201
|
Wagner N, Rapp AE, Braun S, Ehnert M, Imhof T, Koch M, Jenei-Lanzl Z, Zaucke F, Meurer A. Generation of Matrix Degradation Products Using an In Vitro MMP Cleavage Assay. Int J Mol Sci 2022; 23:ijms23116245. [PMID: 35682922 PMCID: PMC9181598 DOI: 10.3390/ijms23116245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Matrix metalloproteinases (MMPs) play crucial roles in tissue homeostasis and pathologies by remodeling the extracellular matrix. Previous studies have demonstrated the biological activities of MMP-derived cleavage products. Furthermore, specific fragments can serve as biomarkers. Therefore, an in vitro cleavage assay to identify substrates and characterize cleavage patterns could provide important insight in disease-relevant mechanisms and the identification of novel biomarkers. In the pathogenesis of osteoarthritis (OA), MMP-2, -8, -9 and -13 are of vital importance. However, it is unclear which protease can cleave which matrix component. To address this question, we established an in vitro cleavage assay using recombinantly expressed MMPs and the two cartilage matrix components, COMP and thrombospondin-4. We found a time- and concentration-dependent degradation and an MMP-specific cleavage pattern for both proteins. Cleavage products can now be enriched and purified to investigate their biological activity. To verify the in vivo relevance, we compared the in vitro cleavage patterns with serum and synovial fluid from OA patients and could indeed detect fragments of similar size in the human samples. The cleavage assay can be adapted to other MMPs and substrates, making it a valuable tool for many research fields.
Collapse
Affiliation(s)
- Niklas Wagner
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (N.W.); (A.E.R.); (Z.J.-L.); (A.M.)
| | - Anna E. Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (N.W.); (A.E.R.); (Z.J.-L.); (A.M.)
| | - Sebastian Braun
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (S.B.); (M.E.)
| | - Markus Ehnert
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (S.B.); (M.E.)
| | - Thomas Imhof
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (T.I.); (M.K.)
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (T.I.); (M.K.)
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (N.W.); (A.E.R.); (Z.J.-L.); (A.M.)
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (N.W.); (A.E.R.); (Z.J.-L.); (A.M.)
- Correspondence:
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (N.W.); (A.E.R.); (Z.J.-L.); (A.M.)
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (S.B.); (M.E.)
| |
Collapse
|
202
|
Oo WM, Hunter DJ. Repurposed and investigational disease-modifying drugs in osteoarthritis (DMOADs). Ther Adv Musculoskelet Dis 2022; 14:1759720X221090297. [PMID: 35619876 PMCID: PMC9128067 DOI: 10.1177/1759720x221090297] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
In spite of a major public health burden with increasing prevalence, current osteoarthritis (OA) management is largely palliative with an unmet need for effective treatment. Both industry and academic researchers have invested a vast amount of time and financial expense to discover the first diseasing-modifying osteoarthritis drugs (DMOADs), with no regulatory success so far. In this narrative review, we discuss repurposed drugs as well as investigational agents which have progressed into phase II and III clinical trials based on three principal endotypes: bone-driven, synovitis-driven and cartilage-driven. Then, we will briefly describe the recent failures and lessons learned, promising findings from predefined post hoc analyses and insights gained, novel methodologies to enhance future success and steps underway to overcome regulatory hurdles.
Collapse
Affiliation(s)
- Win Min Oo
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine, Mandalay, Mandalay, Myanmar
| | - David J. Hunter
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2065, Australia
| |
Collapse
|
203
|
|
204
|
Sang X, Zhao X, Yan L, Jin X, Wang X, Wang J, Yin Z, Zhang Y, Meng Z. Thermosensitive Hydrogel Loaded with Primary Chondrocyte-Derived Exosomes Promotes Cartilage Repair by Regulating Macrophage Polarization in Osteoarthritis. Tissue Eng Regen Med 2022; 19:629-642. [PMID: 35435577 PMCID: PMC9130414 DOI: 10.1007/s13770-022-00437-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intra-articular injection is a classic strategy for the treatment of early osteoarthritis (OA). However, the local delivery of traditional therapeutic agents has limited benefits for alleviating OA. Exosomes, an important type of extracellular nanovesicle, show great potential for suppressing cartilage destruction in OA to replace drugs and stem cell-based administration. METHODS In this study, we developed a thermosensitive, injectable hydrogel by in situ crosslinking of Pluronic F-127 and hyaluronic acid, which can be used as a slow-release carrier to durably retain primary chondrocyte-derived exosomes at damaged cartilage sites to effectively magnify their reparative effect. RESULTS It was found that the hydrogel can sustainedly release exosomes, positively regulate chondrocytes on the proliferation, migration and differentiation, as well as efficiently induce polarization of M1 to M2 macrophages. Intra-articular injection of this exosomes-incorporated hydrogel significantly prevented cartilage destruction by promoting cartilage matrix formation. This strategy also displayed a regenerative immune phenotype characterized by a higher infiltration of CD163+ regenerative M2 macrophages over CD86+ M1 macrophages in synovial and chondral tissue, with a concomitant reduction in pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and increase in anti-inflammatory cytokine (IL-10) in synovial fluid. CONCLUSION Our results demonstrated that local sustained-release primary chondrocyte-derived exosomes may relieve OA by promoting the phenotypic transformation of macrophages from M1 to M2, which suggesting a great potential for the application in OA.
