201
|
Charoensap J, Engering A, Utaisincharoen P, van Kooyk Y, Sirisinha S. Activation of human monocyte-derived dendritic cells by Burkholderia pseudomallei does not require binding to the C-type lectin DC-SIGN. Trans R Soc Trop Med Hyg 2008; 102 Suppl 1:S76-81. [DOI: 10.1016/s0035-9203(08)70020-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
202
|
Timpano G, Tabarani G, Anderluh M, Invernizzi D, Vasile F, Potenza D, Nieto PM, Rojo J, Fieschi F, Bernardi A. Synthesis of novel DC-SIGN ligands with an alpha-fucosylamide anchor. Chembiochem 2008; 9:1921-30. [PMID: 18655085 DOI: 10.1002/cbic.200800139] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dendritic cell-specific intercellular adhesion molecule (ICAM) 3-grabbing nonintegrin (DC-SIGN) is a C-type lectin that appears to perform several different functions. Besides mediating adhesion between dendritic cells and T lymphocytes, DC-SIGN recognizes several pathogens some of which, including HIV, appear to exploit it to invade host organisms. The intriguing diversity of the roles attributed to DC-SIGN and their therapeutic implications have stimulated the search for new ligands that could be used as biological probes and possibly as lead compounds for drug development. The natural ligands of DC-SIGN consist of mannose oligosaccharides or fucose-containing Lewis-type determinants. Using the known 3D structure of the Lewis-x trisaccharide, we have identified some monovalent alpha-fucosylamides that bind to DC-SIGN with inhibitory constants 0.4-0.5 mM, as determined by SPR, and have characterized their interaction with the protein by STD NMR spectroscopy. This work establishes for the first time alpha-fucosylamides as functional mimics of chemically and enzymatically unstable alpha-fucosides and describes interesting candidates for the preparation of multivalent systems able to block the receptor DC-SIGN with high affinity and with potential biomedical applications.
Collapse
Affiliation(s)
- Gabriele Timpano
- Dipartimento di Chimica Organica e Industriale and CISI, Università di Milano, via Venezian 21, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
The C-type lectin SIGNR1 binds Schistosoma mansoni antigens in vitro, but SIGNR1-deficient mice have normal responses during schistosome infection. Infect Immun 2008; 77:399-404. [PMID: 18981244 DOI: 10.1128/iai.00762-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The de novo immune response to infectious organisms arises from the innate recognition of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). As the generation of type 2 cytokine responses by the human trematode parasite Schistosoma mansoni is glycan mediated, there is a particular potential role for a C-type lectin receptor (CLR) to mediate the innate recognition of schistosome PAMPs. One such CLR, dendritic cell-specific intracellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN; CD209), has been shown to recognize glycans expressed by S. mansoni eggs. We show that SIGNR1 (SIGN-related 1; CD209b), a murine homologue of DC-SIGN that is expressed on macrophages, also binds both schistosome-soluble egg antigens and worm antigens in vitro. The generation of schistosome egg-induced pulmonary egg granulomas was not altered in SIGNR1-deficient mice. Following S. mansoni infection, the SIGNR1-deficient mice had an unaltered phenotype with an intact immunological response and no difference in pathology. In this study we demonstrate that although SIGNR1 recognizes S. mansoni antigens in vitro, this CLR is redundant during infection. This study highlights the finding that although there was binding of SIGNR1 to immunogenic factors produced in the S. mansoni life cycle, this recognition does not translate to a functional in vivo role for the PRR during infection.
Collapse
|
204
|
Wattendorf U, Coullerez G, Vörös J, Textor M, Merkle HP. Mannose-based molecular patterns on stealth microspheres for receptor-specific targeting of human antigen-presenting cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11790-11802. [PMID: 18785716 DOI: 10.1021/la801085d] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The targeting of antigen-presenting cells has recently gained strong attention for both targeted vaccine delivery and immunomodulation. We prepared surface-modified stealth microspheres that display various mannose-based ligands at graded ligand densities to target phagocytic C-type lectin receptors (CLRs) on human dendritic cells (DCs) and macrophages. Decoration of microspheres with carbohydrate ligands was achieved (i) by electrostatic surface assembly of mannan onto previously formed adlayers of poly( l-lysine) (PLL) or a mix of PLL and poly( l-lysine)- graft-poly(ethylene glycol) (PLL-PEG), or (ii) through assembly of PLL-PEG equipped with small substructure mannoside ligands, such as mono- and trimannose, as terminal substitution of the PEG chains. Microspheres carrying mannoside ligands were also studied in combination with an integrin-targeting RGD peptide ligand. Because of the presence of a mannan or PEG corona, such microspheres were protected against protein adsorption and opsonization, thus allowing the formation of specific ligand-receptor interactions. Mannoside density was the major factor for the phagocytosis of mannoside-decorated microspheres, although with limited efficiency. This strengthens the recent hypothesis by other authors that the mannose receptor (MR) only acts as a phagocytic receptor when in conjunction with yet unidentified partner receptor(s). Analysis of DC surface markers for maturation revealed that neither surface-assembled mannan nor mannoside-modified surfaces on the microspheres could stimulate DC maturation. Thus, phagocytosis upon recognition by CLRs alone cannot trigger DC activation toward a T helper response. The microparticulate platform established in this work represents a promising tool for systematic investigations of specific ligand-receptor interactions upon phagocytosis, including the screening for potential ligands and ligand combinations in the context of vaccine delivery and immunomodulation.
Collapse
Affiliation(s)
- Uta Wattendorf
- Institute for Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
205
|
Op den Brouw ML, De Jong MAWP, Ludwig IS, Van Der Molen RG, Janssen HLA, Geijtenbeek TBH, Woltman AM. Branched oligosaccharide structures on HBV prevent interaction with both DC-SIGN and L-SIGN. J Viral Hepat 2008; 15:675-83. [PMID: 18482282 PMCID: PMC7166686 DOI: 10.1111/j.1365-2893.2008.00993.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) is a DNA virus that infects the liver as primary target. Currently, a high affinity receptor for HBV is still unknown. The dendritic cell specific C-type lectin DC-SIGN is involved in pathogen recognition through mannose and fucose containing carbohydrates leading to the induction of an anti-viral immune response. Many glycosylated viruses subvert this immune surveillance function and exploit DC-SIGN as a port of entry and for trans-infection of target cells. The glycosylation pattern on HBV surface antigens (HBsAg) together with the tissue distribution of HBV would allow interaction between HBV and DC-SIGN and its liver-expressed homologue L-SIGN. Therefore, a detailed study to investigate the binding of HBV to DC-SIGN and L-SIGN was performed. For HCV, both DC-SIGN and L-SIGN are known to bind envelope glycoproteins E1 and E2. Soluble DC-SIGN and L-SIGN specifically bound HCV virus-like particles, but no interaction with either HBsAg or HepG2.2.15-derived HBV was detected. Also, neither DC-SIGN nor L-SIGN transfected Raji cells bound HBsAg. In contrast, highly mannosylated HBV, obtained by treating HBV producing HepG2.2.15 cells with the alpha-mannosidase I inhibitor kifunensine, is recognized by DC-SIGN. The alpha-mannosidase I trimming of N-linked oligosaccharide structures thus prevents recognition by DC-SIGN. On the basis of these findings, it is tempting to speculate that HBV exploits mannose trimming as a way to escape recognition by DC-SIGN and thereby subvert a possible immune activation response.
Collapse
Affiliation(s)
- M. L. Op den Brouw
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - M. A. W. P. De Jong
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - I. S. Ludwig
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - R. G. Van Der Molen
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - H. L. A. Janssen
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - T. B. H. Geijtenbeek
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - A. M. Woltman
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
206
|
Vliet SJ, García‐Vallejo JJ, Kooyk Y. Dendritic cells and C‐type lectin receptors: coupling innate to adaptive immune responses. Immunol Cell Biol 2008; 86:580-7. [DOI: 10.1038/icb.2008.55] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sandra J Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical CenterAmsterdamThe Netherlands
| | - Juan J García‐Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical CenterAmsterdamThe Netherlands
| | - Yvette Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
207
|
Khoo US, Chan KYK, Chan VSF, Lin CLS. DC-SIGN and L-SIGN: the SIGNs for infection. J Mol Med (Berl) 2008; 86:861-74. [PMID: 18458800 PMCID: PMC7079906 DOI: 10.1007/s00109-008-0350-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 03/01/2008] [Accepted: 03/05/2008] [Indexed: 12/16/2022]
Abstract
Two closely related trans-membrane C-type lectins dendritic cell-specific intracellular adhesion molecules (ICAM)-3 grabbing non-integrin (DC-SIGN or CD209) and liver/lymph node-specific ICAM-3 grabbing non-integrin (L-SIGN also known as DC-SIGNR, CD209L or CLEC4M) directly recognize a wide range of micro-organisms of major impact on public health. Both genes have long been considered to share similar overall structure and ligand-binding characteristics. This review presents more recent biochemical and structural studies, which show that they have distinct ligand-binding properties and different physiological functions. Of importance in both these genes is the presence of an extra-cellular domain consisting of an extended neck region encoded by tandem repeats that support the carbohydrate-recognition domain, which plays a crucial role in influencing the pathogen-binding properties of these receptors. The notable difference between these two genes is in this extra-cellular domain. Whilst the tandem-neck-repeat region remains relatively constant size for DC-SIGN, there is considerable polymorphism for L-SIGN. Homo-oligomerization of the neck region of L-SIGN has been shown to be important for high-affinity ligand binding, and heterozygous expression of the polymorphic variants of L-SIGN in which neck lengths differ could thus affect ligand-binding affinity. Functional studies on the effect of this tandem-neck-repeat region on pathogen-binding, as well as genetic association studies for various infectious diseases and among different populations, are discussed. Worldwide demographic data of the tandem-neck-repeat region showing distinct differences in the neck-region allele and genotype distribution among different ethnic groups are presented. These findings support the neck region as an excellent candidate acting as a functional target for selective pressures exerted by pathogens.
