engineering, Healthcare Research Group, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, United Kingdom
| | - Roger Dainty
- Future Health Technologies, Nottingham, United Kingdom
| | - Robert J. Thomas
- Centre for Biological Engineering, Healthcare Research Group, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, United Kingdom
| |
Collapse
|
202
|
Inamdar AC, Inamdar AA. Mesenchymal stem cell therapy in lung disorders: pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell. Exp Lung Res 2013; 39:315-27. [PMID: 23992090 DOI: 10.3109/01902148.2013.816803] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lung disorders such as asthma, acute respiratory distress syndrome (ARDS), chronic obstructive lung disease (COPD), and interstitial lung disease (ILD) show a few common threads of pathogenic mechanisms: inflammation, aberrant immune activity, infection, and fibrosis. Currently no modes of effective treatment are available for ILD or emphysema. Being anti-inflammatory, immunomodulatory, and regenerative in nature, the administration of mesenchymal stem cells (MSCs) has shown the capacity to control immune dysfunction and inflammation in the lung. The intravenous infusion of MSCs, the common mode of delivery, is followed by their entrapment in lung vasculature before MSCs reach to other organ systems thus indicating the feasible and promising approach of MSCs therapy for lung diseases. In this review, we discuss the mechanistic basis for MSCs therapy for asthma, ARDS, COPD, and ILD.
Collapse
|
203
|
Isolation and characterization of a novel strain of mesenchymal stem cells from mouse umbilical cord: potential application in cell-based therapy. PLoS One 2013; 8:e74478. [PMID: 23991222 PMCID: PMC3753309 DOI: 10.1371/journal.pone.0074478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have recently been recognized as a potential source for cell-based therapy in various preclinical animal models, such as Parkinson's disease, cerebral ischemia, spinal cord injury, and liver failure; however, the precise cellular and molecular mechanisms underlying the beneficial outcomes remain under investigation. There is a growing concern regarding rejection and alteration of genetic code using this xenotransplantation approach. In this study, a novel strain of murine MSCs derived from the umbilical cord of wild-type and green fluorescent protein (GFP) transgenic mice have been successfully isolated, expanded, and characterized. After 10 passages, the mUC-MSCs developed a rather homogeneous, triangular, spindle-shaped morphology, and were sub-cultured up to 7 months (over 50 passages) without overt changes in morphology and doubling time. Cell surface markers are quite similar to MSCs isolated from other tissue origins as well as hUC-MSCs. These mUC-MSCs can differentiate into osteoblasts, adipocytes, neurons, and astrocytes in vitro, as well as hematopoietic lineage cells in vivo. mUC-MSCs also possess therapeutic potential against two disease models, focal ischemic stroke induced by middle cerebral artery occlusion (MCAo) and acute hepatic failure. Subtle differences in the expression of cytokine-related genes exist between mUC-MSCs and hUC-MSCs, which may retard and jeopardize the advance of cell therapy. Allografts of these newly established mUC-MSCs into various mouse disease models may deepen our insights into the development of more effective cell therapy regimens.
Collapse
|
204
|
Assay validation for the assessment of adipogenesis of multipotential stromal cells--a direct comparison of four different methods. Cytotherapy 2013; 15:89-101. [PMID: 23260089 PMCID: PMC3539160 DOI: 10.1016/j.jcyt.2012.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/30/2012] [Indexed: 12/19/2022]
Abstract
Background aims Mesenchymal stromal cells (MSCs) are regenerative and immuno-privileged cells that are used for both tissue regeneration and treatment of severe inflammation-related disease. For quality control of manufactured MSC batches in regard to mature fat cell contamination, a quantitative method for measuring adipogenesis is needed. Methods Four previously proposed methods were validated with the use of bone marrow (BM) MSCs during a 21-day in vitro assay. Oil red staining was scored semiquantitatively; peroxisome proliferator activated receptor-γ and fatty acid binding protein (FABP)4 transcripts were measured by quantitative real-time polymerase chain reaction; FABP4 protein accumulation was evaluated by flow cytometry; and Nile red/4′,6-diamidino-2-phenylindole (DAPI) ratios were measured in fluorescent microplate assay. Skin fibroblasts and MSCs from fat pad, cartilage and umbilical cord were used as controls. Results Oil red staining indicated considerable heterogeneity between BM donors and individual cells within the same culture. FABP4 transcript levels increased 100- to 5000-fold by day 21, with large donor variability observed. Flow cytometry revealed increasing intra-culture heterogeneity over time; more granular cells accumulated more FABP4 protein and Nile red fluorescence compared with less granular cells. Nile red increase in day-21 MSCs was ∼5- and 4-fold, measured by flow cytometry or microplate assay, respectively. MSC proliferation/apoptosis was accounted through the use of Nile red/DAPI ratios; adipogenesis levels in day-21 BM MSCs increased ∼13-fold, with significant correlations with oil red scoring observed for MSC from other sources. Conclusions Flow cytometry permits the study of MSC differentiation at the single-cell level and sorting more and less mature cells from mixed cell populations. The microplate assay with the use of the Nile red/DAPI ratio provides rapid quantitative measurements and could be used as a low-cost, high-throughput method to quality-control MSC batches from different tissue sources.
Collapse
|
205
|
Scheers I, Lombard C, Paganelli M, Campard D, Najimi M, Gala JL, Decottignies A, Sokal E. Human umbilical cord matrix stem cells maintain multilineage differentiation abilities and do not transform during long-term culture. PLoS One 2013; 8:e71374. [PMID: 23951150 PMCID: PMC3739759 DOI: 10.1371/journal.pone.0071374] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 07/04/2013] [Indexed: 12/15/2022] Open
Abstract
Umbilical cord matrix stem cells (UCMSC) have generated great interest in various therapeutic approaches, including liver regeneration. This article aims to analyze the specific characteristics and the potential occurrence of premalignant alterations of UCMSC during long-term expansion, which are important issues for clinical applications. UCMSC were isolated from the umbilical cord of 14 full-term newborns and expanded in vitro until senescence. We examined the long-term growth potential, senescence characteristics, immunophenotype and multilineage differentiation capacity of these cells. In addition, their genetic stability was assessed through karyotyping, telomerase maintenance mechanisms and analysis of expression and functionality of cell cycle regulation genes. The tumorigenic potential was also studied in immunocompromised mice. In vitro, UCMSC reached up to 33.7±2.1 cumulative population doublings before entering replicative senescence. Their immunophenotype and differentiation potential, notably into hepatocyte-like cells, remained stable over time. Cytogenetic analyses did not reveal any chromosomal abnormality and the expression of oncogenes was not induced. Telomere maintenance mechanisms were not activated. Just as UCMSC lacked transformed features in vitro, they could not give rise to tumors in vivo. UCMSC could be expanded in long-term cultures while maintaining stable genetic features and endodermal differentiation potential. UCMSC therefore represent safe candidates for liver regenerative medicine.
Collapse
Affiliation(s)
- Isabelle Scheers
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Devarajan K, Forrest ML, Detamore MS, Staecker H. Adenovector-mediated gene delivery to human umbilical cord mesenchymal stromal cells induces inner ear cell phenotype. Cell Reprogram 2013; 15:43-54. [PMID: 23379581 DOI: 10.1089/cell.2011.0097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hearing is one of our main sensory systems and having a hearing disorder can have a significant impact in an individual's quality of life. Sensory neural hearing loss (SNHL) is the most common form of hearing loss; it results from the degeneration of inner ear sensory hair cells and auditory neurons in the cochlea, cells that are terminally differentiated. Stem cell-and gene delivery-based strategies provide an opportunity for the replacement of these cells. In recent years, there has been an increasing interest in gene delivery to mesenchymal stem cells. In this study, we evaluated the potential of human umbilical cord mesenchymal stromal cells (hUCMSCs) as a possible source for regenerating inner ear hair cells. The expression of Atoh1 induced the differentiation of hUCMSCs into cells that resembled inner ear hair cells morphologically and immunocytochemically, evidenced by the expression of hair cell-specific markers. The results demonstrated for the first time that hUCMSCs can differentiate into hair cell-like cells, thus introducing a new potential tissue engineering and cell transplantation approach for the treatment of hearing loss.