Collapse
Affiliation(s)
- Xuehan Sang
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Xiuhong Zhao
- Department of Integrated Traditional Chinese and Western Medicine, People's Hospital of Qinghai Provincial, Xining, 810007, China
| | - Lianqi Yan
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Xing Jin
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Xin Wang
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Jianjian Wang
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Zhenglu Yin
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Yuxin Zhang
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zhaoxiang Meng
- Department of Rehabilitation, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
205
|
Miao C, Fan D. Identification of differentially expressed genes and pathways in diquat and paraquat poisoning using bioinformatics analysis. Toxicol Mech Methods 2022; 32:678-685. [PMID: 35392760 DOI: 10.1080/15376516.2022.2063095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
[Objective] In this study, differentially expressed genes (DEGs) and signaling pathways involved in diquat (DQ) and paraquat (PQ) poisoning were identified via bioinformatics analysis, in order to inform the development of novel clinical treatments. [Methods] Raw data from GSE153959 were downloaded from the Gene Expression Omnibus database. DEGs of the DQ vs. control (CON) and PQ vs. CON comparison groups were identified using R, and DEGs shared by the two groups were identified using TBtools. Subsequently, the shared DEGs were searched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, using the Database for Annotation, Visualization, and Integrated Discovery. A protein-protein interaction (PPI) network was constructed, and hub genes were identified using the cytoHubba plug-in in Cytoscape software. Finally, Circos and contrast plots showing the DEGs shared between mouse and human chromosomes were constructed using TBtools. [Results] Thirty- one DEGs shared by the DQ and PQ groups were identified. Enriched biological process terms included positive regulation of cell proliferation and translation. Enriched cellular component terms included extracellular region, intracellular membrane- bounded organelle and mitochondrion. Enriched molecular function terms included transcription factor activity and sequence-specific double-stranded DNA binding. Enriched KEGG pathways included the interleukin- 17 signaling pathway, tumor necrosis factor signaling pathway, and human T- cell leukemia virus 1 infection. The top ten hub genes in the PPI network were Ptgs2, Cxcl2, Csf2, Mmp13, Areg, Plaur, Fosl1, Ereg, Atf3, and Tfrc. Cxcl2, Csf2, and Atf3 played important roles in the mitogen- activated protein kinase signaling pathway. [Conclusions] These pathways and DEGs may serve as targets for gene therapy.
Collapse
Affiliation(s)
- Changqing Miao
- Department of Emergency, the First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Dandan Fan
- Department of Emergency, the First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| |
Collapse
|
206
|
Dexamethasone Attenuates the Expression of MMP-13 in Chondrocytes through MKP-1. Int J Mol Sci 2022; 23:ijms23073880. [PMID: 35409238 PMCID: PMC8998740 DOI: 10.3390/ijms23073880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022] Open
Abstract
Mitogen-activated protein kinase phosphatase-1 (MKP-1) is upregulated in inflammation and reduces the activity of proinflammatory mitogen-activated protein kinases (MAP kinases) by dephosphorylation. MAP kinases are intracellular signaling pathways that mediate the cellular effects of proinflammatory cytokines. In the present study, we investigated the effects of the glucocorticoid dexamethasone on the expression of catabolic enzymes in chondrocytes and tested the hypothesis that these effects are mediated through MKP-1. Dexamethasone was found to significantly attenuate the expression of matrix metalloproteinase (MMP)-13 in human OA chondrocytes as well as in chondrocytes from MKP-1 WT mice, but not in chondrocytes from MKP-1 KO mice. Dexamethasone also increased the expression of MKP-1 in murine and human OA chondrocytes. Furthermore, p38 MAP kinase inhibitors significantly attenuated MMP-13 expression in human OA chondrocytes, while JNK MAP kinase inhibitors had no effect. The results indicate that the effect of dexamethasone on MMP-13 expression in chondrocytes was mediated by an MKP-1 and p38 MAP kinase-dependent manner. These findings, together with previous results, support the concept of MKP-1 as a protective factor in articular chondrocytes in inflammatory conditions and as a potential drug target to treat OA.