Collapse
Affiliation(s)
- Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, University Pathology Building, Hong Kong, SAR, China.
| | | | | | | |
Collapse
|
208
|
Yearley JH, Kanagy S, Anderson DC, Dalecki K, Pauley DR, Suwyn C, Donahoe RM, McClure HM, O'Neil SP. Tissue-specific reduction in DC-SIGN expression correlates with progression of pathogenic simian immunodeficiency virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1510-1521. [PMID: 18606180 DOI: 10.1016/j.dci.2008.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 05/21/2008] [Accepted: 06/06/2008] [Indexed: 05/26/2023]
Abstract
Studies were undertaken to determine whether previously described reductions in splenic DC-SIGN expression in simian acquired immune deficiency syndrome (AIDS) are limited to pathogenic simian immunodeficiency virus (SIV) infection. DC-SIGN expression was evaluated by immunohistochemistry in lymphoid tissues from AIDS-susceptible Asian macaque monkeys as compared with AIDS-resistant sooty mangabey monkeys in the presence and absence of SIV infection. The phenotype of DC-SIGN+ cells in susceptible and resistant species was identical and most consistent with macrophage identity. Significantly lower levels of DC-SIGN expression were identified in spleen, mesenteric lymph node, and bone marrow of macaques with AIDS (P<0.05). Reduced levels of splenic DC-SIGN correlated significantly with CD4T cell depletion in long-term pathogenic infection of macaques (P<0.01), whereas SIV-infected mangabeys retained high levels of DC-SIGN expression in spleen despite persistent infection. Reduced expression of DC-SIGN in spleen specifically characterizes pathogenic forms of SIV infection, correlates with disease progression, and may contribute to SIV pathogenesis.
Collapse
Affiliation(s)
- Jennifer H Yearley
- Division of Comparative Pathology, New England Primate Research Center, Harvard Medical School, One Pine Hill Dr. P.O. Box 9102, Southborough, MA 01772, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
van Kooyk Y, Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 2008; 9:593-601. [PMID: 18490910 DOI: 10.1038/ni.f.203] [Citation(s) in RCA: 591] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The importance of protein glycosylation in the migration of immune cells throughout the body has been extensively appreciated. However, our awareness of the impact of glycosylation on the regulation of innate and adaptive immune responses is relatively new. An increasing number of studies reveal the relevance of glycosylation to pathogen recognition, to the modulation of the innate immune system and to the control of immune cell homeostasis and inflammation. Similarly important is the effect of glycan-containing 'information' in the development of autoimmune diseases and cancer. In this review, we provide an overview of these new directions and their impact in the field of glycoimmunology.
Collapse
Affiliation(s)
- Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, van de Boechorststraat 7, 1081BT Amsterdam, The Netherlands.
| | | |
Collapse
|
210
|
Gijzen K, Raymakers RAP, Broers KM, Figdor CG, Torensma R. Interaction of acute lymphopblastic leukemia cells with C-type lectins DC-SIGN and L-SIGN. Exp Hematol 2008; 36:860-70. [PMID: 18375037 DOI: 10.1016/j.exphem.2008.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 01/02/2008] [Accepted: 02/01/2008] [Indexed: 12/13/2022]
Abstract
The C-type lectins DC-SIGN (CD209) and L-SIGN (CD299) recognize defined carbohydrates expressed on pathogens and cells. Those lectins are expressed on dendritic cells (DC) and/or on liver-sinusoidal endothelial cells. Both cell types modulate immune responses. In acute lymphoblastic leukemia (ALL), aberrant glycosylation of blast cells can alter their interaction with the C-type lectins DC-SIGN and L-SIGN, thereby affecting their immunological elimination. We investigated whether recombinant DC-SIGN and L-SIGN bind to blood or bone marrow cells from B- and T-ALL patients and compared that with binding of peripheral blood lymphocytes from healthy donors. It was found that increased binding of ALL cells to DC-SIGN and L-SIGN was observed compared to cells from healthy donors. Furthermore, L-SIGN bound a higher percentage of leukemic and normal cells than DC-SIGN. B-ALL bone marrow cells showed the highest binding to L-SIGN. DC-SIGN bound equally well to B-ALL and T-ALL cells. Within ALL subtypes, DC-SIGN binding was higher with mature T-ALL. Interestingly, our data demonstrate that increased binding of DC-SIGN and L-SIGN to peripheral leukemic cells from B-ALL patients is associated with poor survival. These data demonstrate that high binding of B-ALL peripheral blood cells to DC-SIGN and L-SIGN correlates with poor prognosis. Apparently, when B-ALL cells enter the blood circulation and are able to interact with DC-SIGN and L-SIGN the immune response is shifted toward tolerance. Additional studies are necessary to ascertain the possible role of these results in terms of disease pathogenesis and their potential as target to eradicate leukemic cells.
Collapse
Affiliation(s)
- Karlijn Gijzen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
211
|
Appelmelk BJ, den Dunnen J, Driessen NN, Ummels R, Pak M, Nigou J, Larrouy-Maumus G, Gurcha SS, Movahedzadeh F, Geurtsen J, Brown EJ, Eysink Smeets MM, Besra GS, Willemsen PTJ, Lowary TL, van Kooyk Y, Maaskant JJ, Stoker NG, van der Ley P, Puzo G, Vandenbroucke-Grauls CMJE, Wieland CW, van der Poll T, Geijtenbeek TBH, van der Sar AM, Bitter W. The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium–host interaction. Cell Microbiol 2008; 10:930-44. [DOI: 10.1111/j.1462-5822.2007.01097.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
212
|
Adams EW, Ratner DM, Seeberger PH, Hacohen N. Carbohydrate-mediated targeting of antigen to dendritic cells leads to enhanced presentation of antigen to T cells. Chembiochem 2008; 9:294-303. [PMID: 18186095 DOI: 10.1002/cbic.200700310] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The unique therapeutic value of dendritic cells (DCs) for the treatment of allergy, autoimmunity and transplant rejection is predicated upon our ability to selectively deliver antigens, drugs or nucleic acids to DCs in vivo. Here we describe a method for delivering whole protein antigens to DCs based on carbohydrate-mediated targeting of DC-expressed lectins. A series of synthetic carbohydrates was chemically-coupled to a model antigen, ovalbumin (OVA), and each conjugate was evaluated for its ability to increase the efficiency of antigen presentation by murine DCs to OVA-specific T cells (CD4(+) and CD8(+)). In vitro data are presented that demonstrate that carbohydrate modification of OVA leads to a 50-fold enhancement of presentation of antigenic peptide to CD4(+) T cells. A tenfold enhancement is observed for CD8(+) T cells; this indicates that the targeted lectin(s) can mediate cross-presentation of antigens on MHC class I. Our data indicate that the observed enhancements in antigen presentation are unique to OVA that is conjugated to complex oligosaccharides, such as a high-mannose nonasaccharide, but not to monosaccharides. Taken together, our data suggest that a DC targeting strategy that is based upon carbohydrate-lectin interactions is a promising approach for enhancing antigen presentation via class I and class II molecules.
