201
|
Tayeh Z, Ofir R. Asteriscus graveolens Extract in Combination with Cisplatin/Etoposide/Doxorubicin Suppresses Lymphoma Cell Growth through Induction of Caspase-3 Dependent Apoptosis. Int J Mol Sci 2018; 19:ijms19082219. [PMID: 30061495 PMCID: PMC6122010 DOI: 10.3390/ijms19082219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/25/2018] [Accepted: 07/28/2018] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy drugs action against cancer is not selective, lead to adverse reactions and drug resistance. Combination therapies have proven more effective in defeating cancers. We hypothesize that plant extract/fraction contains many/several compounds and as such can target multiple pathways as cytotoxic agent and may also have chemo sensitizing activities. We designed a study in which, Asteriscus graveolens (Forssk.) Less (A. graveolens)-derived fraction that contains sesquiterpene lactone asteriscunolide isomers (AS) will be tested in combination with known chemotherapy drugs. Successful combination will permit to reduce chemotherapy drugs concentration and still get the same impact on cancer cells. Sesquiterpene lactone such as asteriscunolide isomers is a naturally occurring compound found in a variety of fruits, vegetables, and medicinal plants with anti-cancer properties. The experiments presented here showed that adding plant fraction containing AS permit reducing the concentration of cisplatin/etoposide/doxorubicin in order to reduce mouse BS-24-1 lymphoma cells (BS-24-1 cells) survival. It involved enhancing the production of Reactive Oxygen Species (ROS), activation of caspase-3 and inhibition of Topoisomerase I activity. Taken together, the results suggest that A. graveolens fraction sensitized BS-24-1 cells to cisplatin/etoposide/doxorubicin through induction of ROS and caspase-3-dependent apoptosis.
Collapse
Affiliation(s)
- Zainab Tayeh
- Dead Sea & Arava Science Center, Sapir 868215, Israel.
- French Assoc. Inst. for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.
| | - Rivka Ofir
- Dead Sea & Arava Science Center, Sapir 868215, Israel.
- Regenerative Medicine &Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
202
|
Schelhaas S, Wachsmuth L, Hermann S, Rieder N, Heller A, Heinzmann K, Honess DJ, Smith DM, Fricke IB, Just N, Doblas S, Sinkus R, Döring C, Schäfers KP, Griffiths JR, Faber C, Schneider R, Aboagye EO, Jacobs AH. Thymidine Metabolism as a Confounding Factor for 3'-Deoxy-3'- 18F-Fluorothymidine Uptake After Therapy in a Colorectal Cancer Model. J Nucl Med 2018; 59:1063-1069. [PMID: 29476002 DOI: 10.2967/jnumed.117.206250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Noninvasive monitoring of tumor therapy response helps in developing personalized treatment strategies. Here, we performed sequential PET and diffusion-weighted MRI to evaluate changes induced by a FOLFOX-like combination chemotherapy in colorectal cancer xenografts, to identify the cellular and molecular determinants of these imaging biomarkers. Methods: Tumor-bearing CD1 nude mice, engrafted with FOLFOX-sensitive Colo205 colorectal cancer xenografts, were treated with FOLFOX (5-fluorouracil, leucovorin, and oxaliplatin) weekly. On days 1, 2, 6, 9, and 13 of therapy, tumors were assessed by in vivo imaging and ex vivo analyses. In addition, HCT116 xenografts, which did not respond to the FOLFOX treatment, were imaged on day 1 of therapy. Results: In Colo205 xenografts, FOLFOX induced a profound increase in uptake of the proliferation PET tracer 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) accompanied by increases in markers for proliferation (Ki-67, thymidine kinase 1) and for activated DNA damage response (γH2AX), whereas the effect on cell death was minimal. Because tracer uptake was unaltered in the HCT116 model, these changes appear to be specific for tumor response. Conclusion: We demonstrated that 18F-FLT PET can noninvasively monitor cancer treatment-induced molecular alterations, including thymidine metabolism and DNA damage response. The cellular or imaging changes may not, however, be directly related to therapy response as assessed by volumetric measurements.
Collapse
Affiliation(s)
- Sonja Schelhaas
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Natascha Rieder
- Pathology and Tissue Analytics, Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Astrid Heller
- Pathology and Tissue Analytics, Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Kathrin Heinzmann
- Comprehensive Cancer Imaging Centre, Imperial College London, London, United Kingdom
| | - Davina J Honess
- Cancer Research U.K. Cambridge Institute, Cambridge, United Kingdom
| | | | - Inga B Fricke
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Nathalie Just
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | - Sabrina Doblas
- Laboratory of Imaging Biomarkers, UMR 1149-CRI, INSERM, Paris Diderot University, Paris, France
| | - Ralph Sinkus
- Imaging Sciences and Biomedical Engineering Division, Kings College, London, United Kingdom
| | - Christian Döring
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Klaus P Schäfers
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - John R Griffiths
- Cancer Research U.K. Cambridge Institute, Cambridge, United Kingdom
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Münster, Münster, Germany
| | | | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, London, United Kingdom
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany
| |
Collapse
|
203
|
Hu Y, Zhu QN, Deng JL, Li ZX, Wang G, Zhu YS. Emerging role of long non-coding RNAs in cisplatin resistance. Onco Targets Ther 2018; 11:3185-3194. [PMID: 29881292 PMCID: PMC5983019 DOI: 10.2147/ott.s158104] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cisplatin (CDDP) is one of the most commonly used chemotherapy drugs for the treatment of various cancers. Although platinum-based therapies are highly efficacious against rapidly proliferating malignant tumors, the development of CDDP resistance results in significant relapse as well as decreased overall survival rates, which is a significant obstacle in CDDP-based cancer therapy. Long non-coding RNAs (lncRNAs) are involved in cancer development and progression by the regulation of processes related to chromatin remodeling, transcription, and posttranscriptional processing. Emerging evidence has recently highlighted the roles of lncRNAs in the development of CDDP resistance. In this review, we discuss the roles and mechanisms of lncRNAs in CDDP chemoresistance, including changes in cellular uptake or efflux of a drug, intracellular detoxification, DNA repair, apoptosis, autophagy, cell stemness, and the related signaling pathways, aiming to provide potential lncRNA-targeted strategies for overcoming drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Yang Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, People's Republic of China
| | - Qiong-Ni Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, People's Republic of China
| | - Jun-Li Deng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, People's Republic of China
| | - Zhi-Xing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, People's Republic of China
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, People's Republic of China
| | - Yuan-Shan Zhu
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
204
|
Yang C, Bromma K, Sung W, Schuemann J, Chithrani D. Determining the Radiation Enhancement Effects of Gold Nanoparticles in Cells in a Combined Treatment with Cisplatin and Radiation at Therapeutic Megavoltage Energies. Cancers (Basel) 2018; 10:cancers10050150. [PMID: 29786642 PMCID: PMC5977123 DOI: 10.3390/cancers10050150] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022] Open
Abstract
Combined use of chemotherapy and radiation therapy is commonly used in cancer treatment, but the toxic effects on normal tissue are a major limitation. This study assesses the potential to improve radiation therapy when combining gold nanoparticle (GNP) mediated radiation sensitization with chemoradiation compared to chemoradiation alone. Incorporation of GNPs with 2 Gy, 6 MV (megavoltage) radiation resulted in a 19 ± 6% decrease in survival of MDA-MB-231 cells. Monte-Carlo simulations were performed to assess dosimetric differences in the presence of GNPs in radiation. The results show that physics dosimetry represents a small fraction of the observed effect. The survival fraction of the cells exposed to GNPs, cisplatin, and radiation was 0.16 ± 0.007, while cells treated with cisplatin and radiation only was 0.23 ± 0.011. The presence of GNPs resulted in a 30 ± 6% decrease in the survival, having an additive effect. The concentration of the GNPs and free drug used for this study was 0.3 and 435 nM, respectively. These concentrations are relatively lower and achievable in an in vivo setting. Hence, the results of our study would accelerate the incorporation of GNP-mediated chemoradiation into current cancer therapeutic protocols in the near future.
Collapse
Affiliation(s)
- Celina Yang
- Department of Biomedical Physics, Ryerson University, Toronto, ON M5B 2K3, Canada.
| | - Kyle Bromma
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Wonmo Sung
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Devika Chithrani
- Department of Biomedical Physics, Ryerson University, Toronto, ON M5B 2K3, Canada.
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
205
|
Coelho A, Nogueira A, Soares S, Assis J, Pereira D, Bravo I, Catarino R, Medeiros R. TP53 Arg72Pro polymorphism is associated with increased overall survival but not response to therapy in Portuguese/Caucasian patients with advanced cervical cancer. Oncol Lett 2018; 15:8165-8171. [PMID: 29731921 DOI: 10.3892/ol.2018.8354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/09/2018] [Indexed: 11/05/2022] Open
Abstract
Identification of mechanisms that influence the therapeutic response and survival in patients with cancer is important. It is known that the genetic variability of the host, including presence of genetic polymorphisms in genes involved in DNA damage response, serves a crucial role in the prognosis of these patients. The present hospital-based retrospective cohort study aimed to evaluate the influence of TP53 Arg72Pro (rs1042522) polymorphism in the clinical outcome of 260 Caucasian patients diagnosed with cervical cancer and treated with concomitant radiotherapy and chemotherapy. The polymorphism genotyping was assessed using allelic discrimination by quantiative polymerase chain reaction. The results indicate that the TP53 Arg72Pro polymorphism did not significantly impact the response to therapy (P=0.571) nor disease-free survival (P=0.081). However, the polymorphism did influence overall survival, as increased median survival time was observed for patients carrying Arg/Pro genotype when compared with patients with Arg/Arg and Pro/Pro genotypes (126 months vs. 111 months, respectively; P=0.047). To conclude, the present findings suggest that a pharmacogenomic profile based on the genetic background of patients, including the analysis of the TP53 genotypes, may individualize treatment nad assist in the selection of therapies that may improve clinical outcome and lower toxicity for the patients.
Collapse
Affiliation(s)
- Ana Coelho
- Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Augusto Nogueira
- Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sílvia Soares
- Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Joana Assis
- Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Deolinda Pereira
- Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal.,Oncology Department, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Isabel Bravo
- Medical Physics, Radiobiology and Radioprotection Group, Portuguese Oncology Institute of Porto-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Raquel Catarino
- Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.,CEBIMED, Faculty of Health Sciences of Fernando Pessoa University, 4249-004 Porto, Portugal.,Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
206
|
Bado I, Pham E, Soibam B, Nikolos F, Gustafsson JÅ, Thomas C. ERβ alters the chemosensitivity of luminal breast cancer cells by regulating p53 function. Oncotarget 2018; 9:22509-22522. [PMID: 29854295 PMCID: PMC5976481 DOI: 10.18632/oncotarget.25147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/21/2018] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptor α (ERα)-positive breast cancers tend to develop resistance to both endocrine therapy and chemotherapy. Despite recent progress in defining molecular pathways that confer endocrine resistance, the mechanisms that regulate chemotherapy response in luminal tumors remain largely elusive. Luminal tumors often express wild-type p53 that is a major determinant of the cellular DNA damage response. Similar to p53, the second ER subtype, ERβ, has been reported to inhibit breast tumorigenesis by acting alone or in collaboration with p53. However, a synergistic mechanism of action has not been described. Here, we suggest that ERβ relies on p53 to elicit its tumor repressive actions in ERα-positive breast cancer cells. Upregulation of ERβ and treatment with ERβ agonists potentiates the tumor suppressor function of p53 resulting in decreased survival. This effect requires molecular interaction between the two proteins that disrupts the inhibitory action of ERα on p53 leading to increased transcriptional activity of p53. In addition, we show that the same interaction alters the chemosensitivity of endocrine-resistant cells including their response to tamoxifen therapy. Our results suggest a collaboration of ERβ and p53 tumor suppressor activity in breast cancer cells that indicates the importance of ligand-regulated ERβ as a tool to target p53 activity and improve the clinical management of resistant disease.