Collapse
|
207
|
de Araújo Farias V, López-Peñalver JJ, Sirés-Campos J, López-Ramón MV, Moreno-Castilla C, Oliver FJ, Ruiz de Almodóvar JM. Growth and spontaneous differentiation of umbilical-cord stromal stem cells on activated carbon cloth. J Mater Chem B 2013; 1:3359-3368. [PMID: 32260926 DOI: 10.1039/c3tb20305k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have investigated the capacity of activated carbon cloth to support the growth and differentiation of human mesenchymal umbilical-cord stromal stem cells. Our results demonstrate that this scaffold provides suitable conditions for the development of cell-derived matrix proteins and facilitates the growth of undifferentiated stem cells with the ability to induce osteogenic and chondrogenic differentiation. Immunoflourescence staining revealed extensive expression of collagen in all the samples, and collagen type II and osteopontin within the samples cultivated in specific differentiation-inducing media. Cell growth and the formation of natural collagen, calcium-magnesium carbonate and hydroxyapatite crystals, together with the self-assemblage of collagen to produce suprafibrillar arrangements of fibrils all occur simultaneously and can be studied together ex vivo under physiological conditions. Furthermore, the spontaneous differentiation of stem cells cultured on activated carbon cloth with no osteogenic supplements opens up new possibilities for bone-tumour engineering and treatment of traumatic and degenerative bone diseases.
Collapse
Affiliation(s)
- Virgínea de Araújo Farias
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. del Conocimiento 2, 18016, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
208
|
Wharton's jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 2013; 14:11692-712. [PMID: 23727936 PMCID: PMC3709752 DOI: 10.3390/ijms140611692] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/22/2013] [Accepted: 05/27/2013] [Indexed: 12/14/2022] Open
Abstract
Wharton's jelly (WJ) is a gelatinous tissue within the umbilical cord that contains myofibroblast-like stromal cells. A unique cell population of WJ that has been suggested as displaying the stemness phenotype is the mesenchymal stromal cells (MSCs). Because MSCs' stemness and immune properties appear to be more robustly expressed and functional which are more comparable with fetal than adult-derived MSCs, MSCs harvested from the "young" WJ are considered much more proliferative, immunosuppressive, and even therapeutically active stem cells than those isolated from older, adult tissue sources such as the bone marrow or adipose. The present review discusses the phenotypic characteristics, therapeutic applications, and optimization of experimental protocols for WJ-derived stem cells. MSCs derived from WJ display promising transplantable features, including ease of sourcing, in vitro expandability, differentiation abilities, immune-evasion and immune-regulation capacities. Accumulating evidence demonstrates that WJ-derived stem cells possess many potential advantages as transplantable cells for treatment of various diseases (e.g., cancer, chronic liver disease, cardiovascular diseases, nerve, cartilage and tendon injury). Additional studies are warranted to translate the use of WJ-derived stem cells for clinical applications.
Collapse
|
209
|
Yan M, Sun M, Zhou Y, Wang W, He Z, Tang D, Lu S, Wang X, Li S, Wang W, Li H. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopamine neurons mediated by the Lmx1a and neurturin in vitro: potential therapeutic application for Parkinson's disease in a rhesus monkey model. PLoS One 2013; 8:e64000. [PMID: 23724014 PMCID: PMC3665802 DOI: 10.1371/journal.pone.0064000] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/08/2013] [Indexed: 11/18/2022] Open
Abstract
hUC-MSCs hold great promise in vitro neuronal differentiation and therapy for neurodegenerative disorders including Parkinson's disease. Recent studies provided that Lmx1α play an important role in the midbrain dopamine cells differentiation. Neurturin is desired candidate gene for providing a neuroprotective to DA neurons. In this study, we investigated a novel neuronal differentiation strategy in vitro with Lmx1α and NTN. We transferred these two genes to hUC-MSCs by recombinant adenovirus combined with Lmx1α regulatory factor and other inductor to improve the efficiency of inducing. Then those induced cells were implanted into the striatum and substantia nigra of MPTP lesioned hemi-parkinsonian rhesus monkeys. Monkeys were monitored by using behavioral test for six months after implantation. The result showed that cells isolated from the umbilical cord were negative for CD45, CD34 and HLA-DR, but were positive for CD44, CD49d, CD29. After those cells were infected with recombinant adenovirus, RT-PCR result shows that both Lmx1α and NTN genes were transcribed in hUC-MSCs. We also observed that the exogenous were highly expressed in hUC-MSCs from immunofluorescence and western blot. Experiments in vitro have proved that secretion NTN could maintain the survival of rat fetal midbrain dopaminergic neurons. After hUC-MSCs were induced with endogenous and exogenous factors, the mature neurons specific gene TH, Pitx3 was transcripted and the neurons specific protein TH, β-tubulinIII, NSE, Nestin, MAP-2 was expressed in those differentiated cells. In addition, the PD monkeys, transplanted with the induced cells demonstrated the animals' symptoms amelioration by the behavioral measures. Further more, pathological and immunohistochemistry data showed that there were neuronal-like cells survived in the right brain of those PD monkeys, which may play a role as dopaminergic neurons. The findings from this study may help us to better understand the inside mechanisms of PD pathogenesis and may also help developing effective therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Min Yan
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Maosheng Sun
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Yan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Wanpu Wang
- The First People's Hospital in Yunnan Province, Kunming, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Donghong Tang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Xiaonan Wang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Song Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Wenju Wang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| |
Collapse
|
210
|
Singh J, Mann A, Kumar D, Duhan JS, Yadav PS. Cultured buffalo umbilical cord matrix cells exhibit characteristics of multipotent mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2013; 49:408-16. [DOI: 10.1007/s11626-013-9617-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
|
211
|
Moroni L, Fornasari PM. Human mesenchymal stem cells: a bank perspective on the isolation, characterization and potential of alternative sources for the regeneration of musculoskeletal tissues. J Cell Physiol 2013; 228:680-7. [PMID: 22949310 DOI: 10.1002/jcp.24223] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/27/2012] [Indexed: 01/14/2023]
Abstract
The continuous discovery of human mesenchymal stem cells (hMSCs) in different tissues is stirring up a tremendous interest as a cell source for regenerative medicine therapies. Historically, hMSCs have been always considered a sub-population of mononuclear cells present in the bone marrow (BM). Although BM-hMSCs are still nowadays considered as the most promising mesenchymal stem cell population to reach the clinics due to their capacity to differentiate into multiple tissues, hMSCs derived from other adult and fetal tissues have also demonstrated to possess similar differentiation capacities. Furthermore, different reports have highlighted a higher recurrence of hMSCs in some of these tissues as compared to BM. This offer a fascinating panorama for cell banking, since the creation of a stem cell factory could be envisioned where hMSCs are stocked and used for ad hoc clinical applications. In this review, we summarize the main findings and state of the art in hMSCs isolation, characterization, and differentiation from alternative tissue sources and we attempt to compare their potency for musculoskeletal regeneration.
Collapse
Affiliation(s)
- Lorenzo Moroni
- Muscoloskeletal Tissue Bank, Rizzoli Orthopaedic Institute, Bologna, Italy.
| | | |
Collapse
|
212
|
Differentiation of mesenchymal stem cells from human umbilical cord tissue into odontoblast-like cells using the conditioned medium of tooth germ cells in vitro. BIOMED RESEARCH INTERNATIONAL 2013; 2013:218543. [PMID: 23762828 PMCID: PMC3666309 DOI: 10.1155/2013/218543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/08/2013] [Indexed: 12/31/2022]
Abstract
The easily accessible mesenchymal stem cells in the Wharton's jelly of human umbilical cord tissue (hUCMSCs) have excellent proliferation and differentiation potential, but it remains unclear whether hUCMSCs can differentiate into odontoblasts. In this study, mesenchymal stem cells were isolated from the Wharton's jelly of human umbilical cord tissue using the simple method of tissue blocks culture attachment. UCMSC surface marker expression was then evaluated for the isolated cells using flow cytometry. The third-passage hUCMSCs induced by conditioned medium from developing tooth germ cells (TGC-CM) displayed high alkaline phosphatase (ALP) levels (P < 0.001), an enhanced ability to proliferate (P < 0.05), and the presence of mineralized nodules. These effects were not observed in cells treated with regular medium. After induction of hUCMSCs, the results of reverse transcriptional polymerase chain reaction (PCR) indicated that the dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) genes were significantly tested. Additionally, dentin sialoprotein (DSP) and DMP1 demonstrated significant levels of staining in an immunofluorescence analysis. In contrast, the control cells failed to display the characteristics of odontoblasts. Taken together, these results suggest that hUCMSCs can be induced to differentiate into odontoblast-like cells with TGC-CM and provide a novel strategy for tooth regeneration research.
