201
|
He H, Zhang W, Jiang L, Tong X, Zheng Y, Xia Z. Endothelial Cell Dysfunction Due to Molecules Secreted by Macrophages in Sepsis. Biomolecules 2024; 14:980. [PMID: 39199368 PMCID: PMC11352357 DOI: 10.3390/biom14080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Sepsis is recognized as a syndrome of systemic inflammatory reaction induced by dysregulation of the body's immunity against infection. The multiple organ dysfunction associated with sepsis is a serious threat to the patient's life. Endothelial cell dysfunction has been extensively studied in sepsis. However, the role of macrophages in sepsis is not well understood and the intrinsic link between the two cells has not been elucidated. Macrophages are first-line cells of the immune response, whereas endothelial cells are a class of cells that are highly altered in function and morphology. In sepsis, various cytokines secreted by macrophages and endothelial cell dysfunction are inextricably linked. Therefore, investigating how macrophages affect endothelial cells could offer a theoretical foundation for the treatment of sepsis. This review links molecules (TNF-α, CCL2, ROS, VEGF, MMP-9, and NO) secreted by macrophages under inflammatory conditions to endothelial cell dysfunction (adhesion, permeability, and coagulability), refining the pathophysiologic mechanisms of sepsis. At the same time, multiple approaches (a variety of miRNA and medicines) regulating macrophage polarization are also summarized, providing new insights into reversing endothelial cell dysfunction and improving the outcome of sepsis treatment.
Collapse
Affiliation(s)
- Heng He
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| |
Collapse
|
202
|
Němec V, Remeš M, Beňovský P, Böck MC, Šranková E, Wong JF, Cros J, Williams E, Tse LH, Smil D, Ensan D, Isaac MB, Al-Awar R, Gomolková R, Ursachi VC, Fafílek B, Kahounová Z, Víchová R, Vacek O, Berger BT, Wells CI, Corona CR, Vasta JD, Robers MB, Krejci P, Souček K, Bullock AN, Knapp S, Paruch K. Discovery of Two Highly Selective Structurally Orthogonal Chemical Probes for Activin Receptor-like Kinases 1 and 2. J Med Chem 2024; 67:12632-12659. [PMID: 39023313 PMCID: PMC11320582 DOI: 10.1021/acs.jmedchem.4c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Activin receptor-like kinases 1-7 (ALK1-7) regulate a complex network of SMAD-independent as well as SMAD-dependent signaling pathways. One of the widely used inhibitors for functional investigations of these processes, in particular for bone morphogenetic protein (BMP) signaling, is LDN-193189. However, LDN-193189 has insufficient kinome-wide selectivity complicating its use in cellular target validation assays. Herein, we report the identification and comprehensive characterization of two chemically distinct highly selective inhibitors of ALK1 and ALK2, M4K2234 and MU1700, along with their negative controls. We show that both MU1700 and M4K2234 efficiently block the BMP pathway via selective in cellulo inhibition of ALK1/2 kinases and exhibit favorable in vivo profiles in mice. MU1700 is highly brain penetrant and shows remarkably high accumulation in the brain. These high-quality orthogonal chemical probes offer the selectivity required to become widely used tools for in vitro and in vivo investigation of BMP signaling.
Collapse
Affiliation(s)
- Václav Němec
- Institute
for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Marek Remeš
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Petr Beňovský
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Michael C. Böck
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Eliška Šranková
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Jong Fu Wong
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Julien Cros
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Eleanor Williams
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Lap Hang Tse
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - David Smil
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Deeba Ensan
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Methvin B. Isaac
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Rima Al-Awar
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Regina Gomolková
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Vlad-Constantin Ursachi
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
| | - Bohumil Fafílek
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
| | - Zuzana Kahounová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Ráchel Víchová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Ondřej Vacek
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Benedict-Tilman Berger
- Institute
for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
| | - Carrow I. Wells
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | - James D. Vasta
- Promega Corporation, Madison, Wisconsin 53716, United States
| | | | - Pavel Krejci
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
| | - Karel Souček
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Alex N. Bullock
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Stefan Knapp
- Institute
for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
| | - Kamil Paruch
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| |
Collapse
|
203
|
Hodges K, Famuliner P, Kingsley K, Howard KM. Oral Prevalence of Selenomonas noxia Differs among Orthodontic Patients Compared to Non-Orthodontic Controls: A Retrospective Biorepository Analysis. Pathogens 2024; 13:670. [PMID: 39204270 PMCID: PMC11357603 DOI: 10.3390/pathogens13080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The oral microbial flora may be significantly altered by orthodontic therapy and the use of fixed orthodontic brackets. Most orthodontic research has focused on cariogenic pathogens, while some evidence has demonstrated an increase in many known periodontal pathogens. However, little is known about the prevalence of the Gram-negative periodontal pathogen Selenomonas noxia (SN) among these patients. Using an existing saliva biorepository, n = 208 samples from adult and pediatric orthodontic and non-orthodontic patients were identified and screened for the presence of SN using qPCR and validated primers. In the pediatric study sample (n = 89), 36% tested positive for the presence of SN, with orthodontic patients comprising more SN-positive samples (87.5%) than SN-negative samples (78.9%), p = 0.0271. In the adult study sample (n = 119), SN was found in 28.6%, with orthodontic patients comprising 58.8% of positive samples and only 28.2% of negative samples (p < 0.0001). These data demonstrated that both pediatric and adult orthodontic patients exhibited higher prevalence of SN compared with age-matched non-orthodontic controls. As this microorganism is associated not only with periodontal disease but also long-term health issues such as obesity, more research is needed regarding the factors that increase the prevalence of this microbe.
Collapse
Affiliation(s)
- Kyle Hodges
- Department of Advanced Education in Pediatric Dentistry, School of Dental Medicine, University of Nevada-Las Vegas, 1700 West Charleston Blvd, Las Vegas, NV 89106, USA
| | - Payton Famuliner
- Department of Clinical Sciences, School of Dental Medicine, University of Nevada-Las Vegas, 1700 West Charleston Blvd, Las Vegas, NV 89106, USA
| | - Karl Kingsley
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada-Las Vegas, 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| | - Katherine M. Howard
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada-Las Vegas, 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| |
Collapse
|
204
|
Cruz IDS, de Sena LMF, Fernandes EC, Moreno MC, Souza RODAE, Alves ACDM, Caldas SGFR, Simplício H. Effect of time and photoactivated face on bond strength of brackets and on degree of monomer conversion. Clin Oral Investig 2024; 28:465. [PMID: 39098966 DOI: 10.1007/s00784-024-05854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVE To evaluate the effect of four different photoactivation protocols (according to "photoactivated faces" - mesial/distal, cervical/incisal or center - and "photoactivation time" - 6-3 s) of a high-power photo activator (Valo Cordless®-Ultradent) on the shear bond strength (SBS) between metal brackets and dental enamel and on the degree of conversion (DC) of an orthodontic resin. MATERIALS AND METHODS 40 bovine incisor crowns were randomly assigned to 4 groups (n = 10). The brackets were bonded with Transbond XT® resin using 4 protocols according to the "photoactivation protocol" factor (which was subdivided into photoactivated faces and photoactivation time): V3C = 3 s + center; V6C = 6 s + center; V3M3D = 3 s on mesial + 3 s on distal; V3C3I = 3 s on cervical + 3 s on incisal. All the samples were stored for 4 months (water,37ºC) and then subjected to a SBS test (100KgF,1 mm/min). 40 resin discs were made to evaluate the monomer degree of conversion. Data from the SBS and DC were assessed by One-way ANOVA and Tukey's test (5%). Bond failures were analyzed according to the Adhesive Remnant Index (ARI) and evaluated by the Kruskal-Wallis test (5%). RESULTS There was a statistically significant difference (p = 0.008) in the One-way ANOVA result for SBS values between all groups, but the protocols showed statistically similar results (p ≥ 0.05-Tukey's tests) concerning the photoactivated faces (V6C, V3M3D and V3C3I) and photoactivation time (V3C and V6C) factors individually. There was no statistically significant difference (p ≥ 0.05) in the One-way ANOVA result for DC values. CONCLUSION The SBS and DC values will vary depending on the protocol applied. CLINICAL RELEVANCE It is possible to maintain the bracket fixation quality with the use of a high-power LED photo activator associated with a shorter photoactivation time. However, it is assumed that not all types of protocols that might be applied will provide quality bonding, such as V3C, V3M3D and V3C3I, which may - depending on the SBS and DC values - affect the final treatment time, due to brackets debonding, or increase of possibility of damage to dental enamel during bracket removal. Clinical studies are suggested to confirm the hypotheses of this research.
