201
|
Xiong M, Gong J, Liu Y, Xiang R, Tan X. Loss of vitamin D receptor in chronic kidney disease: a potential mechanism linking inflammation to epithelial-to-mesenchymal transition. Am J Physiol Renal Physiol 2012; 303:F1107-15. [PMID: 22791341 DOI: 10.1152/ajprenal.00151.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both peritubular inflammation and tubular epithelial-to-mesenchymal transition (EMT) are critical events during the pathogenesis of renal fibrosis. However, the relationship between these two processes is unclear. Here, we investigated the potential role of the vitamin D receptor (VDR) in coupling peritubular inflammation and EMT. In a mouse model of unilateral ureteral obstruction (UUO), loss of VDR was observed as early as 1 day after surgery. In cultured proximal tubular epithelial HK-2 cells, proinflammatory TNF-α inhibited the expression of VDR in a dose- and time-dependant manner. Treatment with TNF-α sensitized HK-2 cells to EMT stimulated by transforming growth factor (TGF)-β1. Ectopic expression of VDR counteracted the synergistic effect of TNF-α and TGF-β1 on EMT. Furthermore, knockdown of VDR using a small interfering RNA strategy mimicked the effect of TNF-α on facilitating EMT. Either TNF-α treatment or a loss of VDR induced β-catenin activation and its nuclear translocation. The VDR ligand calcitriol reversed the VDR loss and inhibited EMT in the mouse UUO model, and late administration of active vitamin D was effective in restoring VDR expression as well, and reduced collagen accumulation and deposition compared with the vehicle control. β-Catenin expression induced by UUO was also significantly inhibited after the late administration of vitamin D. These results indicate that the early loss of VDR in chronic kidney diseases was likely mediated by proinflammatory TNF-α, which renders tubular cells susceptible to EMT. Our data suggest that loss of VDR couples peritubular inflammation and EMT, two key events in renal fibrogenesis.
Collapse
Affiliation(s)
- Min Xiong
- Dept. of Pathology, Nankai Univ., Medical School, R116 Medical School Bldg., 94 Weijin Rd., Nankai District, Tianjin, 300071 China.
| | | | | | | | | |
Collapse
|
202
|
Damasiewicz MJ, Magliano DJ, Daly RM, Gagnon C, Lu ZX, Ebeling PR, Chadban SJ, Atkins RC, Kerr PG, Shaw JE, Polkinghorne KR. 25-Hydroxyvitamin D levels and chronic kidney disease in the AusDiab (Australian Diabetes, Obesity and Lifestyle) study. BMC Nephrol 2012; 13:55. [PMID: 22759247 PMCID: PMC3441805 DOI: 10.1186/1471-2369-13-55] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/21/2012] [Indexed: 01/26/2023] Open
Abstract
Background Low 25-hydroxy vitamin D (25(OH)D) levels have been associated with an increased risk of albuminuria, however an association with glomerular filtration rate (GFR) is not clear. We explored the relationship between 25(OH)D levels and prevalent chronic kidney disease (CKD), albuminuria and impaired GFR, in a national, population-based cohort of Australian adults (AusDiab Study). Methods 10,732 adults ≥25 years of age participating in the baseline survey of the AusDiab study (1999–2000) were included. The GFR was estimated using an enzymatic creatinine assay and the CKD-EPI equation, with CKD defined as eGFR <60 ml/min/1.73 m2. Albuminuria was defined as a spot urine albumin to creatinine ratio (ACR) of ≥2.5 mg/mmol for men and ≥3.5 for women. Serum 25(OH)D levels of <50 nmol/L were considered vitamin D deficient. The associations between 25(OH)D level, albuminuria and impaired eGFR were estimated using multivariate regression models. Results 30.7% of the study population had a 25(OH)D level <50 nmol/L (95% CI 25.6-35.8). 25(OH)D deficiency was significantly associated with an impaired eGFR in the univariate model (OR 1.52, 95% CI 1.07-2.17), but not in the multivariate model (OR 0.95, 95% CI 0.67-1.35). 25(OH)D deficiency was significantly associated with albuminuria in the univariate (OR 2.05, 95% CI 1.58-2.67) and multivariate models (OR 1.54, 95% CI 1.14-2.07). Conclusions Vitamin D deficiency is common in this population, and 25(OH)D levels of <50 nmol/L were independently associated with albuminuria, but not with impaired eGFR. These associations warrant further exploration in prospective and interventional studies.