Collapse
Affiliation(s)
- Eddie W Adams
- Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy and Immununology, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
213
|
Bax M, García-Vallejo JJ, Jang-Lee J, North SJ, Gilmartin TJ, Hernández G, Crocker PR, Leffler H, Head SR, Haslam SM, Dell A, van Kooyk Y. Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. THE JOURNAL OF IMMUNOLOGY 2008; 179:8216-24. [PMID: 18056365 DOI: 10.4049/jimmunol.179.12.8216] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DC) are the most potent APC in the organism. Immature dendritic cells (iDC) reside in the tissue where they capture pathogens whereas mature dendritic cells (mDC) are able to activate T cells in the lymph node. This dramatic functional change is mediated by an important genetic reprogramming. Glycosylation is the most common form of posttranslational modification of proteins and has been implicated in multiple aspects of the immune response. To investigate the involvement of glycosylation in the changes that occur during DC maturation, we have studied the differences in the glycan profile of iDC and mDC as well as their glycosylation machinery. For information relating to glycan biosynthesis, gene expression profiles of human monocyte-derived iDC and mDC were compared using a gene microarray and quantitative real-time PCR. This gene expression profiling showed a profound maturation-induced up-regulation of the glycosyltransferases involved in the expression of LacNAc, core 1 and sialylated structures and a down-regulation of genes involved in the synthesis of core 2 O-glycans. Glycosylation changes during DC maturation were corroborated by mass spectrometric analysis of N- and O-glycans and by flow cytometry using plant lectins and glycan-specific Abs. Interestingly, the binding of the LacNAc-specific lectins galectin-3 and -8 increased during maturation and up-regulation of sialic acid expression by mDC correlated with an increased binding of siglec-1, -2, and -7.
Collapse
Affiliation(s)
- Marieke Bax
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Freysdottir J, Omarsdottir S, Ingólfsdóttir K, Vikingsson A, Olafsdottir E. In vitro and in vivo immunomodulating effects of traditionally prepared extract and purified compounds from Cetraria islandica. Int Immunopharmacol 2008; 8:423-30. [DOI: 10.1016/j.intimp.2007.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/05/2007] [Accepted: 11/07/2007] [Indexed: 11/25/2022]
|
215
|
Gramberg T, Soilleux E, Fisch T, Lalor PF, Hofmann H, Wheeldon S, Cotterill A, Wegele A, Winkler T, Adams DH, Pöhlmann S. Interactions of LSECtin and DC-SIGN/DC-SIGNR with viral ligands: Differential pH dependence, internalization and virion binding. Virology 2008; 373:189-201. [PMID: 18083206 PMCID: PMC7103327 DOI: 10.1016/j.virol.2007.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 10/15/2007] [Accepted: 11/02/2007] [Indexed: 01/20/2023]
Abstract
The calcium-dependent lectins DC-SIGN and DC-SIGNR (collectively termed DC-SIGN/R) bind to high-mannose carbohydrates on a variety of viruses. In contrast, the related lectin LSECtin does not recognize mannose-rich glycans and interacts with a more restricted spectrum of viruses. Here, we analyzed whether these lectins differ in their mode of ligand engagement. LSECtin and DC-SIGNR, which we found to be co-expressed by liver, lymph node and bone marrow sinusoidal endothelial cells, bound to soluble Ebola virus glycoprotein (EBOV-GP) with comparable affinities. Similarly, LSECtin, DC-SIGN and the Langerhans cell-specific lectin Langerin readily bound to soluble human immunodeficiency virus type-1 (HIV-1) GP. However, only DC-SIGN captured HIV-1 particles, indicating that binding to soluble GP is not necessarily predictive of binding to virion-associated GP. Capture of EBOV-GP by LSECtin triggered ligand internalization, suggesting that LSECtin like DC-SIGN might function as an antigen uptake receptor. However, the intracellular fate of lectin-ligand complexes might differ. Thus, exposure to low-pH medium, which mimics the acidic luminal environment in endosomes/lysosomes, released ligand bound to DC-SIGN/R but had no effect on LSECtin interactions with ligand. Our results reveal important differences between pathogen capture by DC-SIGN/R and LSECtin and hint towards different biological functions of these lectins.
Collapse
Affiliation(s)
- Thomas Gramberg
- Institute of Virology, University Hospital Erlangen, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Oo-puthinan S, Maenuma K, Sakakura M, Denda-Nagai K, Tsuiji M, Shimada I, Nakamura-Tsuruta S, Hirabayashi J, Bovin NV, Irimura T. The amino acids involved in the distinct carbohydrate specificities between macrophage galactose-type C-type lectins 1 and 2 (CD301a and b) of mice. Biochim Biophys Acta Gen Subj 2008; 1780:89-100. [DOI: 10.1016/j.bbagen.2007.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 10/16/2007] [Accepted: 10/24/2007] [Indexed: 11/15/2022]
|
217
|
O'Keeffe J, Moran AP. Conventional, regulatory, and unconventional T cells in the immunologic response to Helicobacter pylori. Helicobacter 2008; 13:1-19. [PMID: 18205661 DOI: 10.1111/j.1523-5378.2008.00559.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infection by the gastroduodenal pathogen Helicobacter pylori elicits a complex immunologic response in the mucosa involving neutrophils, plasma cells, eosinophils, and lymphocytes, of which T cells are the principal orchestrators of immunity. While so-called classical T cells (e.g. T-helper cells) that are activated by peptide fragments presented on antigen-presenting cells have received much attention in H. pylori infection, there exists a diverse array of other T cell populations that are potentially important for the outcome of the ensuing immune response, some of which have not been extensively studied in H. pylori infection. Pathogen-specific regulatory T cells that control and prevent the development of immunopathology associated with H. pylori infection have been investigated, but these cells can also benefit the bacterium in helping to prolong the chronicity of the infection by suppressing protective immune responses. An overlooked T cell population, the more recently described Th17 cells, may play a role in H. pylori-induced inflammation, due to triggering responses that ultimately lead to the recruitment of polymorphs, including neutrophils. The so-called innate or unconventional T cells, that include two conserved T cell subsets expressing invariant antigen-specific receptors, the CD1d-restricted natural killer T cells which are activated by glycolipids, and the mucosal-associated invariant T cells which play a role in defense against orally acquired pathogens in the intestinal mucosa, have only begun to receive attention. A greater knowledge of the range of T cell responses induced by H. pylori is required for a deeper understanding of the pathogenesis of this bacterium and its ability to perpetuate chronic infection, and could reveal new strategies for therapeutic exploitation.
Collapse
Affiliation(s)
- Joan O'Keeffe
- Department of Biochemistry, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
218
|
Aarnoudse CA, Bax M, Sánchez-Hernández M, García-Vallejo JJ, van Kooyk Y. Glycan modification of the tumor antigen gp100 targets DC-SIGN to enhance dendritic cell induced antigen presentation to T cells. Int J Cancer 2008; 122:839-46. [PMID: 17957800 DOI: 10.1002/ijc.23101] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DC) have gained much interest in the field of anticancer vaccine development because of their central function in immune regulation. However, the clinical application of ex vivo cultured DC has significant disadvantages. A vaccine that targets dendritic cells in vivo and enhances antigen presentation would be of great benefit. Because of its DC-restricted expression pattern, and its function as an antigen uptake receptor, DC-SIGN is an interesting candidate target structure for human immature DC. Here, we studied whether modification of the melanoma differentiation antigen gp100 with DC-SIGN-interacting glycans enhances targeting to human DC. A high-mannose form of gp100, as protein or as tumor lysate, not only interacted specifically with DC through DC-SIGN but also resulted in an enhanced antigen presentation to gp100-specific CD4(+) T cells. Our results indicate that glycan modification of tumor antigens to target C-type lectin receptors, such as DC-SIGN, is a new way to develop in vivo targeting DC strategies that simultaneously enhance the induction of tumor-specific T cells.
Collapse
Affiliation(s)
- Corlien A Aarnoudse
- Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
219
|
Vannberg FO, Chapman SJ, Khor CC, Tosh K, Floyd S, Jackson-Sillah D, Crampin A, Sichali L, Bah B, Gustafson P, Aaby P, McAdam KPWJ, Bah-Sow O, Lienhardt C, Sirugo G, Fine P, Hill AVS. CD209 genetic polymorphism and tuberculosis disease. PLoS One 2008; 3:e1388. [PMID: 18167547 PMCID: PMC2148105 DOI: 10.1371/journal.pone.0001388] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/31/2007] [Indexed: 01/08/2023] Open
Abstract
Background Tuberculosis causes significant morbidity and mortality worldwide, especially in sub-Saharan Africa. DC-SIGN, encoded by CD209, is a receptor capable of binding and internalizing Mycobacterium tuberculosis. Previous studies have reported that the CD209 promoter single nucleotide polymorphism (SNP)-336A/G exerts an effect on CD209 expression and is associated with human susceptibility to dengue, HIV-1 and tuberculosis in humans. The present study investigates the role of the CD209 -336A/G variant in susceptibility to tuberculosis in a large sample of individuals from sub-Saharan Africa. Methods and Findings A total of 2,176 individuals enrolled in tuberculosis case-control studies from four sub-Saharan Africa countries were genotyped for the CD209 -336A/G SNP (rs4804803). Significant overall protection against pulmonary tuberculosis was observed with the -336G allele when the study groups were combined (n = 914 controls vs. 1262 cases, Mantel-Haenszel 2x2 χ2 = 7.47, P = 0.006, odds ratio = 0.86, 95%CI 0.77–0.96). In addition, the patients with -336GG were associated with a decreased risk of cavitory tuberculosis, a severe form of tuberculosis disease (n = 557, Pearson's 2×2 χ2 = 17.34, P = 0.00003, odds ratio = 0.42, 95%CI 0.27–0.65). This direction of association is opposite to a previously observed result in a smaller study of susceptibility to tuberculosis in a South African Coloured population, but entirely in keeping with the previously observed protective effect of the -336G allele. Conclusion This study finds that the CD209 -336G variant allele is associated with significant protection against tuberculosis in individuals from sub-Saharan Africa and, furthermore, cases with -336GG were significantly less likely to develop tuberculosis-induced lung cavitation. Previous in vitro work demonstrated that the promoter variant -336G allele causes down-regulation of CD209 mRNA expression. Our present work suggests that decreased levels of the DC-SIGN receptor may therefore be protective against both clinical tuberculosis in general and cavitory tuberculosis disease in particular. This is consistent with evidence that Mycobacteria can utilize DC-SIGN binding to suppress the protective pro-inflammatory immune response.