Collapse
Affiliation(s)
| | | | - Eloisa Cesario Fernandes
- Graduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande do Norte - UFRN, Natal, RN, Brazil.
| | - Mariana Cabral Moreno
- Graduate Program in Dental Sciences, Department of Dentistry, Federal University of Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | | | | | | | - Hallissa Simplício
- Department of Dentistry, Federal University of Rio Grande do Norte - UFRN, Natal, RN, Brazil
| |
Collapse
|
205
|
Holomková K, Veselá B, Dadáková K, Sharpe PT, Lesot H, Matalová E, Švandová E. Hypoxia-inducible factors in postnatal mouse molar dental pulp development: insights into expression patterns, localisation and metabolic pathways. Pflugers Arch 2024:10.1007/s00424-024-03003-1. [PMID: 39101996 DOI: 10.1007/s00424-024-03003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Hypoxia is relevant to several physiological and pathological processes and this also applies for the tooth. The adaptive response to lowering oxygen concentration is mediated by hypoxia-inducible factors (HIFs). Since HIFs were shown to participate in the promotion of angiogenesis, stem cell survival, odontoblast differentiation and dentin formation, they may play a beneficial role in the tooth reparative processes. Although some data were generated in vitro, little is known about the in vivo context of HIFs in tooth development. In order to contribute to this field, the mouse mandibular first molar was used as a model.The expression and in situ localisation of HIFs were examined at postnatal (P) days P0, P7, P14, using RT-PCR and immunostaining. The expression pattern of a broad spectrum of hypoxia-related genes was monitored by customised PCR Arrays. Metabolic aspects were evaluated by determination of the lactate level and mRNA expression of the mitochondrial marker Nd1.The results show constant high mRNA expression of Hif1a, increasing expression of Hif2a, and very low expression of Hif3a during early postnatal molar development. In the examined period the localisation of HIFs in the nuclei of odontoblasts and the subodontoblastic layer identified their presence during odontoblastic differentiation. Additionally, the lower lactate level and higher expression of mitochondrial Nd1 in advanced development points to decreasing glycolysis during differentiation. Postnatal nuclear localisation of HIFs indicates a hypoxic state in specific areas of dental pulp as oxygen demands depend on physiological events such as crown and root dentin mineralization.
Collapse
Affiliation(s)
- Kateřina Holomková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Barbora Veselá
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Physiology, Veterinary University, Brno, Czech Republic
| | - Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Paul T Sharpe
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Hervé Lesot
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Matalová
- Department of Physiology, Veterinary University, Brno, Czech Republic
| | - Eva Švandová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
206
|
Alarcón-Moreno JC, Flores-Muñoz M, Blázquez-Morales MSL, García-Rivera ME, Rodríguez-Alba JC, Castro-López CR, Nachón-García FJ, Muñoz-Muñoz VH, Nachón-García MG. "The effects of non-surgical periodontal treatment plus zinc and magnesium supplementation on oxidative stress and antioxidants enzymes in type 2 diabetes patients: a quasi-experimental study". BMC Oral Health 2024; 24:892. [PMID: 39098894 PMCID: PMC11299399 DOI: 10.1186/s12903-024-04688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Periodontal Disease (PD) associated with Type 2 Diabetes Mellitus (T2DM) is a chronic condition that affects the oral cavity of people living with T2DM. The mechanisms of the interaction between type 2 Diabetes Mellitus and Periodontal diseases are complex and involve multiple pathophysiological pathways related to the systemic inflammatory process and oxidative stress. Non-surgical periodontal treatment (NSTP) is considered the standard for the management of this disease; however, patients with systemic conditions such as type 2 Diabetes Mellitus do not seem to respond adequately. For this reason, the use of complementary treatments has been suggested to support non-surgical periodontal treatment to reduce the clinical consequences of the disease and improve the systemic conditions of the patient. The use of zinc gluconate and magnesium oxide as an adjunct to non-surgical periodontal treatment and its effects on periodontal clinical features and oxidative stress in patients with Periodontal diseases -type 2 Diabetes Mellitus is poorly understood. METHODS A quasi-experimental study was performed in patients with periodontal diseases associated with T2DM. Initially, 45 subjects who met the selection criteria were included. 19 were assigned to a control group [non-surgical periodontal treatment] and 20 to the experimental group (non-surgical periodontal treatment + 500 mg of magnesium oxide and 50 mg of zinc gluconate for oral supplementation for 30 days) and the data of 6 patients were eliminated. Sociodemographic characteristics, physiological factors, biochemical parameters, and clinical features of periodontal diseases were assessed. RESULTS In this research a change in periodontal clinical characteristics was observed, which has been associated with disease remission. Additionally, a shift in MDA levels was presented for both groups. Furthermore, the supplementation group showed an increase in antioxidant enzymes when compared to the group that only received NSPT. CONCLUSION The use of Zinc gluconate and magnesium oxide can serve as a complementary treatment to non-surgical periodontal treatment, that supports the remission of PD as a result of regulation-reduction of oxidative biomarkers and increase in antioxidant enzymes activity. TRIAL REGISTRATION https://www.isrctn.com ISRCTN 14,092,381. September 13º 2023. Retrospective Registration.
Collapse
Affiliation(s)
| | - Mónica Flores-Muñoz
- Clinical and Translational Research Department, Science Health Institute, Universidad Veracruzana, St. Dr. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa, Veracruz, CP 91190, México
| | | | | | | | | | - Francisco Javier Nachón-García
- Clinical and Translational Research Department, Science Health Institute, Universidad Veracruzana, St. Dr. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa, Veracruz, CP 91190, México
| | | | - María Gabriela Nachón-García
- Clinical and Translational Research Department, Science Health Institute, Universidad Veracruzana, St. Dr. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa, Veracruz, CP 91190, México.
| |
Collapse
|
207
|
Fung M, Patel N, DeVoe C, Ryan CN, McAdams S, Pamula M, Dwivedi A, Teraoka J, Smollin M, Sam S, Perkins B, Chin-Hong P. Utility of Serial Microbial Cell-free DNA Sequencing for Inpatient and Outpatient Pathogen Surveillance Among Allogeneic Hematopoietic Stem Cell Transplant Recipients. Open Forum Infect Dis 2024; 11:ofae330. [PMID: 39086465 PMCID: PMC11288372 DOI: 10.1093/ofid/ofae330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 08/02/2024] Open
Abstract
Background This study characterizes the clinical utility and validity of the Karius test (KT), a plasma microbial cell-free DNA sequencing platform, as an infection surveillance tool among hematopoietic stem cell transplant (HCT) recipients, including monitoring for cytomegalovirus (CMV) and detecting infections relative to standard microbiologic testing (SMT). Methods A prospective, observational cohort study was performed among adult HCT recipients as inpatients and outpatients. Serial KTs were performed starting with 1 sample within 14 days before HCT, then weekly from 7-63 days posttransplant then monthly from 3-12 months post-HCT. Diagnostic performance of KT versus CMV polymerase chain reaction was evaluated with positive percent agreement and negative percent agreement. Infectious events (<12 months post-HCT) were extracted from medical records. For infectious events without positive SMT, 2 clinicians adjudicated KT results to determine if any detections were a probable cause. Difference in time from KT pathogen detection and infection onset was calculated. Results Of the 70 participants, mean age was 49.9 years. For CMV surveillance, positive percent agreement was 100% and negative percent agreement was 90%. There was strong correlation between CMV DNA and KT molecules per microliter (r 2: 0.84, P < .001). Of the 32 SMT+/KT+ infectious events, KT identified 26 earlier than SMT (median: -12 days) and an additional 5 diagnostically difficult pathogens identified by KT but not SMT. Conclusions KT detected CMV with high accuracy and correlation with quantitative polymerase chain reaction. Among infectious events, KT demonstrated additive clinical utility by detecting pathogens earlier than SMT and those not detected by SMT.