Collapse
Affiliation(s)
- Matthew J Damasiewicz
- Department of Nephrology, Monash Medical Centre, 246 Clayton Road, Clayton, 3168, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Vitamin D compounds and diabetic nephropathy. Arch Biochem Biophys 2012; 523:87-94. [DOI: 10.1016/j.abb.2012.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 12/22/2022]
|
204
|
Zhou D, Li Y, Lin L, Zhou L, Igarashi P, Liu Y. Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int 2012; 82:537-47. [PMID: 22622501 PMCID: PMC3425732 DOI: 10.1038/ki.2012.173] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
β-Catenin is a unique intracellular protein functioning as an integral component of the cell-cell adherens complex and a principal signaling protein mediating canonical Wnt signaling. Little is known about its function in adult kidneys in the normal physiologic state or after acute kidney injury (AKI). To study this, we generated conditional knockout mice in which the β-catenin gene was specifically disrupted in renal tubules (Ksp-β-cat-/-). These mice were phenotypically normal with no appreciable defects in kidney morphology and function. In the absence of β-catenin, γ-catenin functionally substituted for it in E-cadherin binding, thereby sustaining the integrity of epithelial adherens junctions in the kidneys. In AKI induced by ischemia reperfusion or folic acid, the loss of tubular β-catenin substantially aggravated renal lesions. Compared with controls, Ksp-β-cat-/- mice displayed higher mortality, elevated serum creatinine, and more severe morphologic injury. Consistently, apoptosis was more prevalent in kidneys of the knockout mice, which was accompanied by increased expression of p53 and Bax, and decreased phosphorylated Akt and survivin. In vitro activation of β-catenin by Wnt1 or stabilization of β-catenin protected tubular epithelial cells from apoptosis, activated Akt, induced survivin, and repressed p53 and Bax expression. Hence, endogenous β-catenin is pivotal for renal tubular protection after AKI by promoting cell survival through multiple mechanisms.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
205
|
Xiong WJ, Hu LJ, Jian YC, Wang LJ, Jiang M, Li W, He Y. Wnt5a participates in hepatic stellate cell activation observed by gene expression profile and functional assays. World J Gastroenterol 2012; 18:1745-52. [PMID: 22553398 PMCID: PMC3332287 DOI: 10.3748/wjg.v18.i15.1745] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/10/2011] [Accepted: 02/27/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify differentially expressed genes in quiescent and activated hepatic stellate cells (HSCs) and explore their functions.
METHODS: HSCs were isolated from the normal Sprague Dawley rats by in suit perfusion of collagenase and pronase and density Nycodenz gradient centrifugation. Total RNA and mRNA of quiescent HSCs, and culture-activated HSCs were extracted, quantified and reversely transcripted into cDNA. The global gene expression profile was analyzed by microarray with Affymetrix rat genechip. Differentially expressed genes were annotated with Gene Ontology (GO) and analyzed with Kyoto encyclopedia of genes and genomes (KEGG) pathway using the Database for Annotation, Visualization and Integrated Discovery. Microarray data were validated by quantitative real-time polymerase chain reaction (qRT-PCR). The function of Wnt5a on human HSCs line LX-2 was assessed with lentivirus-mediated Wnt5a RNAi. The expression of Wnt5a in fibrotic liver of a carbon tetrachloride (CCl4)-induced fibrosis rat model was also analyzed with Western blotting.
RESULTS: Of the 28 700 genes represented on this chip, 2566 genes displayed at least a 2-fold increase or decrease in expression at a P < 0.01 level with a false discovery rate. Of these, 1396 genes were upregulated, while 1170 genes were downregulated in culture-activated HSCs. These differentially expressed transcripts were grouped into 545 GO based on biological process GO terms. The most enriched GO terms included response to wounding, wound healing, regulation of cell growth, vasculature development and actin cytoskeleton organization. KEGG pathway analysis revealed that Wnt5a signaling pathway participated in the activation of HSCs. Wnt5a was significantly increased in culture-activated HSCs as compared with quiescent HSCs. qRT-PCR validated the microarray data. Lentivirus-mediated suppression of Wnt5a expression in activated LX-2 resulted in significantly impaired proliferation, downregulated expressions of type I collagen and transforming growth factor-β1. Wnt5a was upregulated in the fibrotic liver of a CCl4-induced fibrosis rat model.
CONCLUSION: Wnt5a is involved in the activation of HSCs, and it may serve as a novel therapeutic target in the treatment of liver fibrosis.
Collapse
|
206
|
Abstract
PURPOSE OF REVIEW Great progress has been made in recent years in understanding the expanding roles of the vitamin D endocrine system beyond calcemic regulation, including pathophysiological actions in the kidney and the cardiovascular system. The purpose of this review is to update the recent advance regarding the effects of vitamin D and its analogs on the renal and cardiovascular system. RECENT FINDINGS Vitamin D deficiency is not only widely associated with chronic kidney disease and cardiovascular disease in humans, but may also accelerate the disease progression. Dysregulation of vitamin D metabolism caused by renal insufficiency contributes to the low vitamin D status. Preclinical and clinical studies have demonstrated impressive therapeutic outcome with low-calcemic vitamin D analogs in renal and cardiovascular disease. The mechanism underlying the renal and cardiovascular protection involves regulation of multiple signaling pathways by vitamin D including nuclear factor κB, Wnt/β-catenin and the renin-angiotensin system. SUMMARY The renal and cardiovascular protective activity of vitamin D revealed in recent studies has profound clinical implications. Nutritional correction of vitamin D deficiency and treatment with vitamin D analogs could be therapeutic options for renal and cardiovascular problems. New vitamin D analogs with better renal and cardiovascular therapeutic efficacy are highly desired. More randomized trials are needed to address these issues.