Collapse
|
207
|
Sirše M. Effect of Dietary Polyphenols on Osteoarthritis-Molecular Mechanisms. Life (Basel) 2022; 12:436. [PMID: 35330187 PMCID: PMC8955436 DOI: 10.3390/life12030436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis is a common crippling and degenerative disease resulting in irreversible functional changes due to damage of the cartilage and other tissues of the joint. With limited safe and effective pharmaceutical treatments, the demand and use for alternative therapeutic approaches with symptomatic relief for OA patients have increased. Clinical, pre-clinical, and in vitro studies have demonstrated that polyphenols can exert pain-relieving symptoms coupled with increased functional capacity in OA models. This review will highlight studies carried out in the last five years to define the efficacies and underlying mechanisms in polyphenols such as quercetin, resveratrol, curcumin, epigallocatechin-3-gallate, rosmarinic acid, genistein, ginger, berries, silver fir, pine bark, and Boswellia. Most of these studies indicate that polyphenols exhibit their beneficial roles through regulating changes at the biochemical and molecular levels, inducing or inhibiting various signaling pathways related to inflammation and oxidative stress. Polyphenols have also been implicated in modulating microRNA at the posttranscriptional level to counteract OA pathogenesis.
Collapse
Affiliation(s)
- Mateja Sirše
- Department of Orthopaedics, University Medical Centre Maribor, Ljubljanska Street 5, 2000 Maribor, Slovenia
| |
Collapse
|
208
|
Bighetti-Trevisan RL, Almeida LO, Castro-Raucci LMS, Gordon JAR, Tye CE, Stein GS, Lian JB, Stein JL, Rosa AL, Beloti MM. Titanium with nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by regulating histone methylation. BIOMATERIALS ADVANCES 2022; 134:112548. [PMID: 35012895 PMCID: PMC9098699 DOI: 10.1016/j.msec.2021.112548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023]
Abstract
The bone remodeling process is crucial for titanium (Ti) osseointegration and involves the crosstalk between osteoclasts and osteoblasts. Considering the high osteogenic potential of Ti with nanotopography (Ti Nano) and that osteoclasts inhibit osteoblast differentiation, we hypothesized that nanotopography attenuate the osteoclast-induced disruption of osteoblast differentiation. Osteoblasts were co-cultured with osteoclasts on Ti Nano and Ti Control and non-co-cultured osteoblasts were used as control. Gene expression analysis using RNAseq showed that osteoclasts downregulated the expression of osteoblast marker genes and upregulated genes related to histone modification and chromatin organization in osteoblasts grown on both Ti surfaces. Osteoclasts also inhibited the mRNA and protein expression of osteoblast markers, and such effect was attenuated by Ti Nano. Also, osteoclasts increased the protein expression of H3K9me2, H3K27me3 and EZH2 in osteoblasts grown on both Ti surfaces. ChIP assay revealed that osteoclasts increased accumulation of H3K27me3 that represses the promoter regions of Runx2 and Alpl in osteoblasts grown on Ti Control, which was reduced by Ti Nano. In conclusion, these data show that despite osteoclast inhibition of osteoblasts grown on both Ti Control and Ti Nano, the nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by preventing the increase of H3K27me3 accumulation that represses the promoter regions of some key osteoblast marker genes. These findings highlight the epigenetic mechanisms triggered by nanotopography to protect osteoblasts from the deleterious effects of osteoclasts, which modulate the process of bone remodeling and may benefit the osseointegration of Ti implants.