Collapse
Affiliation(s)
- Monica Fung
- Division of Infectious Diseases, University of California San Francisco, San Francisco, California, USA
| | - Nimish Patel
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Catherine DeVoe
- Division of Infectious Diseases, University of California San Francisco, San Francisco, California, USA
| | | | | | - Meenakshi Pamula
- Division of Infectious Diseases, University of California San Francisco, San Francisco, California, USA
| | - Aditya Dwivedi
- Division of Infectious Diseases, University of California San Francisco, San Francisco, California, USA
| | - Justin Teraoka
- Division of Infectious Diseases, University of California San Francisco, San Francisco, California, USA
| | | | - Srey Sam
- Karius, Inc., Redwood City, California, USA
| | | | - Peter Chin-Hong
- Division of Infectious Diseases, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
208
|
Jia Y, Li W, Zheng M, Zheng C, Zhou Q. Flavor release from walnut kernels in an in-vitro mastication model with decoupled oral parameters. Food Res Int 2024; 190:114553. [PMID: 38945595 DOI: 10.1016/j.foodres.2024.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Consumer preferences for walnut products are largely determined by the flavors released during mastication. In this study, a peeled walnut kernel (PWK) model was established with oral parameters decoupled using a Hutchings 3D model. The model explored in vitro variations using head-space solid-phase microextraction-gas chromatography-mass spectrometry and intelligent sensory techniques. The fracture strength, hardness, particle size, adhesiveness, springiness, gumminess, and chewiness were significantly reduced during mastication. We identified 61 volatile compounds and found that 2,5-dimethyl-3-ethylpyrazine is a key component, releasing predominantly baking and milky notes. Glutamic acid, alanine, arginine, and sucrose were identified as the key compounds in taste perception. The method can help establish a mastication model for nuts and facilitate breakthroughs in the development of walnut products and processing methods.
Collapse
Affiliation(s)
- Yimin Jia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenlin Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Mingming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Chang Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Qi Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
209
|
Gu H, Wang Y, Wang Y, Ding L, Huan W, Yang Y, Fang F, Cui W. Global Bibliometric and Visualized Analysis of Research on Lactoferrin from 1978 to 2024. Mol Nutr Food Res 2024; 68:e2400379. [PMID: 39044343 DOI: 10.1002/mnfr.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/02/2024] [Indexed: 07/25/2024]
Abstract
SCOPE Lactoferrin (LF) is an iron-bound protein with a molecular weight of about 80 kDa. LF has many biological functions such as antibacterial, antiviral, immunomodulatory, and anticancer. The purpose of this study is to explore the research trend of LF through bibliometric analysis. METHODS AND RESULTS The search is conducted in the Web of Science Core Collection database, and then the publications information of LF related literature is exported. Based on CiteSpace and VOSviewer software, countries, institutions, authors, journals, keywords, and so on are analyzed. Since 1987, a total of 9382 literature have been included, and the number of papers related to LF has increased year by year. These publications come mainly from 124 countries and 725 institutions. Of the 1256 authors analyzed, Valenti Piera is the one with the most publications. The burst strength of gut microbiota, antioxidant, nanoparticles, and in vitro digestion are 21.3, 15.63, 23.03, and 13.51, respectively. They represent the frontier of research in this field and are developing rapidly. CONCLUSION This study shows that LF has important research value. The study of LF nanoparticles and the effects of LF on the gut microbiota are an emerging field that helps to explore new research directions.
Collapse
Affiliation(s)
- Hong Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yiming Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yating Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Liyi Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Wenru Huan
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yuting Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Fang Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, 130021, China
| |
Collapse
|
210
|
Quispe-Salcedo A, Yamazaki T, Ohshima H. Effects of Synthetic Toll-Like Receptor 9 Ligand Molecules on Pulpal Immunomodulatory Response and Repair after Injuries. Biomolecules 2024; 14:931. [PMID: 39199319 PMCID: PMC11353191 DOI: 10.3390/biom14080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanine (CpG) motifs (CpG-ODNs) are ligand molecules for Toll-like receptor 9 (TLR9), which is expressed by odontoblasts in vitro and dental pulp cells. This study determined the effects of CpG-ODNs on pulpal immunomodulatory response and repair following injury. Briefly, the upper right first molars of three-week-old mice were extracted, immersed in Type A (D35) or B (K3) CpG-ODN solutions (0.1 or 0.8 mM) for 30 min, and then replanted. Pulpal healing and immunomodulatory activity were assessed by hematoxylin-eosin and AZAN staining, as well as immunohistochemistry. One week following the operation, inflammatory reactions occurred in all of the experimental groups; however, re-revascularization and newly formed hard tissue deposition were observed in the pulp chamber of all groups at week 2. A positive trend in the expression of immune cell markers was observed toward the CpG-ODN groups at 0.1 mM. Our data suggest that synthetic CpG-ODN solutions at low concentrations may evoke a long-lasting macrophage-TLR9-mediated pro-inflammatory, rather than anti-inflammatory, response in the dental pulp to modulate the repair process and hard tissue formation. Further studies are needed to determine the effects of current immunomodulatory agents in vitro and in vivo and develop treatment strategies for dental tissue regeneration.
Collapse
Affiliation(s)
- Angela Quispe-Salcedo
- Division of Anatomy and Cell Biology of the Hard Tissue, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute of Material Sciences (NIMS), Tsukuba 305-0047, Japan;
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Niigata University Graduate School of Medical and Dental Science, Niigata 951-8514, Japan;
| |
Collapse
|
211
|
Lafargue B, D'Andréa G, Fabre R, Alshukry A, Vandersteen C, Guevara N. Taste Disorders After Middle Ear Surgery: Chorda Tympani Nerve Injury and Quality of Life. Otolaryngol Head Neck Surg 2024. [PMID: 39087766 DOI: 10.1002/ohn.920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE To evaluate taste disorders after middle ear surgery, their modifying factors especially chorda tympani nerve injury or underlying otologic disease. We investigated consequences of taste disorders on quality of life. STUDY DESIGN Prospective cohort study. SETTING Monocentric study in tertiary care center. METHODS A total of 214 patients who underwent middle ear surgery were included. Data regarding taste disorders were collected by questionnaires over a 1-year follow-up period. RESULTS Taste disorders were reported in 42.7% at 10 days, in 23.3% at 4 months, and in 9.2% 1 year postoperatively. When the chorda tympani nerve was initially healthy, taste disorders were more frequent after its transection throughout the follow-up period. When it was involved in a cholesteatoma or inflammatory process, postoperative taste disorders were more frequent after nerve stretching. Postoperative discomfort in daily life was rated on the Likert scale at 3.5 out of 10. Dietary modifications were reported by 25.8% of patients, and mood alterations by 15% of patients. CONCLUSION Taste disorders are frequent after middle ear surgery although they mostly improve in the first months. When the CTN is healthy, cutting it leads to more taste disorders than stretching it, thus advocating its preservation to prevent these symptoms. However, in cases of pathological CTN, cutting this nerve, which is sometimes necessary to control the disease, is less likely to cause taste disorders than stretching it. These taste disorders are a source of discomfort and may present risks of dietary modifications and emotional impact.