Collapse
|
207
|
Ding H, Zhou D, Hao S, Zhou L, He W, Nie J, Hou FF, Liu Y. Sonic hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J Am Soc Nephrol 2012; 23:801-13. [PMID: 22302193 DOI: 10.1681/asn.2011060614] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is a developmental signal cascade that plays an essential role in regulating embryogenesis and tissue homeostasis. Here, we investigated the potential role of Shh signaling in renal interstitial fibrogenesis. Ureteral obstruction induced Shh, predominantly in the renal tubular epithelium of the fibrotic kidneys. Using Gli1(lacZ) knock-in mice, we identified renal interstitial fibroblasts as Shh-responding cells. In cultured renal fibroblasts, recombinant Shh protein activated Gli1 and induced α-smooth muscle actin (α-SMA), desmin, fibronectin, and collagen I expression, suggesting that Shh signaling promotes myofibroblast activation and matrix production. Blockade of Shh signaling with cyclopamine abolished the Shh-mediated induction of Gli1, Snail1, α-SMA, fibronectin, and collagen I. In vivo, the kidneys of Gli1-deficient mice were protected against the development of interstitial fibrosis after obstructive injury. In wild-type mice, cyclopamine did not affect renal Shh expression but did inhibit induction of Gli1, Snail1, and α-SMA. In addition, cyclopamine reduced matrix expression and mitigated fibrotic lesions. These results suggest that tubule-derived Shh mediates epithelial-mesenchymal communication by targeting interstitial fibroblasts after kidney injury. We conclude that Shh/Gli1 signaling plays a critical role in promoting fibroblast activation, production of extracellular matrix, and development of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Hong Ding
- Department of Pathology, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
208
|
β-catenin signaling: a novel mediator of fibrosis and potential therapeutic target. Curr Opin Rheumatol 2012. [PMID: 21885974 DOI: 10.1097/bor.0b013e32834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The Wnt/β-catenin signaling pathway plays a critical role in development and adult tissue homeostasis. Recent investigations implicate Wnt/β-catenin signaling in abnormal wound repair and fibrogenesis. The purpose of this review is to highlight recent key studies that support a role for Wnt/β-catenin signaling in fibrosis. RECENT FINDINGS Studies of patients with fibrotic diseases have demonstrated changes in components of the Wnt/β-catenin pathway. In animal models, perturbations in Wnt/β-catenin signaling appear to aggravate or ameliorate markers of injury and fibrosis in a variety of different tissues. Studies also suggest that fibroblasts from different tissue sources may have markedly divergent responses to Wnt/β-catenin signaling. Cross-talk between Wnt/β-catenin and transforming growth factor-β pathways is complex and context-dependent, and may promote fibrogenesis through coregulation of fibrogenic gene targets. High throughput screening has identified several novel chemical inhibitors of Wnt/β-catenin signaling that may be of therapeutic potential. SUMMARY Wnt/β-catenin signaling appears important in normal wound healing and its sustained activation is associated with fibrogenesis. The mechanism by which Wnt/β-catenin signaling may modify the response to injury is cell-type and context-dependent. Better understanding of this signaling pathway may provide a promising new therapeutic approach for human fibrotic diseases.
Collapse
|
209
|
β-catenin signaling: a novel mediator of fibrosis and potential therapeutic target. Curr Opin Rheumatol 2012; 23:562-7. [PMID: 21885974 DOI: 10.1097/bor.0b013e32834b3309] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The Wnt/β-catenin signaling pathway plays a critical role in development and adult tissue homeostasis. Recent investigations implicate Wnt/β-catenin signaling in abnormal wound repair and fibrogenesis. The purpose of this review is to highlight recent key studies that support a role for Wnt/β-catenin signaling in fibrosis. RECENT FINDINGS Studies of patients with fibrotic diseases have demonstrated changes in components of the Wnt/β-catenin pathway. In animal models, perturbations in Wnt/β-catenin signaling appear to aggravate or ameliorate markers of injury and fibrosis in a variety of different tissues. Studies also suggest that fibroblasts from different tissue sources may have markedly divergent responses to Wnt/β-catenin signaling. Cross-talk between Wnt/β-catenin and transforming growth factor-β pathways is complex and context-dependent, and may promote fibrogenesis through coregulation of fibrogenic gene targets. High throughput screening has identified several novel chemical inhibitors of Wnt/β-catenin signaling that may be of therapeutic potential. SUMMARY Wnt/β-catenin signaling appears important in normal wound healing and its sustained activation is associated with fibrogenesis. The mechanism by which Wnt/β-catenin signaling may modify the response to injury is cell-type and context-dependent. Better understanding of this signaling pathway may provide a promising new therapeutic approach for human fibrotic diseases.
