201
|
Expression pattern of Notch intracellular domain (NICD) and Hes-1 in preneoplastic and neoplastic human oral squamous epithelium: their correlation with c-Myc, clinicopathological factors and prognosis in Oral cancer. Med Oncol 2014; 31:126. [DOI: 10.1007/s12032-014-0126-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 07/05/2014] [Indexed: 10/25/2022]
|
202
|
Vinnitsky V. The development of a malignant tumor is due to a desperate asexual self-cloning process in which cancer stem cells develop the ability to mimic the genetic program of germline cells. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e29997. [PMID: 28232878 PMCID: PMC5314931 DOI: 10.4161/idp.29997] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 02/08/2023]
Abstract
To date there is no explanation why the development of almost all types of solid tumors occurs sharing a similar scenario: (1) creation of a cancer stem cell (CSC), (2) CSC multiplication and formation of a multicellular tumor spheroid (TS), (3) vascularization of the TS and its transformation into a vascularized primary tumor, (4) metastatic spreading of CSCs, (5) formation of a metastatic TSs and its transformation into metastatic tumors, and (6) potentially endless repetition of this cycle of events. The above gaps in our knowledge are related to the biology of cancer and specifically to tumorigenesis, which covers the process from the creation of a CSC to the formation of a malignant tumor and the development of metastases. My Oncogerminative Theory of Tumorigenesis considers tumor formation as a dynamic self-organizing process that mimics a self-organizing process of early embryo development. In the initial step in that process, gene mutations combined with epigenetic dysregulation cause somatic cells to be reprogrammed into CSCs, which are immortal pseudo-germline cells. Mimicking the behavior of fertilized germline cells, the CSC achieves immortality by passing through the stages of its life-cycle and developing into a pseudo-blastula-stage embryo, which manifests in the body as a malignant tumor. In this view, the development of a malignant tumor from a CSC is a phenomenon of developmental biology, which we named a desperate asexual self-cloning event. The theory explains seven core characteristics of malignant tumors: (1) CSC immortality, (2) multistep development of a malignant tumor from a single CSC, (3) heterogeneity of malignant tumor cell populations, (4) metastatic spread of CSCs, (5) invasive growth, (6) malignant progression, and (7) selective immune tolerance toward cancer cells. The Oncogerminative Theory of Tumorigenesis suggests new avenues for discovery of revolutionary therapies to treat, prevent, and eradicate cancer.
Collapse
Affiliation(s)
- Vladimir Vinnitsky
- Department of Experimental Cancer Therapeutics; R.E. Kavetsky Institute for Experimental Pathology, Oncology, and Radiobiology; Kiev, Ukraine
- Sequent Development (CRO), LLC; Madison, VA USA
| |
Collapse
|
203
|
Radiotherapy-induced plasticity of prostate cancer mobilizes stem-like non-adherent, Erk signaling-dependent cells. Cell Death Differ 2014; 22:898-911. [PMID: 25012501 DOI: 10.1038/cdd.2014.97] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/07/2014] [Accepted: 06/03/2014] [Indexed: 12/30/2022] Open
Abstract
Fractionated ionizing radiation combined with surgery or hormone therapy represents the first-choice treatment for medium to high-risk localized prostate carcinoma. One of the main reasons for the failure of radiotherapy in prostate cancer is radioresistance and further dissemination of surviving cells. In this study, exposure of four metastasis-derived human prostate cancer cell lines (DU145, PC-3, LNCaP and 22RV1) to clinically relevant daily fractions of ionizing radiation (35 doses of 2 Gy) resulted in generation of two radiation-surviving populations: adherent senescent-like cells expressing common senescence-associated markers and non-adherent anoikis-resistant stem cell-like cells with active Notch signaling and expression of stem cell markers CD133, Oct-4, Sox2 and Nanog. While a subset of the radiation-surviving adherent cells resumed proliferation shortly after completion of the irradiation regimen, the non-adherent cells started to proliferate only on their reattachment several weeks after the radiation-induced loss of adhesion. Like the parental non-irradiated cells, radiation-surviving re-adherent DU145 cells were tumorigenic in immunocompromised mice. The radiation-induced loss of adhesion was dependent on expression of Snail, as siRNA/shRNA-mediated knockdown of Snail prevented cell detachment. On the other hand, survival of the non-adherent cells required active Erk signaling, as chemical inhibition of Erk1/2 by a MEK-selective inhibitor or Erk1/2 knockdown resulted in anoikis-mediated death in the non-adherent cell fraction. Notably, whereas combined inhibition of Erk and PI3K-Akt signaling triggered cell death in the non-adherent cell fraction and blocked proliferation of the adherent population of the prostate cancer cells, such combined treatment had only marginal if any impact on growth of control normal human diploid cells. These results contribute to better understanding of radiation-induced stress response and heterogeneity of human metastatic prostate cancer cells, document treatment-induced plasticity and phenotypically distinct cell subsets, and suggest the way to exploit their differential sensitivity to radiosensitizing drugs in overcoming radioresistance.
Collapse
|
204
|
Li S, Xie Y, Zhang W, Gao J, Wang M, Zheng G, Yin X, Xia H, Tao X. Interferon alpha-inducible protein 27 promotes epithelial-mesenchymal transition and induces ovarian tumorigenicity and stemness. J Surg Res 2014; 193:255-64. [PMID: 25103640 DOI: 10.1016/j.jss.2014.06.055] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Interferon alpha-inducible protein 27 (IFI27) is an interferon alpha-inducible protein, which was found to be upregulated in some cancers, such as breast cancer, squamous cell carcinoma, hepatocellular carcinoma, and serous ovarian carcinoma. However, the role of IFI27 in ovarian cancer remains to be elucidated. This study was designed to investigate the role of IFI27 in ovarian cancer tumorigenicity. MATERIALS AND METHODS The expression of IFI27 was examined in ovarian cancer tissues and cell lines by real time quantitative reverse transcription polymerase chain reaction and immunohistochemistry. The cell migration and invasion was investigated by wound healing and transwell invasion assay. The epithelial-mesenchymal transition markers were detected by Western blotting and the stemness was evaluated by sphere formation. The tumor growth was examined in the athymic mice model. RESULTS We found that IFI27 is overexpressed in ovarian cancer and associated with patients' survival. Interestingly, we further observed that the expression of IFI27 was associated with the expression of mesenchymal marker vimentin in ovarian cancer. Overexpression of IFI27 induces epithelial-mesenchymal transition and promotes epithelial ovarian cancer cells migration and invasion, tumorigenicity, stemness, and drug resistance. Moreover, overexpression of IFI27 is associated with loss of miR-502 in ovarian cancer. Reexpression of miR-502 inhibits IFI27-induced tumorigenicity, migration, and drug resistance. CONCLUSIONS These data suggested that IFI27 may be a potential target for developing novel diagnosis strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Shuqin Li
- Department of Obstetrics and Gynecology, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Yan Xie
- Department of Obstetrics and Gynecology, Yangpu District Central Hospital, Shanghai, China
| | - Wei Zhang
- Department of Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Junfeng Gao
- Department of Oncology, Hefei First People's Hospital, Hefei, China
| | - Man Wang
- Department of Obstetrics and Gynecology, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Guoxuan Zheng
- Department of Obstetrics and Gynecology, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Xing Yin
- Department of Obstetrics and Gynecology, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Hongping Xia
- Department of Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, China.
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
205
|
Zhang Z, Wang J, Ji D, Wang C, Liu R, Wu Z, Liu L, Zhu D, Chang J, Geng R, Xiong L, Fang Q, Li J. Functional genetic approach identifies MET, HER3, IGF1R, INSR pathways as determinants of lapatinib unresponsiveness in HER2-positive gastric cancer. Clin Cancer Res 2014; 20:4559-73. [PMID: 24973425 DOI: 10.1158/1078-0432.ccr-13-3396] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Targeting human epidermal growth factor receptor 2 (HER2) therapy is currently considered as the standard treatment for HER2-positive (HER2+) advanced gastric cancer. However, as seen in recent clinical trials, most of HER2+ gastric cancer are actually unresponsive to HER2-targeted agents, including lapatinib. The aim of this study is to identify the responsible receptor tyrosine kinases (RTK) potentially conferring lapatinib unresponsiveness in HER2+ gastric cancer and elucidate the molecular mechanism underlying this RTKs-induced resistance. EXPERIMENTAL DESIGN A functional RNAi screen targeting human RTKs and related growth factors was used to identify candidate RTKs conferring lapatinib unresponsiveness in HER2+ gastric cancer cells. Independent siRNAs transfection and corresponding ligands supplement were performed to validate the effects of candidate RTKs on lapatinib sensitivity. Cross-talks of pathways involved were analyzed via Western blot analysis. Cell apoptosis and cell motility were detected using FACS system and Transwell assay. Immunohistochemistry was used to analyze protein expression in clinical samples. RESULTS MET, HER3, insulin-like growth factor (IGF)-1R, and INSR were identified to mediate lapatinib unresponsiveness in HER2+ gastric cancer cells. Activation of these bypass RTKs attenuated lapatinib-induced apoptosis and suppression of cell motility, mechanistically because of restimulating the shared downstream AKT or ERK signaling, as well as restimulating WNT signaling and epithelial-to-mesenchymal transition (EMT)-like process. Patients' specimens revealed that these unresponsiveness-conferring RTKs were particularly enriched in the majority of patients with HER2+ gastric cancer. CONCLUSIONS MET, HER3, IGF1R, and INSR pathways activation represent novel mechanism underlying lapatinib unresponsiveness in HER2+ gastric cancer. Combination strategy may be recommended in treating patients with HER2+ gastric cancer with these pathways activation.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Jiping Wang
- Division of Surgical Oncology, Brigham and Women's Hospital, Boston, Massachusetts. Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Dongmei Ji
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Chenchen Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Rujiao Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Zheng Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Lian Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Dan Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Jinjia Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Ruixuan Geng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Lei Xiong
- 3DBiopharm Biotechnology Co., Ltd., Shanghai, China
| | - Qiangyi Fang
- 3DBiopharm Biotechnology Co., Ltd., Shanghai, China
| | - Jin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
206
|
Abolhassani A, Riazi GH, Azizi E, Amanpour S, Muhammadnejad S, Haddadi M, Zekri A, Shirkoohi R. FGF10: Type III Epithelial Mesenchymal Transition and Invasion in Breast Cancer Cell Lines. J Cancer 2014; 5:537-47. [PMID: 25057305 PMCID: PMC4107230 DOI: 10.7150/jca.7797] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/09/2014] [Indexed: 11/30/2022] Open
Abstract
Purpose: Fibroblastic growth factor-10 (FGF-10) has an important role in type I epithelial mesenchymal transition (EMT) during the embryonic period of life (gastrulation). Since EMT has a critical role during cancer cells invasion and metastasis (type III) this study sought to investigate the possible role of FGF-10 in type III EMT by monitoring breast cancer cell lines' behavior by FGF-10 regulation. Methods: MCF-7 and MDA-MB-231 cell lines with different levels of FGF10 expression were treated with FGF-10 recombinant protein and FGF-10 siRNA, respectively. Results: The cell viability, migration, colony formation and wound healing have a direct relationship with FGF-10 expression, while FGF-10 expression decreased apoptosis. All mesenchymal factors (such as vimentin, N cadherin, snail, slug, TGF-β) increased due to FGF-10 expression with contrary expression of epithelial markers (such as E-cadherin). Moreover, GSK3β phosphorylation (inactivation) increased with FGF-10 expression. Conclusion: The important role of FGF-10 in type III EMT on cancer cells and initiation of metastasis via various kinds of signaling pathways has been suggested.