Collapse
Affiliation(s)
- Igor Bado
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Eric Pham
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Benjamin Soibam
- Department of Computer Science and Engineering Technology, University of Houston-Downtown, Huston, Texas, USA
| | - Fotis Nikolos
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Christoforos Thomas
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| |
Collapse
|
207
|
Abbas HHK, Alhamoudi KMH, Evans MD, Jones GDD, Foster SS. MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good? BMC Cancer 2018; 18:423. [PMID: 29661172 PMCID: PMC5903006 DOI: 10.1186/s12885-018-4332-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Background Targeted therapies are based on exploiting cancer-cell-specific genetic features or phenotypic traits to selectively kill cancer cells while leaving normal cells unaffected. Oxidative stress is a cancer hallmark phenotype. Given that free nucleotide pools are particularly vulnerable to oxidation, the nucleotide pool sanitising enzyme, MTH1, is potentially conditionally essential in cancer cells. However, findings from previous MTH1 studies have been contradictory, meaning the relevance of MTH1 in cancer is still to be determined. Here we ascertained the role of MTH1 specifically in lung cancer cell maintenance, and the potential of MTH1 inhibition as a targeted therapy strategy to improve lung cancer treatments. Methods Using siRNA-mediated knockdown or small-molecule inhibition, we tested the genotoxic and cytotoxic effects of MTH1 deficiency on H23 (p53-mutated), H522 (p53-mutated) and A549 (wildtype p53) non-small cell lung cancer cell lines relative to normal MRC-5 lung fibroblasts. We also assessed if MTH1 inhibition augments current therapies. Results MTH1 knockdown increased levels of oxidatively damaged DNA and DNA damage signaling alterations in all lung cancer cell lines but not normal fibroblasts, despite no detectable differences in reactive oxygen species levels between any cell lines. Furthermore, MTH1 knockdown reduced H23 cell proliferation. However, unexpectedly, it did not induce apoptosis in any cell line or enhance the effects of gemcitabine, cisplatin or radiation in combination treatments. Contrastingly, TH287 and TH588 MTH1 inhibitors induced apoptosis in H23 and H522 cells, but only increased oxidative DNA damage levels in H23, indicating that they kill cells independently of DNA oxidation and seemingly via MTH1-distinct mechanisms. Conclusions MTH1 has a NSCLC-specific p53-independent role for suppressing DNA oxidation and genomic instability, though surprisingly the basis of this may not be reactive-oxygen-species-associated oxidative stress. Despite this, overall our cell viability data indicates that targeting MTH1 will likely not be an across-the-board effective NSCLC therapeutic strategy; rather it induces non-cytotoxic DNA damage that could promote cancer heterogeneity and evolution. Electronic supplementary material The online version of this article (10.1186/s12885-018-4332-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hussein H K Abbas
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK.,Department of Pathology and Forensic Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Kheloud M H Alhamoudi
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK
| | - Mark D Evans
- Faculty of Health and Life Sciences, De Montfort University, Leicester, Leicestershire, LE1 9BH, UK
| | - George D D Jones
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK.
| | - Steven S Foster
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK.
| |
Collapse
|
208
|
Kielbik M, Krzyzanowski D, Pawlik B, Klink M. Cisplatin-induced ERK1/2 activity promotes G1 to S phase progression which leads to chemoresistance of ovarian cancer cells. Oncotarget 2018; 9:19847-19860. [PMID: 29731988 PMCID: PMC5929431 DOI: 10.18632/oncotarget.24884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/06/2018] [Indexed: 01/03/2023] Open
Abstract
The link between ERK1/2 activity and cisplatin cytotoxicity, in association with the cell cycle, in ovarian cancer cell lines resistant (A2780cis; SK-OV-3) and sensitive (A2780) to cisplatin was determined. We observed that cisplatin, at a low concentration enhanced the activation of ERK1/2 in A2780 cells and increased their accumulation in the S phase, resulting in low cytotoxicity. A high concentration of drug induced dephosphorylation and degradation of ERK1/2 and was extremely toxic, accumulating most of to these cells in the sub-G1 phase. The PD98059, pharmacological inhibitor of ERK1/2 activation, increased the cytotoxicity of cisplatin applied at a low concentration to A2780 cells (decreased ERK1/2 activity), causing shift of cell accumulation from the S to G1 phase. Surprisingly, PD98059 enhanced cell viability when a chemotherapeutic was used at high concentration, intensifying phosphorylation level of ERK1/2 and reversing cell cycle arrest in sub-G1 to promote the G1 and S phases. A2780cis cells demonstrated resistance to cisplatin with high ERK1/2 activity and accumulation of cells in the G1 and S phases. PD98059 sensitized resistant cells to drug toxicity during the first 24 hours of treatment, with blocked ERK1/2 phosphorylation and prevented progression from the G1 to S phase. SK-OV-3 resistant cells characterized with extremely high basal phosphorylation of ERK1/2, which wasn't changed after exposure to cisplatin. Administration of PD98059 didn't change the cytotoxicity of cisplatin in these cells. In conclusion, ERK1/2, activated by cisplatin, participates in the cell cycle progression from the G1 to S phase, enhancing cells’ survival and drug resistance.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | - Bartlomiej Pawlik
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.,Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
209
|
Suraweera A, O’Byrne KJ, Richard DJ. Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi. Front Oncol 2018; 8:92. [PMID: 29651407 PMCID: PMC5884928 DOI: 10.3389/fonc.2018.00092] [Citation(s) in RCA: 475] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/16/2018] [Indexed: 01/10/2023] Open
Abstract
Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi), a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient's response to these agents, in order to limit the off-target toxicity associated with HDACi.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth J. O’Byrne
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
210
|
Iyengar M, O’Hayer P, Cole A, Sebastian T, Yang K, Coffman L, Buckanovich RJ. CDK4/6 inhibition as maintenance and combination therapy for high grade serous ovarian cancer. Oncotarget 2018; 9:15658-15672. [PMID: 29644000 PMCID: PMC5884655 DOI: 10.18632/oncotarget.24585] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/26/2022] Open
Abstract
High grade serous ovarian cancer (HGSOC) is a disease with a high relapse rate and poor overall survival despite good initial responses to platinum-based therapy. Cell cycle inhibition with targeted CDK4/6 inhibitors is a new therapeutic approach showing promise as a maintenance therapy in cancer. As multiple genes in the CDK4/6 pathway are commonly mutated or dysregulated in ovarian cancer, we evaluated the efficacy of the CDK4/6 inhibitor Ribociclib alone, in combination with chemotherapy, and as maintenance therapy in several models of HGSOC. Ribociclib restricted cellular proliferation in multiple ovarian cancer cell lines. Restricted proliferation was associated with a pseudo-senescent cellular phenotype; Ribociclib-treated cells expressed markers of senescence, but could rapidly re-enter the cell cycle with discontinuation of therapy. Surprisingly, concurrent Ribociclib and cisplatin therapy followed by Ribociclib maintenance was synergistic. Evaluation of the cell cycle suggested that Ribociclib may also act at the G2/M check point via dephosphorylation of ATR and CHK1. Consistent with this mechanism, Ribociclib demonstrated clear activity in both platinum-resistant and platinum-sensitive tumor models in vivo. This work supports clinical trials using Ribociclib in combination with cisplatin and as a maintenance therapy in ovarian cancer.
Collapse
Affiliation(s)
- Mangala Iyengar
- University of Michigan, Department of Cellular and Molecular Biology, Ann Arbor, MI 48109, USA
- University of Michigan, Medical Scientist Training Program, Ann Arbor, MI 48109, USA
| | - Patrick O’Hayer
- University of Michigan, Department of Cellular and Molecular Biology, Ann Arbor, MI 48109, USA
- University of Michigan, Medical Scientist Training Program, Ann Arbor, MI 48109, USA
| | - Alex Cole
- University of Michigan, Division of Hematology and Oncology, Department of Internal Medicine, Ann Arbor, MI 48109, USA
| | - Tara Sebastian
- University of Michigan, School of Literature, Science and the Arts, Ann Arbor, MI 48109, USA
| | - Kun Yang
- University of Michigan, Division of Hematology and Oncology, Department of Internal Medicine, Ann Arbor, MI 48109, USA
| | - Lan Coffman
- University of Michigan, Division of Hematology and Oncology, Department of Internal Medicine, Ann Arbor, MI 48109, USA
| | - Ronald J. Buckanovich
- University of Michigan, Division of Hematology and Oncology, Department of Internal Medicine, Ann Arbor, MI 48109, USA
- Magee Women’s Research Institute, University of Pittsburgh, Department of Internal Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
211
|
Noguchi A, Adachi S, Yokota N, Hatta T, Natsume T, Kawahara H. ZFP36L2 is a cell cycle-regulated CCCH protein necessary for DNA lesion-induced S-phase arrest. Biol Open 2018; 7:bio.031575. [PMID: 29449217 PMCID: PMC5898266 DOI: 10.1242/bio.031575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ZFP36L2 promotes the destruction of AU-rich element-containing transcripts, while its regulation and functional significance in cell cycle control are scarcely identified. We show that ZFP36L2 is a cell cycle-regulated CCCH protein, the abundance of which is regulated post-translationally at the respective stages of the cell cycle. Indeed, ZFP36L2 protein was eliminated after release from M phase, and ZYG11B-based E3 ligase plays a role in its polyubiquitination in interphase. Although ZFP36L2 is dispensable for normal cell cycle progression, we found that endogenous ZFP36L2 played a key role in cisplatin-induced S-phase arrest, a process in which the suppression of G1/S cyclins is necessary. The accumulation of ZFP36L2 was stimulated under DNA replication stresses and altered interactions with a subset of RNA-binding proteins. Notably, silencing endogenous ZFP36L2 led to impaired cell viability in the presence of cisplatin-induced DNA lesions. Thus, we propose that ZFP36L2 is a key protein that controls S-phase progression in the case of genome instability. Summary: ZFP36L2 is a cell cycle-regulated RNA-binding protein, the abundance of which is regulated post-translationally. This protein is especially accumulated in and critical for the survival of DNA-damaged cells.
Collapse
Affiliation(s)
- Aya Noguchi
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Naoto Yokota
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Hiroyuki Kawahara
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
212
|
Wang X, Gu Y, Liu H, Shi L, Sun X. Icotinib hydrochloride enhances chemo- and radiosensitivity by inhibiting EGFR signaling and attenuating RAD51 expression and function in Hela S3 cells. Onco Targets Ther 2018; 11:1245-1258. [PMID: 29551903 PMCID: PMC5843137 DOI: 10.2147/ott.s152613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Radiotherapy and cisplatin-based chemotherapy are currently considered as standard treatments employed for advanced cervical cancer (CC). However, patients with local recurrence or distant metastasis continue to have poor outcomes. EGFR overexpression correlated with chemo/radioresistance, and disease failure has been well proved in the previous studies. Hence, the aim of this study was to explore the therapeutic efficacy and underlying mechanism of the sensitization to radiation or cisplatin of icotinib hydrochloride (IH), a high-selective EGFR tyrosine kinase inhibitor (TKI), in the Hela S3 human CC cell line. Methods Cell proliferation was measured with cell counting kit-8 (CCK-8) assay. Flow cytometry analysis was performed to examine cell cycle distribution and apoptosis. The phosphorylation of EGFR and its downstream signaling molecules were measured by Western blot analysis. γ-H2AX foci and RAD51 foci in the cellular nucleus were visualized using immunofluoresence staining. Expression levels of RAD51 in the whole cells and subceullar fractions were detected to demonstrate the impact of IH on DNA repair. Results IH can significantly inhibit cell proliferation, redistribute cell cycle, enhance apoptosis and impair DNA damage response of Hela S3 cells following radiation or cisplatin treatment through suppressing the activation of the EGFR signaling pathway and attenuating the expression and function of homologous recombination (HR) protein RAD51. Conclusion This study suggests that IH is a potential sensitizer in radiotherapy and cisplatin-based chemotherapy for CC and RAD51 may serve as a prognosis biomarker for this combination treatment.