Collapse
Affiliation(s)
- Blandine Lafargue
- ENT Department, University Hospital Center of Nice, Nice, France
- UR2CA-Unité de Recherche Clinique Côte d'Azur, University Côte d'Azur, Nice, France
| | - Grégoire D'Andréa
- ENT Department, University Hospital Center of Nice, Nice, France
- UR2CA-Unité de Recherche Clinique Côte d'Azur, University Côte d'Azur, Nice, France
| | - Roxane Fabre
- Department of Public Health, University Hospital Centre Nice, Nice, France
| | - Abdallah Alshukry
- ENT Department, University Hospital Center of Nice, Nice, France
- UR2CA-Unité de Recherche Clinique Côte d'Azur, University Côte d'Azur, Nice, France
| | - Clair Vandersteen
- ENT Department, University Hospital Center of Nice, Nice, France
- UR2CA-Unité de Recherche Clinique Côte d'Azur, University Côte d'Azur, Nice, France
| | - Nicolas Guevara
- ENT Department, University Hospital Center of Nice, Nice, France
- UR2CA-Unité de Recherche Clinique Côte d'Azur, University Côte d'Azur, Nice, France
| |
Collapse
|
212
|
Dhungel D, Rastogi V, Chaurasia S, Maddheshiya N. Pilomatricoma in the infraorbital region. Clin Case Rep 2024; 12:e9322. [PMID: 39139622 PMCID: PMC11319229 DOI: 10.1002/ccr3.9322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Key Clinical Message Pilomatricoma, a rare benign skin tumor arising from hair follicle matrix cells, warrants consideration in the evaluation of subcutaneous nodules or masses, especially when presenting as painless and firm lesions. Accurate diagnosis hinges on histopathological examination, underscoring the significance of clinician vigilance and prompt intervention. Abstract Pilomatricoma, also referred to as Pilomatrixomas or Calcifying epithelioma of Malherbe, is a rare benign skin tumor derived from hair follicle matrix cells, presents a diagnostic challenge due to its diverse clinical manifestations. Females are more commonly affected by Pilomatricoma. This condition typically manifests as a painless, firm, and slowly progressive lesion. Histopathological analysis shows characteristic findings, such as basaloid cells at the periphery and shadow cells centrally. Immunohistochemical studies assess the expression of cytokeratin's associated with hair matrix differentiation. Complete surgical excision remains the cornerstone of treatment, ensuring favorable outcomes and minimizing the risk of recurrence. Awareness of this entity among clinicians is essential for timely recognition and appropriate intervention. In this specific case-study, we present a case of Pilomatricoma situated in the lower left orbital region of a 32-year-old male individual who had been noticing swelling in that vicinity over the preceding 7 months.
Collapse
Affiliation(s)
- Dilasha Dhungel
- Department of Oral and Maxillofacial PathologyUniversal College of Medical SciencesBhairahawaNepal
| | - Varun Rastogi
- Department of Oral and Maxillofacial PathologyUniversal College of Medical SciencesBhairahawaNepal
| | - Sandhya Chaurasia
- Department of Oral and Maxillofacial PathologyUniversal College of Medical SciencesBhairahawaNepal
| | | |
Collapse
|
213
|
Li A, Sasaki JI, Huang H, Abe GL, Inubushi T, Takahashi Y, Hayashi M, Imazato S. Effect of Heparan Sulfate on Vasculogenesis and Dentinogenesis of Dental Pulp Stem Cells. J Endod 2024; 50:1108-1116. [PMID: 38719089 DOI: 10.1016/j.joen.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Heparan sulfate (HS) is a major component of dental pulp tissue. We previously reported that inhibiting HS biosynthesis impedes endothelial differentiation of dental pulp stem cells (DPSCs). However, the underlying mechanisms by which exogenous HS induces DPSC differentiation and pulp tissue regeneration remain unknown. This study explores the impact of exogenous HS on vasculogenesis and dentinogenesis of DPSCs both in vitro and in vivo. METHODS Human-derived DPSCs were cultured in endothelial and odontogenic differentiation media and treated with HS. Endothelial differentiation of DPSCs was investigated by real-time polymerase chain reaction and capillary sprouting assay. Odontogenic differentiation was assessed through real-time polymerase chain reaction and detection of mineralized dentin-like deposition. Additionally, the influence of HS on pulp tissue was assessed with a direct pulp capping model, in which HS was delivered to exposed pulp tissue in rats. Gelatin sponges were loaded with either phosphate-buffered saline or 101-102 μg/mL HS and placed onto the pulp tissue. Following a 28-day period, tissues were investigated by histological analysis and micro-computed tomography imaging. RESULTS HS treatment markedly increased expression levels of key endothelial and odontogenic genes, enhanced the formation of capillary-like structures, and promoted the deposition of mineralized matrices. Treatment of exposed pulp tissue with HS in the in vivo pulp capping study induced formation of capillaries and reparative dentin. CONCLUSIONS Exogenous HS effectively promoted vasculogenesis and dentinogenesis of DPSCs in vitro and induced reparative dentin formation in vivo, highlighting its therapeutic potential for pulp capping treatment.
Collapse
Affiliation(s)
- Aonan Li
- Department of Endodontics, Shandong First Medical University School of Dentistry, Shandong, China; Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Jun-Ichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Hailing Huang
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Gabriela L Abe
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yusuke Takahashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan; Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
214
|
Kaminogo K, Yamaguchi S, Chen H, Yagita H, Toyama N, Urata Y, Hibi H. Preventive Effects of Dental Pulp Stem Cell-conditioned Media on Anti-RANKL Antibody-Related Osteonecrosis of the Jaw. Calcif Tissue Int 2024; 115:185-195. [PMID: 38809297 PMCID: PMC11246278 DOI: 10.1007/s00223-024-01232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Medication-related osteonecrosis of the jaw is a serious disease occurring in patients with cancer and osteoporosis, who are undergoing treatment with antiresorptive agents (ARAs) such as bisphosphonate (BP) or denosumab, an antibody targeting receptor activator of NF-κB ligand. Recently, stem cell-based therapy has been shown to be effective in preventing the development of bisphosphonate-related osteonecrosis of the jaw. However, studies on denosumab-related osteonecrosis of the jaw (DRONJ) remain limited. Here, the efficacy of treatment with dental pulp stem cell conditioned media (DPSC-CM) in preventing DRONJ in a murine model was evaluated. Local administration of DPSC-CM into the extraction socket of a mouse with DRONJ decreased the number of empty osteocyte lacunae and the prevalence of ONJ. In tissues surrounding the extraction sockets in the DPSC-CM-treated group, the expression of inflammatory cytokines was attenuated and that of osteogenesis-related molecules was enhanced compared to that in the control group. Further, the expression of Wnt signaling molecules, which had been suppressed, was improved. These findings collectively suggest that DPSC-CM prevents ONJ development in a murine DRONJ model.
Collapse
Affiliation(s)
- Kento Kaminogo
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Satoshi Yamaguchi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Hui Chen
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoto Toyama
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Oral and Maxillofacial Surgery, Iwata City Hospital, Iwata, Japan
| | - Yusuke Urata
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
215
|
Luo W, Wang Y, Wang Z, Jiao J, Yu T, Jiang W, Li M, Zhang H, Gong X, Chao B, Liu S, Wu X, Wang J, Wu M. Advanced topology of triply periodic minimal surface structure for osteogenic improvement within orthopedic metallic screw. Mater Today Bio 2024; 27:101118. [PMID: 38975238 PMCID: PMC11225863 DOI: 10.1016/j.mtbio.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Metallic screws are one of the most common implants in orthopedics. However, the solid design of the screw has often resulted in stress shielding and postoperative loosening, substantially impacting its long-term fixation effect after surgery. Four additive manufacturing porous structures (Fischer-Koch S, Octet, Diamond, and Double Gyroid) are now introduced into the screw to fix those issues. Upon applying the four porous structures, elastic modulus in the screw decreased about 2∼15 times to reduce the occurrence of stress shielding, and bone regeneration effect on the screw surface increased about 1∼50 times to improve bone tissue regrowing. With more bone tissue regrowing on the inner surface of porous screw, a stiffer integration between screw and bone tissue will be achieved, which improves the long-term fixation of the screw tremendously. The biofunctions of the four topologies on osteogenesis have been fully explored, which provides an advanced topology optimization scheme for the screw utilized in orthopedic fixation.