Collapse
Affiliation(s)
- Ali Abolhassani
- 1. Group of Genetics, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran ; 2. Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gholam Hossein Riazi
- 1. Group of Genetics, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ebrahim Azizi
- 2. Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Saeid Amanpour
- 3. Group of experimental research in cancer, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Samad Muhammadnejad
- 3. Group of experimental research in cancer, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahnaz Haddadi
- 3. Group of experimental research in cancer, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Zekri
- 4. Department of Genetics, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Reza Shirkoohi
- 1. Group of Genetics, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
207
|
Yun JA, Kim SH, Hong HK, Yun SH, Kim HC, Chun HK, Cho YB, Lee WY. Loss of E-Cadherin expression is associated with a poor prognosis in stage III colorectal cancer. Oncology 2014; 86:318-28. [PMID: 24924873 DOI: 10.1159/000360794] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/12/2014] [Indexed: 11/19/2022]
Abstract
PURPOSE The epithelial-mesenchymal transition (EMT) is known to be associated with tumor progression, invasion and metastasis in colorectal cancer (CRC). MATERIALS AND METHODS Tissue samples obtained from 409 patients with stage III CRC treated from 2006 to 2007 were examined by immunohistochemistry to reveal the expression levels of E-cadherin, fibronectin, vimentin and α-smooth muscle actin (SMA). RESULTS Among the 409 patients, 402 cases (98.3%) showed positive E-cadherin expression. Positive E-cadherin expression was associated with well or moderately differentiated cell types and a stable microsatellite status. In multivariate analysis, a preoperative carcinoembryonic antigen level >5 ng/ml (p = 0.021), advanced N stage (p = 0.017), positive vascular invasion (p = 0.048), positive perineural invasion (p = 0.002) and negative E-cadherin expression (p = 0.002, relative risk = 5.098, 95% CI = 1.801-14.430) were poor prognostic factors affecting disease-free survival. The declining E-cadherin expression was associated with a poor outcome in terms of overall survival in univariate (p = 0.016) but not in multivariate analyses (p = 0.303, relative risk = 1.984, 95% CI = 0.539-7.296). Fibronectin, vimentin and α-SMA were of no prognostic value in this study. CONCLUSION The expression pattern of EMT markers in stage III CRC suggests that declining E-cadherin expression is a possible immunohistochemical predictor of patient prognosis.
Collapse
Affiliation(s)
- Jung-A Yun
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Brain metastasis-initiating cells: survival of the fittest. Int J Mol Sci 2014; 15:9117-33. [PMID: 24857921 PMCID: PMC4057778 DOI: 10.3390/ijms15059117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022] Open
Abstract
Brain metastases (BMs) are the most common brain tumor in adults, developing in about 10% of adult cancer patients. It is not the incidence of BM that is alarming, but the poor patient prognosis. Even with aggressive treatments, median patient survival is only months. Despite the high rate of BM-associated mortality, very little research is conducted in this area. Lack of research and staggeringly low patient survival is indicative that a novel approach to BMs and their treatment is needed. The ability of a small subset of primary tumor cells to produce macrometastases is reminiscent of brain tumor-initiating cells (BTICs) or cancer stem cells (CSCs) hypothesized to form primary brain tumors. BTICs are considered stem cell-like due to their self-renewal and differentiation properties. Similar to the subset of cells forming metastases, BTICs are most often a rare subpopulation. Based on the functional definition of a TIC, cells capable of forming a BM could be considered to be brain metastasis-initiating cells (BMICs). These putative BMICs would not only have the ability to initiate tumor growth in a secondary niche, but also the machinery to escape the primary tumor, migrate through the circulation, and invade the neural niche.
Collapse
|
209
|
Rhodes LV, Tate CR, Segar HC, Burks HE, Phamduy TB, Hoang V, Elliott S, Gilliam D, Pounder FN, Anbalagan M, Chrisey DB, Rowan BG, Burow ME, Collins-Burow BM. Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators. Breast Cancer Res Treat 2014; 145:593-604. [PMID: 24810497 DOI: 10.1007/s10549-014-2979-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/19/2014] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial-to-mesenchymal transition (EMT) is a key contributor in the metastatic process. We previously showed the pan-deacetylase inhibitor LBH589 induces CDH1 expression in TNBC cells, suggesting regulation of EMT. The purpose of this study was to examine the effects of LBH589 on the metastatic qualities of TNBC cells and the role of EMT in this process. A panel of breast cancer cell lines (MCF-7, MDA-MB-231, and BT-549), drugged with LBH589, was examined for changes in cell morphology, migration, and invasion in vitro. The effect on in vivo metastasis was examined using immunofluorescent staining of lung sections. EMT gene expression profiling was used to determine LBH589-induced changes in TNBC cells. ZEB overexpression studies were conducted to validate requirement of ZEB in LBH589-mediated proliferation and tumorigenesis. Our results indicate a reversal of EMT by LBH589 as demonstrated by altered morphology and altered gene expression in TNBC. LBH589 was shown to be a more potent inhibitor of EMT than other HDAC inhibitors, SAHA and TMP269. Additionally, we found that LBH589 inhibits metastasis of MDA-MB-231 cells in vivo. These effects of LBH589 were mediated in part by inhibition of ZEB, as overexpression of ZEB1 or ZEB2 mitigated the effects of LBH589 on MDA-MB-231 EMT-associated gene expression, migration, invasion, CDH1 expression, and tumorigenesis. These data indicate therapeutic potential of LBH589 in targeting EMT and metastasis of TNBC.
Collapse
Affiliation(s)
- Lyndsay V Rhodes
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University Health Sciences Center, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Xihuang Pill () induces mesenchymal-epithelial transition and inhibits loss of apical-basal polarity in colorectal cancer cell through regulating ZEB1-SCRIB loop. Chin J Integr Med 2014; 20:751-7. [PMID: 24802235 DOI: 10.1007/s11655-014-1812-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate the antiproliferative and anti-metastasis effect of Xihuang Pill (, XP) on human colorectal cancer cell and to explore the molecular mechanism by which it produces the effects. METHODS Highly metastatic human colorectal cancer cell line LoVo was treated with low-, medium-, and highdose XP-containing serum (XP-L, XP-M, XP-H) groups for 48 h, cells intervened with no drug rat serum and PD98059 [extracellular signal-regulated kinase (ERK) inhibitor] as negative and positive controls (NC and PC) groups. Cell proliferation assay was made using cell counting kit-8 (CCK8). The 8 μm pore-size transwell chamber and 4', 6-diamidino-2-phenylindole (DAPI) staining were applied to examine the ability of invasion and migration of the cells. The protein expression of ERK1/2, zinc fifi nger E-box-binding homeobox 1 (ZEB1), Scrib and lethal giant larvae homolog 2 (Lgl2) was detected by Western blotting while the relative mRNA quantity of E-cadherin, N-cadherin, Occludin and junctional adhesion molecule-1 (JAM1) was measured by realtime fluorescent quantitative polymerase chain reaction (RT-qPCR). RESULTS XP induced a dose-dependent suppression on the proliferation of LoVo cells (P <0.05 or P<0.01), with the inhibition rates varied from 27.30% to 31.08%. Transwell assay showed that when preprocessed with PD98059 and XP-containing serum, the number of cells that passed the filter decreased significantly compared with that of NC group (P <0.05 or P<0.01). Moreover, XP inhibited the protein expression of ERK1/2 and ZEB1 (P <0.05); and up-regulated the protein expression of Scrib and Lgl2 (P <0.05). The mRNA levels of E-cadherin, Occludin and JAM1 of the XP intervened groups and PC group markedly ascended (P <0.05) while that of N-cadherin showed a descending tendency (P>0.05). CONCLUSION XP intervention suppressed the ability of proliferation, invasion and migration of the LoVo cells. Regulating ZEB1-SCRIB Loop so as to recover epithelial phenotype and apical junctional complex might be one of the mechanisms by which XP produces the anti-metastasis effect.