Collapse
Affiliation(s)
- Xuanxuan Wang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanjun Gu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hai Liu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liming Shi
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
213
|
Desferal regulates hCtr1 and transferrin receptor expression through Sp1 and exhibits synergistic cytotoxicity with platinum drugs in oxaliplatin-resistant human cervical cancer cells in vitro and in vivo. Oncotarget 2018; 7:49310-49321. [PMID: 27384479 PMCID: PMC5226510 DOI: 10.18632/oncotarget.10336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/13/2016] [Indexed: 01/05/2023] Open
Abstract
The development of resistance to platinum drugs in cancer cells severely reduces the efficacy of these drugs. Thus, the discovery of novel drugs or combined strategies to overcome drug resistance is imperative. In addition to our previous finding that combined D-penicillamine with platinum drugs exerts synergistic cytotoxicity, we recently identified a novel therapeutic strategy by combining an iron chelating agent desferal with platinum drugs to overcome platinum resistance in an oxaliplatin-resistant human cervical cancer cell line, S3. Further study demonstrated that the level of platinum–DNA adduct formation positively correlated with cell death in combination of desferal with platinums than that of each drug alone in S3 cells. Decrement of human copper transporter 1 (hCtr1) and transferrin receptor 1 (TfR1) expression involved in the development of platinum resistance in S3 cells. Moreover, desferal promoted the expression of hCtr1 through the upregulation of Sp1. The overexpression of Sp1 increased the expression of NF-κB and translocated it into the nucleus to bind to the TfR1 promoter region, which subsequently increased the expression of TfR1. Importantly, the cotreatment of oxaliplatin with desferal significantly potentiated the oxaliplatin-elicited antitumoral effect in the oxaliplatin-resistant xenograft animal model without any toxic effect observed. Taken together, these results demonstrated that the combination of desferal with oxaliplatin can overcome oxaliplatin resistance through the regulation of hCtr1 and TfR1, and may have beneficial effect for treatment of patient with oxaliplatin-refractory tumors.
Collapse
|
214
|
Vizoso-Vázquez Á, Lamas-Maceiras M, González-Siso MI, Cerdán ME. Ixr1 Regulates Ribosomal Gene Transcription and Yeast Response to Cisplatin. Sci Rep 2018; 8:3090. [PMID: 29449612 PMCID: PMC5814428 DOI: 10.1038/s41598-018-21439-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/30/2018] [Indexed: 11/22/2022] Open
Abstract
Ixr1 is a Saccharomyces cerevisiae HMGB protein that regulates the hypoxic regulon and also controls the expression of other genes involved in the oxidative stress response or re-adaptation of catabolic and anabolic fluxes when oxygen is limiting. Ixr1 also binds with high affinity to cisplatin-DNA adducts and modulates DNA repair. The influence of Ixr1 on transcription in the absence or presence of cisplatin has been analyzed in this work. Ixr1 regulates other transcriptional factors that respond to nutrient availability or extracellular and intracellular stress stimuli, some controlled by the TOR pathway and PKA signaling. Ixr1 controls transcription of ribosomal RNAs and genes encoding ribosomal proteins or involved in ribosome assembly. qPCR, ChIP, and 18S and 25S rRNAs measurement have confirmed this function. Ixr1 binds directly to several promoters of genes related to rRNA transcription and ribosome biogenesis. Cisplatin treatment mimics the effect of IXR1 deletion on rRNA and ribosomal gene transcription, and prevents Ixr1 binding to specific promoters related to these processes.
Collapse
Affiliation(s)
- Ángel Vizoso-Vázquez
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - Mónica Lamas-Maceiras
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - M Isabel González-Siso
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - M Esperanza Cerdán
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain.
| |
Collapse
|
215
|
Yu XS, Du J, Fan YJ, Liu FJ, Cao LL, Liang N, Xu DG, Zhang JD. Activation of endoplasmic reticulum stress promotes autophagy and apoptosis and reverses chemoresistance of human small cell lung cancer cells by inhibiting the PI3K/AKT/mTOR signaling pathway. Oncotarget 2018; 7:76827-76839. [PMID: 27765907 PMCID: PMC5363552 DOI: 10.18632/oncotarget.12718] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE This study aims to investigate the effects of endoplasmic reticulum stress (ERS) on autophagy, apoptosis and chemoresistance of human small cell lung cancer (SCLC) cells via the PI3K/AKT/mTOR signaling pathway. RESULTS The expressions of ERS-related proteins (PEAK, eIF2α and CHOP) up-regulated, autophagy-related proteins (LC3, LC3-II and Beclin1) and apoptosis-related proteins (Bax and procaspase-3) down-regulated in NCI-H446 and H69 cells after tunicamycin treatment for 24 h. Compared with the blank group, the tunicamycin, BEZ235 and tunicamycin + BEZ235 groups exhibited decreased expressions of p-PI3K, p-AKT and p-mTOR, and increased expressions of autophagy-related proteins (LC3, LC3-II and Beclin1) and apoptosis proteins (Bax and procaspase-3), and the most obvious changes were observed in the tunicamycin + BEZ235 group. MATERIALS AND METHODS CCK-8 assay was applied to select the best cell line from five SCLC cell lines (NCI-H446, H69, H526, H146 and H209). Finally, NCI-H446 and H69 cells were selected for further experiments. NCI-H446/CDDP and H69/CDDP were selected and divided into the blank group, tunicamycin (an ESR inducer) group, BEZ235 (inhibitors of PI3K/AKT/mTOR pathway) group and tunicamycin + BEZ235 group. Cell apoptosis was detected by flow cytometry. Autophagy was observed by fluorescence microscopy and flow cytometry. Western blotting was used to detect the expressions of ERS-related proteins, autophagy-related proteins, apoptosis-related proteins and PI3K/AKT/mTOR pathway-related proteins. CONCLUSIONS Our findings provide evidence that the activation of ERS could promote autophagy and apoptosis and reverse chemoresistance of human SCLC cells by inhibiting the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xin-Shuang Yu
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, P.R. China
| | - Juan Du
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, P.R. China.,Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, P.R. China
| | - Yu-Jun Fan
- Medical Management Service Center of Shandong Provincial Health and Family Planning Commission, Jinan 250014, P.R. China
| | - Feng-Jun Liu
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, P.R. China
| | - Li-Li Cao
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, P.R. China
| | - Ning Liang
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, P.R. China
| | - De-Guo Xu
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, P.R. China
| | - Jian-Dong Zhang
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, P.R. China
| |
Collapse
|
216
|
Elkhoely A, Kamel R. Diallyl sulfide alleviates cisplatin-induced nephrotoxicity in rats via suppressing NF-κB downstream inflammatory proteins and p53/Puma signalling pathway. Clin Exp Pharmacol Physiol 2018; 45:591-601. [PMID: 29266336 DOI: 10.1111/1440-1681.12910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022]
Abstract
Despite being a potent anticancer drug, nephrotoxicity is an adverse effect which renders the clinical use of cisplatin (Cis) limited. The protective role of diallyl sulfide (DAS); a naturally occurring organo-sulfide, present in garlic, in cisplatin-induced nephrotoxicity has been reported earlier. However, the mechanism through which DAS exerts its nephroprotective activity remains elusive. The aim of the current study was to elucidate the possible mechanisms underlying the reno-protective effect of DAS in cisplatin-induced nephrotoxicity in rats. DAS was given at 2 dose levels; 50 and 100 mg/kg, orally for 4 consecutive days, starting 1 hour after administration of single dose of cisplatin (3.5 mg/kg, intraperitoneally [i.p.]). The Cis-induced elevation in serum urea and creatinine, degree of histopathological alterations was significantly ameliorated in cisplatin groups co-treated with DAS. In addition, DAS significantly restored Cis-depleted glutathione (GSH) content and superoxide dismutase (SOD) activity and attenuated Cis-elevated Malondialdehyde (MDA) level. Also, DAS significantly reduced Cis-increased renal expression of nuclear factor kappa B (NF-κB) and subsequent pro-inflammatory mediators; tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), intercellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS) in kidney tissues. Moreover, co-treatment with DAS significantly inhibited Cis-increased caspase-8 and -9 levels. Additionally, DAS significantly mitigated Cis-induced protein expression of p53, Puma, and Bax while, it significantly restored Cis-reduced protein expression of Bcl-xL compared to the Cis group. In conclusion, these results demonstrate that DAS ameliorates cisplatin-induced nephrotoxicity in rats through enhancement of antioxidant defense, reduction of inflammatory cytokine tissue levels as well as inhibition of apoptosis via p53/Puma signalling pathway.
Collapse
Affiliation(s)
- Abeer Elkhoely
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Helwan University, Helwan, Egypt
| | - Rehab Kamel
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Helwan University, Helwan, Egypt
| |
Collapse
|
217
|
MUC16 overexpression induced by gene mutations promotes lung cancer cell growth and invasion. Oncotarget 2018; 9:12226-12239. [PMID: 29552305 PMCID: PMC5844741 DOI: 10.18632/oncotarget.24203] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022] Open
Abstract
Air pollution is one of the leading causes of lung cancer. Air pollution-related lung cancer is a deteriorating public health problem, particularly in developing countries. The MUC16 gene is one of the most frequently mutated genes in air pollution-related lung cancer. In the present study, MUC16 mRNA expression was increased in ∼50% of air pollution-related lung cancer samples obtained from patients residing in air-polluted regions (Xuanwei and Fuyuan, Yunnan, China), and MUC16 mRNA levels were correlated with the degree of air pollution. Furthermore, sequencing of the captured MUC16 gene identified 561 mutation sites within the MUC16 gene in the air pollution-related lung cancer tissues. Interestingly, some mutations at specific sites and one region were associated with MUC16 mRNA up-regulation. Therefore, we further investigated the impacts of gene mutation on MUC16 expressions and cell behaviors in cultured cells by inducing certain mutations within the MUC16 gene using CRISPER/Cas9 genome editing technology. Certain mutations within the MUC16 gene induced MUC16 overexpression at both the mRNA and the protein level in the cultured cells. Additionally, MUC16 overexpression induced by gene mutations had functional effects on the behavior of lung cancer cells, including increasing their resistance to cisplatin, promoting their growth, and enhancing their migration and invasion capabilities. Based on the data, we suggest that MUC16 mutations potentially associated with air pollution may participate in the development and progression of air pollution-related lung cancer. In addition to ovarian cancer, MUC16 may be a candidate biomarker for lung cancer.
Collapse
|
218
|
Zou J, Zhu L, Jiang X, Wang Y, Wang Y, Wang X, Chen B. Curcumin increases breast cancer cell sensitivity to cisplatin by decreasing FEN1 expression. Oncotarget 2018. [PMID: 29541412 PMCID: PMC5834274 DOI: 10.18632/oncotarget.24109] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Flap endonuclease 1 (FEN1) overexpression promotes breast cancer. We investigated the role of FEN1 in cisplatin resistance and the chemosensitizing effects of curcumin in breast cancer cells. We demonstrated that FEN1 overexpression promotes cisplatin resistance in breast cancer cells, and that FEN1 knockdown enhances cisplatin sensitivity. Curcumin down-regulated FEN1 expression in a dose-dependent manner. A combination of cisplatin and curcumin enhanced breast cancer cell sensitivity to cisplatin by down-regulating FEN1 expression in vitro and in vivo. Increased ERK phosphorylation contributed to cisplatin resistance and cisplatin-induced FEN1 overexpression in breast cancer cells. Inhibiting ERK phosphorylation stimulated the chemosensitizing effect of curcumin to cisplatin by targeting FEN1. These data reveal that FEN1 overexpression promotes cisplatin resistance, and suggest FEN1 could be a potential therapeutic target to relieve cisplatin resistance in breast cancer. We also demonstrated that curcumin sensitizes breast cancer cells to cisplatin through FEN1 down-regulation.