Collapse
Affiliation(s)
- Rayana L. Bighetti-Trevisan
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciana O. Almeida
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Jonathan A. R. Gordon
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Coralee E. Tye
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Gary S. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Jane B. Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Janet L. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Adalberto L. Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio M. Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil,Corresponding author at: School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-904 Ribeiraõ Preto, SP, Brazil. (M.M. Beloti)
| |
Collapse
|
209
|
Zhu Y, Ye L, Cai X, Li Z, Fan Y, Yang F. Icariin-Loaded Hydrogel Regulates Bone Marrow Mesenchymal Stem Cell Chondrogenic Differentiation and Promotes Cartilage Repair in Osteoarthritis. Front Bioeng Biotechnol 2022; 10:755260. [PMID: 35223781 PMCID: PMC8864219 DOI: 10.3389/fbioe.2022.755260] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Intra-articular injection of mesenchymal stem cells is a potential therapeutic strategy for cartilage protection and symptom relief for osteoarthritis (OA). However, controlling chondrogenesis of the implanted cells in the articular cavity remains a challenge. In this study, hydrogels containing different concentrations of icariin were prepared by in situ crosslinking of hyaluronic acid and Poloxamer 407. This injectable and thermoresponsive hydrogel, as a 3D cell culture system, showed good biocompatibility with chondrocytes and bone marrow mesenchymal stem cells (BMSCs), as well as promoted proliferation and chondrogenesis of BMSCs through the Wnt/β-catenin signaling pathway. Intra-articular injection of this kind of BMSC-loaded composite hydrogel can significantly prevent cartilage destruction by inducing chondrogenic differentiation of BMSCs, and relieve pain through regulating the expression of inflammatory cytokines (e.g., IL-10 and MMP-13) in the OA model. Incorporating BMSCs into this novel icariin-loaded hydrogel indicates a more superior efficacy than the single BMSC injection, which suggests a great potential for its application in OA.
Collapse
Affiliation(s)
- Yuefeng Zhu
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Le Ye
- Department of Pain, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoxi Cai
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zuhao Li
- Department of Pain, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongqian Fan
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Fengjian Yang
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
210
|
Lei Y, Wang Y, Shen J, Cai Z, Zhao C, Chen H, Luo X, Hu N, Cui W, Huang W. Injectable hydrogel microspheres with self-renewable hydration layers alleviate osteoarthritis. SCIENCE ADVANCES 2022; 8:eabl6449. [PMID: 35108047 PMCID: PMC8809544 DOI: 10.1126/sciadv.abl6449] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Introducing hydration layers to hydrogel microspheres (HMs) by coating the surface with liposomes can effectively reduce friction. However, the lubrication can be inactivated when the surface coatings are damaged. To endow HMs with the ability to form self-renewable hydration layers and maintain cellular homeostasis, rapamycin-liposome-incorporating hyaluronic acid-based HMs (RAPA@Lipo@HMs) were created using microfluidic technology and photopolymerization processes. The RAPA@Lipo@HMs improve joint lubrication by using a smooth rolling mechanism and continuously exposing liposomes on the outer surface to form self-renewable hydration layers via frictional wear. In addition, the released autophagy activator (rapamycin)-loaded cationic liposomes can target negatively charged cartilage through electrostatic interactions and maintain cellular homeostasis by increasing autophagy. Furthermore, the in vivo data showed that the RAPA@Lipo@HMs can alleviate joint wear and delay the progression of osteoarthritis. The RAPA@Lipo@HMs can provide efficient lubrication and potentially alleviate friction-related diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Yiting Lei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, P. R. China
| | - Yuping Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, P. R. China
| | - Jieliang Shen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, P. R. China
| | - Hong Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, P. R. China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, P. R. China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, P. R. China
- Corresponding author. (N.H.); (W.C.); (W.H.)
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
- Corresponding author. (N.H.); (W.C.); (W.H.)
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, P. R. China
- Corresponding author. (N.H.); (W.C.); (W.H.)
| |
Collapse
|
211
|
Sunkar S, Namratha K, Neeharika D. Identification of hub genes associated with human osteoarthritis cartilage: An in silico approach. Meta Gene 2022. [DOI: 10.1016/j.mgene.2022.101015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
212
|
Liu Z, Liu R, Wang R, Dai J, Chen H, Wang J, Li X. Sinensetin attenuates IL-1β -induced cartilage damage and ameliorates osteoarthritis by regulating SERPINA3. Food Funct 2022; 13:9973-9987. [DOI: 10.1039/d2fo01304e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degeneration, subchondral bone sclerosis, synovial hyperplasia and osteophyte formation as the main pathological manifestations. Age, mechanical stress and inflammation...