Collapse
Affiliation(s)
- Fredrik O Vannberg
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Recognition of bacterial surface polysaccharides by lectins of the innate immune system and its contribution to defense against infection: the case of pulmonary pathogens. Infect Immun 2007; 76:1322-32. [PMID: 18086817 DOI: 10.1128/iai.00910-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
221
|
Preferential production of IL-12 by peritoneal macrophages activated by liposomes prepared from neoglycolipids containing oligomannose residues. Cytokine 2007; 40:241-50. [DOI: 10.1016/j.cyto.2007.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/03/2007] [Accepted: 10/14/2007] [Indexed: 11/19/2022]
|
222
|
Stern-Ginossar N, Nedvetzki S, Markel G, Gazit R, Betser-Cohen G, Achdout H, Aker M, Blumberg RS, Davis DM, Appelmelk B, Mandelboim O. Intercellular transfer of carcinoembryonic antigen from tumor cells to NK cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:4424-34. [PMID: 17878338 DOI: 10.4049/jimmunol.179.7.4424] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The inhibition of NK cell killing is mainly mediated via the interaction of NK inhibitory receptors with MHC class I proteins. In addition, we have previously demonstrated that NK cells are inhibited in a class I MHC-independent manner via homophilic carcinoembryonic Ag (CEA) cell adhesion molecules (CEACAM1)-CEACAM1 and heterophilic CEACAM1-CEA interactions. However, the cross-talk between immune effector cells and their target cells is not limited to cell interactions per se, but also involves a specific exchange of proteins. The reasons for these molecular exchanges and the functional outcome of this phenomenon are still mostly unknown. In this study, we show that NK cells rapidly and specifically acquire CEA molecules from target cells. We evaluated the role of cytotoxicity in the acquisition of CEA and demonstrated it to be mostly killing independent. We further demonstrate that CEA transfer requires a specific interaction with an unknown putative NK cell receptor and that carbohydrates are probably involved in CEA recognition and acquisition by NK cells. Functionally, the killing of bulk NK cultures was inhibited by CEA-expressing cells, suggesting that this putative receptor is an inhibitory receptor.
Collapse
Affiliation(s)
- Noam Stern-Ginossar
- Lautenberg Center for General and Tumor Immunology, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Paradigms for glycan-binding receptors in cell adhesion. Curr Opin Cell Biol 2007; 19:572-7. [PMID: 17942297 DOI: 10.1016/j.ceb.2007.09.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 09/05/2007] [Indexed: 11/22/2022]
Abstract
Diverse glycans found on the surfaces of mammalian cells provide a basis for selective adhesion between cells mediated by glycan-specific receptors. Well-understood examples of cell adhesion based on such interactions include selectin-mediated rolling of leukocytes on endothelia. Other receptors with similar selectivity for specific sugar epitopes on cell surfaces are being characterised. However, the simple paradigm of adhesion resulting from receptors on one cell binding to glycans on another cell applies in only a limited number of systems. Instead, glycans and receptor-glycan interactions often modulate adhesion in indirect ways, such as by changing the organisation of cell surface glycoproteins and by antagonising the effect of protein adhesion systems.
Collapse
|
224
|
Sabatté J, Ceballos A, Raiden S, Vermeulen M, Nahmod K, Maggini J, Salamone G, Salomón H, Amigorena S, Geffner J. Human seminal plasma abrogates the capture and transmission of human immunodeficiency virus type 1 to CD4+ T cells mediated by DC-SIGN. J Virol 2007; 81:13723-34. [PMID: 17913809 PMCID: PMC2168832 DOI: 10.1128/jvi.01079-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) is expressed by dendritic cells (DCs) at mucosal surfaces and appears to play an important role in the dissemination of human immunodeficiency virus type 1 (HIV-1) infection. DC-SIGN binds HIV-1 gp120 and efficiently transmits the virus to T CD4(+) cells, which become the center of viral replication. Semen represents the main vector for HIV-1 dissemination worldwide. In the present study we show that human seminal plasma (SP), even when used at very high dilutions (1:10(4) to 1:10(5)), markedly inhibits the capture and transmission of HIV-1 to T CD4(+) cells mediated by both DCs and B-THP-1-DC-SIGN cells. In contrast, SP does not inhibit the capture of HIV-1 by DC-SIGN-negative target cells, such as the T-cell line SupT-1, monocytes, and activated peripheral blood mononuclear cells. The SP inhibitor has a high molecular mass (>100 kDa) and directly interacts with DC-SIGN-positive target cells but not with HIV-1. Moreover, the inhibitor binds to concanavalin A, suggesting that it contains high-mannose N-linked carbohydrates. Of note, using biotin-labeled SP we found that the binding of SP components to DCs was abrogated by mannan, while their interaction with B-THP-1 cells was almost completely dependent on the expression of DC-SIGN. Since epithelium integrity is often compromised after vaginal or anal intercourse, as well as in the presence of ulcerative-sexually transmitted diseases, our results support the notion that components of the SP might be able to access to the subepithelium, inhibiting the recognition of HIV-1 gp120 by DC-SIGN-positive DCs.
Collapse
Affiliation(s)
- Juan Sabatté
- National Reference Center for AIDS, Department of Microbiology, Buenos Aires University School of Medicine, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Han DP, Lohani M, Cho MW. Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry. J Virol 2007; 81:12029-39. [PMID: 17715238 PMCID: PMC2168787 DOI: 10.1128/jvi.00315-07] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is caused by a newly emerged coronavirus (CoV) designated SARS-CoV. The virus utilizes angiotensin-converting enzyme 2 (ACE2) as the primary receptor. Although the idea is less clear and somewhat controversial, SARS-CoV is thought to use C-type lectins DC-SIGN and/or L-SIGN (collectively referred to as DC/L-SIGN) as alternative receptors or as enhancer factors that facilitate ACE2-mediated virus infection. In this study, the function of DC/L-SIGN in SARS-CoV infection was examined in detail. The results of our study clearly demonstrate that both proteins serve as receptors independently of ACE2 and that there is a minimal level of synergy between DC/L-SIGN and ACE2. As expected, glycans on spike (S) glycoprotein are important for DC/L-SIGN-mediated virus infection. Site-directed mutagenesis analyses have identified seven glycosylation sites on the S protein critical for DC/L-SIGN-mediated virus entry. They include asparagine residues at amino acid positions 109, 118, 119, 158, 227, 589, and 699, which are distinct from residues of the ACE2-binding domain (amino acids 318 to 510). Amino acid sequence analyses of S proteins encoded by viruses isolated from animals and humans suggest that glycosylation sites N227 and N699 have facilitated zoonotic transmission.
Collapse
Affiliation(s)
- Dong P Han
- Case Western Reserve University School of Medicine, Department of Medicine, Division of Infectious Diseases, 10900 Euclid Avenue, Cleveland, OH 44106-4984, USA
| | | | | |
Collapse
|
226
|
van Vliet SJ, Aarnoudse CA, Broks-van den Berg VCM, Boks M, Geijtenbeek TBH, van Kooyk Y. MGL-mediated internalization and antigen presentation by dendritic cells: A role for tyrosine-5. Eur J Immunol 2007; 37:2075-81. [PMID: 17616966 DOI: 10.1002/eji.200636838] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Professional antigen-presenting cells are essential for the initiation of adaptive immune responses; however, they also play a vital role in the maintenance of tolerance towards self-antigens. C-type lectins can function as antigen receptors by capturing carbohydrate ligands for processing and presentation. Here, we focused on the dendritic cell (DC)-expressed macrophage galactose-type lectin (MGL), a C-type lectin with a unique specificity for terminal GalNAc residues, such as the tumor-associated Tn antigen. Soluble model antigens are efficiently internalized by MGL and subsequently presented to responder CD4+ T cells. The tyrosine-5 residue in the YENF motif, present in the MGL cytoplasmic domain, was essential for the MGL-mediated endocytosis in CHO cells. In conclusion, MGL contributes to the antigen processing and presentation capacities of DC and may provide a suitable target for the initiation of anti-tumor immune responses.