Collapse
Affiliation(s)
- Jiao Zou
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Linlin Zhu
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Xiaomei Jiang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Yang Wang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Xiangwei Wang
- Department of Urology, Shenzhen University General Hospital, Shenzhen 518060, Guangdong, China
| | - Bin Chen
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
219
|
Ha YN, Sung HY, Yang SD, Chae YJ, Ju W, Ahn JH. Epigenetic modification of α- N-acetylgalactosaminidase enhances cisplatin resistance in ovarian cancer. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 22:43-51. [PMID: 29302211 PMCID: PMC5746511 DOI: 10.4196/kjpp.2018.22.1.43] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/30/2017] [Accepted: 11/23/2017] [Indexed: 12/18/2022]
Abstract
Although cisplatin is one of the most effective antitumor drugs for ovarian cancer, the emergence of chemoresistance to cisplatin in over 80% of initially responsive patients is a major barrier to successful therapy. The precise mechanisms underlying the development of cisplatin resistance are not fully understood, but alteration of DNA methylation associated with aberrant gene silencing may play a role. To identify epigenetically regulated genes directly associated with ovarian cancer cisplatin resistance, we compared the expression and methylation profiles of cisplatin-sensitive and -resistant human ovarian cancer cell lines. We identified α-Nacetylgalactosaminidase (NAGA) as one of the key candidate genes for cisplatin drug response. Interestingly, in cisplatin-resistant cell lines, NAGA was significantly downregulated and hypermethylated at a promoter CpG site at position +251 relative to the transcriptional start site. Low NAGA expression in cisplatin-resistant cell lines was restored by treatment with a DNA demethylation agent, indicating transcriptional silencing by hyper-DNA methylation. Furthermore, overexpression of NAGA in cisplatin-resistant lines induced cytotoxicity in response to cisplatin, whereas depletion of NAGA expression increased cisplatin chemoresistance, suggesting an essential role of NAGA in sensitizing ovarian cells to cisplatin. These findings indicate that NAGA acts as a cisplatin sensitizer and its gene silencing by hypermethylation confers resistance to cisplatin in ovarian cancer. Therefore, we suggest NAGA may be a promising potential therapeutic target for improvement of sensitivity to cisplatin in ovarian cancer.
Collapse
Affiliation(s)
- Ye-Na Ha
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Hye Youn Sung
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - San-Duk Yang
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul 03080, Korea
| | - Yun Ju Chae
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Woong Ju
- Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University Seoul 07985, Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 07985, Korea
| |
Collapse
|
220
|
Chen Y, Bieber MM, Bhat NM, Teng NNH. Ovarian carcinoma glyco-antigen targeted by human IgM antibody. PLoS One 2017; 12:e0187222. [PMID: 29267289 PMCID: PMC5739388 DOI: 10.1371/journal.pone.0187222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/16/2017] [Indexed: 12/05/2022] Open
Abstract
Epithelial Ovarian Cancer (EOC) cells expression of a novel carbohydrate antigen was defined using a human VH4-34 encoded IgM monoclonal antibody (mAb216). MAb216 binds to a poly N-acetyllactosamine epitope expressed on B cells and kills normal and malignant B cells in vitro and in vivo. EOC patient ascites and EOC cell lines were used to study the anti tumor effect of mAb216. Various assays were used to characterize the epitope and demonstrate antibody-mediated binding and cytotoxicity in EOC. Drug and antibody combination effects were determined by calculating the combination index values using the Chou and Talalay method. MAb216 displays direct antibody mediated cytotoxicity on a population of human EOC tumor and ascites samples and EOC cell lines, which express high amounts of poly N-acetyllactosamine epitope, carried by CD147/CD98. Eighty four percent of patient samples, including platin resistant, had a tumor population that bound the monoclonal antibody. The binding pattern of mAb216 and mechanism of cytotoxicity was similar to that seen on normal and malignant B cells with unique general membrane disruption and “pore” formation. In vitro incubation with mAb216 and cisplatin enhanced killing of OVCAR3 cell line. In EOC cell lines percent cytotoxicity correlated with percent expression of epitope. Although in vitro data shows specific EOC cytotoxicity, for possible treatment of EOC MAb216 would need to be evaluated in a clinical trial with or without chemotherapy.
Collapse
Affiliation(s)
- Yi Chen
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University, Stanford, California, United States of America
| | - Marcia M. Bieber
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Neelima M. Bhat
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University, Stanford, California, United States of America
| | - Nelson N. H. Teng
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
221
|
Role of β-catenin in cisplatin resistance, relapse and prognosis of head and neck squamous cell carcinoma. Cell Oncol (Dordr) 2017; 41:185-200. [PMID: 29243047 DOI: 10.1007/s13402-017-0365-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most common types of cancer in India with high incidence and rapid recurrence rates. Here, we aimed to investigate the role of β-catenin, a developmental pathway gene, in HNSCC therapy resistance, DNA damage response, recurrence and prognosis. METHODS In total 80 HNSCC samples were included. Western blot, immunohistochemistry and qRT-PCR analyses were performed to assess β-catenin expression in the cut margin and tumor areas of each sample. Kaplan-Meier analyses were performed to correlate β-catenin expression with the survival and prognosis of HNSCC patients. In addition, chemo-resistance, DNA damage response and DNA repair capacities were evaluated in HNSCC-derived cell lines through LiCl-mediated up-regulation and siRNA-mediated silencing of β-catenin expression. RESULTS We observed β-catenin up-regulation in cut margin areas of recurrent patients compared to their corresponding tumor regions, which subsequently could be associated with poor prognosis. In addition, we found that LiCl-mediated up-regulation of β-catenin in HNSCC-derived cells led to cisplatin resistance, evasion of apoptosis, enhanced DNA repair and enhanced migration. The effects of β-catenin silencing correlated with its putative role in chemo-resistance and DNA damage response. CONCLUSION From our results we conclude that β-catenin may contribute to HNSCC therapy resistance and disease relapse. As such, β-catenin may be explored as a therapeutic target along with conventional therapeutics.
Collapse
|
222
|
Executioner caspases and CAD are essential for mutagenesis induced by TRAIL or vincristine. Cell Death Dis 2017; 8:e3062. [PMID: 28981092 PMCID: PMC5680576 DOI: 10.1038/cddis.2017.454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/27/2022]
Abstract
Chemotherapy drugs interfere with cellular processes to generate genotoxic lesions that activate cell death pathways. Sustained DNA damage induced by these drugs can provoke mutations in surviving non-cancerous cells, potentially increasing the risk of therapy-related cancers. Ligation of death receptors by ligands such as TRAIL, and subsequent activation of extrinsic apoptotic pathways, also provokes mutations. In this study, we show that executioner caspase activation of the apoptotic nuclease CAD/DFF40 is essential for TRAIL-induced mutations in surviving cells. As exposure to chemotherapy drugs also activates apoptotic caspases and presumably CAD, we hypothesized that these pathways may also contribute to the mutagenesis induced by conventional chemotherapy drugs, perhaps augmenting the mutations that arise from direct DNA damage provoked by these agents. Interestingly, vincristine-mediated mutations were caspase and CAD dependent. Executioner caspases accounted for some of the mutations caused by the topoisomerase poisons doxorubicin and SN38, but were dispensable for mutagenesis following treatment with cisplatin or temozolomide. These data highlight a non-apoptotic role of caspases in mutagenesis mediated by death receptor agonists, microtubule poisons and topoisomerase inhibitors, and provide further evidence for a potential carcinogenic consequence of sublethal apoptotic signaling stimulated by anticancer therapies.
Collapse
|
223
|
Browning RJ, Reardon PJT, Parhizkar M, Pedley RB, Edirisinghe M, Knowles JC, Stride E. Drug Delivery Strategies for Platinum-Based Chemotherapy. ACS NANO 2017; 11:8560-8578. [PMID: 28829568 DOI: 10.1021/acsnano.7b04092] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Few chemotherapeutics have had such an impact on cancer management as cis-diamminedichloridoplatinum(II) (CDDP), also known as cisplatin. The first member of the platinum-based drug family, CDDP's potent toxicity in disrupting DNA replication has led to its widespread use in multidrug therapies, with particular benefit in patients with testicular cancers. However, CDDP also produces significant side effects that limit the maximum systemic dose. Various strategies have been developed to address this challenge including encapsulation within micro- or nanocarriers and the use of external stimuli such as ultrasound to promote uptake and release. The aim of this review is to look at these strategies and recent scientific and clinical developments.
Collapse
Affiliation(s)
- Richard J Browning
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford , Oxford OX1 2JD, United Kingdom
| | | | | | | | | | - Jonathan C Knowles
- Department of Nanobiomedical Science and BK21 Plus NBM, Global Research Center for Regenerative Medicine, Dankook University , 518-10 Anseo-dong, Dongnam-gu, Cheonan, Chungcheongnam-do, Republic of Korea
- The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus , Gower Street, London WC1E 6BT, United Kingdom
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford , Oxford OX1 2JD, United Kingdom
| |
Collapse
|
224
|
The Protective Effect of Naringenin-Oxime on Cisplatin-Induced Toxicity in Rats. Biochem Res Int 2017; 2017:9478958. [PMID: 28932603 PMCID: PMC5592396 DOI: 10.1155/2017/9478958] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/19/2017] [Indexed: 01/16/2023] Open
Abstract
The aim of this study is to examine the protective effect of naringenin-oxime (NOX) on cisplatin-induced major organ toxicity and DNA damage in rats. Thirty-five male Wistar albino rats were equally split into five groups as follows: control (i.p., 0.1 ml of saline), Cis administration (i.p., 7 mg/kg b.w.), NOX treatment (i.p., 20 mg/kg b.w., daily for ten days), Cis + NOX20, and Cis + NOX40 combination (i.p., 20 and 40 mg/kg b.w., daily for ten days). Serum and peripheral blood mononuclear leukocytes (PBMC) were obtained from blood. Malondialdehyde, glutathione, total antioxidant and oxidant status, and catalase were measured in serum, liver, and kidney, and oxidative stress index was calculated. In parallel, paraoxonase and arylesterase activities were tested in liver and serum. We used 8-OHdOG as a marker for DNA damage in serum via ELISA and in PMBC via comet assay. Treatment with Cis elevated the levels of serum biochemical parameters, oxidative stress, and DNA damage. Pretreatments of NOX restored biochemical and oxidative stress parameters in serum, renal, and liver tissues (p < 0.01) and reduced 8-OHdG level, a finding further supported by comet assay in PBMC. Observations of the present study support the fact that treatment with NOX prevents Cis-induced hepatotoxicity, nephrotoxicity, and genotoxicity by restoring antioxidant system.
Collapse
|
225
|
Law BYK, Qu YQ, Mok SWF, Liu H, Zeng W, Han Y, Gordillo-Martinez F, Chan WK, Wong KMC, Wong VKW. New perspectives of cobalt tris(bipyridine) system: anti-cancer effect and its collateral sensitivity towards multidrug-resistant (MDR) cancers. Oncotarget 2017; 8:55003-55021. [PMID: 28903398 PMCID: PMC5589637 DOI: 10.18632/oncotarget.18991] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/16/2017] [Indexed: 01/08/2023] Open
Abstract
Platinating compounds including cisplatin, carboplatin, and oxaliplatin are common chemotherapeutic agents, however, patients developed resistance to these clinical agents after initial therapeutic treatments. Therefore, different approaches have been applied to identify novel therapeutic agents, molecular mechanisms, and targets for overcoming drug resistance. In this study, we have identified a panel of cobalt complexes that were able to specifically induce collateral sensitivity in taxol-resistant and p53-deficient cancer cells. Consistently, our reported anti-cancer functions of cobalt complexes 1-6 towards multidrug-resistant cancers have suggested the protective and non-toxic properties of cobalt metal-ions based compounds in anti-cancer therapies. As demonstrated in xenograft mouse model, our results also confirmed the identified cobalt complex 2 was able to suppress tumor growth in vivo. The anti-cancer effect of the cobalt complex 2 was further demonstrated to be exerted via the induction of autophagy, cell cycle arrest, and inhibition of cell invasion and P-glycoprotein (P-gp) activity. These data have provided alternative metal ion compounds for targeting drug resistance cancers in chemotherapies.