Collapse
|
210
|
Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nat Med 2011; 18:111-9. [PMID: 22138751 PMCID: PMC3272332 DOI: 10.1038/nm.2550] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/09/2011] [Indexed: 01/23/2023]
Abstract
Mechanisms of epithelial cell renewal remain poorly understood in the mammalian kidney, particularly in the glomerulus, a site of cellular damage in chronic kidney disease. Within the glomerulus, podocytes--differentiated epithelial cells crucial for filtration--are thought to lack substantial capacity for regeneration. Here we show that podocytes rapidly lose differentiation markers and enter the cell cycle in adult mice in which the telomerase protein component TERT is conditionally expressed. Transgenic TERT expression in mice induces marked upregulation of Wnt signaling and disrupts glomerular structure, resulting in a collapsing glomerulopathy resembling those in human disease, including HIV-associated nephropathy (HIVAN). Human and mouse HIVAN kidneys show increased expression of TERT and activation of Wnt signaling, indicating that these are general features of collapsing glomerulopathies. Silencing transgenic TERT expression or inhibiting Wnt signaling through systemic expression of the Wnt inhibitor Dkk1 in either TERT transgenic mice or in a mouse model of HIVAN results in marked normalization of podocytes, including rapid cell-cycle exit, re-expression of differentiation markers and improved filtration barrier function. These data reveal an unexpected capacity of podocytes to reversibly enter the cell cycle, suggest that podocyte renewal may contribute to glomerular homeostasis and implicate the telomerase and Wnt-β-catenin pathways in podocyte proliferation and disease.
Collapse
|
211
|
|
212
|
He W, Tan RJ, Li Y, Wang D, Nie J, Hou FF, Liu Y. Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/β-catenin activity in CKD. J Am Soc Nephrol 2011; 23:294-304. [PMID: 22095947 DOI: 10.1681/asn.2011050490] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A variety of chronic kidney diseases exhibit reactivation of Wnt/β-catenin signaling. In some tissues, β-catenin transcriptionally regulates matrix metalloproteinase-7 (MMP-7), but the association between MMP-7 and Wnt/β-catenin signaling in chronic kidney disease is unknown. Here, in mouse models of both obstructive nephropathy and focal segmental glomerulosclerosis (adriamycin nephropathy), we observed upregulation of MMP-7 mRNA and protein in a time-dependent manner. The pattern and extent of MMP-7 induction were positively associated with Wnt/β-catenin signaling in these models. Activation of β-catenin through ectopic expression of Wnt1 promoted MMP-7 expression in vivo, whereas delivery of the gene encoding the endogenous Wnt antagonist Dickkopf-1 abolished its induction. Levels of MMP-7 protein detected in the urine correlated with renal Wnt/β-catenin activity. Pharmacologic blockade of Wnt/β-catenin signaling by paricalcitol inhibited MMP-7 expression in diseased kidneys and reduced the levels detected in the urine. In vitro, β-catenin activation induced the expression and secretion of MMP-7 and promoted the binding of T cell factor to the MMP-7 promoter in kidney epithelial cells. We also observed higher levels of MMP-7 expression, which correlated with β-catenin, in kidney tissue from patients with various nephropathies. In summary, levels of renal MMP-7 correlate with Wnt/β-catenin activity, and urinary MMP-7 may be a noninvasive biomarker of this profibrotic signaling in the kidney.
Collapse
Affiliation(s)
- Weichun He
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
213
|
Abstract
As an integral member of the filtration barrier in the kidney glomerulus, the podocyte is in a unique geographical position: It is exposed to chemical signals from the urinary space (Bowman's capsule), it receives and transmits chemical and mechanical signals to/from the glomerular basement membrane upon which it elaborates, and it receives chemical and mechanical signals from the vascular space with which it also communicates. As with every cell, the ability of the podocyte to receive signals from the surrounding environment and to translate them to the intracellular milieu is dependent largely on molecules residing on the cell membrane. These molecules are the first-line soldiers in the ongoing battle to sense the environment, to respond to friendly signals, and to defend against injurious foes. In this review, we take a membrane biologist's view of the podocyte, examining the many membrane receptors, channels, and other signaling molecules that have been implicated in podocyte biology. Although we attempt to be comprehensive, our goal is not to capture every membrane-mediated pathway but rather to emphasize that this approach may be fruitful in understanding the podocyte and its unique properties.
Collapse
Affiliation(s)
- Anna Greka
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
214
|
Oshima Y, Kinouchi K, Ichihara A, Sakoda M, Kurauchi-Mito A, Bokuda K, Narita T, Kurosawa H, Sun-Wada GH, Wada Y, Yamada T, Takemoto M, Saleem MA, Quaggin SE, Itoh H. Prorenin receptor is essential for normal podocyte structure and function. J Am Soc Nephrol 2011; 22:2203-12. [PMID: 22052048 DOI: 10.1681/asn.2011020202] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The prorenin receptor is an accessory subunit of the vacuolar H(+)-ATPase, suggesting that it has fundamental functions beyond activation of the local renin-angiotensin system. Podocytes express the prorenin receptor, but its function in these cells is unknown. Here, podocyte-specific, conditional, prorenin receptor-knockout mice died of kidney failure and severe proteinuria within 4 weeks of birth. The podocytes of these mice exhibited foot process effacement with reduced and altered localization of the slit-diaphragm proteins nephrin and podocin. Furthermore, the podocytes contained numerous autophagic vacuoles, confirmed by enhanced accumulation of microtubule-associated protein 1 light chain 3-positive intracellular vesicles. Ablation of the prorenin receptor selectively suppressed expression of the V(0) c-subunit of the vacuolar H(+)-ATPase in podocytes, resulting in deacidification of intracellular vesicles. In conclusion, the prorenin receptor is important for the maintenance of normal podocyte structure and function.