Collapse
Affiliation(s)
- Wangwang Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Mufeng Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xuqiang Gong
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xuhui Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
216
|
Vom Scheidt A, Krug J, Goggin P, Bakker AD, Busse B. 2D vs. 3D Evaluation of Osteocyte Lacunae - Methodological Approaches, Recommended Parameters, and Challenges: A Narrative Review by the European Calcified Tissue Society (ECTS). Curr Osteoporos Rep 2024; 22:396-415. [PMID: 38980532 PMCID: PMC11324773 DOI: 10.1007/s11914-024-00877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Quantification of the morphology of osteocyte lacunae has become a powerful tool to investigate bone metabolism, pathologies and aging. This review will provide a brief overview of 2D and 3D imaging methods for the determination of lacunar shape, orientation, density, and volume. Deviations between 2D-based and 3D-based lacunar volume estimations are often not sufficiently addressed and may give rise to contradictory findings. Thus, the systematic error arising from 2D-based estimations of lacunar volume will be discussed, and an alternative calculation proposed. Further, standardized morphological parameters and best practices for sampling and segmentation are suggested. RECENT FINDINGS We quantified the errors in reported estimation methods of lacunar volume based on 2D cross-sections, which increase with variations in lacunar orientation and histological cutting plane. The estimations of lacunar volume based on common practice in 2D imaging methods resulted in an underestimation of lacunar volume of up to 85% compared to actual lacunar volume in an artificial dataset. For a representative estimation of lacunar size and morphology based on 2D images, at least 400 lacunae should be assessed per sample.
Collapse
Affiliation(s)
- Annika Vom Scheidt
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Auenbruggerplatz 25, Graz, 8036, Austria.
| | - Johannes Krug
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| | - Patricia Goggin
- Biomedical Imaging Unit, Laboratory and Pathology Block, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Astrid Diana Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan, Amsterdam, 3004, 1081 LA, The Netherlands
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| |
Collapse
|
217
|
Saravani S, Nemati Rezvani H, Shahraki M, Kadeh H. A Comparison of Immunohistochemical Expression of Epidermal Growth Factor Receptor and Human Epidermal Growth Factor Receptor 2 in Dental Follicles with Different Radiographic Sizes. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:508-514. [PMID: 39205824 PMCID: PMC11347589 DOI: 10.30476/ijms.2023.98602.3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 09/04/2024]
Abstract
Background Odontogenic cysts and tumors develop from the dental follicle of asymptomatic impacted teeth. Odontogenic tissues express the epidermal growth factor receptor family (EGFR), which mediates cell proliferation, survival, and neoplastic differentiation. The present study aimed to compare the immunohistochemical expression of EGFR and human epidermal growth factor receptor 2 (HER2) in the dental follicle of impacted wisdom teeth with normal and abnormal radiographic size. Methods In this analytical study, immunohistochemical staining of EGFR and HER2 was performed on 30 normal and 30 abnormal follicles of impacted third molars. Follicles with a width of <2.5 mm were considered normal, whereas those with a width of ≥2.5 mm were regarded as abnormal. The immunoreactive score (IRS) was used to report the expression levels of EGFR and HER2. The obtained data were analyzed using SPSS software. Age and sex were compared in normal and abnormal groups with independent t test and Chi square test, respectively. P<0.05 was considered statistically significant. Results The EGFR and HER2 overall expression was high in all normal and abnormal follicles. The comparison of the percentage of stained cells and intensity of EGFR and HER2 staining in normal and abnormal follicles were not significantly different (P=0.73, P=0.63, P=0.95, respectively). Conclusion Due to the high expression of EGFR and HER2 in normal and abnormal follicles, as well as the lack of significant differences in these two groups, the radiographic size of dental follicles might not indicate the potential capabilities of their cells, and more research in this field is recommended.
Collapse
Affiliation(s)
- Shirin Saravani
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamed Nemati Rezvani
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehrdad Shahraki
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamideh Kadeh
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
218
|
Wang TH, Watanabe K, Muromachi K, Hamada N, Tani-Ishii N. Carbon Nanotubes Induce Mineralization of Human Cementoblasts. J Endod 2024; 50:1117-1123. [PMID: 38719088 DOI: 10.1016/j.joen.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Carbon nanotubes (CNT) are 1 of the allotropes of carbon with unique properties. CNT shows good bone-tissue compatibility and has been reported to induce osteogenesis; therefore, it is regarded as an ideal material in a wide range of applications. However, the therapeutic effect of CNT-containing materials in the healing of apical periodontal tissue is unknown. The purpose of this study was to clarify the effect of CNT on the proliferation and mineralization of the human cementoblast cell line (HCEM). METHODS The proliferation of HCEM cells with CNT stimulation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay performed from 24-72 hours. Calcium deposition levels were evaluated by alizarin red S staining on days 7 and 10, and mineralization-related gene expression was examined by quantitative real-time polymerase chain reaction on days 3, 7, and 10. Scanning electron microscopy was used to observe the culture with CNT on day 14. RESULTS CNT showed no cytotoxicity to HCEM cell proliferation. Treatment was performed with mineralization medium, CNT-induced HCEM mineralization on day 7, and increased calcium deposition on days 7 and 14. Messenger RNA expression of alkaline phosphatase was significantly increased throughout the experimental period, and bone sialoprotein was significantly increased on day 3 by CNT, whereas no effect was found on mRNA expression of type I collagen. CNT was observed in attachment to the cell surface on day 14. CONCLUSIONS CNT promotes the mineralization of HCEM cells, indicating the potential as a new bioactive component for apical periodontal tissue regeneration materials through the regulation of cementoblast mineralization.
Collapse
Affiliation(s)
- Ting-Hsuan Wang
- Department of Pulp Biology and Endodontics, Kanagawa Dental University, Yokosuka, Japan
| | - Kiyoko Watanabe
- Oral Microbiology, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan; Department of Liberal Arts Education, Kanagawa Dental University, Yokosuka, Japan
| | - Koichiro Muromachi
- Department of Pulp Biology and Endodontics, Kanagawa Dental University, Yokosuka, Japan
| | - Nobushiro Hamada
- Oral Microbiology, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Nobuyuki Tani-Ishii
- Department of Pulp Biology and Endodontics, Kanagawa Dental University, Yokosuka, Japan.
| |
Collapse
|
219
|
Bertolini M, Clark D. Periodontal disease as a model to study chronic inflammation in aging. GeroScience 2024; 46:3695-3709. [PMID: 37285008 PMCID: PMC11226587 DOI: 10.1007/s11357-023-00835-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Periodontal disease is a chronic inflammatory condition that results in the destruction of the teeth supporting tissues, eventually leading to the loss of teeth and reduced quality of life. In severe cases, periodontal disease can limit proper nutritional intake, cause acute pain and infection, and cause a withdrawal from social situations due to esthetic and phonetic concerns. Similar to other chronic inflammatory conditions, periodontal disease increases in prevalence with age. Research into what drives periodontal disease pathogenesis in older adults is contributing to our general understanding of age-related chronic inflammation. This review will present periodontal disease as an age-related chronic inflammatory disease and as an effective geroscience model to study mechanisms of age-related inflammatory dysregulation. The current understanding of the cellular and molecular mechanisms that drive inflammatory dysregulation as a function of age will be discussed with a focus on the major pathogenic immune cells in periodontal disease, which include neutrophils, macrophages, and T cells. Research in the aging biology field has shown that the age-related changes in these immune cells result in the cells becoming less effective in the clearance of microbial pathogens, expansion of pathogenic subpopulations, or an increase in pro-inflammatory cytokine secretions. Such changes can be pathogenic and contribute to inflammatory dysregulation that is associated with a myriad of age-related disease including periodontal disease. An improved understanding is needed to develop better interventions that target the molecules or pathways that are perturbed with age in order to improve treatment of chronic inflammatory conditions, including periodontal disease, in older adult populations.