Collapse
Affiliation(s)
- Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Yuan Qing Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Hauwei Liu
- Department of Chemistry, South University of Science and Technology of China, Tangchang Boulevard, Nanshan District, Shenzhen, P.R. China
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Yu Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Flora Gordillo-Martinez
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Wai-Kit Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Keith Man-Chung Wong
- Department of Chemistry, South University of Science and Technology of China, Tangchang Boulevard, Nanshan District, Shenzhen, P.R. China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| |
Collapse
|
226
|
Zhang C, Lei JL, Zhang H, Xia YZ, Yu P, Yang L, Kong LY. Calyxin Y sensitizes cisplatin-sensitive and resistant hepatocellular carcinoma cells to cisplatin through apoptotic and autophagic cell death via SCF βTrCP-mediated eEF2K degradation. Oncotarget 2017; 8:70595-70616. [PMID: 29050305 PMCID: PMC5642580 DOI: 10.18632/oncotarget.19883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
The down-regulation of eukaryotic elongation factor-2 kinase (eEF2K) is associated with an enhancement in the sensitivity of malignant cells to chemotherapeutic agents. In this study, we found that the silencing of eEF2K enhanced cisplatin (CDDP)-induced cytotoxicity in CDDP-sensitive (HepG2) and resistant (HepG2/CDDP) cells. Calyxin Y, a unique chalcone diarylheptanoid adduct, down-regulated eEF2K by promoting Skp1-Cul1-F-box protein (SCF) β-transducin repeat-containing protein (βTrCP)-mediated protein degradation and synergistically enhanced the cytotoxicity of CDDP. Subsequently, we identified a potential mechanism of this cooperative interaction by showing that the combination of calyxin Y and CDDP enhanced apoptotic cell death via mitochondrial dysfunction. In addition, the combination induced autophagy, which contributed to the synergistic cytotoxic effect. Further research revealed that calyxin Y synergistically sensitized HepG2 and HepG2/CDDP cells to CDDP through enhanced apoptotic and autophagic cell death via the SCF βTrCP-eEF2K pathway. Finally, in vivo studies demonstrated that calyxin Y could enhance the response of HepG2/CDDP cells to CDDP in xenograft models with low systemic toxicity. Thus, the combination of calyxin Y and CDDP might represent an attractive therapeutic strategy for the treatment of chemotherapy-sensitive and resistant hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Li Lei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
227
|
Regulatory players of DNA damage repair mechanisms: Role in Cancer Chemoresistance. Biomed Pharmacother 2017; 93:1238-1245. [PMID: 28738540 DOI: 10.1016/j.biopha.2017.07.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022] Open
Abstract
DNA damaging agents are most common in chemotherapeutic molecules that act against cancer. However, cancer cells possess inherent biological features to overcome DNA damages by activating various distinct repair mechanisms and pathways. Importantly, various oncogenes, cancer stem cells (CSCs), hypoxic environment, transcription factors and bystander signaling that are activated in the cancer cells influence DNA repair, thereby effectively repairing the DNA damage. Repaired cancer cells often become more resistance to further therapy and results in disease recurrence. In this review, we summarize how the various signaling pathways in cancer cells regulates DNA repair and induce chemoresistance.
Collapse
|
228
|
Zhang F, Shen M, Yang L, Yang X, Tsai Y, Keng PC, Chen Y, Lee SO, Chen Y. Simultaneous targeting of ATM and Mcl-1 increases cisplatin sensitivity of cisplatin-resistant non-small cell lung cancer. Cancer Biol Ther 2017; 18:606-615. [PMID: 28686074 DOI: 10.1080/15384047.2017.1345391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Development of cisplatin-resistance is an obstacle in non-small cell lung cancer (NSCLC) therapeutics. To investigate which molecules are associated with cisplatin-resistance, we analyzed expression profiles of several DNA repair and anti-apoptosis associated molecules in parental (A549P and H157P) and cisplatin-resistant (A549CisR and H157CisR) NSCLC cells. We detected constitutively upregulated nuclear ATM and cytosolic Mcl-1 molcules in cisplatin-resistant cells compared with parental cells. Increased levels of phosphorylated ATM (p-ATM) and its downstream molecules, CHK2, p-CHK2, p-53, and p-p53 were also detected in cisplatin-resistant cells, suggesting an activation of ATM signaling in these cells. Upon inhibition of ATM and Mcl-1 expression/activity using specific inhibitors of ATM and/or Mcl-1, we found significantly enhanced cisplatin-cytotoxicity and increased apoptosis of A549CisR cells after cisplatin treatment. Several A549CisR-derived cell lines, including ATM knocked down (A549CisR-siATM), Mcl-1 knocked down (A549CisR-shMcl1), ATM/Mcl-1 double knocked down (A549CisR-siATM/shMcl1) as well as scramble control (A549CisR-sc), were then developed. Higher cisplatin-cytotoxicity and increased apoptosis were observed in A549CisR-siATM, A549CisR-shMcl1, and A549CisR-siATM/shMcl1 cells compared with A549CisR-sc cells, and the most significant effect was shown in A549CisR-siATM/shMcl1 cells. In in vivo mice studies using subcutaneous xenograft mouse models developed with A549CisR-sc and A549CisR-siATM/shMcl1 cells, significant tumor regression in A549CisR-siATM/shMcl1 cells-derived xenografts was observed after cisplatin injection, but not in A549CisR-sc cells-derived xenografts. Finally, inhibitor studies revealed activation of Erk signaling pathway was most important in upregulation of ATM and Mcl-1 molcules in cisplatin-resistant cells. These studies suggest that simultaneous blocking of ATM/Mcl-1 molcules or downstream Erk signaling may recover the cisplatin-resistance of lung cancer.
Collapse
Affiliation(s)
- Fuquan Zhang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA.,b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Mingjing Shen
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA.,b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Li Yang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Xiaodong Yang
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Ying Tsai
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Peter C Keng
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Yongbing Chen
- b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou , Jiangsu , P.R. China
| | - Soo Ok Lee
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| | - Yuhchyau Chen
- a Department of Radiation Oncology , University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| |
Collapse
|
229
|
Bailis JM, Weidmann AG, Mariano NF, Barton JK. Rhodium metalloinsertor binding generates a lesion with selective cytotoxicity for mismatch repair-deficient cells. Proc Natl Acad Sci U S A 2017; 114:6948-6953. [PMID: 28634291 PMCID: PMC5502648 DOI: 10.1073/pnas.1706665114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The DNA mismatch repair (MMR) pathway recognizes and repairs errors in base pairing and acts to maintain genome stability. Cancers that have lost MMR function are common and comprise an important clinical subtype that is resistant to many standard of care chemotherapeutics such as cisplatin. We have identified a family of rhodium metalloinsertors that bind DNA mismatches with high specificity and are preferentially cytotoxic to MMR-deficient cells. Here, we characterize the cellular mechanism of action of the most potent and selective complex in this family, [Rh(chrysi)(phen)(PPO)]2+ (Rh-PPO). We find that Rh-PPO binding induces a lesion that triggers the DNA damage response (DDR). DDR activation results in cell-cycle blockade and inhibition of DNA replication and transcription. Significantly, the lesion induced by Rh-PPO is not repaired in MMR-deficient cells, resulting in selective cytotoxicity. The Rh-PPO mechanism is reminiscent of DNA repair enzymes that displace mismatched bases, and is differentiated from other DNA-targeted chemotherapeutics such as cisplatin by its potency, cellular mechanism, and selectivity for MMR-deficient cells.
Collapse
Affiliation(s)
- Julie M Bailis
- Department of Oncology Research, Amgen, Inc., South San Francisco, CA 94080;
| | - Alyson G Weidmann
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Natalie F Mariano
- Department of Oncology Research, Amgen, Inc., South San Francisco, CA 94080
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
230
|
Protein kinase C β inhibits autophagy and sensitizes cervical cancer Hela cells to cisplatin. Biosci Rep 2017; 37:BSR20160445. [PMID: 28246354 PMCID: PMC5469325 DOI: 10.1042/bsr20160445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/19/2022] Open
Abstract
Recently, autophagy has been indicated to play an essential role in various biological events, such as the response of cervical cancer cells to chemotherapy. However, the exact signalling mechanism that regulates autophagy during chemotherapy remains unclear. In the present study, we investigated the regulation by cisplatin on protein kinase C β (PKC β), on B-cell lymphoma 2 (Bcl-2) and on apoptosis in cervical cancer Hela cells. And then we examined the regulation by cisplatin on autophagy and the role of autophagy on the chemotherapy in Hela cells. In addition, the regulation of the PKC β on the autophagy was also investigated. Our results indicated that cisplatin promoted PKC β in Hela cells. The PKC β inhibitor reduced the cisplatin-induced apoptosis, whereas increased the cisplatin-induced autophagy in Hela cells. On the other side, the PKC β overexpression aggravated the cisplatin-induced apoptosis, whereas down-regulated the cisplatin-induced autophagy. Taken together, our study firstly recognized the involvement of PKC β in the cytotoxicity of cisplatin via inhibiting autophagy in cervical cancer cells. We propose that PKC β would sensitize cervical cancer cells to chemotherapy via reducing the chemotherapy induced autophagy in cancer cells.
Collapse
|
231
|
Pressly JD, Hama T, Brien SO, Regner KR, Park F. TRIP13-deficient tubular epithelial cells are susceptible to apoptosis following acute kidney injury. Sci Rep 2017; 7:43196. [PMID: 28256593 PMCID: PMC5335694 DOI: 10.1038/srep43196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 01/13/2017] [Indexed: 01/05/2023] Open
Abstract
Damage to renal tubular epithelial cells by genetic, environmental, or biological insults can initiate complex signaling mechanisms that promote kidney repair and functional recovery. In this study, we demonstrated that thyroid receptor interacting protein 13 (TRIP13) is a critical modulator of tubular epithelial cell repair following ischemia‐reperfusion injury (IRI), a common type of renal stressor. In Trip13Gt/Gthypomorph mice treated with unilateral renal IRI, persistent tubular epithelial cell damage was determined in the IRI-treated kidney throughout the 168 hours of experimental period compared to the contralateral kidneys. The damaged epithelial cells were associated with increased levels of DNA damage (ɣH2AX) and apoptotic markers (p53, cleaved caspase-7, and TUNEL-positive cells). Correspondingly, TRIP13 was found to directly interact with Tetratricopeptide Repeat Domain 5 (TTC5), a p53 co‐factor, and genetic knockdown of TRIP13 in murine inner medullary collecting duct cells in the presence of hydrogen peroxide showed increased activity of p53 at Serine 15. In all, these studies suggest that insufficient TRIP13 increased the susceptibility of damaged tubular epithelial cells to progress towards apoptotic cell death.
Collapse
Affiliation(s)
- Jeffrey D Pressly
- The University of Tennessee Health Science Center, College of Pharmacy, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Taketsugu Hama
- The University of Tennessee Health Science Center, College of Pharmacy, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Shannon O' Brien
- The University of Tennessee Health Science Center, College of Pharmacy, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Kevin R Regner
- Medical College of Wisconsin, Department of Medicine, Division of Nephrology, Milwaukee, WI, USA
| | - Frank Park
- The University of Tennessee Health Science Center, College of Pharmacy, Department of Pharmaceutical Sciences, Memphis, TN, USA
| |
Collapse
|
232
|
Wang R, Zheng X, Zhang L, Zhou B, Hu H, Li Z, Zhang L, Lin Y, Wang X. Histone H4 expression is cooperatively maintained by IKKβ and Akt1 which attenuates cisplatin-induced apoptosis through the DNA-PK/RIP1/IAPs signaling cascade. Sci Rep 2017; 7:41715. [PMID: 28139737 PMCID: PMC5282510 DOI: 10.1038/srep41715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/23/2016] [Indexed: 02/05/2023] Open
Abstract
While chromatin remodeling mediated by post-translational modification of histone is extensively studied in carcinogenesis and cancer cell’s response to chemotherapy and radiotherapy, little is known about the role of histone expression in chemoresistance. Here we report a novel chemoresistance mechanism involving histone H4 expression. Extended from our previous studies showing that concurrent blockage of the NF-κB and Akt signaling pathways sensitizes lung cancer cells to cisplatin-induced apoptosis, we for the first time found that knockdown of Akt1 and the NF-κB-activating kinase IKKβ cooperatively downregulated histone H4 expression, which increased cisplatin-induced apoptosis in lung cancer cells. The enhanced cisplatin cytotoxicity in histone H4 knockdown cells was associated with proteasomal degradation of RIP1, accumulation of cellular ROS and degradation of IAPs (cIAP1 and XIAP). The cisplatin-induced DNA-PK activation was suppressed in histone H4 knockdown cells, and inhibiting DNA-PK reduced expression of RIP1 and IAPs in cisplatin-treated cells. These results establish a novel mechanism by which NF-κB and Akt contribute to chemoresistance involving a signaling pathway consisting of histone H4, DNA-PK, RIP1 and IAPs that attenuates ROS-mediated apoptosis, and targeting this pathway may improve the anticancer efficacy of platinum-based chemotherapy.