Collapse
Affiliation(s)
- Sandra J van Vliet
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
227
|
Abstract
Several chronic viral infections (such as HIV and hepatitis C virus) are highly prevalent and are a serious health risk. The adaptation of animal viruses to the human host, as recently exemplified by influenza viruses and the severe acute respiratory syndrome coronavirus, is also a continuous threat. There is a high demand, therefore, for new antiviral lead compounds and novel therapeutic concepts. In this Review, an original therapeutic concept for suppressing enveloped viruses is presented that is based on a specific interaction of carbohydrate-binding agents (CBAs) with the glycans present on viral-envelope glycoproteins. This approach may also be extended to other pathogens, including parasites, bacteria and fungi.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
228
|
Marzi A, Mitchell DA, Chaipan C, Fisch T, Doms RW, Carrington M, Desrosiers RC, Pöhlmann S. Modulation of HIV and SIV neutralization sensitivity by DC-SIGN and mannose-binding lectin. Virology 2007; 368:322-30. [PMID: 17659761 DOI: 10.1016/j.virol.2007.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/01/2007] [Accepted: 07/03/2007] [Indexed: 12/17/2022]
Abstract
The C-type lectin DC-SIGN binds to oligosaccharides on the human and simian immunodeficiency virus (HIV, SIV) envelope glycoproteins and promotes infection of susceptible cells. Here, we show that DC-SIGN recognizes glycans involved in SIV sensitivity to neutralizing antibodies and that binding to DC-SIGN confers neutralization resistance to an otherwise sensitive SIV variant. Moreover, we provide evidence that mannose-binding lectin (MBL) can interfere with HIV-1 neutralization by the carbohydrate-specific antibody 2G12.
Collapse
Affiliation(s)
- Andrea Marzi
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
229
|
van Vliet SJ, den Dunnen J, Gringhuis SI, Geijtenbeek TB, van Kooyk Y. Innate signaling and regulation of Dendritic cell immunity. Curr Opin Immunol 2007; 19:435-40. [PMID: 17629469 DOI: 10.1016/j.coi.2007.05.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/23/2007] [Accepted: 05/30/2007] [Indexed: 02/05/2023]
Abstract
Dendritic cells are crucial in pathogen recognition and induction of specific immune responses to eliminate pathogens from the infected host. Host recognition of invading microorganisms relies on evolutionarily conserved, germline-encoded pattern-recognition receptors (PRRs) that are expressed by DCs. The best-characterized PRR family comprises the Toll-like receptors (TLRs) that recognize bacteria or viruses. In addition to TLRs, intracellular Nod-like receptors and the membrane-associated C-type lectins (CLRs) function as PRRs. Many of these innate receptors also have an important function in natural host homeostatic responses, such as the maintenance of gut homeostasis. Clearly, more indications are hinting at a fine-tuning of immune responses by a concerted action of these PRRs on the recognition of pathogen components and the consequent signalling events that are created. It is becoming increasingly clear that these PRRs can initiate specific signalling events that modulate the production of inflammatory cytokines, phagocytosis, intracellular routing of antigen, release of oxidative species and DC maturation and the subsequent development of adaptive immunity. Notably, members within one family of PRRs can trigger opposite signalling features, indicating that the ultimate outcome of pathogen-induced immune responses depends on the pathogen signature and the collective PRRs involved.
Collapse
Affiliation(s)
- Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
230
|
Wilson KT, Crabtree JE. Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology 2007; 133:288-308. [PMID: 17631150 DOI: 10.1053/j.gastro.2007.05.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 05/02/2007] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori infects the stomach of half of the human population worldwide and causes chronic active gastritis, which can lead to peptic ulcer disease, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. The host immune response to the infection is ineffective, because the bacterium persists and the inflammation continues for decades. Bacterial activation of epithelial cells, dendritic cells, monocytes, macrophages, and neutrophils leads to a T helper cell 1 type of adaptive response, but this remains inadequate. The host inflammatory response has a key functional role in disrupting acid homeostasis, which impacts directly on the colonization patterns of H pylori and thus the extent of gastritis. Many potential mechanisms for the failure of the host response have been postulated, and these include apoptosis of epithelial cells and macrophages, inadequate effector functions of macrophages and dendritic cells, VacA inhibition of T-cell function, and suppressive effects of regulatory T cells. Because of the extent of the disease burden, many strategies for prophylactic or therapeutic vaccines have been investigated. The goal of enhancing the host's ability to generate protective immunity has met with some success in animal models, but the efficacy of potential vaccines in humans remains to be demonstrated. Aspects of H pylori immunopathogenesis are reviewed and perspectives on the failure of the host immune response are discussed. Understanding the mechanisms of immune evasion could lead to new opportunities for enhancing eradication and prevention of infection and associated disease.
Collapse
Affiliation(s)
- Keith T Wilson
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0252, USA
| | | |
Collapse
|
231
|
Srinivas O, Larrieu P, Duverger E, Boccaccio C, Bousser MT, Monsigny M, Fonteneau JF, Jotereau F, Roche AC. Synthesis of glycocluster-tumor antigenic peptide conjugates for dendritic cell targeting. Bioconjug Chem 2007; 18:1547-54. [PMID: 17602511 DOI: 10.1021/bc070026g] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of dendritic cells (DC) for the development of therapeutic cancer vaccines is attractive because of their unique ability to present tumor epitopes via the MHC class I pathway to induce cytotoxic CD8+ T lymphocyte responses. C-Type membrane lectins, DC-SIGN and the mannose receptor (MR), present on the DC surface, recognize oligosaccharides containing mannose and/or fucose and mediate sugar-specific endocytosis of synthetic oligolysine-based glycoclusters. We therefore asked whether a glycotargeting approach could be used to induce uptake and presentation of tumor antigens by DC. To this end, we designed and synthesized glycocluster conjugates containing a CD8+ epitope of the Melan-A/Mart-1 melanoma antigen. These glycocluster-Melan-A conjugates were obtained by coupling glycosynthons: oligosaccharyl-pyroglutamyl-beta-alanine derivatives containing either disaccharides, a dimannoside (Manalpha-6Man) or lactoside, or a Lewis oligosaccharide, to Melan-A 16-40 peptide comprising the 26-35 HLA-A2 restricted T cell epitope, extended with an oligolysine stretch at the C-terminal end. We showed by confocal microscopy and flow cytometry that fluorescent-labeled Melan-A glycoclusters containing either dimannoside or Lewis oligosaccharide were taken up by DC and concentrated in acidic vesicles; conversely lactoside glycopeptides were not at all taken up. Furthermore, using surface plasmon resonance, we showed that dimannoside and Lewis-Melan-A conjugates bind MR and DC-SIGN with high affinity. DC loaded with these conjugates, but not with the lactose-Melan-A conjugate, led to an efficient presentation of the Melan-A epitope eliciting a CD8+ T-lymphocyte response. These data suggest that synthetically designed glycocluster-tumor antigen conjugates may induce antigen cross-presentation by DC and represent a promising tool for the development of tumor vaccines.
Collapse
Affiliation(s)
- Oruganti Srinivas
- Glycobiologie, Vectorologie et Traffic Intracellulaire, Centre de Biophysique Moléculaire CNRS, Rue Charles-Sadron, 45071 Orléans, Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Valdivia-Arenas M, Amer A, Henning L, Wewers M, Schlesinger L. Lung infections and innate host defense. ACTA ACUST UNITED AC 2007; 4:73-81. [PMID: 18592001 DOI: 10.1016/j.ddmec.2007.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ma Valdivia-Arenas
- Center for Microbial Interface Biology, Dorothy M. Davis Heart and Lung Research Institute, Divisions of Infectious Diseases and Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | | | | | | | | |
Collapse
|
233
|
Garg R, Trudel N, Tremblay MJ. Consequences of the natural propensity of Leishmania and HIV-1 to target dendritic cells. Trends Parasitol 2007; 23:317-24. [PMID: 17531536 DOI: 10.1016/j.pt.2007.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 03/20/2007] [Accepted: 05/14/2007] [Indexed: 12/16/2022]
Abstract
Recent studies have shown that both Leishmania and HIV type-1 (HIV-1) hijack dendritic cell (DC) functions to escape immune surveillance using an array of elaborate strategies. Leishmania has developed a variety of adaptations to disrupt cellular defense mechanisms, whereas HIV-1 targets DCs to achieve a more efficient dissemination. The capacity of Leishmania and HIV-1 to target DCs through a common cell-surface molecule, namely DC-SIGN (dendritic cell specific ICAM-3-grabbing non-integrin), points to a possible dangerous liaison between these two pathogens. This review explores our knowledge of how Leishmania and HIV-1 interact dynamically with DCs, and how they exploit this cell type for their reciprocal benefit.