Collapse
|
213
|
Qiu P, Bai Y, Pan S, Li W, Liu W, Hua J. Gender depended potentiality of differentiation of human umbilical cord mesenchymal stem cells into oocyte-Like cells in vitro. Cell Biochem Funct 2013; 31:365-73. [DOI: 10.1002/cbf.2981] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Pubin Qiu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling; Shaanxi; China
| | - Yaofu Bai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling; Shaanxi; China
| | - Shaohui Pan
- North Branch Bio-Technology Co.; Ltd of Anhui Province; Wuhu; Anhui; China
| | - Wei Li
- North Branch Bio-Technology Co.; Ltd of Anhui Province; Wuhu; Anhui; China
| | - Weishuai Liu
- Yangling Demonstration Zone Hospital Pathology Department; Yangling; China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China; Northwest A&F University; Yangling; Shaanxi; China
| |
Collapse
|
214
|
Liu J, Han G, Liu H, Qin C. Suppression of cholangiocarcinoma cell growth by human umbilical cord mesenchymal stem cells: a possible role of Wnt and Akt signaling. PLoS One 2013; 8:e62844. [PMID: 23646150 PMCID: PMC3639969 DOI: 10.1371/journal.pone.0062844] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/27/2013] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence indicates that human mesenchymal stem cells (hMSCs) can be recruited to tumor sites, and affect the growth of human malignancies. However, little is known about the underlying molecular mechanisms. Here, we observed the effects of hMSCs on the human cholangiocarcinoma cell line, HCCC-9810, using an animal transplantation model, and conditioned media from human umbilical cord-derived mesenchymal stem cells (hUC-MSCs). Animal studies showed that hUC-MSCs can inhibit the growth of cholangiocarcinoma xenograft tumors. In cell culture, conditioned media from hUC-MSCs inhibited proliferation and induced apoptosis of tumor cells in a dose- and time-dependent manner. The proliferation inhibition rate increased from 6.21% to 49.86%, whereas the apoptosis rate increased from 9.3% to 48.1% when HCCC-9810 cells were cultured with 50% hUC-MSC conditioned media for 24 h. Immunoblot analysis showed that the expression of phosphor-PDK1 (Ser241), phosphor-Akt (Ser 437 and Thr308), phosphorylated glycogen synthase kinase 3β (phospho-GSK-3β(Ser9)), β-catenin, cyclin-D1, and c-myc were down-regulated. We further demonstrated that CHIR99021, a GSK-3β inhibitor reversed the suppressive effects of hUC-MSCs on HCCC-9810 cells and increased the expression of β-catenin. The GSK-3β activator, sodium nitroprusside dehydrate (SNP), augmented the anti-tumor effects of hUC-MSCs and decreased the expression of β-catenin. IGF-1 acted as an Akt activator, and also reversed the suppressive effects of hUC-MSCs on HCCC-9810 cells. All these results suggest that hUC-MSCs could inhibit the malignant phenotype of HCCC-9810 human cholangiocarcinoma cell line. The cross-talk role of Wnt/β-catenin and PI3K/Akt signaling pathway, with GSK-3β as the key enzyme bridging these pathways, may contribute to the inhibition of cholangiocarcinoma cells by hUC-MSCs.
Collapse
Affiliation(s)
- Juan Liu
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Guoqing Han
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hui Liu
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chengyong Qin
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
215
|
Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton's jelly. BIOMED RESEARCH INTERNATIONAL 2013; 2013:428726. [PMID: 23653895 PMCID: PMC3638666 DOI: 10.1155/2013/428726] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/12/2013] [Accepted: 03/01/2013] [Indexed: 01/31/2023]
Abstract
Wharton's jelly is not only one of the most promising tissue sources for mesenchymal stem cells (MSCs) but also a source of natural growth factors. To prove that we can get both natural growth factors and MSCs from Wharton's jelly, we compared cellular characteristics and the level of basic fibroblast growth factor (bFGF) from samples using the explant culture method to those derived from the traditional enzymatic culture method. The levels of bFGF were 27.0 ± 11.7 ng/g on day 3, 15.6 ± 11.1 ng/g on day 6, and decreased to 2.6 ± 1.2 ng/g on day 14. The total amount of bFGF released was 55.0 ± 25.6 ng/g on explant culture. Compared with the traditional enzymatic digestion method, the explant culture method showed a tendency to release higher levels of bFGF in supernatant media for the first week of culture, and the higher cellular yield at passage 0 (4.89 ± 3.2 × 105/g versus 1.75 ± 2.2 × 105/g, P = 0.01). In addition, the genes related to mitosis were upregulated in the explant-derived MSCs.
Collapse
|
216
|
Lange-Consiglio A, Corradetti B, Meucci A, Perego R, Bizzaro D, Cremonesi F. Characteristics of equine mesenchymal stem cells derived from amnion and bone marrow: in vitro proliferative and multilineage potential assessment. Equine Vet J 2013; 45:737-44. [PMID: 23527626 DOI: 10.1111/evj.12052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 12/30/2012] [Indexed: 11/26/2022]
Abstract
REASONS FOR PERFORMING STUDY This is the first study comparing stemness features of equine mesenchymal progenitor cells derived from amniotic membrane and bone marrow. OBJECTIVES To investigate an alternative and noninvasive stromal cell source for equine tissue engineering. STUDY DESIGN In vitro experimental study of the characteristics of equine mesenchymal progenitor cells derived from amnion and bone marrow. METHODS Cells isolated from amniotic membrane and bone marrow were analysed for proliferation (growth curve, doubling time, colony forming unit). Immunocytochemical detection of pluripotency markers and gene expression of stromal cell markers were also performed and these cells were studied for multilineage plasticity. RESULTS Amniotic stromal cells (AMSCs) and bone marrow mesenchymal cells (BM-MSCs) both exhibited mature stromal cell-specific gene expression and immunocytochemical properties, but showed substantial differences in their proliferative and differentiation potential. The mean doubling time for AMSCs was significantly lower (P<0.05) than that observed for BM-MSCs (1.17 ± 0.15 vs. 3.27 ± 0.19 days, respectively). Compared to AMSCs, BM-MSCs also demonstrated a significantly (P<0.05) lower clonogenic capability (one fibroblast-like colony forming unit from a mean of 590.15 cells seeded for BM-MSCs vs. 242.73 cells seeded for AMSCs). BM-MSCs did not differentiate into glial cells, and the osteogenic differentiation process was longer than for AMSCs. CONCLUSIONS AND POTENTIAL RELEVANCE The amniotic membrane could be a valuable source of MSCs to be used both for allogenic and/or autologous therapies. The noninvasive nature and low cost of collection, the rapid proliferation along with a greater differentiation potential and the 'off the shelf' preparation potential could make AMCs useful for cell therapy.
Collapse
Affiliation(s)
- A Lange-Consiglio
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Italy
| | | | | | | | | | | |
Collapse
|
217
|
Huang S, Feng C, Wu Y, Yang S, Ma K, Wu X, Fu X. Dissimilar characteristics of umbilical cord mesenchymal stem cells from donors of different ages. Cell Tissue Bank 2013; 14:707-13. [DOI: 10.1007/s10561-013-9364-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/22/2013] [Indexed: 11/24/2022]
|
218
|
Parameters that influence the isolation of multipotent mesenchymal stromal cells from human umbilical cord blood. Hematol Oncol Stem Cell Ther 2013; 6:1-8. [PMID: 23664598 DOI: 10.1016/j.hemonc.2013.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Umbilical cord blood is an important source of stem cells. However, isolating multipotent mesenchymal stromal cells (MSCs) from umbilical cord blood presents methodological challenges. We compared the effectiveness of six approaches to improve the success rate of MSC isolation and proliferation from umbilical cord blood. METHODS Thirty umbilical cord blood units underwent investigation. In 10 samples, MNCs from each sample were divided into four groups to test the effect of negative immunodepletion (NI) alone (group A); NI plus basic fibroblastic growth factor (bFGF) supplementation together (group B); bFGF supplementation alone (group C); and culture with neither NI nor bFGF (group D). The cells of each group were isolated from 10mL of umbilical cord blood. For investigating the effect of sample volume (group E) and MesenCult Proliferation Kits (group F), cells were isolated from 45±2ml. MSCs were identified on the basis of morphological, flow cytometric and differentiation potential characteristics. RESULTS In groups of A-D, one week after the initial seeding, the cells showed a rounded appearance, and in the fourth week, many of them died. MSCs outgrowth was seen in 40% of the samples from group F, and this yield was further enhanced to 60% in cultures done with the MesenCult Proliferation Kit (group F). The fibroblast-like cells expanded rapidly and showed features of MSCs. CONCLUSION Sample volume was the parameter that showed the greatest influence on the isolation yield of MSCs from umbilical cord blood. This could be further enhanced by adding the MesenCult Proliferation Kit.