Collapse
Affiliation(s)
- Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Daniel Clark
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
220
|
Singhmar R, Son Y, Jo YJ, Zo S, Min BK, Sood A, Han SS. Fabrication of alginate composite hydrogel encapsulated retinoic acid and nano Se doped biphasic CaP to augment in situ mineralization and osteoimmunomodulation for bone regeneration. Int J Biol Macromol 2024; 275:133597. [PMID: 38960232 DOI: 10.1016/j.ijbiomac.2024.133597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Bone tissue engineering endows alternates to support bone defects/injuries that are circumscribed to undergo orchestrated process of remodeling on its own. In this regard, hydrogels have emerged as a promising platform that can confront irregular defects and encourage in situ bone repair. METHODS In this study, we aimed to develop a new approach for bone tissue regeneration by developing an alginate based composite hydrogel incorporating selenium doped biphasic calcium phosphate nanoparticles, and retinoic acid. The fabricated hydrogel was physiochemically evaluated for morphological, bonding, and mechanical behavior. Additionally, the biological response of the fabricated hydrogel was evaluated on MC3T3-E1 pre-osteoblast cells. RESULTS The developed composite hydrogel confers excellent biocompatibility, and osteoconductivity owing to the presence of alginate, and biphasic calcium phosphate, while selenium presents pro osteogenic, antioxidative, and immunomodulatory properties. The hydrogels exhibited highly porous microstructure, superior mechanical attributes, with enhanced calcification, and biomineralization abilities in vitro. SIGNIFICANCE By combining the osteoconductive properties of biphasic calcium phosphate with multifaceted benefits of selenium and retinoic acid, the fabricated composite hydrogel offers a potential transformation in the landscape of bone defect treatment. This strategy could direct a versatile and effective approach to tackle complex bone injuries/defects and present potential for clinical translation.
Collapse
Affiliation(s)
- Ritu Singhmar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Yumi Son
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Yoo Jung Jo
- Core Research Support Centre for Natural Products and Medical Materials, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Sunmi Zo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Bong Ki Min
- Core Research Support Centre for Natural Products and Medical Materials, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Core Research Support Centre for Natural Products and Medical Materials, 280 Daehak-ro, Gyeongsan 38541, South Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
221
|
Farshbaf A, Mottaghi M, Mohammadi M, Monsef K, Mirhashemi M, Attaran Khorasani A, Mohtasham N. Regenerative application of oral and maxillofacial 3D organoids based on dental pulp stem cell. Tissue Cell 2024; 89:102451. [PMID: 38936200 DOI: 10.1016/j.tice.2024.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Dental pulp stem cells (DPSCs) originate from the neural crest and the present mesenchymal phenotype showed self-renewal capabilities and can differentiate into at least three lineages. DPSCs are easily isolated with minimal harm, no notable ethical constraints, and without general anesthesia to the donor individuals. Furthermore, cryopreservation of DPSCs provides this opportunity for autologous transplantation in future studies without fundamental changes in stemness, viability, proliferation, and differentiating features. Current approaches for pulp tissue regeneration include pulp revascularization, cell-homing-based regenerative endodontic treatment (RET), cell-transplantation-based regenerative endodontic treatment, and allogeneic transplantation. In recent years, a novel technology, organoid, provides a mimic physiological condition and tissue construct that can be applied for tissue engineering, genetic manipulation, disease modeling, single-cell high throughput analysis, living biobank, cryopreserving and maintaining cells, and therapeutic approaches based on personalized medicine. The organoids can be a reliable preclinical prediction model for evaluating cell behavior, monitoring drug response or resistance, and comparing healthy and pathological conditions for therapeutic and prognostic approaches. In the current review, we focused on the promising application of 3D organoid technology based on DPSCs in oral and maxillofacial tissue regeneration. We discussed encountering challenges and limitations, and found promising solutions to overcome obstacles.
Collapse
Affiliation(s)
- Alieh Farshbaf
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahtab Mottaghi
- School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Mohammadi
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Kouros Monsef
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mirhashemi
- Department of Oral and Maxillofacial Pathology, and Oral and Maxillofacial Diseases Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
222
|
Kendlbacher FL, Bloch S, Hager-Mair FF, Schäffer C, Andrukhov O. Red-complex bacteria exhibit distinctly different interactions with human periodontal ligament stromal cells compared to Fusobacterium nucleatum. Arch Oral Biol 2024; 164:106004. [PMID: 38776586 DOI: 10.1016/j.archoralbio.2024.106004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE The red-complex bacteria Porphyromonas gingivalis and Tannerella forsythia together with Fusobacterium nucleatum are essential players in periodontitis. This study investigated the bacterial interplay with human periodontal ligament mesenchymal stromal cells (hPDL-MSCs) which act in the acute phase of periodontal infection. DESIGN The capability of the bacteria to induce an inflammatory response as well as their viability, cellular adhesion and invasion were analyzed upon mono- and co-infections of hPDL-MSCs to delineate potential synergistic or antagonistic effects. The expression level and concentration of interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1 were measured using qRT-PCR and ELISA. Viability, invasion, and adhesion were determined quantitatively using agar plate culture and qualitatively by confocal microscopy. RESULTS Viability of P. gingivalis and T. forsythia but not F. nucleatum was preserved in the presence of hPDL-MSCs, even in an oxygenated environment. F. nucleatum significantly increased the expression and concentration of IL-6, IL-8 and MCP-1 in hPDL-MSCs, while T. forsythia and P. gingivalis caused only a minimal inflammatory response. Co-infections in different combinations had no effect on the inflammatory response. Moreover, P. gingivalis mitigated the increase in cytokine levels elicited by F. nucleatum. Both red-complex bacteria adhered to and invaded hPDL-MSCs in greater numbers than F. nucleatum, with only a minor effect of co-infections. CONCLUSIONS Oral bacteria of different pathogenicity status interact differently with hPDL-MSCs. The data support P. gingivalis' capability to manipulate the inflammatory host response. Further research is necessary to obtain a comprehensive picture of the role of hPDL-MSCs in more complex oral biofilms.
Collapse
Affiliation(s)
- Fabian L Kendlbacher
- NanoGlycobiology Research Group, Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Susanne Bloch
- NanoGlycobiology Research Group, Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F Hager-Mair
- NanoGlycobiology Research Group, Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christina Schäffer
- NanoGlycobiology Research Group, Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria.
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
223
|
Al Ankily M, Makkeyah F, Bakr MM, Shamel M. Evaluating the Effects of Cigarette Smoking and Heated Tobacco Products on Hard Dental Tissues: A Comparative Histological and Colorimetric Analysis. Clin Exp Dent Res 2024; 10:e941. [PMID: 39104124 DOI: 10.1002/cre2.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 08/07/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate and compare the impact of cigarette smoking (CS) and heated tobacco (HT) on the alteration of color and ultrastructural characteristics of human enamel and cementum. BACKGROUND According to tobacco companies, a less harmful substitute for CS is HT products. Nevertheless, comprehensive research on the effects of HT on tooth structures has been lacking. This study aimed to evaluate and compare the impact of CS and HT on the alteration of color and ultrastructural characteristics of human enamel and cementum. MATERIALS AND METHODS Thirty intact and noncarious human maxillary premolars extracted for orthodontic treatment purposes, previously disinfected, were used in the study. The specimens were randomly separated into six groups (n = 10), as follows: Group 1: enamel without smoking exposure; Group 2: enamel exposed to CS; Group 3: enamel exposed to HT; Group 4: cementum without smoking exposure; Group 5: cementum exposed to CS; and Group 6: cementum exposed to HT. The measurement of color change was conducted using a spectrophotometer. The surface alterations and mineral composition of enamel and cementum were evaluated using scanning electron microscopy and energy-dispersive X-ray spectroscopy. ANOVA test followed by Tukey's post hoc test was used to determine significant differences between groups. RESULTS Results showed that CS had a more pronounced effect on enamel and cementum color changes than HT. The impact of CS and HT on color changes was more evident in cementum than in enamel. Surface morphology of enamel and cementum showed alterations in histology following exposure to both smoking types. Moreover, the mineral content experienced a significant reduction after using CS and HT. The reduction in calcium content after CS and HT exposure was similar. However, HT led to a significant decrease in the phosphorus content of enamel when compared with CS. At the same time, CS exposure in cementum resulted in a more significant reduction in Ca/P ratio than HT. CONCLUSIONS Although HT may appear to present a lower danger to hard dental tissues than CS, it is not entirely harmless. CS results in more color changes on the enamel and cementum of teeth. Both smoking methods affected the mineral content of teeth, with CS having a significant effect on the roots, while HT significantly affected the crowns' mineral composition.