Collapse
Affiliation(s)
- Ravendra Garg
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, 2705 Boulevard Laurier, RC-709, Université Laval, Québec, G1V 4G2, Canada
| | | | | |
Collapse
|
234
|
Hong PWP, Nguyen S, Young S, Su SV, Lee B. Identification of the optimal DC-SIGN binding site on human immunodeficiency virus type 1 gp120. J Virol 2007; 81:8325-36. [PMID: 17522223 PMCID: PMC1951277 DOI: 10.1128/jvi.01765-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope (gp120) binding to DC-SIGN, a C-type lectin that can facilitate HIV infection in cis and in trans, is largely dependent on high-mannose-content moieties. Here, we delineate the N-linked glycosylation (N-glycan) sites in gp120 that contribute to optimal DC-SIGN binding. Soluble DC-SIGN was able to block 2G12 binding to gp120, but not vice versa, suggesting that DC-SIGN binds to a more flexible combination of N-glycans than 2G12. Consistent with this observation, HIV strain JRCSF gp120 prebound to 2G12 was 10-fold more sensitive to mannan competition than gp120 that was not prebound in a DC-SIGN cell surface binding assay. The analysis of multiple mutant forms of the 2G12 epitope revealed one triple glycosylation mutant form, termed 134mut (carrying N293Q, N382Q, and N388Q mutations), that exhibited a significant increase in sensitivity to both mannan competition and endoglycosidase H digestion compared to that of the 124mut form (carrying N293Q, N328Q, and N388Q mutations) and wild-type gp120 in a DC-SIGN binding assay. Importantly, no such differences were observed when binding to Galanthus nivalis was assessed. The 134mut form of gp120 also exhibited decreased binding to DC-SIGN in the context of native envelope spikes on a virion, and virus bearing 134mut exhibited less efficient DC-SIGN-mediated infection in trans. Significantly, 124mut and 134mut differed by only one glycosylation site mutation in each construct, and both 124mut and 134mut viruses exhibited wild-type levels of infectivity when used in a direct infection assay. In summary, while DC-SIGN can bind to a flexible combination of N-glycans on gp120, its optimal binding site overlaps with specific N-glycans within the 2G12 epitope. Conformationally intact envelopes that are DC-SIGN binding deficient can be used to probe the in vivo biological functions of DC-SIGN.
Collapse
Affiliation(s)
- Patrick W-P Hong
- Department of Microbiology, Immunology, and Molecular Genetics, 3825 MSB, UCLA, 609 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
235
|
Cambi A, Lidke DS, Arndt-Jovin DJ, Figdor CG, Jovin TM. Ligand-conjugated quantum dots monitor antigen uptake and processing by dendritic cells. NANO LETTERS 2007; 7:970-7. [PMID: 17388641 DOI: 10.1021/nl0700503] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dendritic cell (DC) specific pathogen-uptake receptor (DC-SIGN) internalizes antigens for degradation and presentation onto MHC molecules. At the cell membrane, DC-SIGN forms nanoclusters that facilitate virus capture. However, internalized viruses, such as HIV-1, escape degradation. Here, we exploit ligand-conjugated, virus-sized, highly photostable quantum dots (QDs) to monitor in living cells antigen binding, entry, and trafficking. The antigen-coated QDs specific uptake and persistence in live DCs open the possibility for tracking antigen-presenting cells in vivo.
Collapse
Affiliation(s)
- Alessandra Cambi
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
236
|
Wang J, Zhang Y, Wei J, Zhang X, Zhang B, Zhu Z, Zou W, Wang Y, Mou Z, Ni B, Wu Y. Lewis X oligosaccharides targeting to DC-SIGN enhanced antigen-specific immune response. Immunology 2007; 121:174-82. [PMID: 17371544 PMCID: PMC2265933 DOI: 10.1111/j.1365-2567.2007.02554.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic cell-specific intercellular-adhesion-molecule-grabbing non-integrin (DC-SIGN) is a potential target receptor for vaccination purposes. In the present study, we employed Lewis X (Le(x)) oligosaccharides, which mimic natural ligands, to target ovalbumin (OVA) to human dendritic cells (DCs) via DC-SIGN, to investigate the effect of this DC-SIGN-targeting strategy on the OVA-specific immune response. We demonstrated that Le(x) oligosaccharides could enhance the OVA-specific immune response as determined by enzyme-linked immunospot assay (ELISPOT), intracellular interferon-gamma staining and (51)Cr-release assay. An almost 300-fold lower dose of Le(x)-OVA induced balanced interferon-gamma-secreting cells compared to OVA alone. Furthermore, secretion of interleukin-10, a reported mediator of immune suppression related to DC-SIGN, was not increased by Le(x)-OVA, either alone or together with sCD40L-stimulated groups. A blocking antibody against DC-SIGN (12507) reduced the numbers of interferon-gamma-secreting cells during Le(x)-OVA stimulation, yet it did not prevent Le(x) oligosaccharides from promoting the secretion of interleukin-10 that was induced by ultra-pure lipopolysaccharide. These results suggested that the strategy of DC-SIGN targeting mediated by Le(x) oligosaccharides could promote a T-cell response. This DC-targeting may imply a novel vaccination strategy.
Collapse
Affiliation(s)
- Jingxue Wang
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Yongmin Zhang
- Ecole Normale Supérieure, Département de Chimie, CNRS UMR 8642Paris, France
| | - Jing Wei
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Xiaoping Zhang
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Bei Zhang
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Zhenyuan Zhu
- Ecole Normale Supérieure, Département de Chimie, CNRS UMR 8642Paris, France
| | - Wei Zou
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Yiqin Wang
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Zhirong Mou
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Bin Ni
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| | - Yuzhang Wu
- Institute of Immunology PLA, The Third Military Medical UniversityChongqing, China
| |
Collapse
|
237
|
Boily-Larouche G, Zijenah LS, Mbizvo M, Ward BJ, Roger M. DC-SIGN and DC-SIGNR genetic diversity among different ethnic populations: potential implications for pathogen recognition and disease susceptibility. Hum Immunol 2007; 68:523-30. [PMID: 17509452 PMCID: PMC7115417 DOI: 10.1016/j.humimm.2007.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/04/2007] [Accepted: 02/08/2007] [Indexed: 11/23/2022]
Abstract
Dendritic cell–specific intracellular adhesion molecule-3–grabbing nonintegrin (DC-SIGN) and DC-SIGNR are C-type lectins that serve both as cell adhesion and pathogen recognition receptors. Because of the essential role of the these molecules in the immune response, the implication of their alleles in human disease states, and the possible genetic variation at these loci among ethnically diverse populations, we undertook a study to analyze the full extent of DC-SIGN and DC-SIGNR polymorphisms in Caucasian Canadian and indigenous African populations. We report several novel nucleotide variants within regulatory 5′- and 3′-untranslated regions of the genes that could affect their transcription and translation. There were significant differences in the distribution of DC-SIGN and DC-SIGNR alleles among African and non-African populations. Finally, our study clearly demonstrates that Africans show greater genetic diversity at these two closely-related immune loci than observed in other major population groups. The differences may reflect evolutionary pressures generated by environmental factors, such as prevalent pathogens in these geographically distinct regions. Further studies will be needed to determine the net impact of DC-SIGN and DC-SIGNR genetic variants on the expression, translation, and function of the proteins and to understand how these functional polymorphisms may affect immune responses or immune escape.
Collapse
Affiliation(s)
- Geneviève Boily-Larouche
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Lynn S. Zijenah
- Department of Immunology, University of Zimbabwe, Harare, Zimbabwe
| | - Mike Mbizvo
- World Health Organization, Geneva, Switzerland
| | - Brian J. Ward
- Research Institute of the McGill University Health Center, Montréal, Québec, Canada
| | - Michel Roger
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
- Corresponding author. Fax: (514) 412-7512.
| |
Collapse
|
238
|
Reina JJ, Maldonado OS, Tabarani G, Fieschi F, Rojo J. Mannose Glycoconjugates Functionalized at Positions 1 and 6. Binding Analysis to DC-SIGN Using Biosensors. Bioconjug Chem 2007; 18:963-9. [PMID: 17348701 DOI: 10.1021/bc060369z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The design of glycoconjugates to allow the generation of multivalent ligands capable of interacting with the receptor DC-SIGN is a topic of high interest due to the role played by this lectin in pathogen infections. Mannose, a ligand of this lectin, could be conjugated at two different positions, 1 and 6, not implicated in the binding process. We have prepared mannose conjugates at these two positions with a long spacer to allow their attachment to a biosensor chip surface. Analysis of the interaction between these surfaces and the tetravalent extracellular domain (ECD) of DC-SIGN by SPR biosensor has demonstrated that both positions are available for this conjugation without affecting the protein binding process. These results emphasize the possibility to conjugate mannose at position 6, allowing the incorporation of hydrophobic groups at the anomeric position to interact with hydrophobic residues in the carbohydrate recognition domain of DC-SIGN, increasing binding affinities. This fact is relevant for the future design of new ligands and the corresponding multivalent systems for DC-SIGN.