Collapse
|
219
|
Liu J, Han D, Wang Z, Xue M, Zhu L, Yan H, Zheng X, Guo Z, Wang H. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy 2013; 15:185-91. [DOI: 10.1016/j.jcyt.2012.09.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 08/04/2012] [Accepted: 09/05/2012] [Indexed: 01/14/2023]
|
220
|
Han YF, Tao R, Sun TJ, Chai JK, Xu G, Liu J. Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods. Cytotechnology 2013; 65:819-27. [PMID: 23306781 DOI: 10.1007/s10616-012-9528-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/17/2012] [Indexed: 12/11/2022] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) are considered to be an ideal replacement for bone marrow MSCs. However, up to date, there is no convenient and efficient method for hUCMSC isolation and culture. The present study was carried out to explore the modified enzyme digestion for hUCMSC in vitro. Conventional enzyme digestion, modified enzyme digestion, and tissue explant were used on hUCMSCs to compare their efficiencies of isolation and culture, to observe primary cell growth and cell subculture. The results show that the cells cultured using the tissue explant method had a longer culture cycle (P < 0.01) and lower yield of primary cells per centimetre of umbilical cord (P < 0.01) compared with the two enzyme digestion methods. Subculture adherence and cell doubling took significantly less time with the tissue explant method (P < 0.05) than with the conventional enzyme digestion method; however, there was no significant difference between the tissue explant method and the modified enzyme digestion method (P > 0.05). Comparing two enzyme digestion methods, the modified method yielded more cells than did the conventional method (P < 0.01), and primary cell adherence took significantly less time with the modified method than with the conventional method (P < 0.05). Cell cycle analysis of the third-generation hUCMSCs cultured by modified enzyme digestion method indicated that most cells were quiescent. Immunofluorescence staining showed that these cells expressed MSC markers CD44 and CD90. And Von Kossa and oil red O staining detection showed that they could be differentiated into osteoblasts and adipocytes with induction medium in vitro. This study suggests that hUCMSC isolation and culture using 0.2 % collagenase II at 37 °C for digestion of 16-20 h is an effective and simple modified enzyme digestion method.
Collapse
Affiliation(s)
- Yan-Fu Han
- Department of Plastic Surgery, Affiliated Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | | | | | | | | | | |
Collapse
|
221
|
Takikawa S, Yamamoto A, Sakai K, Shohara R, Iwase A, Kikkawa F, Ueda M. Human umbilical cord-derived mesenchymal stromal cells promote sensory recovery in a spinal cord injury rat model. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/scd.2013.33020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
222
|
Vittorio O, Jacchetti E, Pacini S, Cecchini M. Endothelial differentiation of mesenchymal stromal cells: when traditional biology meets mechanotransduction. Integr Biol (Camb) 2013; 5:291-9. [DOI: 10.1039/c2ib20152f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
223
|
Anzalone R, Corrao S, Lo Iacono M, Loria T, Corsello T, Cappello F, Di Stefano A, Giannuzzi P, Zummo G, Farina F, La Rocca G. Isolation and characterization of CD276+/HLA-E+ human subendocardial mesenchymal stem cells from chronic heart failure patients: analysis of differentiative potential and immunomodulatory markers expression. Stem Cells Dev 2013; 22:1-17. [PMID: 23013234 DOI: 10.1089/scd.2012.0402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are virtually present in all postnatal organs as well as in perinatal tissues. MSCs can be differentiated toward several mature cytotypes and interestingly hold potentially relevant immunomodulatory features. Myocardial infarction results in severe tissue damage, cardiomyocyte loss, and eventually heart failure. Cellular cardiomyoplasty represents a promising approach for myocardial repair. Clinical trials using MSCs are underway for a number of heart diseases, even if their outcomes are hampered by low long-term improvements and the possible presence of complications related to cellular therapy administration. Therefore, elucidating the presence and role of MSCs that reside in the post-infarct human heart should provide essential alternatives for therapy. In the current article we show a novel method to reproducibly isolate and culture MSCs from the subendocardial zone of human left ventricle from patients undergoing heart transplant for post-infarct chronic heart failure (HSE-MSCs, human subendocardial mesenchymal stem cells). By using both immunocytochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR), we demonstrated that these cells do express key MSCs markers and do express heart-specific transcription factors in their undifferentiated state, while lacking strictly cardiomyocyte-specific proteins. Moreover, these cells do express immunomodulatory molecules that should disclose their further potential in immune modulation processes in the post-infarct microenvironment. Another novel datum of potentially relevant interest is the expression of cardiac myosin heavy chain at nucclear level in HSE-MSCs. Standard MSCs trilineage differentiation experiments were also performed. The present paper adds new data on the basic biological features of heart-resident MSCs that populate the organ following myocardial infarction. The use of heart-derived MSCs to promote in-organ repair or as a cellular source for cardiomyoplasty is a fascinating and challenging task, which deserves further research efforts.
Collapse
Affiliation(s)
- Rita Anzalone
- Sezione di Anatomia Umana, Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BIONEC), Università degli Studi di Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Gauthaman K, Fong CY, Arularasu S, Subramanian A, Biswas A, Choolani M, Bongso A. Human Wharton's Jelly stem cell conditioned medium and cell-free lysate inhibit human osteosarcoma and mammary carcinoma cell growth in vitro and in xenograft mice. J Cell Biochem 2012; 114:366-77. [DOI: 10.1002/jcb.24367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 12/26/2022]
|
225
|
The Therapeutic Potential, Challenges and Future Clinical Directions of Stem Cells from the Wharton’s Jelly of the Human Umbilical Cord. Stem Cell Rev Rep 2012; 9:226-40. [DOI: 10.1007/s12015-012-9418-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
226
|
Choi M, Lee HS, Naidansaren P, Kim HK, O E, Cha JH, Ahn HY, Yang PI, Shin JC, Joe YA. Proangiogenic features of Wharton's jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels. Int J Biochem Cell Biol 2012; 45:560-70. [PMID: 23246593 DOI: 10.1016/j.biocel.2012.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/09/2012] [Accepted: 12/03/2012] [Indexed: 01/09/2023]
Abstract
Mesenchymal stromal/stem cells derived from human Wharton's jelly (WJ-MSC) have emerged as a favorable source for autologous and allogenic cell therapy. Here, we characterized the proangiogenic features of WJ-MSCs and examined their ability to form functional vessels in in vivo models. First, we examined whether WJ-MSCs express endothelial and smooth muscle cell specific markers after culture in endothelial growth media. WJ-MSCs expressed an endothelial specific marker, VEGFR1, at mRNA and protein levels, but did not express other specific markers (VEGFR2, Tie2, vWF, CD31, and VE-cadherin). Rather, WJ-MSCs expressed smooth muscle cell specific markers, α-SMA, PDGFR-β and calponin, and were unable to form tube-like structures with lumen on Matrigel. WJ-MSCs secreted growth factors including angiogenin, IGFBP-3, MCP-1, and IL-8, which stimulated endothelial proliferation, migration, and tube formation. When WJ-MSCs suspended in Matrigel were implanted into nude mice, it led to formation of functional vessels containing erythrocytes after 7 days. However, implantation of endothelial cell-suspended Matrigel resulted in no perfused vessels. The implanted WJ-MSCs were stained positively for calponin or PDGFR-β and were located adjacent to the lining of mouse endothelial cells that were stained with labeled BS-lectin B4. In a murine hindlimb ischemia model, the transplantation of MSCs (5×10(5)cells) into the ischemic limbs improved perfusion recovery and neovascularization of the limbs compared to control group. Therefore, the results suggest that WJ-MSCs promote neovascularization and perfusion by secreting paracrine factors and by functioning as perivascular precursor cells, and that WJ-MSCs can be used efficiently for cell therapy of ischemic disease.
Collapse
Affiliation(s)
- Moran Choi
- Cancer Research Institute and Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Chao KC, Yang HT, Chen MW. Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell-cell contact and internalization. J Cell Mol Med 2012; 16:1803-15. [PMID: 21973190 PMCID: PMC3822693 DOI: 10.1111/j.1582-4934.2011.01459.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The purpose of this study was to investigate how human umbilical cord mesenchymal stem cells (HUMSCs) affect breast cancer tumourigenesis. To observe the influence of HUMSCs on tumourigenesis in vitro, we performed a co-culture of MDA MB-231 breast cancer cells with HUMSCs, and a result of HUMSCs on tumourigenesis in vivo was achieved by injection of HUMSCs into nonobese diabetic/severe combined immunodeficient mice following tumour establishment with MDA-MB231. During the co-culture, apoptosis of MDA-MB231 was noted, which was driven either by binding with HUMSC through direct cell–cell contact or by formation of a novel cell-in-cell phenomenon after internalization of HUMSC. Also, treatment with HUMSC injection was efficacious in both in situ and metastatic breast cancers in the animal models. Since HUMSCs were proved to efficaciously suppress breast cancer tumourigenesis both in vitro and in vivo, it is our expectation that treatment with HUMSCs can be a viable therapy for breast cancer in the near future. In addition, we share a new point of view on the role of HUMSCs in foetal development during pregnancy.