Collapse
Affiliation(s)
- Mahmoud Al Ankily
- Oral Biology Department, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Fatma Makkeyah
- Fixed Prosthodontics Department, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Mahmoud M Bakr
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Mohamed Shamel
- Oral Biology Department, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
224
|
Liu Z, Gao Y, Feng X, Su Y, Lian H, Zhao J, Xu J, Liu Q, Song F. Hecogenin alleviates LPS-induced osteolysis via regulating pyroptosis and ROS involved Nrf2 activation. Biomed Pharmacother 2024; 177:116933. [PMID: 38901204 DOI: 10.1016/j.biopha.2024.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
Reactive oxidative species (ROS) generation triggers pyroptosis and induces development of inflammatory osteolysis. Hecogenin (HG) has anti-inflammatory and antioxidative property, but its effects on inflammatory osteolysis remains unclear. In our study, we investigated the mechanism of HG on pyroptosis and its effect on inflammatory osteolysis in vitro and in vivo. The impact of HG on osteoclastogenesis was evaluated using cytotoxicity, TRAcP staining and bone resorption assays. The RNA-sequencing was employed to identify potential signaling pathways, and then RT-qPCR, western blot, immunofluorescence, and ELISA were used to verify. To determine the protective effect of HG in vivo, Lipopolysaccharide (LPS)-induced animal models were utilized, along with micro-CT and histological examination. HG suppressed RANKL-induced osteoclast differentiation, bone resorption, NFATc1 activity and downstream factors. RNA-sequencing results showed that HG inhibited osteoclastogenesis by modulating the inflammatory response and macrophage polarization. Furthermore, HG inhibited the NF-κB pathway, and deactivated the NLRP3 inflammasome. HG activated the expression of nuclear factor E2-related factor 2 (Nrf2) to eliminate ROS generation. Importantly, the inhibitory effect of HG on NLRP3 inflammasome could be reversed by treatment with the Nrf2 inhibitor ML385. In vivo, HG prevented the mice against LPS-induced osteolysis by suppressing osteoclastogenesis and inflammatory factors. In conclusion, HG could activate Nrf2 to eliminate ROS generation, inactivate NLRP3 inflammasome and inhibit pyroptosis, thereby suppressing osteoclastogenesis in vitro and alleviating inflammatory osteolysis in vivo, which indicating that HG might be a promising candidate to treat inflammatory osteolysis.
Collapse
Affiliation(s)
- Zhijuan Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yijie Gao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoliang Feng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuangang Su
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haoyu Lian
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; School of Biomedical Sciences, the University of Western Australia, Perth, Australia.
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Fangming Song
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
225
|
Kegulian NC, Visakan G, Bapat RA, Moradian-Oldak J. Ameloblastin and its multifunctionality in amelogenesis: A review. Matrix Biol 2024; 131:62-76. [PMID: 38815936 PMCID: PMC11218920 DOI: 10.1016/j.matbio.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Extracellular matrix proteins play crucial roles in the formation of mineralized tissues like bone and teeth via multifunctional mechanisms. In tooth enamel, ameloblastin (Ambn) is one such multifunctional extracellular matrix protein implicated in cell signaling and polarity, cell adhesion to the developing enamel matrix, and stabilization of prismatic enamel morphology. To provide a perspective for Ambn structure and function, we begin this review by describing dental enamel and enamel formation (amelogenesis) followed by a description of enamel extracellular matrix. We then summarize the established domains and motifs in Ambn protein, human amelogenesis imperfecta cases, and genetically engineered mouse models involving mutated or null Ambn. We subsequently delineate in silico, in vitro, and in vivo evidence for the amphipathic helix in Ambn as a proposed cell-matrix adhesive and then more recent in vitro evidence for the multitargeting domain as the basis for dynamic interactions of Ambn with itself, amelogenin, and membranes. The multitargeting domain facilitates tuning between Ambn-membrane interactions and self/co-assembly and supports a likely overall role for Ambn as a matricellular protein. We anticipate that this review will enhance the understanding of multifunctional matrix proteins by consolidating diverse mechanisms through which Ambn contributes to enamel extracellular matrix mineralization.
Collapse
Affiliation(s)
- Natalie C Kegulian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Gayathri Visakan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Rucha Arun Bapat
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA.
| |
Collapse
|
226
|
Rasel MA, Abdul Kareem S, Kwan Z, Yong SS, Obaidellah U. Bluish veil detection and lesion classification using custom deep learnable layers with explainable artificial intelligence (XAI). Comput Biol Med 2024; 178:108758. [PMID: 38905895 DOI: 10.1016/j.compbiomed.2024.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Melanoma, one of the deadliest types of skin cancer, accounts for thousands of fatalities globally. The bluish, blue-whitish, or blue-white veil (BWV) is a critical feature for diagnosing melanoma, yet research into detecting BWV in dermatological images is limited. This study utilizes a non-annotated skin lesion dataset, which is converted into an annotated dataset using a proposed imaging algorithm (color threshold techniques) on lesion patches based on color palettes. A Deep Convolutional Neural Network (DCNN) is designed and trained separately on three individual and combined dermoscopic datasets, using custom layers instead of standard activation function layers. The model is developed to categorize skin lesions based on the presence of BWV. The proposed DCNN demonstrates superior performance compared to the conventional BWV detection models across different datasets. The model achieves a testing accuracy of 85.71 % on the augmented PH2 dataset, 95.00 % on the augmented ISIC archive dataset, 95.05 % on the combined augmented (PH2+ISIC archive) dataset, and 90.00 % on the Derm7pt dataset. An explainable artificial intelligence (XAI) algorithm is subsequently applied to interpret the DCNN's decision-making process about the BWV detection. The proposed approach, coupled with XAI, significantly improves the detection of BWV in skin lesions, outperforming existing models and providing a robust tool for early melanoma diagnosis.
Collapse
Affiliation(s)
- M A Rasel
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Sameem Abdul Kareem
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zhenli Kwan
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Shin Shen Yong
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Unaizah Obaidellah
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
227
|
Xu X, Li T, Tang J, Wang D, Zhou Y, Gou H, Li L, Xu Y. CXCR4-mediated neutrophil dynamics in periodontitis. Cell Signal 2024; 120:111212. [PMID: 38719020 DOI: 10.1016/j.cellsig.2024.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a common oral disease closely related to immune response and this study is aimed to identify the key immune-related pathogenic genes and analyze the infiltration and function of immune cells in the disease using bioinformatics methods. METHODS Transcriptome datasets and single-cell RNA sequencing (scRNA-seq) datasets were downloaded from the GEO database. We utilized weighted correlation network analysis and least absolute selection and shrinkage operator, protein-protein interaction network construction to screen out key pathogenic genes as well as conducted the cell-type identification by estimating relative subsets of RNA transcripts algorithm to analyze and characterize immune cell types in periodontal tissues. In addition to bioinformatics validations, clinical and cell samples were collected and mouse periodontitis models were constructed to validate the important role of key genes in periodontitis. RESULTS Bioinformatics analysis pointed out the positive correlation between CXCR4 expression and periodontitis, and revealed the increased infiltration of neutrophils in periodontal inflammatory. Similar results were obtained from clinical samples and animal models. In addition, the clustering and functional enrichment results based on CXCR4 expression levels included activation of immune response and cell migration, implying the possible function of CXCR4 on regulating neutrophil dynamics, which might contribute to periodontitis. Subsequent validation experiments confirmed that the increased expression of CXCR4 in neutrophils under periodontitis, where cell migration-related pathways also were activated. CONCLUSION CXCR4 could be the key pathogenic gene of periodontitis and CXCR4/CXCL12 signal axial might contribute to the development of periodontitis by mediating neutrophil dynamics, suggesting that CXCR4 could be a potential target to help identify novel strategies for the clinical diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Tiange Li
- School of Stomatology, China Medical University, Shenyang 110122, China
| | - Jingqi Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Danlei Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Huiqing Gou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China..