Collapse
|
213
|
Schneider RS, Vela AC, Williams EK, Martin KE, Lam WA, García AJ. High-Throughput On-Chip Human Mesenchymal Stromal Cell Potency Prediction. Adv Healthc Mater 2022; 11:e2101995. [PMID: 34725948 PMCID: PMC8770576 DOI: 10.1002/adhm.202101995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/25/2021] [Indexed: 01/03/2023]
Abstract
Human mesenchymal stromal cells (hMSCs) are a promising source for regenerative cell therapy. However, hMSC clinical use has been stymied by product variability across hMSC donors and manufacturing practices resulting in inconsistent clinical outcomes. The inability to predict hMSC clinical efficacy, or potency, is a major limitation for market penetration. Standard metrics of hMSC potency employ hMSCs and third-party immune cell co-cultures, however, these assays face translational challenges due to third-party donor variability and lack of scalability. While surrogate markers of hMSC potency have been suggested, none have yet had translational success. To address this, a high-throughput, scalable, low-cost, on-chip microfluidic potency assay is presented with improved functional predictive power and recapitulation of in vivo secretory responses compared to traditional approaches. Comparison of hMSC secretory responses to functional hMSC-medicated immune cell suppression demonstrates shortcomings of current surrogate potency markers and identifies on-chip microfluidic potency markers with improved functional predictive power compared to traditional planar methods. Furthermore, hMSC secretory performance achieved in the on-chip microfluidic system has improved similarity compared to an in vivo model. The results underscore the shortcomings of current culture practices and present a novel system with improved functional predictive power and hMSC physiological responses.
Collapse
Affiliation(s)
- Rebecca S Schneider
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alexandra C Vela
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- College of Sciences, Georgia Institute of Technology, Atlanta, GA, 30313, USA
| | - Evelyn Kendall Williams
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center & Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Karen E Martin
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30313, USA
| | - Wilbur A Lam
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center & Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Andrés J García
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30313, USA
| |
Collapse
|
214
|
Galectin network in osteoarthritis: galectin-4 programs a pathogenic signature of gene and effector expression in human chondrocytes in vitro. Histochem Cell Biol 2021; 157:139-151. [PMID: 34846578 PMCID: PMC8847242 DOI: 10.1007/s00418-021-02053-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
Abstract
Galectin-4 (Gal-4) is a member of the galectin family, which have been identified as galactose-binding proteins. Gal-4 possesses two tandem repeat carbohydrate recognition domains and acts as a cross-linking bridge in sulfatide-dependent glycoprotein routing. We herein document its upregulation in osteoarthritis (OA) in correlation with the extent of cartilage degradation in vivo. Primary human OA chondrocytes in vitro respond to carbohydrate-inhibitable Gal-4 binding with the upregulation of pro-degradative/-inflammatory proteins such as interleukin-1β (IL-1β) and matrix metalloproteinase-13 (MMP-13), as documented by RT-qPCR-based mRNA profiling and transcriptome data processing. Activation of p65 by phosphorylation of Ser536 within the NF-κB pathway and the effect of three p65 inhibitors on Gal-4 activity support downstream involvement of such signaling. In 3D (pellet) cultures, Gal-4 presence causes morphological and biochemical signs of degradation. Taken together, our findings strongly support the concept of galectins acting as a network in OA pathogenesis and suggest that blocking their activity in disease progression may become clinically relevant in the future.
Collapse
|
215
|
Zhenghai S. Increased serum AXL is associated with radiographic knee osteoarthritis severity. Int J Rheum Dis 2021; 25:32-37. [PMID: 34841689 PMCID: PMC9298778 DOI: 10.1111/1756-185x.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 12/03/2022]
Abstract
Objective To investigate the expression and clinical significance of serum soluble AXL in patients with radiographic knee osteoarthritis (KOA). Methods There were 183 patients with KOA who were selected and divided based on the Kellgren‐Lawrence (KL) score into KL 0 subgroups (n = 42), KL I‐II subgroups (n = 90), and KL III‐IV subgroups (n = 51). Healthy volunteers (n = 170) in our hospital were selected with matched age and gender as the control group. AXL level in serum was detected by enzyme‐linked immunosorbent assay. The correlation between serum AXL with severity and clinical indicators of osteoarthritis was analyzed. Results The level of serum AXL was significantly higher in the osteoarthritis group than that in the control group (P < .05). In the osteoarthritis patients, serum AXL level was increased with the increase of KL score. Serum AXL level was positively correlated with age, body mass index, erythrocyte sedimentation rate, serum C‐reactive protein, cartilage oligomeric protein, matrix metalloproteinase‐13, and transforming growth factor‐β1 levels. The cut‐off value for serum AXL was determined as 33.375 ng/mL by receiver operating curve analysis. Conclusion The level of serum AXL in patients with osteoarthritis is significantly higher than in healthy controls, and is closely related to the severity of radiographic osteoarthritis.