Collapse
Affiliation(s)
- Kuo-Ching Chao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
228
|
Lindenmair A, Hatlapatka T, Kollwig G, Hennerbichler S, Gabriel C, Wolbank S, Redl H, Kasper C. Mesenchymal stem or stromal cells from amnion and umbilical cord tissue and their potential for clinical applications. Cells 2012; 1:1061-88. [PMID: 24710543 PMCID: PMC3901122 DOI: 10.3390/cells1041061] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem or stromal cells (MSC) have proven to offer great promise for cell-based therapies and tissue engineering applications, as these cells are capable of extensive self-renewal and display a multilineage differentiation potential. Furthermore, MSC were shown to exhibit immunomodulatory properties and display supportive functions through parakrine effects. Besides bone marrow (BM), still today the most common source of MSC, these cells were found to be present in a variety of postnatal and extraembryonic tissues and organs as well as in a large variety of fetal tissues. Over the last decade, the human umbilical cord and human amnion have been found to be a rich and valuable source of MSC that is bio-equivalent to BM-MSC. Since these tissues are discarded after birth, the cells are easily accessible without ethical concerns.
Collapse
Affiliation(s)
- Andrea Lindenmair
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna/Linz 1200, Austria.
| | - Tim Hatlapatka
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna 1190, Austria.
| | - Gregor Kollwig
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna 1190, Austria.
| | | | | | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna/Linz 1200, Austria.
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna/Linz 1200, Austria.
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna 1190, Austria.
| |
Collapse
|
229
|
Aljitawi OS, Xiao Y, Zhang D, Stehno-Bittel L, Garimella R, Hopkins RA, Detamore MS. Generating CK19-positive cells with hair-like structures from Wharton's jelly mesenchymal stromal cells. Stem Cells Dev 2012; 22:18-26. [PMID: 22970796 DOI: 10.1089/scd.2012.0184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wharton's jelly mesenchymal stromal cells (WJMSCs) are considered mesenchymal, multipotent, and capable of differentiating into cells of mesodermal origin. Ectodermal differentiation from mesenchymal cells has been recently reported. Herein, we show for the first time that we can generate cytokeratin 19-positive cells and hair-like structures from WJMSCs in vitro using 2 separate methodologies that utilize osteogenic media to induce WJMSCs to undergo osteogenic differentiation. In one method, WJMSCs were seeded on a matrix isolated from Wharton's jelly following decellularization. In the other method, WJMSCs were cultured to form spheroids. Our findings demonstrate that WJMSCs may have the capacity for ectodermal differentiation.
Collapse
Affiliation(s)
- Omar S Aljitawi
- Blood and Marrow Transplant Program, University of Kansas Medical Center , Kansas City, Kansas, USA.
| | | | | | | | | | | | | |
Collapse
|
230
|
Patel AN, Vargas V, Revello P, Bull DA. Mesenchymal stem cell population isolated from the subepithelial layer of umbilical cord tissue. Cell Transplant 2012; 22:513-9. [PMID: 23057960 DOI: 10.3727/096368912x655064] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The therapeutic use of stem cells to treat diseases and injuries is a promising tool in regenerative medicine. The umbilical cord provides a rich source of stem cells; we have previously reported a population of stem cells isolated from Wharton's jelly. In this report, we aimed to isolate a novel cell population that was different than those found in Wharton's jelly. We isolated stem cells from the subepithelial layer of the umbilical cord; the cells could be expanded for greater than 90 population doubling and had mesenchymal stem cell characteristics, expressing CD9, SSEA4, CD44, CD90, CD166, CD73, and CD146 but were negative for STRO-1. The cells can be directionally differentiated and undergo osteo-, chondro-, adipo-, and cardiogenesis. In addition, we have identified for the first time that mesenchymal stem cells isolated from umbilical cord can produce microvesicles, termed exosomes. This is the first report describing a stem cell population isolated from the subepithelial layer of the umbilical cord. Given the growth capacity, multilineage potential, and most importantly the low levels of HLA-ABC, we propose that this novel cell isolated from the subepithelial layer of umbilical cord is an ideal candidate for allogeneic cell-based therapy.
Collapse
Affiliation(s)
- Amit N Patel
- Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT, USA.
| | | | | | | |
Collapse
|
231
|
Subramanian A, Shu-Uin G, Kae-Siang N, Gauthaman K, Biswas A, Choolani M, Bongso A, Chui-Yee F. Human umbilical cord Wharton's jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. J Cell Biochem 2012; 113:1886-95. [PMID: 22234854 DOI: 10.1002/jcb.24057] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human bone marrow mesenchymal stem cells (hBMMSCs) were shown to transform into tumor-associated fibroblasts (TAFs) when in the vicinity of breast cancer tumors and played an important role in tumor enhancement and metastasis. In early human development MSCs migrating from the yolk sac and aorta-gonad-mesonephros (AGM) via the umbilical cord to the placenta and back to the fetal bone marrow were shown to get trapped in the gelatinous Wharton's jelly of the umbilical cord. The common origin of the Wharton's jelly MSCs and the finally homed hBMMSCs prompted us to evaluate whether hWJSCs are also involved in TAF transformation. hWJSCs and hBMMSCs were grown in the presence of breast and ovarian cancer cell conditioned medium (MDA-TCM, TOV-TCM) for 30 days. No changes were observed in the hWJSCs but the hBMMSCs transformed from short to thin long fibroblasts, their proliferation rates increased and CD marker expression decreased. The transformed hBMMSCs showed positive staining for the tumor-associated markers FSP, VEGF, EGF, and Tn-C. Real-time PCR and multiplex luminex bead analysis showed upregulation of TAF-related genes (FSP, FAP, Tn-C, Tsp-1, EGF, bFGF, IL-6, α-SMA, VEGF, and TGF-β) for hBMMSCs with low expression for hWJSCs. The luciferase assay showed that hWJSCs previously exposed to MDA-TCM or TOV-TCM had no stimulatory growth effect on luciferase-tagged MDA or TOV cells unlike hBMMSCs. The results confirmed that hWJSCs do not transform to the TAF phenotype and may therefore not be associated with enhanced growth of solid tumors making them a safe MSC for cell based therapies.
Collapse
Affiliation(s)
- Arjunan Subramanian
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge 119074, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Duya P, Bian Y, Chu X, Zhang Y. Stem cells for reprogramming: could hUMSCs be a better choice? Cytotechnology 2012; 65:335-45. [PMID: 22968835 DOI: 10.1007/s10616-012-9489-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 07/23/2012] [Indexed: 01/18/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUMSC) are primitive multipotent cells capable of differentiating into cells of different lineages. They can be an alternative source of pluripotent cells since they are ethically and regulatory approved, are easily obtained and have low immunogenicity compared to embryonic stem cells which are dogged with numerous controversies. hUMSC can be a great source for cell and transplantation therapy.