Collapse
Affiliation(s)
- Ruixue Wang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xuelian Zheng
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Zhang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Zhou
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Huaizhong Hu
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiping Li
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Zhang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yong Lin
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr., SE., Albuquerque NM 87108, USA
| | - Xia Wang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
233
|
Shafique E, Torina A, Reichert K, Colantuono B, Nur N, Zeeshan K, Ravichandran V, Liu Y, Feng J, Zeeshan K, Benjamin LE, Irani K, Harrington EO, Sellke FW, Abid MR. Mitochondrial redox plays a critical role in the paradoxical effects of NAPDH oxidase-derived ROS on coronary endothelium. Cardiovasc Res 2017; 113:234-246. [PMID: 28088753 DOI: 10.1093/cvr/cvw249] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/25/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
AIMS There are conflicting reports on the role of reactive oxygen species (ROS) i.e. beneficial vs. harmful, in vascular endothelium. Here, we aim to examine whether duration of exposure to ROS and/or subcellular ROS levels are responsible for the apparently paradoxical effects of oxidants on endothelium. METHODS AND RESULTS We have recently generated binary (Tet-ON/OFF) conditional transgenic mice (Tet-Nox2:VE-Cad-tTA) that can induce 1.8 ± 0.42-fold increase in NADPH oxidase (NOX)-derived ROS specifically in vascular endothelium upon withdrawal of tetracycline from the drinking water. Animals were divided in two groups: one exposed to high endogenous ROS levels for 8 weeks (short-term) and the other for 20 weeks (long-term). Using endothelial cells (EC) isolated from mouse hearts (MHEC), we demonstrate that both short-term and long-term increase in NOX-ROS induced AMPK-mediated activation of eNOS. Interestingly, although endothelium-dependent nitric oxide (NO)-mediated coronary vasodilation was significantly increased after short-term increase in NOX-ROS, coronary vasodilation was drastically reduced after long-term increase in ROS. We also show that short-term ROS increase induced proliferation in EC and angiogenic sprouting in the aorta. In contrast, long-term increase in cytosolic ROS resulted in nitrotyrosine-mediated inactivation of mitochondrial (mito) antioxidant MnSOD, increase in mito-ROS, loss of mitochondrial membrane potential (Δψm), decreased EC proliferation and angiogenesis. CONCLUSION The findings suggest that NOX-derived ROS results in increased mito-ROS. Whereas short-term increase in mito-ROS was counteracted by MnSOD, long-term increase in ROS resulted in nitrotyrosine-mediated inactivation of MnSOD, leading to unchecked increase in mito-ROS and loss of Δψm followed by inhibition of endothelial function and proliferation.
Collapse
Affiliation(s)
- Ehtesham Shafique
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Anali Torina
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Karla Reichert
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Bonnie Colantuono
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Nasifa Nur
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Khawaja Zeeshan
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Vani Ravichandran
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Yuhong Liu
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA.,Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, USA
| | - Jun Feng
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA.,Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, USA
| | - Khawaja Zeeshan
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | | | - Kaikobad Irani
- University of Iowa Carver School of Medicine, Iowa, IA, USA
| | - Elizabeth O Harrington
- Providence VA Medical Center, Providence, RI, USA.,Brown University, Providence, RI, USA
| | - Frank W Sellke
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA.,Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, USA
| | - Md Ruhul Abid
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA; .,Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, USA.,Brown University, Providence, RI, USA
| |
Collapse
|
234
|
Is there still a role for cytotoxic chemotherapy after targeted therapy and immunotherapy in metastatic melanoma? A case report and literature review. CHINESE JOURNAL OF CANCER 2017; 36:10. [PMID: 28086948 PMCID: PMC5237156 DOI: 10.1186/s40880-017-0179-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
Metastatic melanoma has long been considered to have a very poor prognosis and to be chemo-resistant. However, a subgroup of patients with metastatic melanoma presents remarkable responses to chemotherapeutic agents, even in the absence of a response to modern targeted therapies and immunotherapies; accordingly, determining predictive biomarkers of the response to chemotherapies for metastatic melanoma remains a priority to guide treatment in these patients. We report a case study of a patient with B-Raf proto-oncogene serine/threonine kinase-mutated metastatic melanoma harbouring many genetic mutations. The patient did not respond to prior targeted therapies or immunotherapies but experienced a dramatic objective radiological and clinical response to subsequent dacarbazine-based chemotherapy. In the era of targeted therapies and immunotherapies for metastatic melanoma, cytotoxic chemotherapies may still represent an interesting therapeutic weapon in a well-defined subgroup of patients presenting with specific genetic and molecular features.
Collapse
|
235
|
Zhang X, Liu Y, Kim YJ, Mac J, Zhuang R, Wang P. Co-delivery of carboplatin and paclitaxel via cross-linked multilamellar liposomes for ovarian cancer treatment. RSC Adv 2017; 7:19685-19693. [PMID: 28603607 PMCID: PMC5450007 DOI: 10.1039/c7ra01100h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Cross-linked multilamellar liposomes offer an approach to achieve combinatorial delivery of hydrophobic paclitaxel and hydrophilic metallic carboplatin at a synergistic ratio to treat ovarian cancer.
Carboplatin (CPT) and paclitaxel (PTX) used in combination is one of the most effective treatments for ovarian cancer. However, the traditional combination methods used to co-administrate CPT and PTX showed limited clinical efficacy due to their distinct pharmacokinetics. Although much effort has been devoted to developing nanoparticles capable of encapsulating drugs with different lipophilicites, co-delivery of carboplatin with paclitaxel by a single nanoparticle has rarely been reported. Here, we encapsulated and delivered this drug combination to ovarian cancer cells at a controlled ratio by a previously reported crosslinked multilamellar liposome vesicle (cMLV). A 1 : 1 CPT/PTX molar ratio for cMLVs (CPT/PTX) combination treatment was found to induce the strongest anti-tumor synergism and to target ALDH+ cancer stem cells (CSC) in vitro. Moreover, we demonstrated that this co-encapsulation strategy reduced systemic cytotoxicity and resulted in a stronger anti-tumor effect when compared to free drug combinations and individual drug-loaded cMLVs in an OVCAR8 ovarian cancer xenograft mouse model. Thus, this study suggests a potentially promising combination therapy for ovarian cancer in clinical practice.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 3710 McClintock Ave. , RTH509 , Los Angeles , CA 90089 , USA . ; ; Tel: +1-213-740-0780
| | - Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 3710 McClintock Ave. , RTH509 , Los Angeles , CA 90089 , USA . ; ; Tel: +1-213-740-0780
| | - Yu Jeong Kim
- Department of Pharmacology and Pharmaceutical Sciences , University of Southern California , Los Angeles , CA 90089 , USA
| | - John Mac
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 3710 McClintock Ave. , RTH509 , Los Angeles , CA 90089 , USA . ; ; Tel: +1-213-740-0780
| | - Rachel Zhuang
- Department of Biomedical Engineering , University of Southern California , Los Angeles , CA 90089 , USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 3710 McClintock Ave. , RTH509 , Los Angeles , CA 90089 , USA . ; ; Tel: +1-213-740-0780.,Department of Pharmacology and Pharmaceutical Sciences , University of Southern California , Los Angeles , CA 90089 , USA.,Department of Biomedical Engineering , University of Southern California , Los Angeles , CA 90089 , USA
| |
Collapse
|
236
|
Lohse I, Kumareswaran R, Cao P, Pitcher B, Gallinger S, Bristow RG, Hedley DW. Effects of Combined Treatment with Ionizing Radiation and the PARP Inhibitor Olaparib in BRCA Mutant and Wild Type Patient-Derived Pancreatic Cancer Xenografts. PLoS One 2016; 11:e0167272. [PMID: 28033382 PMCID: PMC5199060 DOI: 10.1371/journal.pone.0167272] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
Background The BRCA2 gene product plays an important role in DNA double strand break repair. Therefore, we asked whether radiation sensitivity of pancreatic cancers developing in individuals with germline BRCA2 mutations can be enhanced by agents that inhibit poly (ADP-ribose) polymerase (PARP). Methods We compared the sensitivity of two patient-derived pancreatic cancer xenografts, expressing a truncated or wild type BRCA 2, to ionizing radiation alone or in combination with olaparib (AZD-2281). Animals were treated with either a single dose of 12Gy, 7 days of olaparib or 7 days of olaparib followed by a single dose of 12Gy. Response was assessed by tumour growth delay and the activation of damage response pathways. Results The BRCA2 mutated and wild type tumours showed similar radiation sensitivity, and treatment with olaparib did not further sensitize either model when compared to IR alone. Conclusions While PARP inhibition has been shown to be effective in BRCA-mutated breast and ovarian cancers, it is less well established in pancreatic cancer patients. Our results show no radiosensitization in a germline BRCA 2 mutant and suggest that combining PARP inhibition and IR may not be beneficial in BRCA 2 related pancreatic tumors.
Collapse
Affiliation(s)
- Ines Lohse
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ramya Kumareswaran
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pinjiang Cao
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Bethany Pitcher
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Steven Gallinger
- Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Translational Research Initiative in Pancreas Cancer, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Robert G. Bristow
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David W. Hedley
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Oncology and Haematology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
237
|
Tan X, Fu Y, Chen L, Lee W, Lai Y, Rezaei K, Tabbara S, Latham P, Teal CB, Man YG, Siegel RS, Brem RF, Fu SW. miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer. Oncotarget 2016; 7:293-307. [PMID: 26588055 PMCID: PMC4807999 DOI: 10.18632/oncotarget.6344] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miRNA) dysfunction is associated with a variety of human diseases, including cancer. Our previous study showed that miR-671-5p was deregulated throughout breast cancer progression. Here, we report for the first time that miR-671-5p is a tumor-suppressor miRNA in breast tumorigenesis. We found that expression of miR-671-5p was decreased significantly in invasive ductal carcinoma (IDC) compared to normal in microdissected formalin-fixed, paraffin-embedded (FFPE) tissues. Forkhead Box M1 (FOXM1), an oncogenic transcription factor, was predicted as one of the direct targets of miR-671-5p, which was subsequently confirmed by luciferase assays. Forced expression of miR-671-5p in breast cancer cell lines downregulated FOXM1 expression, and attenuated the proliferation and invasion in breast cancer cell lines. Notably, overexpression of miR-671-5p resulted in a shift from epithelial-to-mesenchymal transition (EMT) to mesenchymal-to-epithelial transition (MET) phenotypes in MDA-MB-231 breast cancer cells and induced S-phase arrest. Moreover, miR-671-5p sensitized breast cancer cells to cisplatin, 5-fluorouracil (5-FU) and epirubicin exposure. Host cell reactivation (HCR) assays showed that miR-671-5p reduces DNA repair capability in post-drug exposed breast cancer cells. cDNA microarray data revealed that differentially expressed genes when miR-671-5p was transfected are associated with cell proliferation, invasion, cell cycle, and EMT. These data indicate that miR-671-5p functions as a tumor suppressor miRNA in breast cancer by directly targeting FOXM1. Hence, miR-671-5p may serve as a novel therapeutic target for breast cancer management.
Collapse
Affiliation(s)
- Xiaohui Tan
- Department of Medicine (Division of Genomic Medicine), The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yebo Fu
- Department of Medicine (Division of Genomic Medicine), The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Liang Chen
- Department of Medicine (Division of Genomic Medicine), The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Woojin Lee
- Department of Medicine (Division of Genomic Medicine), The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yinglei Lai
- Department of Statistics, The George Washington University, Washington, DC, USA
| | - Katayoon Rezaei
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Sana Tabbara
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Patricia Latham
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Christine B Teal
- Department of Surgery, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yan-Gao Man
- Research Lab and International Collaboration, Bon Secours Cancer Institute, Bon Secours Health System, Richmond, VA, USA
| | - Robert S Siegel
- Department of Medicine (Division of Hematology/Oncology), The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Rachel F Brem
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Sidney W Fu
- Department of Medicine (Division of Genomic Medicine), The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
238
|
DNA damage response in nephrotoxic and ischemic kidney injury. Toxicol Appl Pharmacol 2016; 313:104-108. [PMID: 27984128 DOI: 10.1016/j.taap.2016.10.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023]
Abstract
DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore relies on a thorough elucidation of the DDR pathways in various forms of AKI.