Collapse
Affiliation(s)
- Shao Zhenghai
- Shanghai Kaiyuan Orthopedic Hospital, Shanghai, China
| |
Collapse
|
216
|
Microencapsulated Recombinant Human Epidermal Growth Factor Ameliorates Osteoarthritis in a Murine Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9163279. [PMID: 34603477 PMCID: PMC8483914 DOI: 10.1155/2021/9163279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 12/02/2022]
Abstract
Osteoarthritis, a highly age-related and chronic inflammatory disorder with cartilage loss, causes patients difficultly in movement; there is no efficient and sustainable remedy for osteoarthritis currently. Although hyaluronic acid (HA) and platelet-rich plasma (PRP) have been used to alleviate osteoarthritis, the effects could be short and multiple injections might be required. To address this issue, we exploited the property of chitosan to encapsulate recombinant human epidermal growth factor and obtained microencapsulated rhEGF (Me-rhEGF). In the current study, we induced the osteoarthritis-like symptoms with monosodium iodoacetate (MIA) in rats and investigated the therapeutic effects of Me-rhEGF. Following administration of HA/Me-rhEGF in vivo, we observed that the total Mankin scores, cartilage oligomeric protein, C-telopeptide of type II collagen, IL-1β, IL-6, IL-17A, and TNF-α cytokines, nitric oxide, and prostaglandin E2 expressions were significantly inhibited. Our results also strongly indicate that individual use of HA or rhEGF slightly decreased the inflammation and restored the destructive joint structure, but was not as drastic as seen in the HA/Me-rhEGF. Moreover, HA/Me-rhEGF profoundly reduced cartilage destruction and proteoglycan loss and downregulated matrix metalloproteinase expressions. These findings reveal that the treatment of HA/Me-rhEGF could be more beneficial than the use of single HA or rhEGF in reliving osteoarthritis and demonstrate the therapeutic application of microencapsulation technology in difficult joint disorders. In essence, we believe that the Me-rhEGF could be promising for further research and development as a clinical treatment against osteoarthritis.
Collapse
|
217
|
Stem Cells in Autologous Microfragmented Adipose Tissue: Current Perspectives in Osteoarthritis Disease. Int J Mol Sci 2021; 22:ijms221910197. [PMID: 34638538 PMCID: PMC8508703 DOI: 10.3390/ijms221910197] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a chronic debilitating disorder causing pain and gradual degeneration of weight-bearing joints with detrimental effects on cartilage volume as well as cartilage damage, generating inflammation in the joint structure. The etiology of OA is multifactorial. Currently, therapies are mainly addressing the physical and occupational aspects of osteoarthritis using pharmacologic pain treatment and/or surgery to manage the symptomatology of the disease with no specific regard to disease progression or prevention. Herein, we highlight alternative therapeutics for OA specifically considering innovative and encouraging translational methods with the use of adipose mesenchymal stem cells.
Collapse
|
218
|
Wang Q, Chen Y, Shen X, Chen J, Li Y. Intra-Articular Injection of miR-29a-3p of BMSCs Promotes Cartilage Self-Repairing and Alleviates Pain in the Rat Osteoarthritis. Tissue Eng Regen Med 2021; 18:1045-1055. [PMID: 34542842 DOI: 10.1007/s13770-021-00384-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Stem cells intra-articular injection stagey indicated a potential therapeutic effect on improving the pathological progress of osteoarthritis (OA). However, the long-term effect of stem cells intra-articular injection on the cartilage regeneration remains unclear. miR-29a-3p is predicted to be a critical target for inhibiting insulin-like growth factor-1 expression and may aggravate the progression of OA. METHODS In this study, we investigated the therapeutic efficacy of intra-articular injection of bone marrow mesenchymal stem cells (BMSCs) transfected with miR-29a-3p inhibitor in OA. RESULTS miR-29a-3p inhibitor transfection did not influence cell viability of BMSCs, while the chondrogenic differentiation potential of BMSCs was significantly improved. Interestingly, intra-articular injection of BMSCs with miR-29a-3p inhibition significantly prevented articular cartilage degeneration by up-regulating the expression of Sox 9, Col-2a1, aggrecan and down-regulating the expression of matrix metalloproteinase, as well as relieved pain in OA. CONCLUSION The double effects on cartilage protection and pain relief indicated a great potential of intra-articular injection of miR-29a-3p inhibitor-transfected BMSCs for the treatment of OA.