Collapse
|
211
|
Li W, Wang Q, Su Q, Ma D, An C, Ma L, Liang H. Honokiol suppresses renal cancer cells' metastasis via dual-blocking epithelial-mesenchymal transition and cancer stem cell properties through modulating miR-141/ZEB2 signaling. Mol Cells 2014; 37:383-8. [PMID: 24810210 PMCID: PMC4044309 DOI: 10.14348/molcells.2014.0009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 01/29/2023] Open
Abstract
Renal cell carcinoma (RCC) is associated with a high frequency of metastasis and only few therapies substantially prolong survival. Honokiol, isolated from Magnolia spp. bark, has been shown to exhibit pleiotropic anticancer effects in many cancer types. However, whether honokiol could suppress RCC metastasis has not been fully elucidated. In the present study, we found that honokiol suppressed renal cancer cells' metastasis via dual-blocking epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties. In addition, honokiol inhibited tumor growth in vivo. It was found that honokiol could upregulate miR-141, which targeted ZEB2 and modulated ZEB2 expression. Honokiol reversed EMT and suppressed CSC properties partly through the miR-141/ZEB2 axis. Our study suggested that honokiol may be a suitable therapeutic strategy for RCC treatment.
Collapse
Affiliation(s)
- Weidong Li
- Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU)
| | - Qian Wang
- The Medical Faculty of Jinan University
| | - Qiaozhen Su
- Department of Neurology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Dandan Ma
- Internal Medicine of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou,
People’s Republic of China
| | - Chang An
- Department of Neurology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Lei Ma
- Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU)
| | - Hongfeng Liang
- Department of Neurology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine
| |
Collapse
|
212
|
Ginnebaugh KR, Ahmad A, Sarkar FH. The therapeutic potential of targeting the epithelial-mesenchymal transition in cancer. Expert Opin Ther Targets 2014; 18:731-45. [PMID: 24758643 DOI: 10.1517/14728222.2014.909807] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The process of epithelial-to-mesenchymal transition (EMT) has long been advocated as a process during tumor progression and the acquisition of metastatic potential of human cancers. EMT has also been linked with resistance to cancer therapies. AREAS COVERED Basic research has provided evidence connecting EMT to increased invasion, angiogenesis and metastasis of cancer cells. A number of signaling pathways such as notch, wnt, hedgehog and PI3K-AKT, and various other individual factors therein, have been intricately connected to the onset of EMT. Here, we provide latest updates on the evidences that further highlight an association between various signaling pathways and EMT, with a focus on therapeutic targets that may have the potential to reverse EMT. EXPERT OPINION Our understanding of EMT and its underlying causes is rapidly evolving and a number of putative targets have been identified. It is crucial, now than ever before, to design novel translational and clinical studies for the benefit of advanced stage cancer patients with metastatic disease.
Collapse
Affiliation(s)
- Kevin R Ginnebaugh
- Karmanos Cancer Institute, Wayne State University School of Medicine, Department of Pathology , Detroit, MI 48201 , USA
| | | | | |
Collapse
|
213
|
Chu GCY, Zhau HE, Wang R, Rogatko A, Feng X, Zayzafoon M, Liu Y, Farach-Carson MC, You S, Kim J, Freeman MR, Chung LWK. RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr Relat Cancer 2014; 21:311-326. [PMID: 24478054 PMCID: PMC3959765 DOI: 10.1530/erc-13-0548] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 01/21/2023]
Abstract
Prostate cancer (PCa) metastasis to bone is lethal and there is no adequate animal model for studying the mechanisms underlying the metastatic process. Here, we report that receptor activator of NF-κB ligand (RANKL) expressed by PCa cells consistently induced colonization or metastasis to bone in animal models. RANK-mediated signaling established a premetastatic niche through a feed-forward loop, involving the induction of RANKL and c-Met, but repression of androgen receptor (AR) expression and AR signaling pathways. Site-directed mutagenesis and transcription factor (TF) deletion/interference assays identified common TF complexes, c-Myc/Max, and AP4 as critical regulatory nodes. RANKL-RANK signaling activated a number of master regulator TFs that control the epithelial-to-mesenchymal transition (Twist1, Slug, Zeb1, and Zeb2), stem cell properties (Sox2, Myc, Oct3/4, and Nanog), neuroendocrine differentiation (Sox9, HIF1α, and FoxA2), and osteomimicry (c-Myc/Max, Sox2, Sox9, HIF1α, and Runx2). Abrogating RANK or its downstream c-Myc/Max or c-Met signaling network minimized or abolished skeletal metastasis in mice. RANKL-expressing LNCaP cells recruited and induced neighboring non metastatic LNCaP cells to express RANKL, c-Met/activated c-Met, while downregulating AR expression. These initially non-metastatic cells, once retrieved from the tumors, acquired the potential to colonize and grow in bone. These findings identify a novel mechanism of tumor growth in bone that involves tumor cell reprogramming via RANK-RANKL signaling, as well as a form of signal amplification that mediates recruitment and stable transformation of non-metastatic bystander dormant cells.
Collapse
Affiliation(s)
- Gina Chia-Yi Chu
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
| | - Haiyen E Zhau
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
| | - Ruoxiang Wang
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
| | - André Rogatko
- Department of Biomedical SciencesSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
- Biostatistics and Bioinformatics Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| | - Xu Feng
- Department of PathologySchool of Medicine, University of AlabamaBirmingham, AlabamaUSA
| | - Majd Zayzafoon
- Department of PathologySchool of Medicine, University of AlabamaBirmingham, AlabamaUSA
| | - Youhua Liu
- Department of PathologyUniversity of PittsburghPittsburgh, PennsylvaniaUSA
| | | | - Sungyong You
- Department of SurgerySamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
- Department of Biomedical SciencesSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| | - Jayoung Kim
- Department of SurgerySamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
- Department of Biomedical SciencesSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| | - Michael R Freeman
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
- Department of SurgerySamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
- Department of Biomedical SciencesSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| | - Leland W K Chung
- Uro-Oncology Research, Department of MedicineSamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center8750 Beverly Blvd., Atrium 103, Los Angeles, California, 90048USA
- Department of SurgerySamuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CaliforniaUSA
| |
Collapse
|
214
|
Rucki AA, Zheng L. Pancreatic cancer stroma: Understanding biology leads to new therapeutic strategies. World J Gastroenterol 2014; 20:2237-2246. [PMID: 24605023 PMCID: PMC3942829 DOI: 10.3748/wjg.v20.i9.2237] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/14/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the deadliest cancers in the United States and in the world. Late diagnosis, early metastasis and lack of effective therapy are among the reasons why only 6% of patients diagnosed with PDA survive past 5 years. Despite development of targeted therapy against other cancers, little progression has been made in the treatment of PDA. Therefore, there is an urgent need for the development of new treatments. However, in order to proceed with treatments, the complicated biology of PDA needs to be understood first. Interestingly, majority of the tumor volume is not made of malignant epithelial cells but of stroma. In recent years, it has become evident that there is an important interaction between the stromal compartment and the less prevalent malignant cells, leading to cancer progression. The stroma not only serves as a growth promoting source of signals but it is also a physical barrier to drug delivery. Understanding the tumor-stroma signaling leading to development of desmoplastic reaction and tumor progression can lead to the development of therapies to decrease stromal activity and improve drug delivery. In this review, we focus on how the current understanding of biology of the pancreatic tumor microenvironment can be translated into the development of targeted therapy.
Collapse
|
215
|
Miao L, Xiong X, Lin Y, Cheng Y, Lu J, Zhang J, Cheng N. Down-regulation of FoxM1 leads to the inhibition of the epithelial-mesenchymal transition in gastric cancer cells. Cancer Genet 2014; 207:75-82. [DOI: 10.1016/j.cancergen.2014.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 01/22/2014] [Accepted: 02/24/2014] [Indexed: 01/16/2023]
|
216
|
The culture of cancer cell lines as tumorspheres does not systematically result in cancer stem cell enrichment. PLoS One 2014; 9:e89644. [PMID: 24586931 PMCID: PMC3933663 DOI: 10.1371/journal.pone.0089644] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 01/24/2014] [Indexed: 01/01/2023] Open
Abstract
Cancer stem cells (CSC) have raised great excitement during the last decade and are promising targets for an efficient treatment of tumors without relapses and metastases. Among the various methods that enable to enrich cancer cell lines in CSC, tumorspheres culture has been predominantly used. In this report, we attempted to generate tumorspheres from several murine and human cancer cell lines: B16-F10, HT-29, MCF-7 and MDA-MB-231 cells. Tumorspheres were obtained with variable efficiencies from all cell lines except from MDA-MB-231 cells. Then, we studied several CSC characteristics in both tumorspheres and adherent cultures of the B16-F10, HT-29 and MCF-7 cells. Unexpectedly, tumorspheres-forming cells were less clonogenic and, in the case of B16-F10, less proliferative than attached cells. In addition, we did not observe any enrichment in the population expressing CSC surface markers in tumorspheres from B16-F10 (CD133, CD44 and CD24 markers) or MCF-7 (CD44 and CD24 markers) cells. On the contrary, tumorspheres culture of HT-29 cells appeared to enrich in cells expressing colon CSC markers, i.e. CD133 and CD44 proteins. For the B16-F10 cell line, when 1 000 cells were injected in syngenic C57BL/6 mice, tumorspheres-forming cells displayed a significantly lower tumorigenic potential than adherent cells. Finally, tumorspheres culture of B16-F10 cells induced a down-regulation of vimentin which could explain, at least partially, the lower tumorigenicity of tumorspheres-forming cells. All these results, along with the literature, indicate that tumorspheres culture of cancer cell lines can induce an enrichment in CSC but in a cell line-dependent manner. In conclusion, extensive characterization of CSC properties in tumorspheres derived from any cancer cell line or cancer tissue must be performed in order to ensure that the generated tumorspheres are actually enriched in CSC.