Collapse
Affiliation(s)
- Yoichi Oshima
- Department of Endocrinology & Anti-Aging Medicine and Internal Medicine, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 2011; 8:42-54. [PMID: 22025123 PMCID: PMC3954787 DOI: 10.1038/nrrheum.2011.149] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibrosis in multiple organs is a prominent pathological finding and distinguishing hallmark of systemic sclerosis (SSc). Findings during the past 5 years have contributed to a more complete understanding of the complex cellular and molecular underpinning of fibrosis in SSc. Fibroblasts, the principal effector cells, are activated in the profibrotic cellular milieu by cytokines and growth factors, developmental pathways, endothelin 1 and thrombin. Innate immune signaling via Toll-like receptors, matrix-generated biomechanical stress signaling via integrins, hypoxia and oxidative stress seem to be implicated in perpetuating the process. Beyond chronic fibroblast activation, fibrosis represents a failure to terminate tissue repair, coupled with an expanded population of mesenchymal cells originating from bone marrow and transdifferentiation of epithelial cells, endothelial cells and pericytes. In addition, studies have identified intrinsic alterations in SSc fibroblasts resulting from epigenetic changes, as well as altered microRNA expression that might underlie the cell-autonomous, persistent activation phenotype of these cells. Precise characterization of the deregulated extracellular and intracellular signaling pathways, mediators and cellular differentiation programs that contribute to fibrosis in SSc will facilitate the development of selective, targeted therapeutic strategies. Effective antifibrotic therapy will ultimately involve novel compounds and repurposing of drugs that are already approved for other indications.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, McGaw M300, 240 East Huron Street, Chicago, IL 60611, USA
| | | | | |
Collapse
|
216
|
Abstract
Renal fibrosis, particularly tubulointerstitial fibrosis, is the common final outcome of almost all progressive chronic kidney diseases. Renal fibrosis is also a reliable predictor of prognosis and a major determinant of renal insufficiency. Irrespective of the initial causes, renal fibrogenesis is a dynamic and converging process that consists of four overlapping phases: priming, activation, execution and progression. Nonresolving inflammation after a sustained injury sets up the fibrogenic stage (priming) and triggers the activation and expansion of matrix-producing cells from multiple sources through diverse mechanisms, including activation of interstitial fibroblasts and pericytes, phenotypic conversion of tubular epithelial and endothelial cells and recruitment of circulating fibrocytes. Upon activation, matrix-producing cells assemble a multicomponent, integrin-associated protein complex that integrates input from various fibrogenic signals and orchestrates the production of matrix components and their extracellular assembly. Multiple cellular and molecular events, such as tubular atrophy, microvascular rarefaction and tissue hypoxia, promote scar formation and ensure a vicious progression to end-stage kidney failure. This Review outlines our current understanding of the cellular and molecular mechanisms of renal fibrosis, which could offer novel insights into the development of new therapeutic strategies.
Collapse
|
217
|
Peng J, Ramesh G, Sun L, Dong Z. Impaired wound healing in hypoxic renal tubular cells: roles of hypoxia-inducible factor-1 and glycogen synthase kinase 3β/β-catenin signaling. J Pharmacol Exp Ther 2011; 340:176-84. [PMID: 22010210 DOI: 10.1124/jpet.111.187427] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wound and subsequent healing are frequently associated with hypoxia. Although hypoxia induces angiogenesis for tissue remodeling during wound healing, it may also affect the healing response of parenchymal cells. Whether and how wound healing is affected by hypoxia in kidney cells and tissues is currently unknown. Here, we used scratch-wound healing and transwell migration models to examine the effect of hypoxia in cultured renal proximal tubular cells (RPTC). Wound healing and migration were significantly slower in hypoxic (1% oxygen) RPTC than normoxic (21% oxygen) cells. Hypoxia-inducible factor-1α (HIF-1α) was induced during scratch-wound healing in normoxia, and the induction was more evident in hypoxia. Nevertheless, HIF-1α-null and wild-type cells healed similarly after scratch wounding. Moreover, activation of HIF-1α with dimethyloxalylglycine in normoxic cells did not suppress wound healing, negating a major role of HIF-1α in wound healing in this model. Scratch-wound healing was also associated with glycogen synthase kinase 3β (GSK3β)/β-catenin signaling, which was further enhanced by hypoxia. Pharmacological inhibition of GSK3β resulted in β-catenin expression, accompanied by the suppression of wound healing and transwell cell migration. Ectopic expression of β-catenin in normoxic cells could also suppress wound healing, mimicking the effect of hypoxia. Conversely, inhibition of β-catenin via dominant negative mutants or short hairpin RNA improved wound healing and transwell migration in hypoxic cells. The results suggest that GSK3β/β-catenin signaling may contribute to defective wound healing in hypoxic renal cells and tissues.