Collapse
|
239
|
Kolokotroni E, Dionysiou D, Veith C, Kim YJ, Sabczynski J, Franz A, Grgic A, Palm J, Bohle RM, Stamatakos G. In Silico Oncology: Quantification of the In Vivo Antitumor Efficacy of Cisplatin-Based Doublet Therapy in Non-Small Cell Lung Cancer (NSCLC) through a Multiscale Mechanistic Model. PLoS Comput Biol 2016; 12:e1005093. [PMID: 27657742 PMCID: PMC5033576 DOI: 10.1371/journal.pcbi.1005093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022] Open
Abstract
The 5-year survival of non-small cell lung cancer patients can be as low as 1% in advanced stages. For patients with resectable disease, the successful choice of preoperative chemotherapy is critical to eliminate micrometastasis and improve operability. In silico experimentations can suggest the optimal treatment protocol for each patient based on their own multiscale data. A determinant for reliable predictions is the a priori estimation of the drugs’ cytotoxic efficacy on cancer cells for a given treatment. In the present work a mechanistic model of cancer response to treatment is applied for the estimation of a plausible value range of the cell killing efficacy of various cisplatin-based doublet regimens. Among others, the model incorporates the cancer related mechanism of uncontrolled proliferation, population heterogeneity, hypoxia and treatment resistance. The methodology is based on the provision of tumor volumetric data at two time points, before and after or during treatment. It takes into account the effect of tumor microenvironment and cell repopulation on treatment outcome. A thorough sensitivity analysis based on one-factor-at-a-time and latin hypercube sampling/partial rank correlation coefficient approaches has established the volume growth rate and the growth fraction at diagnosis as key features for more accurate estimates. The methodology is applied on the retrospective data of thirteen patients with non-small cell lung cancer who received cisplatin in combination with gemcitabine, vinorelbine or docetaxel in the neoadjuvant context. The selection of model input values has been guided by a comprehensive literature survey on cancer-specific proliferation kinetics. The latin hypercube sampling has been recruited to compensate for patient-specific uncertainties. Concluding, the present work provides a quantitative framework for the estimation of the in-vivo cell-killing ability of various chemotherapies. Correlation studies of such estimates with the molecular profile of patients could serve as a basis for reliable personalized predictions. Less than 14% of medically treated patients with locally advanced and metastatic non-small cell lung cancer are expected to be alive 5 years after diagnosis. Standard therapeutic strategies include the administration of two drugs in combination, aiming at shrinking the tumor before surgery and improving overall survival. Knowing the sensitivity profile of each patient to different treatment strategies at diagnosis may help choose the most appropriate ones. We develop a methodology for the quantitative estimation of the cytotoxic efficacy of cisplatin-based doublets on cancer cells by applying a simulation model of cancer progression and response. The model incorporates the proliferation cycle, quiescence, differentiation and loss of tumor cells. We evaluate the effect of in vivo microenvironment of real tumors, as expressed by measurable tumor proliferation kinetics, such as how fast the tumor grows, the percentage of cells that are actively dividing, the resistance of stem cells, etc. on treatment outcome so as to derive more accurate estimates. A literature survey guides the selection of values. The methodology is applied to a real clinical dataset of patients. Correlation studies between the derived cytotoxicities and the patients’ molecular profile could lead to predictions of treatment response at the time of diagnosis.
Collapse
Affiliation(s)
- Eleni Kolokotroni
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
| | - Dimitra Dionysiou
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
| | - Christian Veith
- Institute of Pathology, University of Saarland, Homburg (Saar), Germany
| | - Yoo-Jin Kim
- Institute of Pathology, University of Saarland, Homburg (Saar), Germany
| | | | | | - Aleksandar Grgic
- Department of Nuclear Medicine, University of Saarland, Homburg (Saar), Germany
| | - Jan Palm
- Department of Radiotherapy and Radiation Oncology, University of Saarland, Homburg (Saar), Germany
| | - Rainer M. Bohle
- Institute of Pathology, University of Saarland, Homburg (Saar), Germany
| | - Georgios Stamatakos
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
240
|
Catalani E, Proietti Serafini F, Zecchini S, Picchietti S, Fausto AM, Marcantoni E, Buonanno F, Ortenzi C, Perrotta C, Cervia D. Natural products from aquatic eukaryotic microorganisms for cancer therapy: Perspectives on anti-tumour properties of ciliate bioactive molecules. Pharmacol Res 2016; 113:409-420. [PMID: 27650755 DOI: 10.1016/j.phrs.2016.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 11/27/2022]
Abstract
Several modern drugs, including those for cancer therapy, have been isolated from natural sources, are based on natural products and its derivatives, or mime natural products. Some of them are in clinical use, others in clinical trials. The success of natural products in drug discovery is related to their biochemical characteristics and to the technologic methods used to study their feature. Natural compounds may acts as chemo-preventive agents and as factors that increase therapeutic efficacy of existing drugs, thus overcoming cancer cell drug resistance that is the main factor determining the failure in conventional chemotherapy. Water environment, because of its physical and chemical conditions, shows an extraordinary collection of natural biological substances with an extensive structural and functional diversity. The isolation of bioactive molecules has been reported from a great variety of aquatic organisms; however, the therapeutic application of molecules from eukaryotic microorganisms remains inadequately investigated and underexploited on a systematic basis. Herein we describe the biological activities in mammalian cells of selected substances isolated from ciliates, free-living protozoa common almost everywhere there is water, focusing on their anti-tumour actions and their possible therapeutic activity. In particular, we unveil the cellular and molecular machine mediating the effects of cell type-specific signalling protein pheromone Er-1 and secondary metabolites, i.e. euplotin C and climacostol, in cancer cells. To support the feasibility of climacostol-based approaches, we also present novel findings and report additional mechanisms of action using both in vitro and in vivo models of mouse melanomas, with the scope of highlighting new frontiers that can be explored also in a therapeutic perspective. The high skeletal chemical difference of ciliate compounds, their sustainability and availability, also through the use of new organic synthesis/modifications processes, and the results obtained so far in biological studies provide a rationale to consider some of them a potential resource for the design of new anti-cancer drugs.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Francesca Proietti Serafini
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Silvia Zecchini
- Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, Milano, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Enrico Marcantoni
- School of Sciences and Technologies, Section of Chemistry, Università degli Studi di Camerino, Italy
| | - Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage and Tourism, Università degli Studi di Macerata, Italy
| | - Claudio Ortenzi
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage and Tourism, Università degli Studi di Macerata, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Italy.
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Italy.
| |
Collapse
|
241
|
Yan F, Pang J, Peng Y, Molina JR, Yang P, Liu S. Elevated Cellular PD1/PD-L1 Expression Confers Acquired Resistance to Cisplatin in Small Cell Lung Cancer Cells. PLoS One 2016; 11:e0162925. [PMID: 27610620 PMCID: PMC5017656 DOI: 10.1371/journal.pone.0162925] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/30/2016] [Indexed: 02/05/2023] Open
Abstract
Although small cell lung cancer (SCLC) is highly responsive to chemotherapies (e.g., cisplatin-etoposide doublet), virtually almost all responsive SCLC patients experience disease recurrence characterized by drug resistance. The mechanisms underlying cisplatin resistance remain elusive. Here we report that cell-intrinsic expression of PD1 and PD-L1, two immune checkpoints, is required for sustained expansion of SCLC cells under cisplatin selection. Indeed, PD1 and PD-L1 were expressed at a higher level in lung cancer cell lines, tumor tissues, and importantly, in SCLC cells resistant to cisplatin (H69R, H82R), when compared to respective controls. Genetic abrogation of PD1 and PD-L1 in H69R and H82R cells decreased their proliferation rate, and restored their sensitivity to cisplatin. Mechanistically, PD-L1 upregulation in H69R and H82R cells was attributed to the overexpression of DNA methyltransferase 1 (DNMT1) or receptor tyrosine kinase KIT, as knockdown of DNMT1 or KIT in H69R and H82R cells led to PD-L1 downregulation. Consequently, combined knockdown of PD-L1 with KIT or DNMT1 resulted in more pronounced inhibition of H69R and H82R cell growth. Thus, cell intrinsic PD1/PD-L1 signaling may be a predictor for poor efficacy of cisplatin treatment, and targeting the cellular PD1/PD-L1 axis may improve chemosensitization of aggressive SCLC.
Collapse
Affiliation(s)
- Fei Yan
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, Minnesota, 55912, United States of America
| | - Jiuxia Pang
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, Minnesota, 55912, United States of America
| | - Yong Peng
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University /Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Julian R. Molina
- Department of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota, 55905, United States of America
| | - Ping Yang
- Division of Epidemiology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota, 55905, United States of America
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, Minnesota, 55912, United States of America
- * E-mail:
| |
Collapse
|
242
|
Roberts NB, Wadajkar AS, Winkles JA, Davila E, Kim AJ, Woodworth GF. Repurposing platinum-based chemotherapies for multi-modal treatment of glioblastoma. Oncoimmunology 2016; 5:e1208876. [PMID: 27757301 DOI: 10.1080/2162402x.2016.1208876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022] Open
Abstract
Glioblastoma (GBM) is a fatal brain cancer for which new treatment options are sorely needed. Platinum-based drugs have been investigated extensively for GBM treatment but few have shown significant efficacy without major central nervous system (CNS) and systemic toxicities. The relative success of platinum drugs for treatment of non-CNS cancers indicates great therapeutic potential when effectively delivered to the tumor region(s). New insights into the broad anticancer effects of platinum drugs, particularly immunomodulatory effects, and innovative delivery strategies that can maximize these multi-modal effects and minimize toxicities may promote the re-purposing of this chemotherapeutic drug class for GBM treatment.
Collapse
Affiliation(s)
- Nathan B Roberts
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aniket S Wadajkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey A Winkles
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eduardo Davila
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA; Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
243
|
Deben C, Wouters A, Op de Beeck K, van Den Bossche J, Jacobs J, Zwaenepoel K, Peeters M, Van Meerbeeck J, Lardon F, Rolfo C, Deschoolmeester V, Pauwels P. The MDM2-inhibitor Nutlin-3 synergizes with cisplatin to induce p53 dependent tumor cell apoptosis in non-small cell lung cancer. Oncotarget 2016; 6:22666-79. [PMID: 26125230 PMCID: PMC4673190 DOI: 10.18632/oncotarget.4433] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/30/2015] [Indexed: 11/28/2022] Open
Abstract
The p53/MDM2 interaction has been a well-studied target for new drug design leading to the development of the small molecule inhibitor Nutlin-3. Our objectives were to combine Nutlin-3 with cisplatin (CDDP), a well-known activator of the p53 pathway, in a series of non-small cell lung cancer cell lines in order to increase the cytotoxic response to CDDP. We report that sequential treatment (CDDP followed by Nutlin-3), but not simultaneous treatment, resulted in strong synergism. Combination treatment induced p53's transcriptional activity, resulting in increased mRNA and protein levels of MDM2, p21, PUMA and BAX. In addition we report the induction of a strong p53 dependent apoptotic response and induction of G2/M cell cycle arrest. The strongest synergistic effect was observed at low doses of both CDDP and Nutlin-3, which could result in fewer (off-target) side effects while maintaining a strong cytotoxic effect. Our results indicate a promising preclinical potential, emphasizing the importance of the applied treatment scheme and the presence of wild type p53 for the combination of CDDP and Nutlin-3.