Collapse
Affiliation(s)
- Qing Wang
- Department of Orthopedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China.,Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, China
| | - Yong Chen
- Department of Orthopedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China.,Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, China
| | - Xiaofeng Shen
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China
| | - Ji Chen
- Department of Orthopedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China.,Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, China
| | - Yuwei Li
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China.
| |
Collapse
|
219
|
Design and Synthesis of Water-Soluble and Potent MMP-13 Inhibitors with Activity in Human Osteosarcoma Cells. Int J Mol Sci 2021; 22:ijms22189976. [PMID: 34576138 PMCID: PMC8467962 DOI: 10.3390/ijms22189976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis is a degenerative disease, often resulting in chronic joint pain and commonly affecting elderly people. Current treatments with anti-inflammatory drugs are palliative, making the discovery of new treatments necessary. The inhibition of matrix metalloproteinase MMP-13 is a validated strategy to prevent the progression of this common joint disorder. We recently described polybrominated benzotriazole derivatives with nanomolar inhibitory activity and a promising selectivity profile against this collagenase. In this work, we have extended the study in order to explore the influence of bromine atoms and the nature of the S1′ heterocyclic interacting moiety on the solubility/selectivity balance of this type of compound. Drug target interactions have been assessed through a combination of molecular modeling studies and NMR experiments. Compound 9a has been identified as a water-soluble and highly potent inhibitor with activity in MG-63 human osteosarcoma cells.
Collapse
|
220
|
Leptin Induced TLR4 Expression via the JAK2-STAT3 Pathway in Obesity-Related Osteoarthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7385160. [PMID: 34457118 PMCID: PMC8387187 DOI: 10.1155/2021/7385160] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 02/03/2023]
Abstract
Obesity is considered as a risk factor of osteoarthritis (OA), but the precise relationship is still poorly understood. Leptin, one of the most relevant factors secreted by adipose tissues, plays an important role in the pathogenesis of OA. Our aim was to investigate the regulation and molecular mechanism of the leptin signaling pathway in obesity-related OA. SD rats were fed with a high-fat diet (HFD) for 5, 15, and 27 weeks. The levels of leptin in serum increased from W5, while in the synovial fluid increased from W15. The histological evaluation showed that the pathological changes of OA occurred at 27 weeks rather than 5 or 15 weeks. We also found that leptin induced CD14/TLR4 activation by the JAK2-STAT3 signaling pathway to promote OA. Moreover, silencing SOCS3 enhanced leptin-induced JAK2-STAT3-CD14/TLR4 activation in rat primary chondrocytes. Our findings indicated that leptin may be one of the initiating factors of obesity-related OA. TLR4 is at least partially regulated by leptin through the JAK2-STAT3-CD14 pathway. Meanwhile, SOCS3 acting as a negative feedback inhibitor of leptin signaling presented a potential therapeutic prospect for obesity-related OA. Our study provided new evidence suggesting the key role of leptin in mediating obesity-related OA process and its underlying mechanisms.
Collapse
|
221
|
Wen ZH, Huang JS, Lin YY, Yao ZK, Lai YC, Chen WF, Liu HT, Lin SC, Tsai YC, Tsai TC, Jean YH. Chondroprotective Effects of a Histone Deacetylase Inhibitor, Panobinostat, on Pain Behavior and Cartilage Degradation in Anterior Cruciate Ligament Transection-Induced Experimental Osteoarthritic Rats. Int J Mol Sci 2021; 22:ijms22147290. [PMID: 34298911 PMCID: PMC8306086 DOI: 10.3390/ijms22147290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is the most common articular degenerative disease characterized by chronic pain, joint inflammation, and movement limitations, which are significantly influenced by aberrant epigenetic modifications of numerous OA-susceptible genes. Recent studies revealed that both the abnormal activation and differential expression of histone deacetylases (HDACs) might contribute to OA pathogenesis. In this study, we investigated the chondroprotective effects of a marine-derived HDAC inhibitor, panobinostat, on anterior cruciate ligament transection (ACLT)-induced experimental OA rats. The intra-articular administration of 2 or 10 µg of panobinostat (each group, n = 7) per week from the 6th to 17th week attenuates ACLT-induced nociceptive behaviors, including secondary mechanical allodynia and weight-bearing distribution. Histopathological and microcomputed tomography analysis showed that panobinostat significantly prevents cartilage degeneration after ACLT. Moreover, intra-articular panobinostat exerts hypertrophic effects in the chondrocytes of articular cartilage by regulating the protein expressions of HDAC4, HDAC6, HDAC7, runt-domain transcription factor-2, and matrix metalloproteinase-13. The study indicated that HDACs might have different modulations on the chondrocyte phenotype in the early stages of OA development. These results provide new evidence that panobinostat may be a potential therapeutic drug for OA.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (Z.-H.W.); (Z.-K.Y.); (Y.-C.L.); (W.-F.C.)
| | - Jhy-Shrian Huang
- Section of Orthopedics, Department of Surgery, Antai Medical Care Corporation Anti Tian-Sheng Memorial Hospital, PingTong 92842, Taiwan;
| | - Yen-You Lin
- Department of Sports Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Zhi-Kang Yao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (Z.-H.W.); (Z.-K.Y.); (Y.-C.L.); (W.-F.C.)