Collapse
|
217
|
Zhang Y, Zhang W, Qin L. Mesenchymal-mode migration assay and antimetastatic drug screening with high-throughput microfluidic channel networks. Angew Chem Int Ed Engl 2014; 53:2344-8. [PMID: 24478127 PMCID: PMC3973404 DOI: 10.1002/anie.201309885] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Indexed: 11/10/2022]
Abstract
Increasing evidence shows that activated mesenchymal migration is a key process of the metastatic cascade. Cancer cells usually gain such migratory capability through an epithelial-to-mesenchymal transition. Herein we present a high-throughput microfluidic device with 3120 microchambers to specifically monitor mesenchymal migration. Through imaging of the whole chip and statistical analysis, we can evaluate the two key factors of velocity and percentage related to cell migratory capacity at different cell densities in culture. We also used the device to screen antimetastatic drugs for their inhibition of mesenchymal migration and prevention of metastatic malignancy. This device will provide an excellent platform for biologists to gain a better understanding of cancer metastasis.
Collapse
Affiliation(s)
- Yuanqing Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave. Houston, TX, United States 77030
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065
| | - Weijia Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave. Houston, TX, United States 77030
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave. Houston, TX, United States 77030
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065
| |
Collapse
|
218
|
Yamamoto S, Tanaka K, Takeda K, Akiyama H, Ichikawa Y, Nagashima Y, Endo I. Patients with CD133-negative colorectal liver metastasis have a poor prognosis after hepatectomy. Ann Surg Oncol 2014; 21:1853-61. [PMID: 24554065 DOI: 10.1245/s10434-014-3549-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND The prognostic factors for patients with colorectal cancer liver metastasis (L-Mets) have not been fully described. METHODS Resected specimens were obtained surgically from 1998 to 2008 at our university hospital. We investigated whether the status of two primary lesion cancer stem biomarkers, CD44 and CD133, were maintained in L-Mets and whether these markers were L-Mets prognostic factors. To investigate the CD133 and CD44 status, proliferation, invasiveness, and chemoresistance were examined immunohistochemically by using MIB-1, E-cadherin, and ABC-G2. RESULTS The CD44-positive rate in primary lesions and L-Mets was 41.4 and 58.7 %, respectively. There was no correlation of CD44 expression between primary lesions and L-Mets (r = 0.250, p = 0.071). The CD133-positive rate in primary lesions and L-Mets was 53.6 and 44.6 %, respectively. There was no correlation of CD133 expression between primary lesions and L-Mets (r = 0.219, p = 0.135). In the CD133-negative group, the MIB-1 index was significantly higher than in the CD133-positive group (61.6 vs. 46.3 %, p = 0.003), and E-cadherin expression was significantly lower in the CD133-negative group compared with the CD133-positive group (29.3 vs. 46.8 %, p = 0.001). Absence of CD133 expression in L-Mets correlated with poor overall survival (p = 0.006), and multivariate regression analysis showed that it was an independent marker for poor survival (hazard ratio 0.320, p = 0.0016). CONCLUSIONS The absence of CD133 expression in L-Mets was an independent marker and a poor prognostic factor, possibly because of increased proliferation and invasiveness.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
219
|
Hesami P, Holzapfel BM, Taubenberger A, Roudier M, Fazli L, Sieh S, Thibaudeau L, Gregory LS, Hutmacher DW, Clements JA. A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone. Clin Exp Metastasis 2014; 31:435-46. [DOI: 10.1007/s10585-014-9638-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/15/2014] [Indexed: 12/17/2022]
|
220
|
Zhang Y, Zhang W, Qin L. Mesenchymal-Mode Migration Assay and Antimetastatic Drug Screening with High-Throughput Microfluidic Channel Networks. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
221
|
Tanabe S. Role of mesenchymal stem cells in cell life and their signaling. World J Stem Cells 2014; 6:24-32. [PMID: 24567785 PMCID: PMC3927011 DOI: 10.4252/wjsc.v6.i1.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/18/2013] [Accepted: 12/12/2013] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have various roles in the body and cellular environment, and the cellular phenotypes of MSCs changes in different conditions. MSCs support the maintenance of other cells, and the capacity of MSCs to differentiate into several cell types makes the cells unique and full of possibilities. The involvement of MSCs in the epithelial-mesenchymal transition is an important property of these cells. In this review, the role of MSCs in cell life, including their application in therapy, is first described, and the signaling mechanism of MSCs is investigated for a further understanding of these cells.
Collapse
Affiliation(s)
- Shihori Tanabe
- Shihori Tanabe, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|
222
|
Wang H, Zhang G, Zhang H, Zhang F, Zhou B, Ning F, Wang HS, Cai SH, Du J. Acquisition of epithelial–mesenchymal transition phenotype and cancer stem cell-like properties in cisplatin-resistant lung cancer cells through AKT/β-catenin/Snail signaling pathway. Eur J Pharmacol 2014; 723:156-66. [DOI: 10.1016/j.ejphar.2013.12.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 01/05/2023]
|
223
|
Zhang HM, Kuang S, Xiong X, Gao T, Liu C, Guo AY. Transcription factor and microRNA co-regulatory loops: important regulatory motifs in biological processes and diseases. Brief Bioinform 2013; 16:45-58. [PMID: 24307685 DOI: 10.1093/bib/bbt085] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transcription factors (TFs) and microRNAs (miRNAs) can jointly regulate target gene expression in the forms of feed-forward loops (FFLs) or feedback loops (FBLs). These regulatory loops serve as important motifs in gene regulatory networks and play critical roles in multiple biological processes and different diseases. Major progress has been made in bioinformatics and experimental study for the TF and miRNA co-regulation in recent years. To further speed up its identification and functional study, it is indispensable to make a comprehensive review. In this article, we summarize the types of FFLs and FBLs and their identified methods. Then, we review the behaviors and functions for the experimentally identified loops according to biological processes and diseases. Future improvements and challenges are also discussed, which includes more powerful bioinformatics approaches and high-throughput technologies in TF and miRNA target prediction, and the integration of networks of multiple levels.
Collapse
|
224
|
Ali Hosseini Rad SM, Bavarsad MS, Arefian E, Jaseb K, Shahjahani M, Saki N. The Role of microRNAs in Stemness of Cancer Stem Cells. Oncol Rev 2013; 7:e8. [PMID: 25992229 PMCID: PMC4419617 DOI: 10.4081/oncol.2013.e8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/16/2013] [Accepted: 11/07/2013] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the most important diseases of humans, for which no cure has been found so far. Understanding the causes of cancer can pave the way for its treatment. Alteration in genetic elements such as oncogenes and tumor suppressor genes results in cancer. The most recent theory for the origin of cancer has been provided by cancer stem cells (CSCs). Tumor-initiating cells (T-ICs) or CSCs are a small population isolated from tumors and hematologic malignancies. Since CSCs are similar to embryonic stem cells (ESCs) in many aspects (such as pluripotency and self-renewal), recognizing the signaling pathways through which ESCs maintain their stemness can also help identify CSC signaling. One component of these signaling pathways is non-coding RNAs (ncRNAs). ncRNAs are classified in two groups: microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). miRNAs undergo altered expression in cancer. In this regard, they are classified as Onco-miRNAs or tumor suppressor miRNAs. Some miRNAs play similar roles in ESCs and CSCs, such as let-7 and miR-302. This review focuses on the miRNAs involved in stemness of ESCs and CSCs by presenting a summary of the role of miRNAs in other tumor cells.
Collapse
Affiliation(s)
- Seyed Mohammad Ali Hosseini Rad
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center , Tehran ; Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran
| | - Mahsa Shanaki Bavarsad
- Health Research Center, Research Institute of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences , Ahvaz
| | - Ehsan Arefian
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center , Tehran ; Department of Microbiology, School of Biology, College of Science, University of Tehran , Tehran, Iran
| | - Kaveh Jaseb
- Health Research Center, Research Institute of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences , Ahvaz
| | - Mohammad Shahjahani
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran
| | - Najmaldin Saki
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center , Tehran ; Health Research Center, Research Institute of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences , Ahvaz
| |
Collapse
|
225
|
Chung SS, Giehl N, Wu Y, Vadgama JV. STAT3 activation in HER2-overexpressing breast cancer promotes epithelial-mesenchymal transition and cancer stem cell traits. Int J Oncol 2013; 44:403-11. [PMID: 24297508 PMCID: PMC3898805 DOI: 10.3892/ijo.2013.2195] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/30/2013] [Indexed: 12/18/2022] Open
Abstract
Clinically, HER2 proto-oncogene amplification is found in about 25–30% of human breast cancers, where it is correlated to a poor prognosis. Constitutive STAT3 activation is found in about 50–60% of the breast tumors and associated with tumorigenesis and drug resistance. In this study, we showed that STAT3 was phosphorylated in HER2-overexpressing, ER-positive human breast tumors and, furthermore, phosphorylated STAT3 promoted the stem-like cell phenotype. We examined the dysregulation of the stem cell markers (Oct-4, Sox-2 and CD44) and the tumorsphere formation in HER2-overexpressing human breast cancer cell lines. We demonstrated that the STAT3 inhibitor, Stattic, treatment abolished the cancer stem cell phenotype in HER2-positive breast cancers. Combined treatment of Herceptin and Stattic showed the synergistic effect on the cancer cell growth in vitro. In addition, when the STAT3 gene was knocked down, the expression of the stem cell markers Oct-4, Sox-2 and CD44 were downregulated and tumorsphere formation was abolished. HER2-elicited STAT3 signaling may provide a potential model for drug resistance induced by stem-like cell characteristics. This mechanism may be responsible for acquiring resistance to Herceptin in the treatment of HER2-overexpressing breast tumors. Based on our findings, targeting pSTAT3 could overcome Herceptin-induced resistance in HER2-overexpressing breast tumors.