Collapse
Affiliation(s)
- José J Reina
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain
| | | | | | | | | |
Collapse
|
239
|
Buzás EI, György B, Pásztói M, Jelinek I, Falus A, Gabius HJ. Carbohydrate recognition systems in autoimmunity. Autoimmunity 2007; 39:691-704. [PMID: 17178566 DOI: 10.1080/08916930601061470] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The immune system is a complex functional network of diverse cells and soluble molecules orchestrating innate and adaptive immunity. Biological information, to run these intricate interactions, is not only stored in protein sequences but also in the structure of the glycan part of the glycoconjugates. The spatially accessible carbohydrate structures that contribute to the cell's glycome are decoded by versatile recognition systems in order to maintain the immune homeostasis of an organism. Microbial carbohydrate structures are recognized by pathogen associated molecular pattern (PAMP) receptors of innate immunity including C-type lectins such as MBL, the tandem-repeat-type macrophage mannose receptor, DC-SIGN or dectin-1 of dendritic cells, certain TLRS or the TCR of NKT cells. Natural autoantibodies, a long known effector branch of this network-based operation, are effective to home in on non-self and self-glycosylation also. The recirculating pool of mammalian immune cells is recruited to inflammatory sites by a reaction pathway involving the self-carbohydrate-binding selectins as initial recognition step. Galectins, further key sensors reading the high-density sugar code, exert regulatory functions on activated T cells, among other activities. Autoimmune diseases are being associated with defined changes of glycosylation. This correlation deserves to be thoroughly studied on the levels of structural mimicry and dysregulation as well as effector molecules to devise innovative anti-inflammatory strategies. This review briefly summarizes data on sensor systems for carbohydrate epitopes and implications for autoimmunity.
Collapse
Affiliation(s)
- Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
240
|
Bishop JR, Gagneux P. Evolution of carbohydrate antigens--microbial forces shaping host glycomes? Glycobiology 2007; 17:23R-34R. [PMID: 17237137 DOI: 10.1093/glycob/cwm005] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many glycans show remarkably discontinuous distribution across evolutionary lineages. These differences play major roles when organisms belonging to different lineages interact as host-pathogen or host-symbiont. Certain lineage-specific glycans have become important signals for multicellular host organisms, which use them as molecular signatures of their pathogens and symbionts through recognition by a toolkit of innate defense molecules. In turn, pathogens have evolved to exploit host lineage-specific glycans and are constantly shaping the glycomes of their hosts. These interactions take place in the face of numerous critical endogenous functions played by glycans within host organisms. Whether due to simple evolutionary divergence or adaptive changes under natural selection resulting from endogenous functional requirements, once different lineages elaborate on differential glycomes these mutual differences provide opportunities for host exploitation and/or pathogen defense between lineages. Such phylogenetic molecular recognition mechanisms will augment and likely contribute to the maintenance of lineage-specific differences in glycan repertoires.
Collapse
Affiliation(s)
- Joseph R Bishop
- Glycobiology Research and Training Center, Cellular and Molecular Medicine-East, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0687, USA
| | | |
Collapse
|
241
|
Ikeda Y, Adachi Y, Ishii T, Tamura H, Aketagawa J, Tanaka S, Ohno N. Blocking Effect of Anti-Dectin-1 Antibodies on the Anti-tumor Activity of 1,3-.BETA.-Glucan and the Binding of Dectin-1 to 1,3-.BETA.-Glucan. Biol Pharm Bull 2007; 30:1384-9. [PMID: 17666790 DOI: 10.1248/bpb.30.1384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Schizophyllan (SPG) is used to treat cervical cancer in combination with irradiation to enhance the immunological surveillance system. Dectin-1 is a cell surface receptor for 1,3-beta-glucan. In this study, we prepared two anti-Dectin-1 monoclonal antibodies, 4B2 and SC30 having a K(D) of 7.04 x 10(-8) M and 1.55 x 10(-7) M, respectively, and evaluated the role of Dectin-1 in SPG-induced anti-tumor activity in mice. Expression of Dectin-1 on peritoneal macrophages and binding of SPG to the cells were decreased by administration of 4B2 and SC30. SPG-mediated anti-tumor activity was inhibited by 4B2 and SC30. 4B2 and SC30 inhibited the binding of SPG to splenocytes from mice. The binding of SPG-biotin to Dectin-1-transfected HEK293 cells was inhibited by 4B2, but not SC30. 4B2 and SC30 differ in their influence on Dectin-1 between primary cells and transduced cells, and Dectin-1 effects 1,3-beta-glucan-mediated anti-tumor activity in mice by binding to SPG.
Collapse
Affiliation(s)
- Yoshihiko Ikeda
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | | | | | |
Collapse
|
242
|
Feinberg H, Castelli R, Drickamer K, Seeberger PH, Weis WI. Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins. J Biol Chem 2006; 282:4202-9. [PMID: 17150970 PMCID: PMC2277367 DOI: 10.1074/jbc.m609689200] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dendritic cell surface receptor DC-SIGN and the closely related endothelial cell receptor DC-SIGNR specifically recognize high mannose N-linked carbohydrates on viral pathogens. Previous studies have shown that these receptors bind the outer trimannose branch Manalpha1-3[Manalpha1-6]Manalpha present in high mannose structures. Although the trimannoside binds to DC-SIGN or DC-SIGNR more strongly than mannose, additional affinity enhancements are observed in the presence of one or more Manalpha1-2Manalpha moieties on the nonreducing termini of oligomannose structures. The molecular basis of this enhancement has been investigated by determining crystal structures of DC-SIGN bound to a synthetic six-mannose fragment of a high mannose N-linked oligosaccharide, Manalpha1-2Manalpha1-3[Manalpha1-2Manalpha1-6]Manalpha1-6Man and to the disaccharide Manalpha1-2Man. The structures reveal mixtures of two binding modes in each case. Each mode features typical C-type lectin binding at the principal Ca2+-binding site by one mannose residue. In addition, other sugar residues form contacts unique to each binding mode. These results suggest that the affinity enhancement displayed toward oligosaccharides decorated with the Manalpha1-2Manalpha structure is due in part to multiple binding modes at the primary Ca2+ site, which provide both additional contacts and a statistical (entropic) enhancement of binding.
Collapse
Affiliation(s)
- Hadar Feinberg
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Riccardo Castelli
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zurich, Wolfgang Pauli Strasse 10, CH 8093 Zurich, Switzerland
| | - Kurt Drickamer
- Division of Molecular Biosciences, Biochemistry Building, Imperial College, London SW7 2AZ, United Kingdom
| | - Peter H. Seeberger
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zurich, Wolfgang Pauli Strasse 10, CH 8093 Zurich, Switzerland
| | - William I. Weis
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
243
|
Algood HMS, Cover TL. Helicobacter pylori persistence: an overview of interactions between H. pylori and host immune defenses. Clin Microbiol Rev 2006; 19:597-613. [PMID: 17041136 PMCID: PMC1592695 DOI: 10.1128/cmr.00006-06] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is a gram-negative bacterium that persistently colonizes more than half of the global human population. In order to successfully colonize the human stomach, H. pylori must initially overcome multiple innate host defenses. Remarkably, H. pylori can persistently colonize the stomach for decades or an entire lifetime despite development of an acquired immune response. This review focuses on the immune response to H. pylori and the mechanisms by which H. pylori resists immune clearance. Three main sections of the review are devoted to (i) analysis of the immune response to H. pylori in humans, (ii) analysis of interactions of H. pylori with host immune defenses in animal models, and (iii) interactions of H. pylori with immune cells in vitro. The topics addressed in this review are important for understanding how H. pylori resists immune clearance and also are relevant for understanding the pathogenesis of diseases caused by H. pylori (peptic ulcer disease, gastric adenocarcinoma, and gastric lymphoma).
Collapse
Affiliation(s)
- Holly M Scott Algood
- Division of Infectious Diseases, A2200 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
244
|
Bogoevska V, Nollau P, Lucka L, Grunow D, Klampe B, Uotila LM, Samsen A, Gahmberg CG, Wagener C. DC-SIGN binds ICAM-3 isolated from peripheral human leukocytes through Lewis x residues. Glycobiology 2006; 17:324-33. [PMID: 17145745 DOI: 10.1093/glycob/cwl073] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intercellular adhesion molecule-3 (ICAM-3) binds to the alpha(L)beta(2) integrin and mediates the contact between T cells and antigen-presenting cells. It has been suggested that dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN), a C-type lectin of macrophages and DCs, is an additional ligand of ICAM-3. So far, the glycan structure mediating the interaction of native ICAM-3 with DC-SIGN is undefined. Here, we demonstrate that native ICAM-3 from human peripheral leukocytes binds recombinant DC-SIGN, is recognized by monoclonal Lewis x antibodies, and specifically interacts with DC-SIGN on immature DCs. The presence of Lewis x residues on ICAM-3 was confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy. Investigations on different peripheral blood cell populations revealed that only ICAM-3 from granulocytes bound DC-SIGN. Cotransfection studies demonstrated that fucosyltransferase (FUT) IX and, to a significantly lesser extent, FUT IV, but not FUTs III and VII, mediate the synthesis of Lewis x residues on ICAM-3. These findings indicate that FUT IX is the main FUT mediating the synthesis of Lewis x residues of ICAM-3 in cells of the myeloid lineage, and that these residues bind DC-SIGN. The results suggest that ICAM-3 assists in the interaction of granulocytes with DC-SIGN of DCs.