Collapse
Affiliation(s)
- Paulina Duya
- Tianjin University of Traditional Chinese Medicine, 312 Anshan West Road, Nankai district, Tianjin, China
| | | | | | | |
Collapse
|
233
|
Ryu KH, Cho KA, Park HS, Kim JY, Woo SY, Jo I, Choi YH, Park YM, Jung SC, Chung SM, Choi BO, Kim HS. Tonsil-derived mesenchymal stromal cells: evaluation of biologic, immunologic and genetic factors for successful banking. Cytotherapy 2012; 14:1193-202. [DOI: 10.3109/14653249.2012.706708] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
234
|
Bai J, Hu Y, Wang YR, Liu LF, Chen J, Su SP, Wang Y. Comparison of human amniotic fluid-derived and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity. J Geriatr Cardiol 2012; 9:166-71. [PMID: 22916064 PMCID: PMC3418907 DOI: 10.3724/sp.j.1263.2011.12091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/06/2012] [Accepted: 04/13/2012] [Indexed: 11/25/2022] Open
Abstract
Objective To compare the characterization and myocardial differentiation capacity of amniotic fluid-derived mesenchymal stromal cells (AF MSCs) and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells (WJ MSCs). Methods The human AF MSCs were cultured from amniotic fluid samples obtained by amniocentesis. The umbilical cord WJ MSCs were obtained from Wharton's Jelly of umbilical cords of infants delivered full-term by normal labor. The morphology, growth curves, and analyses by flow cytometry of cell surface markers were compared between the two types of cells. Myocardial genes (GATA-4, c-TnT, α-actin, and Cx43) were detected by real-time PCR and the corresponding protein expressions were detected by Western blot analysis after myocardial induced in AF MSCs and WJ MSCs. Results Our findings revealed AF MSCs and WJ MSCs shared similar morphological characteristics of the fibroblastoid shape. The AF MSCs were easily obtained than the WJ MSCs and had a shorter time to reach adherence of 2.7 ± 1.6 days to WJ MSCs of 6.5 ± 1.8 days. The growth curves by MTT cytotoxic assay showed the AF MSCs had a similar proliferative capacity at passage 5 and passage 10. However, the proliferative capacities of WJ MSCs were decreased at 5 passage relative to 10 passage. Both AF stem cells and WJ stem cells had the characteristics of mesenchymal stromal cells with some characteristics of embryonic stem cells. They express CD29 and CD105, but not CD34. They were positive for Class I major histocompatibility (MHC I) antigens (HLA-ABC), and were negative, or mildly positive, for MHC Class II (HLA-DR) antigen. Oct-4 was positive in all the two cells types. Both AF MSCs and WJ MSCs could differentiate along myocardium. The differentiation capacities were detected by the expression of GATA-4, c-TnT, α-actin, Cx43 after myocardial induction. Conclusions Both AF MSCs and WJ MSCs have the potential clinical application for myogenesis in cardiac regenerative therapy.
Collapse
Affiliation(s)
- Jing Bai
- Department of Cardiology, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | | | | | | | | | | | | |
Collapse
|
235
|
Higuchi O, Okabe M, Yoshida T, Fathy M, Saito S, Miyawaki T, Nikaido T. Stemness of human Wharton's jelly mesenchymal cells is maintained by floating cultivation. Cell Reprogram 2012; 14:448-55. [PMID: 22908943 DOI: 10.1089/cell.2012.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract Recently, the search for stem cells has become focused on fetal appendages such as the amniotic membrane and umbilical cord. Previously, we have shown the existence of stem cells in the amniotic membrane that can differentiate into various cells. In this study, we attempt to characterize and maintain the stemness characteristics of mesenchymal stem cells (MSCs) for Wharton's jelly, an inherent tissue of the umbilical cord. Wharton's jelly cells (WJCs) were isolated, adhered to culture plates, and characterized for stem cell and surface markers expression. They expressed the embryonic stem cell markers Nanog, Oct ¾, and Sox2. On flow cytometric analysis, WJCs predominantly expressed the MSC markers CD73, CD90, and CD105 and did not express the hematopoietic lineage markers CD14, CD34, CD45, and HLA-DR. In floating culture, WJCs could maintain stemness, and they could differentiate to osteogenic, chondrogenic, and adipogenic lineages. In conclusion, WJCs satisfy the criteria of MSCs. Given that extraction of the umbilical cord is not invasive, and the umbilical cord can be obtained without ethical and technical issues, we suggest that WJCs, after maintaining stemness, have a potential contribution to medical treatment for patients, even newborns, with congenital skeletal and cartilage disorders.
Collapse
Affiliation(s)
- Osamu Higuchi
- Department of Regenerative Medicine, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
236
|
Grabowska I, Brzoska E, Gawrysiak A, Streminska W, Moraczewski J, Polanski Z, Hoser G, Kawiak J, Machaj EK, Pojda Z, Ciemerych MA. Restricted Myogenic Potential of Mesenchymal Stromal Cells Isolated from Umbilical Cord. Cell Transplant 2012; 21:1711-26. [DOI: 10.3727/096368912x640493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Nonhematopoietic cord blood cells and mesenchymal cells of umbilical cord Wharton's jelly have been shown to be able to differentiate into various cell types. Thus, as they are readily available and do not raise any ethical issues, these cells are considered to be a potential source of material that can be used in regenerative medicine. In our previous study, we tested the potential of whole mononucleated fraction of human umbilical cord blood cells and showed that they are able to participate in the regeneration of injured mouse skeletal muscle. In the current study, we focused at the umbilical cord mesenchymal stromal cells isolated from Wharton's jelly. We documented that limited fraction of these cells express markers of pluripotent and myogenic cells. Moreover, they are able to undergo myogenic differentiation in vitro, as proved by coculture with C2C12 myoblasts. They also colonize injured skeletal muscle and, with low frequency, participate in the formation of new muscle fibers. Pretreatment of Wharton's jelly mesenchymal stromal cells with SDF-1 has no impact on their incorporation into regenerating muscle fibers but significantly increased muscle mass. As a result, transplantation of mesenchymal stromal cells enhances the skeletal muscle regeneration.
Collapse
Affiliation(s)
- Iwona Grabowska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Gawrysiak
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jerzy Moraczewski
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zbigniew Polanski
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grazyna Hoser
- Department of Clinical Cytology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Jerzy Kawiak
- Department of Clinical Cytology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Eugeniusz K. Machaj
- Department of Cellular Engineering, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Zygmunt Pojda
- Department of Cellular Engineering, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Maria A. Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
237
|
Bajpai VK, Andreadis ST. Stem cell sources for vascular tissue engineering and regeneration. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:405-25. [PMID: 22571595 DOI: 10.1089/ten.teb.2011.0264] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on the stem cell sources with the potential to be used in vascular tissue engineering and to promote vascular regeneration. The first clinical studies using tissue-engineered vascular grafts are already under way, supporting the potential of this technology in the treatment of cardiovascular and other diseases. Despite progress in engineering biomaterials with the appropriate mechanical properties and biological cues as well as bioreactors for generating the correct tissue microenvironment, the source of cells that make up the vascular tissues remains a major challenge for tissue engineers and physicians. Mature cells from the tissue of origin may be difficult to obtain and suffer from limited proliferative capacity, which may further decline as a function of donor age. On the other hand, multipotent and pluripotent stem cells have great potential to provide large numbers of autologous cells with a great differentiation capacity. Here, we discuss the adult multipotent as well as embryonic and induced pluripotent stem cells, their differentiation potential toward vascular lineages, and their use in engineering functional and implantable vascular tissues. We also discuss the associated challenges that need to be addressed in order to facilitate the transition of this technology from the bench to the bedside.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, New York 14260-4200, USA
| | | |
Collapse
|
238
|
Fong CY, Subramanian A, Gauthaman K, Venugopal J, Biswas A, Ramakrishna S, Bongso A. Human umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev Rep 2012; 8:195-209. [PMID: 21671058 DOI: 10.1007/s12015-011-9289-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current treatments used for osteoarthritis from cartilage damage have their disadvantages of donor site morbidity, complicated surgical interventions and risks of infection and graft rejection. Recent advances in tissue engineering have offered much promise in cartilage repair but the best cell source and in vitro system have not as yet been optimised. Human bone marrow mesenchymal stem cells (hBMSCs) have thus far been the cell of choice. However, we derived a unique stem cell from the human umbilical cord Wharton's jelly (hWJSC) that has properties superior to hBMSCs in terms of ready availability, prolonged stemness characteristics in vitro, high proliferation rates, wide multipotency, non-tumorigenicity and tolerance in allogeneic transplantation. We observed enhanced cell attachment, cell proliferation and chondrogenesis of hWJSCs over hBMSCs when grown on PCL/Collagen nanoscaffolds in the presence of a two-stage sequential complex/chondrogenic medium for 21 days. Improvement of these three parameters were confirmed via inverted optics, field emission scanning electron microscopy (FESEM), MTT assay, pellet diameters, Alcian blue histology and staining, glycosaminglycans (GAG) and hyaluronic acid production and expression of key chondrogenic genes (SOX9, Collagen type II, COMP, FMOD) using immunohistochemistry and real-time polymerase chain reaction (qRT-PCR). In separate experiments we demonstrated that the 16 ng/ml of basic fibroblast growth factor (bFGF) present in the complex medium may have contributed to driving chondrogenesis. We conclude that hWJSCs are an attractive stem cell source for inducing chondrogenesis in vitro when grown on nanoscaffolds and exposed sequentially first to complex medium and then followed by chondrogenic medium.