Collapse
Affiliation(s)
- Seyung S Chung
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Nolan Giehl
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| |
Collapse
|
226
|
Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis 2013; 4:e875. [PMID: 24157869 PMCID: PMC3920940 DOI: 10.1038/cddis.2013.407] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/04/2013] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
Radioresistance is a major challenge in prostate cancer (CaP) radiotherapy (RT). In this study, we investigated the role and association of epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and the PI3K/Akt/mTOR signaling pathway in CaP radioresistance. We developed three novel CaP radioresistant (RR) cell lines (PC-3RR, DU145RR and LNCaPRR) by radiation treatment and confirmed their radioresistance using a clonogenic survival assay. Compared with untreated CaP-control cells, the CaP-RR cells had increased colony formation, invasion ability and spheroid formation capability (P<0.05). In addition, enhanced EMT/CSC phenotypes and activation of the checkpoint proteins (Chk1 and Chk2) and the PI3K/Akt/mTOR signaling pathway proteins were also found in CaP-RR cells using immunofluorescence, western blotting and quantitative real-time PCR (qRT-PCR). Furthermore, combination of a dual PI3K/mTOR inhibitor (BEZ235) with RT effectively increased radiosensitivity and induced more apoptosis in CaP-RR cells, concomitantly correlated with the reduced expression of EMT/CSC markers and the PI3K/Akt/mTOR signaling pathway proteins compared with RT alone. Our findings indicate that CaP radioresistance is associated with EMT and enhanced CSC phenotypes via activation of the PI3K/Akt/mTOR signaling pathway, and that the combination of BEZ235 with RT is a promising modality to overcome radioresistance in the treatment of CaP. This combination approach warrants future in vivo animal study and clinical trials.
Collapse
|
227
|
Lou B, Fan J, Wang K, Chen W, Zhou X, Zhang J, Lin S, Lv F, Chen Y. N1-guanyl-1,7-diaminoheptane (GC7) enhances the therapeutic efficacy of doxorubicin by inhibiting activation of eukaryotic translation initiation factor 5A2 (eIF5A2) and preventing the epithelial-mesenchymal transition in hepatocellular carcinoma cells. Exp Cell Res 2013; 319:2708-2717. [PMID: 23958463 DOI: 10.1016/j.yexcr.2013.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/09/2013] [Accepted: 08/02/2013] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) cells undergo the epithelial-mesenchymal transition (EMT) during chemotherapy, which reduces the efficacy of doxorubicin-based chemotherapy. We investigated N1-guanyl-1,7-diaminoheptane (GC7) which inhibits eukaryotic translation initiation factor 5A2 (eIF5A2) activation; eIF5A2 is associated with chemoresistance. GC7 enhanced doxorubicin cytotoxicity in epithelial HCC cells (Huh7, Hep3B and HepG2) but had little effect in mesenchymal HCC cells (SNU387, SNU449). GC7 suppressed the doxorubicin-induced EMT in epithelial HCC cells; knockdown of eIF5A2 inhibited the doxorubicin-induced EMT and enhanced doxorubicin cytotoxicity. GC7 combination therapy may enhance the therapeutic efficacy of doxorubicin in HCC by inhibiting eIF5A2 activation and preventing the EMT.
Collapse
Affiliation(s)
- Bin Lou
- Department of Laboratory Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Kudo-Saito C. FSTL1 promotes bone metastasis by causing immune dysfunction. Oncoimmunology 2013; 2:e26528. [PMID: 24482748 PMCID: PMC3897500 DOI: 10.4161/onci.26528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/25/2022] Open
Abstract
In spite of significant advances in our understanding of the metastatic process, the relationship between the dissemination of primary neoplasms to the bones and antitumor immunity remains poorly understood. We have recently identified follistatin-like 1 (FSTL1), a soluble protein secreted by snail family zinc finger 1 (SNAI1)-expressing cancer cells, as a key determinant of bone metastasis that operates by inducing a systemic state of immune dysfunction.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Division of Cellular Signalling; Institute for Advanced Medical Research; Keio University School of Medicine; Tokyo, Japan
| |
Collapse
|
229
|
Espinoza I, Pochampally R, Xing F, Watabe K, Miele L. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther 2013; 6:1249-59. [PMID: 24043949 PMCID: PMC3772757 DOI: 10.2147/ott.s36162] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal, and postnatal tissue differentiation. Roles for Notch in carcinogenesis, the biology of cancer stem cells, tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT) have been reported. This review describes the role of Notch in the "stemness" program in cancer cells and in metastases, together with a brief update on the Notch inhibitors currently under investigation in oncology. These agents may be useful in targeting cancer stem cells and to reverse the EMT process.
Collapse
Affiliation(s)
- Ingrid Espinoza
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Radhika Pochampally
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fei Xing
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kounosuke Watabe
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lucio Miele
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
230
|
Esmaeilsabzali H, Beischlag TV, Cox ME, Parameswaran AM, Park EJ. Detection and isolation of circulating tumor cells: principles and methods. Biotechnol Adv 2013; 31:1063-84. [PMID: 23999357 DOI: 10.1016/j.biotechadv.2013.08.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/24/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022]
Abstract
Efforts to improve the clinical management of several cancers include finding better methods for the quantitative and qualitative analysis of circulating tumor cells (CTCs). However, detection and isolation of CTCs from the blood circulation is not a trivial task given their scarcity and the lack of reliable markers to identify these cells. With a variety of emerging technologies, a thorough review of the exploited principles and techniques as well as the trends observed in the development of these technologies can assist researchers to recognize the potential improvements and alternative approaches. To help better understand the related biological concepts, a simplified framework explaining cancer formation and its spread to other organs as well as how CTCs contribute to this process has been presented first. Then, based on their basic working-principles, the existing methods for detection and isolation of CTCs have been classified and reviewed as nucleic acid-based, physical properties-based and antibody-based methods. The review of literature suggests that antibody-based methods, particularly in conjunction with a microfluidic lab-on-a-chip setting, offer the highest overall performance for detection and isolation of CTCs. Further biological and engineering-related research is required to improve the existing methods. These include finding more specific markers for CTCs as well as enhancing the throughput, sensitivity, and analytic functionality of current devices.
Collapse
Affiliation(s)
- Hadi Esmaeilsabzali
- School of Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102nd Avenue, Surrey, V3T 0A3, BC, Canada; Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, BC, Canada; School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, BC, Canada
| | | | | | | | | |
Collapse
|
231
|
Wakayama N, Katow T, Katow H. Characterization and Endocytic Internalization of Epith-2 Cell Surface Glycoprotein during the Epithelial-to-Mesenchymal Transition in Sea Urchin Embryos. Front Endocrinol (Lausanne) 2013; 4:112. [PMID: 24009602 PMCID: PMC3757445 DOI: 10.3389/fendo.2013.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/14/2013] [Indexed: 01/25/2023] Open
Abstract
The epithelial cells of the sea urchin Hemicentrotus pulcherrimus embryo express an Epith-2, uncharacterized glycoprotein, on the lateral surface. Here, we describe internalization of Epith-2 during mesenchyme formation through the epithelial-to-mesenchymal transition (EMT). Epith-2 was first expressed on the entire egg surface soon after fertilization and on the blastomeres until the 4-cell stage, but was localized to the lateral surface of epithelial cells at and after the 16-cell stage throughout the later developmental period. However, primary mesenchyme cells (PMC) and secondary mesenchyme cells (SMC) that ingress by EMT lost Epith-2 from their cell surface by endocytosis during dissociation from the epithelium, which was associated with the appearance of cytoplasmic Epith-2 dots. The cytoplasmic Epith-2 retained a similar relative molecular mass to that of the cell surface immediately after ingression through the early period of the spreading to single cells. Then, Epith-2 was completely lost from the cytoplasm. Tyrosine residues of Epith-2 were phosphorylated. The endocytic retraction of Epith-2 was inhibited by herbimycin A (HA), a protein tyrosine kinase (PTK) inhibitor, and suramin, a growth factor receptor (GFR) inhibitor, suggesting the involvement of the GFR/PTK (GP) signaling pathway. These two GP inhibitors also inhibited PMC and SMC spreading to individual cells after ingression, but the dissociation of PMC and SMC from the epithelium was not inhibited. In suramin-treated embryos, dissociated mesenchyme cells migrated partially by retaining their epithelial morphology. In HA-treated embryos, no mesenchyme cells migrated. Thus, the EMT occurs in relation to internalization of Epith-2 from presumptive PMC and SMC.
Collapse
Affiliation(s)
- Norio Wakayama
- Research Center for Marine Biology, Tohoku University, Aomori, Aomori, Japan
| | - Tomoko Katow
- Research Center for Marine Biology, Tohoku University, Aomori, Aomori, Japan
| | - Hideki Katow
- Research Center for Marine Biology, Tohoku University, Aomori, Aomori, Japan
| |
Collapse
|
232
|
Yang G, Yuan J, Li K. EMT transcription factors: implication in osteosarcoma. Med Oncol 2013; 30:697. [PMID: 23975634 DOI: 10.1007/s12032-013-0697-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/14/2013] [Indexed: 01/12/2023]
Abstract
The primary malignant bone tumor, osteosarcoma, is a deadly disorder. Its etiology is complex, and treatment is mostly obscure. The transcription factors (TFs) involved in epithelial to mesenchymal transition (EMT) have significant role in osteosarcoma. A number of evidence suggests that overexpression of EMT-TFs, such as Twist, Snails and Zebs, is involved in complex pathogenesis of osteosarcoma. Recent research studies have showed some extent of promise in osteosarcoma treatment by targeting these EMT-TFs. However, success in research on osteosarcoma-EMT-TFs axis is just in primary stage, and a long way to go. Targeting Twist, Snail or Zeb by specific molecules or chemotherapeutic agents may provide a new dimension in osteosarcoma treatment by controlling metastasis.