Collapse
Affiliation(s)
- Jianping Peng
- Department of Cellular Biology and Anatomy, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
218
|
Pereira F, Barbáchano A, Silva J, Bonilla F, Campbell MJ, Muñoz A, Larriba MJ. KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Hum Mol Genet 2011; 20:4655-65. [PMID: 21890490 DOI: 10.1093/hmg/ddr399] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
KDM6B/JMJD3 is a histone H3 lysine demethylase with an important gene regulatory role in development and physiology. Here, we show that human JMJD3 expression is induced by the active vitamin D metabolite 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and that JMJD3 modulates the gene regulatory action of this hormone. 1,25(OH)(2)D(3) activates the JMJD3 gene promoter and increases the level of JMJD3 RNA in human cancer cells. JMJD3 upregulation was strictly dependent on vitamin D receptor (VDR) expression and was abolished by cycloheximide. In SW480-ADH colon cancer cells, JMJD3 knockdown or expression of an inactive mutant JMJD3 fragment decreased the induction by 1,25(OH)(2)D(3) of several target genes and of an epithelial adhesive phenotype. Moreover, JMJD3 knockdown upregulated the epithelial-to-mesenchymal transition inducers SNAIL1 and ZEB1 and the mesenchymal markers fibronectin and LEF1, while it downregulated the epithelial proteins E-cadherin, Claudin-1 and Claudin-7. Additionally, JMJD3 knockdown abolished the nuclear export of β-catenin and the inhibition of β-catenin transcriptional activity caused by 1,25(OH)(2)D(3). Importantly, the expression of JMJD3 correlated directly with that of VDR and inversely with that of SNAI1 in a series of 96 human colon tumours. Our results indicate for the first time that an epigenetic gene coding for a histone demethylase such as JMJD3 is a VDR co-target that partially mediates the effects of 1,25(OH)(2)D(3) on human colon.
Collapse
Affiliation(s)
- Fábio Pereira
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
219
|
The role of EMT in renal fibrosis. Cell Tissue Res 2011; 347:103-16. [PMID: 21845400 DOI: 10.1007/s00441-011-1227-1] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/22/2011] [Indexed: 02/03/2023]
Abstract
It is clear that the well-described phenomenon of epithelial-mesenchymal transition (EMT) plays a pivotal role in embryonic development, wound healing, tissue regeneration, organ fibrosis and cancer progression. EMTs have been classified into three subtypes based on the functional consequences and biomarker context in which they are encountered. This review will highlight findings on type II EMT as a direct contributor to the kidney myofibroblast population in the development of renal fibrosis, specifically in diabetic nephropathy, the signalling molecules and the pathways involved in type II EMT and changes in the expression of specific miRNA with the EMT process. These findings have provided new insights into the activation and development of EMT during disease processes and may lead to possible therapeutic interventions to suppress EMTs and potentially reverse organ fibrosis.
Collapse
|
220
|
Larriba MJ, Ordóñez-Morán P, Chicote I, Martín-Fernández G, Puig I, Muñoz A, Pálmer HG. Vitamin D receptor deficiency enhances Wnt/β-catenin signaling and tumor burden in colon cancer. PLoS One 2011; 6:e23524. [PMID: 21858154 PMCID: PMC3156234 DOI: 10.1371/journal.pone.0023524] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/19/2011] [Indexed: 02/06/2023] Open
Abstract
Aberrant activation of the Wnt/β-catenin pathway is critical for the initiation and progression of most colon cancers. This activation provokes the accumulation of nuclear β-catenin and the induction of its target genes. Apc(min/+) mice are the most commonly used model for colon cancer. They harbor a mutated Apc allele and develop intestinal adenomas and carcinomas during the first months of life. This phenotype is caused by the mutation of the second Apc allele and the consequent accumulation of nuclear β-catenin in the affected cells. Here we describe that vitamin D receptor (VDR) is a crucial modulator of nuclear β-catenin levels in colon cancer in vivo. By appropriate breeding of Apc(min/+) mice and Vdr(+/-) mice we have generated animals expressing a mutated Apc allele and two, one, or none Vdr wild type alleles. Lack of Vdr increased the number of colonic Aberrant Crypt Foci (ACF) but not that of adenomas or carcinomas in either small intestine or colon. Importantly, colon ACF and tumors of Apc(min/+)Vdr(-/-) mice had increased nuclear β-catenin and the tumors reached a larger size than those of Apc(min/+)Vdr(+/+). Both ACF and carcinomas in Apc(min/+)Vdr(-/-) mice showed higher expression of β-catenin/TCF target genes. In line with this, VDR knock-down in cultured human colon cancer cells enhanced β-catenin nuclear content and target gene expression. Consistently, VDR depletion abrogated the capacity of 1,25(OH)(2)D(3) to promote the relocation of β-catenin from the nucleus to the plasma membrane and to inhibit β-catenin/TCF target genes. In conclusion, VDR controls the level of nuclear β-catenin in colon cancer cells and can therefore attenuate the impact of oncogenic mutations that activate the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- María Jesús Larriba