Collapse
Affiliation(s)
- Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | | | | | | | | | | | | |
Collapse
|
239
|
Higuchi A, Ling QD, Hsu ST, Umezawa A. Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev 2012; 112:4507-40. [PMID: 22621236 DOI: 10.1021/cr3000169] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, 32001 Taiwan.
| | | | | | | |
Collapse
|
240
|
Salehinejad P, Alitheen NB, Nematollahi-Mahani SN, Ali AM, Omar AR, Janzamin E, Hajghani M. Effect of culture media on expansion properties of human umbilical cord matrix-derived mesenchymal cells. Cytotherapy 2012; 14:948-53. [PMID: 22587592 DOI: 10.3109/14653249.2012.684377] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSC) have been isolated from a number of different tissues, including umbilical cord. Because of the lack of a uniform approach to human umbilical cord matrix-derived mesenchymal (hUCM) cell expansion, we attempted to identify the optimum conditions for the production of a high quantity of hUCM cells by comparing two media. METHODS We compared the ability of Dulbecco's Modified Eagle's Medium/F12 (DMEM/F12) and Alpha Minimum Essential Medium (α-MEM) with Glutamax (GL) (α-MEM/GL) to expand hUCM cells. For this purpose, hUCM cells were cultured in plates containing different culture media supplemented with 10% fetal bovine serum (FBS). Culture dishes were left undisturbed for 10-14 days to allow propagation of the newly formed hUCM cells. The expansion properties, CD marker expression, differentiation potential, population doubling time (PDT) and cell activity were compared between the two groups. RESULTS The hUCM cells harvested from each group were positive for MSC markers, including CD44, CD90 and CD105, while they were negative for the hematopoietic cell surface marker CD34. Differentiation into adipogenic and osteogenic lineages was confirmed for both treatments. Cell activity was higher in the α-MEM/GL group than the DMEM/F12 group. PDT was calculated to be 60 h for the DMEM/F12 group, while for the α-MEM/GL group it was 47 h. CONCLUSIONS Our data reveal that α-MEM/GL with 10% FBS supports hUCM cell growth more strongly than DMEM/F12 with 10% FBS.
Collapse
Affiliation(s)
- Parvin Salehinejad
- Institute of Bioscience, University Putra Malaysia, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
241
|
Fong CY, Gauthaman K, Cheyyatraivendran S, Lin HD, Biswas A, Bongso A. Human umbilical cord Wharton's jelly stem cells and its conditioned medium support hematopoietic stem cell expansion ex vivo. J Cell Biochem 2012; 113:658-68. [PMID: 21976004 DOI: 10.1002/jcb.23395] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone marrow mesenchymal stromal cells (BMMSCs) have been used as feeder support for the ex vivo expansion of hematopoietic stem cells (HSCs) but have the limitations of painful harvest, morbidity, and risk of infection to the patient. This prompted us to explore the use of human umbilical cord Wharton's jelly MSCs (hWJSCs) and its conditioned medium (hWJSC-CM) for ex vivo expansion of HSCs in allogeneic and autologous settings because hWJSCs can be harvested in abundance painlessly, are proliferative, hypoimmunogenic, and secrete a variety of unique proteins. In the presence of hWJSCs and hWJSC-CM, HSCs put out pseudopodia-like outgrowths and became highly motile. Time lapse imaging showed that the outgrowths helped them to migrate towards and attach to the upper surfaces of hWJSCs and undergo proliferation. After 9 days of culture in the presence of hWJSCs and hWJSC-CM, MTT, and Trypan blue assays showed significant increases in HSC numbers, and FACS analysis generated significantly greater numbers of CD34(+) cells compared to controls. hWJSC-CM produced the highest number of colonies (CFU assay) and all six classifications of colony morphology typical of hematopoiesis were observed. Proteomic analysis of hWJSC-CM showed significantly greater levels of interleukins (IL-1a, IL-6, IL-7, and IL-8), SCF, HGF, and ICAM-1 compared to controls suggesting that they may be involved in the HSC multiplication. We propose that cord blood banks freeze autologous hWJSCs and umbilical cord blood (UCB) from the same umbilical cord at the same time for the patient for future ex vivo HSC expansion and cell-based therapies.
Collapse
Affiliation(s)
- C Y Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore 1190741, Singapore
| | | | | | | | | | | |
Collapse
|
242
|
Dalous J, Larghero J, Baud O. Transplantation of umbilical cord-derived mesenchymal stem cells as a novel strategy to protect the central nervous system: technical aspects, preclinical studies, and clinical perspectives. Pediatr Res 2012; 71:482-90. [PMID: 22430384 DOI: 10.1038/pr.2011.67] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prevention of perinatal neurological disabilities remains a major challenge for public health, and no neuroprotective treatment to date has proven clinically useful in reducing the lesions leading to these disabilities. Efforts are, therefore, urgently needed to test other neuroprotective strategies including cell therapies. Although stem cells have raised great hopes as an inexhaustible source of therapeutic products that could be used for neuroprotection and neuroregeneration in disorders affecting the brain and spinal cord, certain sources of stem cells are associated with potential ethical issues. The human umbilical cord (hUC) is a rich source of stem and progenitor cells including mesenchymal stem cells (MSCs) derived either from the cord or from cord blood. hUC MSCs (hUC-MSCs) have several advantages as compared to other types and sources of stem cells. In this review, we will summarize the most recent findings regarding the technical aspects and the preclinical investigation of these promising cells in neuroprotection and neuroregeneration, and their potential use in the developing human brain. However, extensive studies are needed to optimize the administration protocol, safety parameters, and potential preinjection cell manipulations before designing a controlled trial in human neonates.
Collapse
Affiliation(s)
- Jérémie Dalous
- INSERM UMR 676, Université Paris Diderot, Hôpital Robert Debré, APHP, Paris, France
| | | | | |
Collapse
|
243
|
Umbilical cord-derived mesenchymal stem cells: strategies, challenges, and potential for cutaneous regeneration. Front Med 2012; 6:41-7. [DOI: 10.1007/s11684-012-0175-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 12/02/2011] [Indexed: 12/24/2022]
|
244
|
Pelosi E, Castelli G, Testa U. Human umbilical cord is a unique and safe source of various types of stem cells suitable for treatment of hematological diseases and for regenerative medicine. Blood Cells Mol Dis 2012; 49:20-8. [PMID: 22446302 DOI: 10.1016/j.bcmd.2012.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 02/17/2012] [Accepted: 02/17/2012] [Indexed: 12/31/2022]
Abstract
Cord blood (CB) is a rich source of hematopoietic stem cells (HSCs) and for this reason CB transplantation has been used successfully for the treatment of some malignant and nonmalignant diseases. However, this technique is limited by the relatively low number of HSCs present in each CB unit and by the delayed engraftment of platelets and neutrophils. To bypass these obstacles efforts have been made to develop strategies to expand CB HSCs in vitro for transplantation. CB is also an important source of other stem cells, including endothelial progenitors, mesenchymal stem cells (MSCs), very small embryonic/epiblast-like (VSEL) stem cells, and unrestricted somatic stem cells (USSC), potentially suitable for use in regenerative medicine. For some of these stem cell populations, such as MSCs, clinical studies have been started and for other stem cell populations potential clinical applications have been identified and clinical studies will follow. In addition to CB, other parts of umbilical cord, such as the Wharton's jelly, or tissues strictly linked such as the placenta are also rich sources of stem cells.
Collapse
Affiliation(s)
- Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Italy
| | | | | |
Collapse
|
245
|
Karlsson H, Erkers T, Nava S, Ruhm S, Westgren M, Ringdén O. Stromal cells from term fetal membrane are highly suppressive in allogeneic settings in vitro. Clin Exp Immunol 2012; 167:543-55. [PMID: 22288598 DOI: 10.1111/j.1365-2249.2011.04540.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) have immunosuppressive properties and have been used to treat steroid-refractory acute graft-versus-host disease (GVHD) in stem cell transplant patients. Cells with similar capacities can also be found in term placental tissue. We have isolated stromal cells from term fetal membrane (FMSCs), umbilical cords (UCSCs) and placental villi (PVSCs) as well as from bone marrow and compared their immunoregulatory capacity in allogeneic settings. We found that FMSCs and UCSCs suppressed proliferation significantly in mixed lymphocyte reactions (MLRs), whereas PVSCs showed inconsistent suppressive effects. When added to MLR cultures, FMSCs suppressed the production of interferon (IFN)-γ and interleukin (IL)-17, whereas UCSCs and PVSCs promoted the production of IL-17 instead. Secretion of IL-10 was increased after addition of FMSCs and UCSCs. In this setting, BM-MSCs had no significant effect on secretion of IFN-γ, IL-17 or IL-10 in MLR cultures. When analysing the expression of adhesion markers, we noted that FMSCs expressed the highest levels of CD29 (β1), CD49d (α4) and CD54 (ICAM-1) compared to the other types of stromal cells. Thus, our data indicate that stromal cells isolated from term fetal membrane have great immunosuppressive capacity in terms of proliferation and production of proinflammatory cytokines from alloreactive T cells, and also promote anti-inflammatory IL-10. They express high levels of integrins that may be of importance in homing to inflamed tissues. Fetal membrane may provide a valuable source of cells with immunosuppressive properties and could possibly be used for treatment of acute GVHD and other inflammatory disorders.