Collapse
Affiliation(s)
- Guoqiong Yang
- Department of Orthopedics, The Xiangya Hospital of Central South University, 87-Xiangya Road, Changsha, 410008, Hunan, China
| | | | | |
Collapse
|
233
|
Gomez-Casal R, Bhattacharya C, Ganesh N, Bailey L, Basse P, Gibson M, Epperly M, Levina V. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer 2013; 12:94. [PMID: 23947765 PMCID: PMC3751356 DOI: 10.1186/1476-4598-12-94] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/14/2013] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation (IR) is used for patients diagnosed with unresectable non small cell lung cancer (NSCLC), however radiotherapy remains largely palliative due to radioresistance. Cancer stem cells (CSCs), as well as epithelial-mesenchymal transition (EMT), may contribute to drug and radiation resistance mechanisms in solid tumors. Here we investigated the molecular phenotype of A549 and H460 NSCLC cells that survived treatment with IR (5Gy) and are growing as floating tumor spheres and cells that are maintained in a monolayer after irradiation.Non-irradiated and irradiated cells were collected after one week, seeded onto ultra low attachment plates and propagated as tumor spheres. Bulk NSCLC cells which survived radiation and grew in spheres express cancer stem cell surface and embryonic stem cell markers and are able to self-renew, and generate differentiated progeny. These cells also have a mesenchymal phenotype. Particularly, the radiation survived sphere cells express significantly higher levels of CSC markers (CD24 and CD44), nuclear β-catenin and EMT markers (Snail1, Vimentin, and N-cadherin) than non-irradiated lung tumor sphere cells. Upregulated levels of Oct-4, Sox2 and beta-catenin were detected in H460 cells maintained in a monolayer after irradiation, but not in radiation survived adherent A459 cells.PDGFR-beta was upregulated in radiation survived sphere cells and in radiation survived adherent cells in both A549 and H460 cell lines. Combining IR treatment with axitinib or dasatinib, inhibitors with anti-PDFGR activity, potentiates the efficacy of NSCLC radiotherapy in vitro.Our findings suggest that radiation survived cells have a complex phenotype combining the properties of CSCs and EMT. CD44, SNAIL and PDGFR-beta are dramatically upregulated in radiation survived cells and might be considered as markers of radiotherapy response in NSCLC.
Collapse
|
234
|
Su A, He S, Tian B, Hu W, Zhang Z. MicroRNA-221 mediates the effects of PDGF-BB on migration, proliferation, and the epithelial-mesenchymal transition in pancreatic cancer cells. PLoS One 2013; 8:e71309. [PMID: 23967190 PMCID: PMC3742757 DOI: 10.1371/journal.pone.0071309] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/27/2013] [Indexed: 02/05/2023] Open
Abstract
The platelet-derived growth factor (PDGF) signaling pathway has been found to play important roles in the development and progression of human cancers by regulating the processes of cell proliferation, apoptosis, migration, invasion, metastasis, and the acquisition of the epithelial-mesenchymal transition (EMT) phenotype. Moreover, PDGF signaling has also been found to alter the expression profile of miRNAs, leading to the reversal of EMT phenotype. Although the role of miRNAs in cancer has been documented, there are very few studies documenting the cellular consequences of targeted re-expression of specific miRNAs. Therefore, we investigated whether the treatment of human pancreatic cancer cells with PDGF could alter the expression profile of miRNAs, and we also assessed the cellular consequences. Our study demonstrates that miR-221 is essential for the PDGF-mediated EMT phenotype, migration, and growth of pancreatic cancer cells. Down-regulation of TRPS1 by miR-221 is critical for PDGF-mediated acquisition of the EMT phenotype. Additionally, the PDGF-dependent increase in cell proliferation appears to be mediated by inhibition of a specific target of miR-221 and down-regulation of p27Kip1.
Collapse
Affiliation(s)
- Anping Su
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Sirong He
- Regenerative Medicine Research Center, West China Hospital, Sichaun University, Chengdu, P. R. China
| | - Bole Tian
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Weiming Hu
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Zhaoda Zhang
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, P. R. China
- * E-mail:
| |
Collapse
|
235
|
Xia H, Ooi LLPJ, Hui KM. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology 2013; 58:629-41. [PMID: 23471579 DOI: 10.1002/hep.26369] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/22/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Tumor recurrence and metastases are the major obstacles to improving the prognosis of patients with hepatocellular carcinoma (HCC). To identify novel risk factors associated with HCC recurrence and metastases, we have established a panel of recurrence-associated microRNAs (miRNAs) by comparing miRNA expression in recurrent and nonrecurrent human HCC tissue samples using microarrays (recurrence is defined as recurrent disease occurring within a 2-year time point of the original treatment). Among the panel, expression of the miR-216a/217 cluster was consistently and significantly up-regulated in HCC tissue samples and cell lines associated with early tumor recurrence, poor disease-free survival, and an epithelial-mesenchymal transition (EMT) phenotype. Stable overexpression of miR-216a/217-induced EMT increased the stem-like cell population, migration, and metastatic ability of epithelial HCC cells. Phosphatase and tensin homolog (PTEN) and mothers against decapentaplegic homolog 7 (SMAD7) were subsequently identified as two functional targets of miR-216a/217, and both PTEN and SMAD7 were down-regulated in HCC. Ectopic expression of PTEN or SMAD7 partially rescued miR-216a/217-mediated EMT, cell migration, and stem-like properties of HCC cells. Previously, SMAD7 was shown to be a transforming growth factor beta (TGF-β) type 1 receptor antagonist. Here, we further demonstrated that overexpression of miR-216a/217 acted as a positive feedback regulator for the TGF-β pathway and the canonical pathway involved in the activation of phosphoinositide 3-kinase/protein kinase K (PI3K/Akt) signaling in HCC cells. Additionally, activation of the TGF-β- and PI3K/Akt-signaling pathways in HCC cells resulted in an acquired resistance to sorafenib, whereas blocking activation of the TGF-β pathway overcame miR-216a/217-induced sorafenib resistance and prevented tumor metastases in HCC. CONCLUSION Overexpression of miR-216a/217 activates the PI3K/Akt and TGF-β pathways by targeting PTEN and SMAD7, contributing to hepatocarcinogenesis and tumor recurrence in HCC.
Collapse
Affiliation(s)
- Hongping Xia
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Center, Singapore, Singapore
| | | | | |
Collapse
|
236
|
Tanabe S. Perspectives of gene combinations in phenotype presentation. World J Stem Cells 2013; 5:61-67. [PMID: 23951387 PMCID: PMC3744131 DOI: 10.4252/wjsc.v5.i3.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/22/2013] [Accepted: 06/08/2013] [Indexed: 02/06/2023] Open
Abstract
Cells exhibit a variety of phenotypes in different stages and diseases. Although several markers for cellular phenotypes have been identified, gene combinations denoting cellular phenotypes have not been completely elucidated. Recent advances in gene analysis have revealed that various gene expression patterns are observed in each cell species and status. In this review, the perspectives of gene combinations in cellular phenotype presentation are discussed. Gene expression profiles change during cellular processes, such as cell proliferation, cell differentiation, and cell death. In addition, epigenetic regulation increases the complexity of the gene expression profile. The role of gene combinations and panels of gene combinations in each cellular condition are also discussed.
Collapse
Affiliation(s)
- Shihori Tanabe
- Shihori Tanabe, Division of Safety Information on Drug, Food and Chemicals, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|
237
|
Hu M, Chen X, Zhang J, Wang D, Fang X, Wang X, Wang G, Chen G, Jiang X, Xia H, Wang Y. Over-expression of regulator of G protein signaling 5 promotes tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma cells. J Surg Oncol 2013; 108:192-6. [PMID: 23868206 DOI: 10.1002/jso.23367] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/04/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. The regulator of G-protein signaling 5 (RGS5) has been reported to be highly expressed in some malignant tumors. However, its expression and role in HCC has not been reported. METHODS The expression of RGS5 was examined in liver cancer tissues and cell lines by real-time quantitative PCR. The cell migration and invasion was investigated by wound healing and transwell invasion assay. The epithelial-mesenchymal transition markers were detected by Western blotting or immunofluorescence. RESULTS We observed that RGS5 is over-expressed in most of liver cancer tissue samples and cell lines compared with matched normal samples. Further analysis showed that the over-expression of RGS5 is associated with liver cancer recurrence, venous infiltration, and patients' poor survival. Next, we found that knockdown of RGS5 significantly inhibits liver cancer cell migration and invasion in highly invasive liver cancer cells. Furthermore, we found that over-expression of RGS5 induces epithelial-mesenchymal transition in epithelial liver cancer cells. CONCLUSIONS These results indicate that over-expression of RGS5 promotes tumor metastasis by inducing epithelial-mesenchymal transition in HCC.
Collapse
Affiliation(s)
- Minghua Hu
- Department of Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Sinha N, Mukhopadhyay S, Das DN, Panda PK, Bhutia SK. Relevance of cancer initiating/stem cells in carcinogenesis and therapy resistance in oral cancer. Oral Oncol 2013; 49:854-862. [PMID: 23876628 DOI: 10.1016/j.oraloncology.2013.06.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 12/31/2022]
Abstract
Oral squamous cell carcinoma (OSCC) acquires the top most position among the other malignancies and patients die with this disease complication within 5years. One of the causes behind this scenario is the identified sub-population in heterogeneous tumor mass that are purported as cancer stem cells (CSCs) or tumor-initiating cells (TICs). Oral CSCs populations show upregulation of the stem cell related genes Oct-4, Nanog, Nestin, CK19, BMI-1, CD117 (c-kit), CD44 and CD133 with sunken expression of involucrin and CK13. This small proportion of tumor cells can sustain tumor growth, proliferation, invasion and distant metastasis playing a pivotal role in relapse of oral cancer. Unanimous risk factors include prevalent use of cigarette smoking, tobacco chewing with less explored HPV infection play an important role in origin of CSCs. Moreover, highly apoptotic resistant oral CSCs show enhanced protective autophagy for survival. Several studies report them to be more chemo and radiation resistant than non-stem cell population implicating the failure of the present cancer therapy. This resistance associated with normal stem cell protective mechanisms including increased expression of drug efflux pumps, alteration in program cell death, cell cycle, and DNA repair mechanisms. Notably, CSCs appear to play a major role in tumor recurrence and metastatic spread, common causes of the high morbidity and ultimately the death of the majority of patients with oral cancer. In this review we would like to highlight the intricate crosstalk of the cancer initiating/stem cells involved in carcinogenesis and potential hurdle to oral cancer therapy.