Collapse
Affiliation(s)
- Christophe Deben
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium.,Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Ken Op de Beeck
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium.,Center for Medical Genetics, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Julie Jacobs
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Karen Zwaenepoel
- Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Jan Van Meerbeeck
- Department of Thoracic Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Christian Rolfo
- Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium.,Phase-1 Early Clinical Trials Unit, Antwerp University Hospital, Antwerp, Belgium
| | - Vanessa Deschoolmeester
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium.,Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium.,Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
244
|
Liu X, Jiang Y, Nowak B, Hargis S, Plunkett W. Mechanism-Based Drug Combinations with the DNA Strand-Breaking Nucleoside Analog CNDAC. Mol Cancer Ther 2016; 15:2302-2313. [PMID: 27474148 DOI: 10.1158/1535-7163.mct-15-0801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 07/08/2016] [Indexed: 11/16/2022]
Abstract
CNDAC (2'-C-cyano-2'-deoxy-1-β-d-arabino-pentofuranosyl-cytosine, DFP10917) and its orally bioavailable prodrug, sapacitabine, are undergoing clinical trials for hematologic malignancies and solid tumors. The unique action mechanism of inducing DNA strand breaks distinguishes CNDAC from other deoxycytidine analogs. To optimize the clinical potentials of CNDAC, we explored multiple strategies combining CNDAC with chemotherapeutic agents targeting distinct DNA damage repair pathways that are currently in clinical use. The ability of each agent to decrease proliferative potential, determined by clonogenic assays, was determined in paired cell lines proficient and deficient in certain DNA repair proteins. Subsequently, each agent was used in combination with CNDAC at fixed concentration ratios. The clonogenicity was quantitated by median effect analysis, and a combination index was calculated. The c-Abl kinase inhibitor imatinib had synergy with CNDAC in HCT116 cells, regardless of p53 status. Inhibitors of PARP1 that interfere with homologous recombination (HR) repair or base excision repair (BER) and agents such as temozolomide that cause DNA damage repaired by the BER pathway were also synergistic with CNDAC. The toxicity of the nitrogen mustards bendamustine and cytoxan, or of platinum compounds, which generate DNA adducts repaired by nucleotide excision repair and HR, was additive with CNDAC. An additive cell killing was also achieved by the combination of CNDAC with taxane mitotic inhibitors (paclitaxel and docetaxel). At concentrations that allow survival of the majority of wild-type cells, the synergistic or additive combination effects were selective in HR-deficient cells. This study provides mechanistic rationales for combining CNDAC with other active drugs. Mol Cancer Ther; 15(10); 2302-13. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yingjun Jiang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Billie Nowak
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah Hargis
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
245
|
Adhikari S, Curtis PD. DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol Rev 2016; 40:575-91. [PMID: 27476077 DOI: 10.1093/femsre/fuw023] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 12/21/2022] Open
Abstract
Epigenetics is a change in gene expression that is heritable without a change in DNA sequence itself. This phenomenon is well studied in eukaryotes, particularly in humans for its role in cellular differentiation, X chromosome inactivation and diseases like cancer. However, comparatively little is known about epigenetic regulation in bacteria. Bacterial epigenetics is mainly present in the form of DNA methylation where DNA methyltransferases add methyl groups to nucleotides. This review focuses on two methyltransferases well characterized for their roles in gene regulation: Dam and CcrM. Dam methyltransferase in Escherichia coli is important for expression of certain genes such as the pap operon, as well as other cellular processes like DNA replication initiation and DNA repair. In Caulobacter crescentus and other Alphaproteobacteria, the methyltransferase CcrM is cell cycle regulated and is involved in the cell-cycle-dependent regulation of several genes. The diversity of regulatory targets as well as regulatory mechanisms suggests that gene regulation by methylation could be a widespread and potent method of regulation in bacteria.
Collapse
Affiliation(s)
- Satish Adhikari
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
246
|
Yan D, An G, Kuo MT. C-Jun N-terminal kinase signalling pathway in response to cisplatin. J Cell Mol Med 2016; 20:2013-2019. [PMID: 27374471 PMCID: PMC5082413 DOI: 10.1111/jcmm.12908] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 05/17/2016] [Indexed: 01/10/2023] Open
Abstract
Cisplatin (cis diamminedichloroplatinum II, cDDP) is one of the most effective cancer chemotherapeutic agents and is used in the treatment of many types of human malignancies. However, inherent tumour resistance is a major barrier to effective cisplatin therapy. So far, the mechanism of cDDP resistance has not been well defined. In general, cisplatin is considered to be a cytotoxic drug, for damaging DNA and inhibiting DNA synthesis, resulting in apoptosis via the mitochondrial death pathway or plasma membrane disruption. cDDP-induced DNA damage triggers signalling pathways that will eventually decide between cell life and death. As a member of the mitogen-activated protein kinases family, c-Jun N-terminal kinase (JNK) is a signalling pathway in response to extracellular stimuli, especially drug treatment, to modify the activity of numerous proteins locating in the mitochondria or the nucleus. Recent studies suggest that JNK signalling pathway plays a major role in deciding the fate of the cell and inducing resistance to cDDP-induced apoptosis in human tumours. c-Jun N-terminal kinase regulates several important cellular functions including cell proliferation, differentiation, survival and apoptosis while activating and inhibiting substrates for phosphorylation transcription factors (c-Jun, ATF2: Activating transcription factor 2, p53 and so on), which subsequently induce pro-apoptosis and pro-survival factors expression. Therefore, it is suggested that JNK signal pathway is a double-edged sword in cDDP treatment, simultaneously being a significant pro-apoptosis factor but also being associated with increased resistance to cisplatin-based chemotherapy. This review focuses on current knowledge concerning the role of JNK in cell response to cDDP, as well as their role in cisplatin resistance.
Collapse
Affiliation(s)
- Dong Yan
- Department of Oncology, Beijing Chao-Yang Hospital Affiliated with Capital Medical University, Beijing, China. .,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - GuangYu An
- Department of Oncology, Beijing Chao-Yang Hospital Affiliated with Capital Medical University, Beijing, China
| | - Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
247
|
Hong JY, Hara K, Kim JW, Sato EF, Shim EB, Cho KH. Minimal systems analysis of mitochondria-dependent apoptosis induced by cisplatin. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:367-78. [PMID: 27382353 PMCID: PMC4930905 DOI: 10.4196/kjpp.2016.20.4.367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 11/15/2022]
Abstract
Recently, it was reported that the role of mitochondria-reactive oxygen species (ROS) generating pathway in cisplatin-induced apoptosis is remarkable. Since a variety of molecules are involved in the pathway, a comprehensive approach to delineate the biological interactions of the molecules is required. However, quantitative modeling of the mitochondria-ROS generating pathway based on experiment and systemic analysis using the model have not been attempted so far. Thus, we conducted experiments to measure the concentration changes of critical molecules associated with mitochondrial apoptosis in both human mesothelioma H2052 and their ρ(0) cells lacking mitochondrial DNA (mtDNA). Based on the experiments, a novel mathematical model that can represent the essential dynamics of the mitochondrial apoptotic pathway induced by cisplatin was developed. The kinetic parameter values of the mathematical model were estimated from the experimental data. Then, we have investigated the dynamical properties of this model and predicted the apoptosis levels for various concentrations of cisplatin beyond the range of experiments. From parametric perturbation analysis, we further found that apoptosis will reach its saturation level beyond a certain critical cisplatin concentration.
Collapse
Affiliation(s)
- Ji-Young Hong
- BioLead Inc., 609 Korea Mediventure Center, Daegu 41061 Korea
| | | | - Jun-Woo Kim
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Eisuke F Sato
- Department of Biochemistry, Suzuka University of Medical Science, Suzuka, mie 513-8670, Japan
| | - Eun Bo Shim
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
248
|
Cetraz M, Sen V, Schoch S, Streule K, Golubev V, Hartwig A, Köberle B. Platinum(IV)-nitroxyl complexes as possible candidates to circumvent cisplatin resistance in RT112 bladder cancer cells. Arch Toxicol 2016; 91:785-797. [PMID: 27307157 DOI: 10.1007/s00204-016-1754-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/08/2016] [Indexed: 11/27/2022]
Abstract
The therapeutic efficacy of the anticancer drug cisplatin is limited by the development of resistance. We therefore investigated newly synthesized platinum-nitroxyl complexes (PNCs) for their potential to circumvent cisplatin resistance. The complexes used were PNCs with bivalent cis-PtII(R·NH2)(NH3)Cl2 and cis-PtII(DAPO)Ox and four-valent platinum cis,trans,cis-PtIV(R·NH2)(NH3)(OR)2Cl2 and cis,trans,cis-PtIV(DAPO)(OR)2Ox, where R· are TEMPO or proxyl nitroxyl radicals, DAPO is trans-3,4-diamino-2,2,6,6-tetramethylpiperidine-1-oxyl, and OR and Ox are carboxylato and oxalato ligands, respectively. The complexes were characterized by spectroscopic methods, HPLC, log P ow data and elemental analysis. We studied intracellular platinum accumulation, DNA platination and cytotoxicity upon treatment with the PNCs in a model system of the bladder cancer cell line RT112 and its cisplatin-resistant subline RT112-CP. Platinum accumulation and DNA platination were similar in RT112 and RT112-CP cells for both bivalent and four-valent PNCs, in contrast to cisplatin for which a reduction in intracellular accumulation and DNA platination was observed in the resistant subline. The PNCs were found to platinate DNA in relation to the length of their axial RO-ligands. Furthermore, the PNCs were increasingly toxic in relation to the elongation of their axial RO-ligands, with similar toxicities in RT112 and its cisplatin-resistant subline. Using a cell-free assay, we observed induction of oxidative DNA damage by cisplatin but not PNCs suggesting that cisplatin exerts its toxic action by platination and oxidative DNA damage, while cells treated with PNCs are protected against oxidatively induced lesions. Altogether, our study suggests that PNCs may provide a more effective treatment for tumors which have developed resistance toward cisplatin.
Collapse
Affiliation(s)
- Maria Cetraz
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Vasily Sen
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow, Russian Federation, 142432
| | - Sarah Schoch
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Karolin Streule
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Valery Golubev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow, Russian Federation, 142432
| | - Andrea Hartwig
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Beate Köberle
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131, Karlsruhe, Germany.
| |
Collapse
|
249
|
Brasseur K, Fabi F, Adam P, Parent S, Lessard L, Asselin E. Post-translational regulation of the cleaved fragment of Par-4 in ovarian and endometrial cancer cells. Oncotarget 2016; 7:36971-36987. [PMID: 27175591 PMCID: PMC5095052 DOI: 10.18632/oncotarget.9235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/24/2016] [Indexed: 11/25/2022] Open
Abstract
We recently reported the caspase3-dependent cleavage of Par-4 resulting in the accumulation of a 25kDa cleaved-Par-4 (cl-Par-4) fragment and we investigated in the present study the mechanisms regulating this fragment using cl-Par-4-expressing stable clones derived from ovarian and endometrial cancer cell lines.Cl-Par-4 protein was weakly express in all stable clones despite constitutive expression. However, upon cisplatin treatment, cl-Par-4 levels increased up to 50-fold relative to baseline conditions. Treatment of stable clones with proteasome and translation inhibitors revealed that cisplatin exposure might in fact protect cl-Par-4 from proteasome-dependent degradation. PI3K and MAPK pathways were also implicated as evidenced by an increase of cl-Par-4 in the presence of PI3K inhibitors and a decrease using MAPK inhibitors. Finally using bioinformatics resources, we found diverse datasets showing similar results to those we observed with the proteasome and cl-Par-4 further supporting our data.These new findings add to the complex mechanisms regulating Par-4 expression and activity, and justify further studies addressing the biological significance of this phenomenon in gynaecological cancer cells.
Collapse
Affiliation(s)
- Kevin Brasseur
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - François Fabi
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - Pascal Adam
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - Sophie Parent
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - Laurent Lessard
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - Eric Asselin
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| |
Collapse
|
250
|
Climacostol reduces tumour progression in a mouse model of melanoma via the p53-dependent intrinsic apoptotic programme. Sci Rep 2016; 6:27281. [PMID: 27271364 PMCID: PMC4895139 DOI: 10.1038/srep27281] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022] Open
Abstract
Climacostol, a compound produced by the ciliated protozoan Climacostomum virens, displayed cytotoxic properties in vitro. This study demonstrates that it has anti-tumour potential. Climacostol caused a reduction of viability/proliferation of B16-F10 mouse melanoma cells, a rapidly occurring DNA damage, and induced the intrinsic apoptotic pathway characterised by the dissipation of the mitochondrial membrane potential, the translocation of Bax to the mitochondria, the release of Cytochrome c from the mitochondria, and the activation of Caspase 9-dependent cleavage of Caspase 3. The apoptotic mechanism of climacostol was found to rely on the up-regulation of p53 and its targets Noxa and Puma. In vivo analysis of B16-F10 allografts revealed a persistent inhibition of tumour growth rate when melanomas were treated with intra-tumoural injections of climacostol. In addition, it significantly improved the survival of transplanted mice, decreased tumour weight, induced a remarkable reduction of viable cells inside the tumour, activated apoptosis and up-regulated the p53 signalling network. Importantly, climacostol toxicity was more selective against tumour than non-tumour cells. The anti-tumour properties of climacostol and the molecular events associated with its action indicate that it is a powerful agent that may be considered for the design of pro-apoptotic drugs for melanoma therapy.
Collapse
|