Collapse
Affiliation(s)
- H Karlsson
- Division of Clinical Immunology and Center for Allogeneic Stem Cell Transplantation, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
246
|
Mesenchymal stem cells as a potent cell source for bone regeneration. Stem Cells Int 2012; 2012:980353. [PMID: 22448175 PMCID: PMC3289837 DOI: 10.1155/2012/980353] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/21/2011] [Accepted: 12/05/2011] [Indexed: 02/07/2023] Open
Abstract
While small bone defects heal spontaneously, large bone defects need surgical intervention for bone transplantation. Autologous bone grafts are the best and safest strategy for bone repair. An alternative method is to use allogenic bone graft. Both methods have limitations, particularly when bone defects are of a critical size. In these cases, bone constructs created by tissue engineering technologies are of utmost importance. Cells are one main component in the manufacture of bone construct. A few cell types, including embryonic stem cells (ESCs), adult osteoblast, and adult stem cells, can be used for this purpose. Mesenchymal stem cells (MSCs), as adult stem cells, possess characteristics that make them good candidate for bone repair. This paper discusses different aspects of MSCs that render them an appropriate cell type for clinical use to promote bone regeneration.
Collapse
|
247
|
Kandalam U, Cabel AI, Omidian H, Stelnicki EJ. Viability of human umbilical cord–derived mesenchymal stem cells in G-rich and M-rich alginates. J BIOACT COMPAT POL 2012. [DOI: 10.1177/0883911511434961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, the effect of pharmaceutical-grade alginates on the cell viability of human mesenchymal stem cells derived from umbilical cord was examined and their use in tissue engineering applications was evaluated. The effects of the ratio of the copolymer building blocks (guluronic and mannuronic acids) and their interactions with divalent calcium, the purity of alginates (proteins and polyphenol content), and gelation factors (calcium concentration and sol content) were examined. The high guluronic acid content in the alginates improved the viability of the human mesenchymal stem cells derived from umbilical cord and supported cell growth significantly. It was confirmed that the sol fraction of alginate reduced cell viability. Cells in the presence of alginate beads cross-linked with 50 and 100 mM calcium chloride showed maximum viability; the protein and polyphenol content of the alginates did not affect the viability of the human mesenchymal stem cells derived from umbilical cord, while the monomer ratio did have an obvious effect.
Collapse
Affiliation(s)
- Umadevi Kandalam
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anamaria I Cabel
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Eric J Stelnicki
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Cleft and Craniofacial Center, Joe DiMaggio Children’s Hospital, Hollywood, FL, USA
| |
Collapse
|
248
|
Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton's jelly. In Vitro Cell Dev Biol Anim 2012; 48:75-83. [PMID: 22274909 DOI: 10.1007/s11626-011-9480-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/23/2011] [Indexed: 12/12/2022]
Abstract
Several techniques have been devised for the dissociation of tissues for primary culture. These techniques can affect the quantity and quality of the isolated cells. The aim of our study was to develop the most appropriate method for the isolation of human umbilical cord-derived mesenchymal (hUCM) cells. In the present study, we compared four methods for the isolation of hUCM cells: three enzymatic methods; collagenase/hyaluronidase/trypsin (CHT), collagenase/trypsin (CT) and trypsin (Trp), and an explant culture (Exp) method. The trypan blue dye exclusion test, the water-soluble tetrazolium salt-1 (WST-1) assay, flow cytometry, alkaline phosphatase activity and histochemical staining were used to evaluate the results of the different methods. The hUCM cells were successfully isolated by all methods but the isolation method used profoundly altered the cell number and proliferation capacity of the isolated cells. The cells were successfully differentiated into adipogenic and osteogenic lineages and alkaline phosphatase activity was detected in the hUCM cell colonies of all groups. Flow cytometry analysis revealed that CD44, CD73, CD90 and CD105 were expressed in all groups, while CD34 and CD45 were not expressed. The expression of C-kit in the enzymatic groups was higher than in the explant group, while the expression of Oct-4 was higher in the CT group compared to the other groups. We concluded that the collagenase/trypsin method of cell isolation yields a higher cell density than the others. These cells expressed a higher rate of pluripotent cell markers such as C-kit and Oct-4, while the explant method of cell isolation resulted in a higher cell proliferation rate and activity compared to the other methods.
Collapse
|
249
|
Iacono E, Brunori L, Pirrone A, Pagliaro PP, Ricci F, Tazzari PL, Merlo B. Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton's jelly in the horse. Reproduction 2012; 143:455-68. [PMID: 22274885 DOI: 10.1530/rep-10-0408] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mesenchymal stem cells (MSCs) have been derived from multiple sources of the horse including umbilical cord blood (UCB) and amnion. This work aimed to identify and characterize stem cells from equine amniotic fluid (AF), CB and Wharton's Jelly (WJ). Samples were obtained from 13 mares at labour. AF and CB cells were isolated by centrifugation, while WJ was prepared by incubating with an enzymatic solution for 2 h. All cell lines were cultured in DMEM/TCM199 plus fetal bovine serum. Fibroblast-like cells were observed in 7/10 (70%) AF, 6/8 (75%) CB and 8/12 (66.7%) WJ samples. Statistically significant differences were found between cell-doubling times (DTs): cells isolated from WJ expanded more rapidly (2.0±0.6 days) than those isolated from CB (2.6±1.3 days) and AF (2.3±1.0 days) (P<0.05). Positive von Kossa and Alizarin Red S staining confirmed osteogenesis. Alcian Blue staining of matrix glycosaminoglycans illustrated chondrogenesis and positive Oil Red O lipid droplets staining suggested adipogenesis. All cell lines isolated were positive for CD90, CD44, CD105; and negative for CD34, CD14 and CD45. These findings suggest that equine MSCs from AF, UCB and WJ appeared to be a readily obtainable and highly proliferative cell lines from a uninvasive source that may represent a good model system for stem cell biology and cellular therapy applications in horses. However, to assess their use as an allogenic cell source, further studies are needed for evaluating the expression of markers related to cell immunogenicity.
Collapse
Affiliation(s)
- Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
250
|
BDNF blended chitosan scaffolds for human umbilical cord MSC transplants in traumatic brain injury therapy. Biomaterials 2012; 33:3119-26. [PMID: 22264526 DOI: 10.1016/j.biomaterials.2012.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 12/11/2022]
Abstract
This study tested the cytotoxicity of a BDNF blended chitosan scaffold with human umbilical cord mesenchymal stem cells (hUC-MSCs), and the in vitro effect of BDNF blended chitosan scaffolds on neural stem cell differentiation with the aim of contributing alternative methods in tissue engineering for the treatment of traumatic brain injury (TBI). The chitosan scaffold based on immobilization of BDNF by genipin (GP) as a crosslinking agent referred to hereafter as a CGB scaffold was prepared by freezing-drying technique. hUC-MSCs were co-cultured with the CGB scaffold. Fluorescent nuclear staining (Hoechst 33342) was employed to determine the attachment of the hUC-MSCs to CGB scaffolds on the 1st, 3rd, 7th and 10th day of co-culture. The viability of hUC-MSCs adhered to the CGB scaffold was determined by digesting with 0.25% trypsin and evaluating with the cell counting kit-8 (CCK-8). Prior to this, the diameter and porosity of CGB scaffolds were measured. The amount of BDNF released from CGB over a 30 day period was determined by ELISA. Finally, we investigated whether the released BDNF can induce NSC to differentiate into neurons. There were no significant differences in diameter and porosity of individual CGB scaffolds (P > 0.05). There were on average more cells on the CGB scaffold on the first day than on any other day sampled (P < 0.05). The CGB scaffolds released BDNF in a uniform profile, whereas the CB scaffolds only released BDNF during the first 3 days. BDNF released from CGB scaffold promoted neuronal differentiation of NSCs and led to significant differences in differentiation rate and average neuron perimeter compared with the control group. The results of this study demonstrate that CGB scaffolds are biocompatible with hUC-MSCs and that granular CGB scaffolds covered with hUC-MSCs are expected to generate new advances for future treatment of traumatic brain injury.
Collapse
|