Collapse
Affiliation(s)
- Niharika Sinha
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Durgesh Nandini Das
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India.
| |
Collapse
|
239
|
Cancer stem cells, epithelial-mesenchymal transition, and drug resistance in high-grade ovarian serous carcinoma. Hum Pathol 2013; 44:2373-84. [PMID: 23850493 DOI: 10.1016/j.humpath.2013.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 02/06/2023]
Abstract
Although epithelial ovarian cancer cells are eliminated by debulking surgery and chemotherapy during initial treatment, it is believed that only a subset of cancer cells, that is, cancer stem cells, may be an important source of tumor recurrence and drug resistance. This review highlights our current understanding of high-grade serous carcinoma, ovarian cancer stem cells, common methods for enrichment of ovarian cancer stem cells, mechanisms involved in drug resistance, and potential strategies for overcoming drug resistance, with associated potential controversies and pitfalls. We also review the potential relationship between epithelial-to-mesenchymal transition and cancer stem cells and how we can induce cancer cells to differentiate into benign stromal fibroblasts in response to certain chemotherapy drugs.
Collapse
|
240
|
Sun D, Sun B, Liu T, Zhao X, Che N, Gu Q, Dong X, Yao Z, Li R, Li J, Chi J, Sun R. Slug promoted vasculogenic mimicry in hepatocellular carcinoma. J Cell Mol Med 2013; 17:1038-47. [PMID: 23815612 PMCID: PMC3780534 DOI: 10.1111/jcmm.12087] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/13/2013] [Indexed: 12/14/2022] Open
Abstract
Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumour cells to mimic the pattern of embryonic vasculogenic networks. Epithelial–mesenchymal transition (EMT) regulator slug have been implicated in the tumour invasion and metastasis of human hepatocellular carcinoma (HCC). However, the relationship between slug and VM formation is not clear. In the study, we demonstrated that slug expression was associated with EMT and cancer stem cell (CSCs) phenotype in HCC patients. Importantly, slug showed statistically correlation with VM formation. We consistently demonstrated that an overexpression of slug in HCC cells significantly increased CSCs subpopulation that was obvious by the increased clone forming efficiency in soft agar and by flowcytometry analysis. Meantime, the VM formation and VM mediator overexpression were also induced by slug induction. Finally, slug overexpression lead to the maintenance of CSCs phenotype and VM formation was demonstrated in vivo. Therefore, the results of this study indicate that slug induced the increase and maintenance of CSCs subpopulation and contributed to VM formation eventually. The related molecular pathways may be used as novel therapeutic targets for the inhibition of HCC angiogenesis and metastasis.
Collapse
Affiliation(s)
- Dan Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
CD44 is associated with the aggressive phenotype of nasopharyngeal carcinoma through redox regulation. Int J Mol Sci 2013; 14:13266-81. [PMID: 23803658 PMCID: PMC3742186 DOI: 10.3390/ijms140713266] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that cancer stem-like cells (CSCs) within a tumor have the capacity for self-renewal and differentiation, and are associated with an aggressive phenotype and therapeutic resistance. Studies have also associated tumor progression with alterations in the levels of intracellular reactive oxygen species (ROS). In this study, we cultured nasopharyngeal carcinoma (NPC) CSCs in conditions that allowed sphere formation. The resulting sphere cells displayed stemness properties, characteristics of the epithelial–mesenchymal transition (EMT), and increased expression of the CSC surface marker CD44. We further evaluated the association between CD44 expression and EMT marker expression, and any correlation with redox status, in these CSCs. We showed that the EMT in sphere cells is associated with the upregulation of CD44 expression and increased ROS generation, which might promote NPC aggressiveness. We also identified the coexpression of CD44 with the EMT marker N-cadherin in sphere cells, and downregulated CD44 expression after the addition of the antioxidant N-acetyl cysteine. Our results indicate that CD44 plays a role in the EMT phenotype of CSCs in NPC, and suggest its involvement in EMT-associated ROS production. These findings might facilitate the development of a novel therapy for the prevention of NPC recurrence and metastasis.
Collapse
|
242
|
Ricci A, De Vitis C, Noto A, Fattore L, Mariotta S, Cherubini E, Roscilli G, Liguori G, Scognamiglio G, Rocco G, Botti G, Giarnieri E, Giovagnoli MR, De Toma G, Ciliberto G, Mancini R. TrkB is responsible for EMT transition in malignant pleural effusions derived cultures from adenocarcinoma of the lung. Cell Cycle 2013; 12:1696-703. [PMID: 23656788 PMCID: PMC3713128 DOI: 10.4161/cc.24759] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Recent evidence indicates that tumors contain a subpopulation of cancer stem cells (CSCs) that are responsible for tumor maintenance and spread. CSCs have recently been linked to the occurrence of epithelial-to-mesenchymal transition (EMT). Neurotrophins (NTs) are growth factors that regulate the biology of embryonic stem cells and cancer cells, but still little is known about the role NTs in the progression of lung cancer. In this work, we investigated the role of the NTs and their receptors using as a study system primary cell cultures derived from malignant pleural effusions (MPEs) of patients with adenocarcinoma of the lung. We assessed the expression of NTs and their receptors in MPE-derived adherent cultures vs. spheroids enriched in CSC markers. We observed in spheroids a selectively enhanced expression of TrkB, both at the mRNA and protein levels. Both K252a, a known inhibitor of Trk activity, and a siRNA against TrkB strongly affected spheroid morphology, induced anoikis and decreased spheroid forming efficiency. Treatment with neurotrophins reversed the inhibitory effect of K252a. Importantly, TrkB inhibition caused loss of vimentin expression as well as that of a set of transcription factors known to be linked to EMT. These ex vivo results nicely correlated with an inverse relationship between TrkB and E-cadherin expression measured by immunohistochemistry in a panel of lung adenocarcinoma samples. We conclude that TrkB is involved in full acquisition of EMT in lung cancer, and that its inhibition results in a less aggressive phenotype.
Collapse
Affiliation(s)
- Alberto Ricci
- Department of Clinical and Molecular Medicine; University “La Sapienza”; Rome, Italy
- Center of Research; San Pietro Hospital; Rome, Italy
| | - Claudia De Vitis
- Department of Experimental and Clinical Medicine; Catanzaro, Italy
- Laboratory of Surgery “P. Valdoni”; University “La Sapienza”; Rome, Italy
| | - Alessia Noto
- Department of Clinical and Molecular Medicine; University “La Sapienza”; Rome, Italy
- Laboratory of Surgery “P. Valdoni”; University “La Sapienza”; Rome, Italy
| | - Luigi Fattore
- Department of Clinical and Molecular Medicine; University “La Sapienza”; Rome, Italy
- Laboratory of Surgery “P. Valdoni”; University “La Sapienza”; Rome, Italy
| | - Salvatore Mariotta
- Department of Clinical and Molecular Medicine; University “La Sapienza”; Rome, Italy
- Center of Research; San Pietro Hospital; Rome, Italy
| | | | - Giuseppe Roscilli
- Department of Clinical and Molecular Medicine; University “La Sapienza”; Rome, Italy
| | | | | | - Gaetano Rocco
- IRCCS Istituto Nazionale Tumori “G. Pascale”; Naples, Italy
| | - Gerardo Botti
- IRCCS Istituto Nazionale Tumori “G. Pascale”; Naples, Italy
| | - Enrico Giarnieri
- Department of Clinical and Molecular Medicine; University “La Sapienza”; Rome, Italy
| | | | - Giorgio De Toma
- Laboratory of Surgery “P. Valdoni”; University “La Sapienza”; Rome, Italy
| | - Gennaro Ciliberto
- Department of Experimental and Clinical Medicine; Catanzaro, Italy
- IRCCS Istituto Nazionale Tumori “G. Pascale”; Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine; University “La Sapienza”; Rome, Italy
- Laboratory of Surgery “P. Valdoni”; University “La Sapienza”; Rome, Italy
| |
Collapse
|
243
|
Crosstalk between breast cancer stem cells and metastatic niche: emerging molecular metastasis pathway? Tumour Biol 2013; 34:2019-30. [PMID: 23686802 DOI: 10.1007/s13277-013-0831-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/01/2013] [Indexed: 12/21/2022] Open
Abstract
Metastatic colonization represents the final step of metastasis, and is the major cause of cancer mortality. Metastasis as an "inefficient" process requires the right population of tumor cells in a suitable microenvironment to form secondary tumors. Cancer stem cells are the only capable population of tumor cells to progress to overt metastasis. On the other hand, the occurrence of appropriate microenvironmental conditions within the target tissue would be critical for metastasis formation. Metastatic niche seems to be the specialized microenvironment to support tumor initiating cells at the distant organ. Master regulators not only determine cancer stem cell state, but also may have regulatory roles in metastatic niche elements. Meanwhile, both cancer stem cell and metastatic niche may function like two sides of the metastatic coin. Hypoxia inducible factors have multiple roles in regulation of both sides of this coin. TGF-β superfamily, also, have been considered as master regulators of epithelial to mesenchymal transition and metastasis and may play crucial roles in regulation of metastatic niche as well. In this regard, we hypothesize the presence of a possible emerging molecular pathway in the biological process of breast cancer metastasis. In this process, non-Smad TGF-β-induced metastasis connects cancer stem cell and metastatic niche formation through a central path, "Metastasis Pathway".