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Paloma Ordóñez-Morán
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Irene Chicote
- Vall d'Hebrón Institute of Oncology, Stem Cells and Cancer Laboratory, Barcelona, Spain
| | - Génesis Martín-Fernández
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Puig
- Vall d'Hebrón Institute of Oncology, Stem Cells and Cancer Laboratory, Barcelona, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Héctor G. Pálmer
- Vall d'Hebrón Institute of Oncology, Stem Cells and Cancer Laboratory, Barcelona, Spain
| |
Collapse
|
221
|
Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria. Kidney Int 2011; 80:1159-1169. [PMID: 21832980 DOI: 10.1038/ki.2011.255] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) upregulation occurs in virtually all chronic kidney diseases and is associated with podocyte injury and proteinuria; however, the mechanisms contributing to this in vivo are ambiguous. In vitro, incubation of podocytes with TGF-β1 induced Wnt1 expression, β-catenin activation, and stimulated the expression of Wnt/β-catenin downstream target genes. Ectopic expression of Wnt1 or β-catenin mimicked TGF-β1, induced Snail1, and suppressed nephrin expression. The Wnt antagonist, Dickkopf-1, blocked TGF-β1-induced β-catenin activation, Snail1 induction, and nephrin suppression. In vivo, ectopic expression of TGF-β1 induced Wnt1 expression, activated β-catenin, and upregulated Wnt target genes such as Snail1, MMP-7, MMP-9, desmin, Fsp1, and PAI-1 in mouse glomeruli, leading to podocyte injury and albuminuria. Consistently, concomitant expression of Dickkopf-1 gene abolished β-catenin activation, inhibited TGF-β1-triggered Wnt target gene expression, and mitigated albuminuria. Thus, canonical Wnt/β-catenin signaling mediates TGF-β1-driven podocyte injury and proteinuria. These studies suggest that Wnt/β-catenin signaling may be exploited as a therapeutic target for the treatment of proteinuric kidney diseases.
Collapse
|
222
|
Hao S, He W, Li Y, Ding H, Hou Y, Nie J, Hou FF, Kahn M, Liu Y. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. J Am Soc Nephrol 2011; 22:1642-53. [PMID: 21816937 DOI: 10.1681/asn.2010101079] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Because fibrotic kidneys exhibit aberrant activation of β-catenin signaling, this pathway may be a potential target for antifibrotic therapy. In this study, we examined the effects of β-catenin activation on tubular epithelial-mesenchymal transition (EMT) in vitro and evaluated the therapeutic efficacy of the peptidomimetic small molecule ICG-001, which specifically disrupts β-catenin-mediated gene transcription, in obstructive nephropathy. In vitro, ectopic expression of stabilized β-catenin in tubular epithelial (HKC-8) cells suppressed E-cadherin and induced Snail1, fibronectin, and plasminogen activator inhibitor-1 (PAI-1) expression. ICG-001 suppressed β-catenin-driven gene transcription in a dose-dependent manner and abolished TGF-β1-induced expression of Snail1, PAI-1, collagen I, fibronectin, and α-smooth muscle actin (α-SMA). This antifibrotic effect of ICG-001 did not involve disruption of Smad signaling. In the unilateral ureteral obstruction model, ICG-001 ameliorated renal interstitial fibrosis and suppressed renal expression of fibronectin, collagen I, collagen III, α-SMA, PAI-1, fibroblast-specific protein-1, Snail1, and Snail2. Late administration of ICG-001 also effectively attenuated fibrotic lesions in obstructive nephropathy. In conclusion, inhibiting β-catenin signaling may be an effective approach to the treatment of fibrotic kidney diseases.
Collapse
Affiliation(s)
- Sha Hao
- Department of Pathology, University of Pittsburgh School of Medicine, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
In chronic kidney disease (CKD), abnormalities in vitamin D metabolism contribute to the development of mineral and skeletal disorders, elevations in parathyroid hormone (PTH), hypertension, systemic inflammation, renal and cardiovascular damage. CKD induces a progressive loss of the capacity of the kidney not only to convert 25-hydroxyvitamin D [25(OH)D] to circulating calcitriol, the vitamin D hormone, but also to maintain serum 25(OH)D levels for non-renal calcitriol synthesis. The resulting calcitriol and 25(OH)D deficiency associates directly with accelerated disease progression and death. This chapter presents our understanding of the pathophysiology behind 25(OH)D and calcitriol deficiency in CKD, of the adequacy of current recommendations for vitamin D supplementation and PTH suppression, and of potential markers of renal and cardiovascular lesions unrelated to PTH suppression, a knowledge required for the design of trials to obtain evidence-based recommendations for vitamin D and calcitriol replacement that improve outcomes at all stages of CKD.