Collapse
Affiliation(s)
- Valentina Bogoevska
- Institut für Klinische Chemie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
van Liempt E, Bank CMC, Mehta P, Garciá-Vallejo JJ, Kawar ZS, Geyer R, Alvarez RA, Cummings RD, Kooyk YV, van Die I. Specificity of DC-SIGN for mannose- and fucose-containing glycans. FEBS Lett 2006; 580:6123-31. [PMID: 17055489 DOI: 10.1016/j.febslet.2006.10.009] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 11/19/2022]
Abstract
The dendritic cell specific C-type lectin dendritic cell specific ICAM-3 grabbing non-integrin (DC-SIGN) binds to "self" glycan ligands found on human cells and to "foreign" glycans of bacterial or parasitic pathogens. Here, we investigated the binding properties of DC-SIGN to a large array of potential ligands in a glycan array format. Our data indicate that DC-SIGN binds with K(d)<2muM to a neoglycoconjugate in which Galbeta1-4(Fucalpha1-3)GlcNAc (Le(x)) trisaccharides are expressed multivalently. A lower selective binding was observed to oligomannose-type N-glycans, diantennary N-glycans expressing Le(x) and GalNAcbeta1-4(Fucalpha1-3)GlcNAc (LacdiNAc-fucose), whereas no binding was observed to N-glycans expressing core-fucose linked either alpha1-6 or alpha1-3 to the Asn-linked GlcNAc of N-glycans. These results demonstrate that DC-SIGN is selective in its recognition of specific types of fucosylated glycans and subsets of oligomannose- and complex-type N-glycans.
Collapse
Affiliation(s)
- Ellis van Liempt
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorstsraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Abstract
The mucosal lining of the respiratory and digestive systems contains the largest and most complex immune system in the body, but surprisingly little is known of the immune system that serves the oral mucosa. This review focuses on dendritic cells, particularly powerful arbiters of immunity, in response to antigens of microbial or tumor origin, but also of tolerance to self-antigens and commensal microbes. Although first discovered in 1868, the epidermal dendritic Langerhans cells remained enigmatic for over a century, until they were identified as the most peripheral outpost of the immune system. Investigators' ability to isolate, enrich, and culture dendritic cells has led to an explosion in the field. Presented herein is a review of dendritic cell history, ontogeny, function, and phenotype, and the role of different dendritic cell subsets in the oral mucosa and its diseases. Particular emphasis is placed on the mechanisms of recognition and capture of microbes by dendritic cells. Also emphasized is how dendritic cells may regulate immunity/tolerance in response to oral microbes.
Collapse
Affiliation(s)
- C W Cutler
- Department of Periodontics, 110 Rockland Hall, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794-8703, USA.
| | | |
Collapse
|
247
|
Abstract
The gastric mucosa separates the underlying tissue from the vast array of antigens that traffic through the stomach lumen. While the extreme pH of this environment is essential in aiding the activation of enzymes and food digestion, it also renders the gastric epithelium free from bacterial colonization, with the exception of one important human pathogen, H pylori. This bacterium has developed mechanisms to survive the harsh environment of the stomach, actively move through the mucosal layer, attach to the epithelium, evade immune responses, and achieve persistent colonization. While a hallmark of this infection is a marked inflammatory response with the infiltration of various immune cells into the infected gastric mucosa, the host immune response is unable to clear the infection and may actually contribute to the associated pathogenesis. Here, we review the host responses involved during infection with H pylori and how they are influenced by this bacterium.
Collapse
|
248
|
Abstract
Fucosylated carbohydrate structures are involved in a variety of biological and pathological processes in eukaryotic organisms including tissue development, angiogenesis, fertilization, cell adhesion, inflammation, and tumor metastasis. In contrast, fucosylation appears less common in prokaryotic organisms and has been suggested to be involved in molecular mimicry, adhesion, colonization, and modulating the host immune response. Fucosyltransferases (FucTs), present in both eukaryotic and prokaryotic organisms, are the enzymes responsible for the catalysis of fucose transfer from donor guanosine-diphosphate fucose to various acceptor molecules including oligosaccharides, glycoproteins, and glycolipids. To date, several subfamilies of mammalian FucTs have been well characterized; these enzymes are therefore delineated and used as models. Non-mammalian FucTs that possess different domain construction or display distinctive acceptor substrate specificity are highlighted. It is noteworthy that the glycoconjugates from plants and schistosomes contain some unusual fucose linkages, suggesting the presence of novel FucT subfamilies as yet to be characterized. Despite the very low sequence homology, striking functional similarity is exhibited between mammalian and Helicobacter pylori alpha1,3/4 FucTs, implying that these enzymes likely share a conserved mechanistic and structural basis for fucose transfer; such conserved functional features might also exist when comparing other FucT subfamilies from different origins. Fucosyltranferases are promising tools used in synthesis of fucosylated oligosaccharides and glycoconjugates, which show great potential in the treatment of infectious and inflammatory diseases and tumor metastasis.
Collapse
Affiliation(s)
- Bing Ma
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
249
|
van Vliet SJ, van Liempt E, Geijtenbeek TBH, van Kooyk Y. Differential regulation of C-type lectin expression on tolerogenic dendritic cell subsets. Immunobiology 2006; 211:577-85. [PMID: 16920496 DOI: 10.1016/j.imbio.2006.05.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antigen presenting cells (APC) express high levels of C-type lectins, which play a major role in cellular interactions as well as pathogen recognition and antigen presentation. The C-type lectin macrophage galactose-type lectin (MGL), expressed by dendritic cells (DC) and macrophages, mediates binding to glycoproteins and lipids that contain terminal GalNAc moieties. To investigate MGL expression patterns in more detail, we generated two new monoclonal antibodies and set up a quantitative real-time PCR analysis to determine MGL mRNA levels. MGL is not expressed by blood-resident plasmacytoid DC and thus represents an exclusive marker for myeloid-type APC. Dexamethasone treatment upregulated MGL expression on DC both at the protein and mRNA level in a time- and dose-dependent manner. In contrast, DC generated in the presence of IL-10 did not display enhanced MGL levels. Furthermore, dexamethasone and IL-10 also differentially regulated expression of other C-type lectins, such as DC-SIGN and Mannose Receptor. Our results demonstrate that depending on the local microenvironment, DC can adopt different C-type lectin profiles, which could have major influences on cell-cell interactions, antigen uptake and presentation.
Collapse
Affiliation(s)
- Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
250
|
Shreffler WG, Castro RR, Kucuk ZY, Charlop-Powers Z, Grishina G, Yoo S, Burks AW, Sampson HA. The Major Glycoprotein Allergen from Arachis hypogaea, Ara h 1, Is a Ligand of Dendritic Cell-Specific ICAM-Grabbing Nonintegrin and Acts as a Th2 Adjuvant In Vitro. THE JOURNAL OF IMMUNOLOGY 2006; 177:3677-85. [PMID: 16951327 DOI: 10.4049/jimmunol.177.6.3677] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nonmammalian glycan structures from helminths act as Th2 adjuvants. Some of these structures are also common on plant glycoproteins. We hypothesized that glycan structures present on peanut glycoallergens act as Th2 adjuvants. Peanut Ag (PNAg), but not deglycosylated PNAg, activated monocyte-derived dendritic cells (MDDCs) as measured by MHC/costimulatory molecule up-regulation, and by their ability to drive T cell proliferation. Furthermore, PNAg-activated MDDCs induced 2- to 3-fold more IL-4- and IL-13-secreting Th2 cells than immature or TNF/IL-1-activated MDDCs when cultured with naive CD4+ T cells. Human MDDCs rapidly internalized Ag in a calcium- and glycan-dependent manner consistent with recognition by C-type lectin. Dendritic cell (DC)-specific ICAM-grabbing nonintegrin (DC-SIGN) (CD209) was shown to recognize PNAg by enhanced uptake in transfected cell lines. To identify the DC-SIGN ligand from unfractionated PNAg, we expressed the extracellular portion of DC-SIGN as an Fc-fusion protein and used it to immunoprecipitate PNAg. A single glycoprotein was pulled down in a calcium-dependent manner, and its identity as Ara h 1 was proven by immunolabeling and mass spectrometry. Purified Ara h 1 was found to be sufficient for the induction of MDDCs that prime Th2-skewed T cell responses. Both PNAg and purified Ara h 1 induced Erk 1/2 phosphorylation of MDDCs, consistent with previous reports on the effect of Th2 adjuvants on DCs.
Collapse
Affiliation(s)
- Wayne G Shreffler
- Jaffe Food Allergy Institute, Department of Pediatrics, Division of Allergy and Immunology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|