Collapse
|
244
|
Kim YW, Koul D, Kim SH, Lucio-Eterovic AK, Freire PR, Yao J, Wang J, Almeida JS, Aldape K, Yung WKA. Identification of prognostic gene signatures of glioblastoma: a study based on TCGA data analysis. Neuro Oncol 2013; 15:829-39. [PMID: 23502430 DOI: 10.1093/neuonc/not024] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The Cancer Genome Atlas (TCGA) project is a large-scale effort with the goal of identifying novel molecular aberrations in glioblastoma (GBM). METHODS Here, we describe an in-depth analysis of gene expression data and copy number aberration (CNA) data to classify GBMs into prognostic groups to determine correlates of subtypes that may be biologically significant. RESULTS To identify predictive survival models, we searched TCGA in 173 patients and identified 42 probe sets (P = .0005) that could be used to divide the tumor samples into 3 groups and showed a significantly (P = .0006) improved overall survival. Kaplan-Meier plots showed that the median survival of group 3 was markedly longer (127 weeks) than that of groups 1 and 2 (47 and 52 weeks, respectively). We then validated the 42 probe sets to stratify the patients according to survival in other public GBM gene expression datasets (eg, GSE4290 dataset). An overall analysis of the gene expression and copy number aberration using a multivariate Cox regression model showed that the 42 probe sets had a significant (P < .018) prognostic value independent of other variables. CONCLUSIONS By integrating multidimensional genomic data from TCGA, we identified a specific survival model in a new prognostic group of GBM and suggest that molecular stratification of patients with GBM into homogeneous subgroups may provide opportunities for the development of new treatment modalities.
Collapse
Affiliation(s)
- Yong-Wan Kim
- Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Mooney BM, Raof NA, Li Y, Xie Y. Convergent mechanisms in pluripotent stem cells and cancer: Implications for stem cell engineering. Biotechnol J 2013; 8:408-19. [DOI: 10.1002/biot.201200202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/03/2012] [Accepted: 01/02/2013] [Indexed: 12/24/2022]
|
246
|
Wang Z, Ali S, Banerjee S, Bao B, Li Y, Azmi AS, Korc M, Sarkar FH. Activated K-Ras and INK4a/Arf deficiency promote aggressiveness of pancreatic cancer by induction of EMT consistent with cancer stem cell phenotype. J Cell Physiol 2013; 228:556-562. [PMID: 22806240 DOI: 10.1002/jcp.24162] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/10/2012] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most frequently diagnosed cancers and the fourth leading cause of cancer-related death in the United States, suggesting that there is an urgent need to design novel strategies for achieving better treatment outcome of patients diagnosed with PDAC. Our previous study has shown that activation of Notch and NF-κB play a critical role in the development of PDAC in the compound K-Ras(G12D) and Ink4a/Arf deficient transgenic mice. However, the exact molecular mechanism by which mutated K-Ras and Ink4a/Arf deficiency contribute to progression of PDAC remains largely elusive. In the present study, we used multiple methods, such as real-time RT-PCR, Western blotting assay, and immunohistochemistry to gain further mechanistic insight. We found that the deletion of Ink4a/Arf in K-Ras(G12D) expressing mice led to high expression of PDGF-D signaling pathway in the tumor and tumor-derived cell line (RInk-1 cells). Furthermore, PDGF-D knock-down in RInk-1 cells resulted in the inhibition of pancreatosphere formation and down-regulation of EZH2, CD44, EpCAM, and vimentin. Moreover, we demonstrated that epithelial-mesenchymal transition (EMT) was induced in the compound mice, which is linked with aggressiveness of PDAC. In addition, we demonstrated that tumors from compound transgenic mice have higher expression of cancer stem cell (CSC) markers. These results suggest that the acquisition of EMT phenotype and induction of CSC characteristics could be linked with the aggressiveness of PDAC mediated in part through the activation of PDGF-D, signaling.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.,Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui, P.R. China
| | - Shadan Ali
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Asfar S Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Murray Korc
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Fazlul H Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.,Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
247
|
Caffo M, Barresi V, Caruso G, Cutugno M, La Fata G, Venza M, Alafaci C, Tomasello F. Innovative therapeutic strategies in the treatment of brain metastases. Int J Mol Sci 2013; 14:2135-74. [PMID: 23340652 PMCID: PMC3565370 DOI: 10.3390/ijms14012135] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 12/29/2022] Open
Abstract
Brain metastases (BM) are the most common intracranial tumors and their incidence is increasing. Untreated brain metastases are associated with a poor prognosis and a poor performance status. Metastasis development involves the migration of a cancer cell from the bulk tumor into the surrounding tissue, extravasation from the blood into tissue elsewhere in the body, and formation of a secondary tumor. In the recent past, important results have been obtained in the management of patients affected by BM, using surgery, radiation therapy, or both. Conventional chemotherapies have generally produced disappointing results, possibly due to their limited ability to penetrate the blood-brain barrier. The advent of new technologies has led to the discovery of novel molecules and pathways that have better depicted the metastatic process. Targeted therapies such as bevacizumab, erlotinib, gefitinib, sunitinib and sorafenib, are all licensed and have demonstrated improved survival in patients with metastatic disease. In this review, we will report current data on targeted therapies. A brief review about brain metastatic process will be also presented.
Collapse
Affiliation(s)
- Maria Caffo
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
| | - Valeria Barresi
- Department of Human Pathology, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mail:
| | - Gerardo Caruso
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-090-2217167; Fax: +39-090-693714
| | - Mariano Cutugno
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
| | - Giuseppe La Fata
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
| | - Mario Venza
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
| | - Concetta Alafaci
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
| | - Francesco Tomasello
- Department of Neurosciences, School of Medicine, University of Messina, A.O.U. Policlinico “G. Martino”, via Consolare Valeria, 1, 98125 Messina, Italy; E-Mails: (M.C.); (M.C.); (G.L.F.); (M.V.); (C.A.); (F.T.)
| |
Collapse
|
248
|
Regulation of stem cell populations by microRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:329-51. [PMID: 23696365 DOI: 10.1007/978-94-007-6621-1_18] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
miRNAs are small non-coding RNAs that have emerged as crucial post-transcriptional regulators of gene expression. They are key players in various critical cellular processes such as proliferation, cell cycle progression, apoptosis and differentiation. Self-renewal capacity and differentiation potential are hallmarks of stem cells. The switch between self-renewal and differentiation requires rapid widespread changes in gene expression. Since miRNAs can repress the translation of many mRNA targets, they are good candidates to regulate cell fates. In the past few years, miRNAs have appeared as important new actors in stem cell development by regulating differentiation and maintenance of stem cells. In this chapter we will focus on the role of miRNAs in various stem cell populations. After an introduction on microRNA biogenesis, we will review the recent knowledge on miRNA expression and function in pluripotent cells and during the acquisition of stem cell fate. We will then briefly examine the role of miRNAs in adult and cancer stem cells.
Collapse
|
249
|
Shirkoohi R. Epithelial mesenchymal transition from a natural gestational orchestration to a bizarre cancer disturbance. Cancer Sci 2012. [PMID: 23181983 DOI: 10.1111/cas.12074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT), a pathologic phenomenon in cancer, has a twin in the embryonic period of life. In the first one, its promotion will cause metastasis to become a life-threatening stage of cancer, while in the second it will lead to organogenesis, which is necessary for all living creatures. There is one more from this phenomenon, which occurs during the wound healing process and if dys-regulated can lead to fibrosis. In both there are stimulants in common and one that are different. Stages start from cell-cell junction dissociation followed by morphological changes and behavioral and essence alterations. To control the EMT as a bizarre disturbance in cancer and metastasis, initially it is better to understand the wonder of natural gestational orchestration in early life. In this review, first the structure of the two heads of the spectrum is described followed by the cellular and micro-environmental alterations during this phenomenon. Understanding cellular behavior in this process and what makes them invasive resistant stemness cells will be of great importance in highlighting roads to cancer treatment.
Collapse
Affiliation(s)
- Reza Shirkoohi
- Genetic Group, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
250
|
Ali AS, Ahmad A, Ali S, Bao B, Philip PA, Sarkar FH. The role of cancer stem cells and miRNAs in defining the complexities of brain metastasis. J Cell Physiol 2012; 228:36-42. [PMID: 22689345 DOI: 10.1002/jcp.24127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Researchers and clinicians have been challenged with the development of therapies for the treatment of cancer patients whose tumors metastasized to the brain. Among the most lethal weapons known today, current management of brain metastases involves multiple therapeutic modalities that provide little, if any, for improving the quality of life and overall survival. Recently the role of cancer stem cells (CSCs) in the development of cancer has been studied extensively, and thus its role in the prognosis, diagnosis, and treatment is now being investigated even in the realm of brain metastasis (BM). Recognizing the molecular make-up of CSCs as well as understanding the role of these cells in resistance to treatment modalities is expected to benefit cancer patients. Additionally, past decade has witnessed an increase in awareness and understanding of the role of microRNAs (miRNAs) in various cancer types, and the deregulation miRNAs are critically important for the regulation of genes during the development and progression of human malignancies. The role miRNAs in BM is being investigated, and has also shown tremendous promise for future research. In this review, we discuss the problem and lethality of brain metastases and the current state of management, and further provide insight into novel avenues that are worth considering including the biological complexities of CSCs and miRNAs for designing novel therapies.
Collapse
Affiliation(s)
- Ashhar S Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|