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung 81341, Taiwan
| | - Yu-Cheng Lai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (Z.-H.W.); (Z.-K.Y.); (Y.-C.L.); (W.-F.C.)
- Department of Orthopedics, Asia University Hospital, Taichung 41354, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (Z.-H.W.); (Z.-K.Y.); (Y.-C.L.); (W.-F.C.)
- Department of Neurosurgery, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan
| | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
| | - Sung-Chun Lin
- Department of Orthopedic Surgery, Pingtung Christian Hospital, No. 60 Dalian Road, Pingtung 90059, Taiwan;
| | - Yu-Chi Tsai
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan;
| | - Tsung-Chang Tsai
- Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Anti Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan;
| | - Yen-Hsuan Jean
- Section of Orthopedics, Department of Surgery, Antai Medical Care Corporation Anti Tian-Sheng Memorial Hospital, PingTong 92842, Taiwan;
- Correspondence: ; Tel.: +886-8-8329966
| |
Collapse
|
222
|
Zacharjasz J, Mleczko AM, Bąkowski P, Piontek T, Bąkowska-Żywicka K. Small Noncoding RNAs in Knee Osteoarthritis: The Role of MicroRNAs and tRNA-Derived Fragments. Int J Mol Sci 2021; 22:5711. [PMID: 34071929 PMCID: PMC8198041 DOI: 10.3390/ijms22115711] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Knee osteoarthritis (OA) is a degenerative knee joint disease that results from the breakdown of joint cartilage and underlying bone, affecting about 3.3% of the world's population. As OA is a multifactorial disease, the underlying pathological process is closely associated with genetic changes in articular cartilage and bone. Many studies have focused on the role of small noncoding RNAs in OA and identified numbers of microRNAs that play important roles in regulating bone and cartilage homeostasis. The connection between other types of small noncoding RNAs, especially tRNA-derived fragments and knee osteoarthritis is still elusive. The observation that there is limited information about small RNAs different than miRNAs in knee OA was very surprising to us, especially given the fact that tRNA fragments are known to participate in a plethora of human diseases and a portion of them are even more abundant than miRNAs. Inspired by these findings, in this review we have summarized the possible involvement of microRNAs and tRNA-derived fragments in the pathology of knee osteoarthritis.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Anna M. Mleczko
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland;
| | - Paweł Bąkowski
- Department of Orthopedic Surgery, Rehasport Clinic, 60-201 Poznan, Poland; (P.B.); (T.P.)
| | - Tomasz Piontek
- Department of Orthopedic Surgery, Rehasport Clinic, 60-201 Poznan, Poland; (P.B.); (T.P.)
- Department of Spine Disorders and Pediatric Orthopedics, University of Medical Sciences Poznan, 61-854 Poznan, Poland
| | | |
Collapse
|
223
|
Nedeva IR, Vitale M, Elson A, Hoyland JA, Bella J. Role of OSCAR Signaling in Osteoclastogenesis and Bone Disease. Front Cell Dev Biol 2021; 9:641162. [PMID: 33912557 PMCID: PMC8072347 DOI: 10.3389/fcell.2021.641162] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Formation of mature bone-resorbing cells through osteoclastogenesis is required for the continuous remodeling and repair of bone tissue. In aging and disease this process may become aberrant, resulting in excessive bone degradation and fragility fractures. Interaction of receptor-activator of nuclear factor-κB (RANK) with its ligand RANKL activates the main signaling pathway for osteoclastogenesis. However, compelling evidence indicates that this pathway may not be sufficient for the production of mature osteoclast cells and that co-stimulatory signals may be required for both the expression of osteoclast-specific genes and the activation of osteoclasts. Osteoclast-associated receptor (OSCAR), a regulator of osteoclast differentiation, provides one such co-stimulatory pathway. This review summarizes our present knowledge of osteoclastogenesis signaling and the role of OSCAR in the normal production of bone-resorbing cells and in bone disease. Understanding the signaling mechanism through this receptor and how it contributes to the production of mature osteoclasts may offer a more specific and targeted approach for pharmacological intervention against pathological bone resorption.
Collapse
Affiliation(s)
- Iva R Nedeva
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Mattia Vitale
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Jordi Bella
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|