Collapse
Affiliation(s)
- Adriana Dusso
- Division of Experimental Nephrology, IRBLleida (Lleida Institute for Biomedical Research), Avda Rovira Roure 80, Lleida, Spain.
| | | | | |
Collapse
|
224
|
Gordon J, Kopp JB. Off the beaten renin-angiotensin-aldosterone system pathway: new perspectives on antiproteinuric therapy. Adv Chronic Kidney Dis 2011; 18:300-11. [PMID: 21782136 DOI: 10.1053/j.ackd.2011.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 01/23/2023]
Abstract
CKD is a major public health problem in the developed and the developing world. The degree of proteinuria associated with renal failure is a generally well accepted marker of disease severity. Agents with direct antiproteinuric effects are highly desirable therapeutic strategies for slowing, or even halting, progressive loss of kidney function. We review progress on therapies acting further downstream of the renin-angiotensin-aldosterone system pathway (e.g., transforming growth factor-beta antagonism, endothelin antagonism) and on those acting independent of the renin-angiotensin-aldosterone system pathway. In all, we discuss 26 therapeutic targets or compounds and 2 lifestyle changes (dietary modification and weight loss) that have been used clinically for diabetic or nondiabetic kidney disease. These therapies include endogenous molecules (estrogens, isotretinoin), biologic antagonists (monoclonal antibodies, soluble receptors), and small molecules. Where mechanistic data are available, these therapies have been shown to exert favorable effects on glomerular cell phenotype. In some cases, recent work has indicated surprising new molecular pathways for some therapies, such as direct effects on the podocyte by glucocorticoids, rituximab, and erythropoietin. It is hoped that recent advances in the basic science of kidney injury will prompt development of more effective pharmaceutical and biologic therapies for proteinuria.
Collapse
|
225
|
Nelson PJ, von Toerne C, Gröne HJ. Wnt-signaling pathways in progressive renal fibrosis. Expert Opin Ther Targets 2011; 15:1073-83. [PMID: 21623684 DOI: 10.1517/14728222.2011.588210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The prevention and potential reversal of interstitial fibrosis is a central strategy for the treatment of progressive renal disease. This strategy requires a better understanding of the underlying pathophysiologic processes involved in progressive renal fibrosis. AREAS COVERED The developmental processes in which Wnt (combination of 'wingless' and 'INT')/frizzled signaling is involved is discussed in this review, including cell fate determination, cell polarity, tissue patterning and control of cell proliferation. These pathways are also active in the adult where they play key roles in the maintenance of tissue homeostasis, wound repair and chronic tissue damage. EXPERT OPINION Wnt biology helps to control cell polarity, moderates cell proliferation and underlies other processes linked to renal homeostasis. Reactivation and dysregulation of the Wnt pathways underlie chronic fibrosis and progressive renal failure. Wnt signaling is, however, context-dependent: the pathways are complex and undergo many levels of cross-talk with other regulatory systems and regulatory pathways. On one hand, this may help to explain the positive effects of Wnt-signaling blockades seen in some animal models of chronic renal damage and, on the other, this suggests that it may be difficult to predict how modifications of the Wnt pathway may influence a process.
Collapse
Affiliation(s)
- Peter J Nelson
- Ludwig-Maximilians University, Medical Policlinic, Clinical Biochemistry Group, Munich, Germany.
| | | | | |
Collapse
|
226
|
Galichon P, Hertig A. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside? FIBROGENESIS & TISSUE REPAIR 2011; 4:11. [PMID: 21470408 PMCID: PMC3079627 DOI: 10.1186/1755-1536-4-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/06/2011] [Indexed: 02/08/2023]
Abstract
Over the past two decades, the concept of the epithelial to mesenchymal transition (EMT) has been imported from embryology and oncology to fibrosis, particularly in the kidney. This interest in EMT in the context of renal fibrosis stems from observations of epithelial cells undergoing phenotypic changes reminiscent of fibroblasts. Whether EMT is actually a source of interstitial fibroblasts has been the subject of heated debate, and this controversy has caused physicians to neglect the value of EMT as a biomarker in renal fibrosis. In this review, we describe the evolution of the techniques used to detect EMT during fibrosing renal diseases, and what information they provide in the diagnosis of various renal diseases. Highlighting the great heterogeneity of these techniques and the need to standardize them, we warn against some misleading uses of EMT markers. We suggest using the association of vimentin and β-catenin for the diagnosis of EMT in renal pathology because it is both sensitive and prognostic, thus satisfying the properties required for a screening test. Finally, we discuss the potential interests to diagnose EMT for the comprehension of renal fibrosis and for clinical practice.
Collapse
Affiliation(s)
- Pierre Galichon
- Institut national de la santé et de la recherche médicale (INSERM), UMR S702, 4 rue de la Chine, Paris, 75020, France.
| | | |
Collapse
|