| |
Collapse
|
228
|
Gough AM, Parker AC, O'Bryan PJ, Whitehead TR, Roy S, Garcia BL, Hoffman PS, Jeffrey Smith C, Rocha ER. New functions of pirin proteins and a 2-ketoglutarate: Ferredoxin oxidoreductase ortholog in Bacteroides fragilis metabolism and their impact on antimicrobial susceptibility to metronidazole and amixicile. Microbiologyopen 2024; 13:e1429. [PMID: 39109824 PMCID: PMC11304471 DOI: 10.1002/mbo3.1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
The understanding of how central metabolism and fermentation pathways regulate antimicrobial susceptibility in the anaerobic pathogen Bacteroides fragilis is still incomplete. Our study reveals that B. fragilis encodes two iron-dependent, redox-sensitive regulatory pirin protein genes, pir1 and pir2. The mRNA expression of these genes increases when exposed to oxygen and during growth in iron-limiting conditions. These proteins, Pir1 and Pir2, influence the production of short-chain fatty acids and modify the susceptibility to metronidazole and amixicile, a new inhibitor of pyruvate: ferredoxin oxidoreductase in anaerobes. We have demonstrated that Pir1 and Pir2 interact directly with this oxidoreductase, as confirmed by two-hybrid system assays. Furthermore, structural analysis using AlphaFold2 predicts that Pir1 and Pir2 interact stably with several central metabolism enzymes, including the 2-ketoglutarate:ferredoxin oxidoreductases Kor1AB and Kor2CDAEBG. We used a series of metabolic mutants and electron transport chain inhibitors to demonstrate the extensive impact of bacterial metabolism on metronidazole and amixicile susceptibility. We also show that amixicile is an effective antimicrobial against B. fragilis in an experimental model of intra-abdominal infection. Our investigation led to the discovery that the kor2AEBG genes are essential for growth and have dual functions, including the formation of 2-ketoglutarate via the reverse TCA cycle. However, the metabolic activity that bypasses the function of Kor2AEBG following the addition of phospholipids or fatty acids remains undefined. Overall, our study provides new insights into the central metabolism of B. fragilis and its regulation by pirin proteins, which could be exploited for the development of new narrow-spectrum antimicrobials in the future.
Collapse
Affiliation(s)
- Andrea M. Gough
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Anita C. Parker
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | | | | | - Sourav Roy
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Brandon L. Garcia
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Paul S. Hoffman
- Department of Medicine, Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - C. Jeffrey Smith
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Edson R. Rocha
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| |
Collapse
|
229
|
Wang S, Tan X, Cheng J, Liu Z, Zhou H, Liao J, Wang X, Liu H. Oral microbiome and its relationship with oral cancer. J Cancer Res Ther 2024; 20:1141-1149. [PMID: 39206975 DOI: 10.4103/jcrt.jcrt_44_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
ABSTRACT As the initial point for digestion, the balance of oral microorganisms plays an important role in maintaining local and systemic health. Oral dysbiosis, or an imbalance in the oral microbial community, may lead to the onset of various diseases. The presence or abnormal increase of microbes in the oral cavity has attracted significant attention due to its complicated relationship with oral cancer. Oral cancer can remodel microbial profiles by creating a more beneficial microenvironment for its progression. On the other hand, altered microbial profiles can promote tumorigenesis by evoking a complex inflammatory response and affecting host immunity. This review analyzes the oncogenic potential of oral microbiome alterations as a driver and biomarker. Additionally, a potentially therapeutic strategy via the reversal of the oral microbiome dysbiosis in oral cancers has been discussed.
Collapse
Affiliation(s)
- Shengran Wang
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Xiao Tan
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Juan Cheng
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Zeyang Liu
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Huiping Zhou
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Jiyuan Liao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Xijun Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Hongyun Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| |
Collapse
|
230
|
Hanna R, Miron IC, Dalvi S, Arany P, Bensadoun RJ, Benedicenti S. A Systematic Review of Laser Photobiomodulation Dosimetry and Treatment Protocols in the Management of Medications-Related Osteonecrosis of the Jaws: A Rationalised Consensus for Future Randomised Controlled Clinical Trials. Pharmaceuticals (Basel) 2024; 17:1011. [PMID: 39204116 PMCID: PMC11357434 DOI: 10.3390/ph17081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a debilitating adverse effect of bisphosphates, antiresorptive therapy or antiangiogenic agents that can potentially increase oxidative stress, leading to progressive osteonecrosis of the jaws. Despite the large number of published systematic reviews, there is a lack of potential MRONJ treatment protocols utilising photobiomodulation (PBM) as a single or adjunct therapy for preventive or therapeutic oncology or non-oncology cohort. Hence, this systematic review aimed to evaluate PBM laser efficacy and its dosimetry as a monotherapy or combined with the standard treatments for preventive or therapeutic approach in MRONJ management. The objectives of the review were as follows: (1) to establish PBM dosimetry and treatment protocols for preventive, therapeutic or combined approaches in MRONJ management; (2) to highlight and bridge the literature gaps in MRONJ diagnostics and management; and (3) to suggest rationalised consensus recommendations for future randomised controlled trials (RCTs) through the available evidence-based literature. This review was conducted according to the PRISMA guidelines, and the protocol was registered at PROSPERO under the ID CRD42021238175. A multi-database search was performed to identify articles of clinical studies published from their earliest records until 15 December 2023. The data were extracted from the relevant papers and analysed according to the outcomes selected in this review. In total, 12 out of 126 studies met the eligibility criteria. The striking inconsistent conclusions made by the various authors of the included studies were due to the heterogeneity in the methodology, diagnostic criteria and assessment tools, as well as in the reported outcomes, made it impossible to conduct a meta-analysis. PBM as a single or adjunct treatment modality is effective for MRONJ preventive or therapeutic management, but it was inconclusive to establish a standardised and replicable protocol due to the high risk of bias in a majority of the studies, but it was possible to extrapolate the PBM dosimetry of two studies that were close to the WALT recommended parameters. In conclusion, the authors established suggested rationalised consensus recommendations for future well-designed robust RCTs, utilising PBM as a monotherapy or an adjunct in preventive or therapeutic approach of MRONJ in an oncology and non-oncology cohort. This would pave the path for standardised PBM dosimetry and treatment protocols in MRONJ management.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Restorative Dental Sciences, UCL-Eastman Dental Institute, Medical Faculty, University College London, London WC1E 6DE, UK
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy; (I.C.M.); (S.D.); (S.B.)
| | - Ioana Cristina Miron
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy; (I.C.M.); (S.D.); (S.B.)
| | - Snehal Dalvi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy; (I.C.M.); (S.D.); (S.B.)
- Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur 440001, India
| | - Praveen Arany
- Department of Oral Biology ad Biomedical Engineering, University of Buffalo, Buffalo, NY 14215, USA;
| | | | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy; (I.C.M.); (S.D.); (S.B.)
| |
Collapse
|
231
|
Chiara M, Mariaelena DC, Alessandro C, Davide DB, Lavinia C, Paola MM, Barbara L, Chiara DP, Flagiello F, Pia PM. Influence of haematological parameters on size of the advanced platelet-rich fibrin+ (A-PRF+) in the horse. Res Vet Sci 2024; 177:105367. [PMID: 39098093 DOI: 10.1016/j.rvsc.2024.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
The advanced-PRF+ (A-PRF+) is a platelet concentrate, showing a higher concentration of growth factors, an increased number of cells and looser structure of the fibrin clot than leukocyte-PRF. A high variability in the size of PRF associated with patients, haematological features and centrifugation protocols was reported. The aims of this study were to evaluate the feasibility of A-PRF+ production in the field and the correlation between haematological parameters, macroscopic and microscopic features in equine A-PRF+. Samples from twenty Standardbred horses (3-7 years) were harvested with glass tubes without anticoagulants, previously heated at 37 °C. Blood samples were centrifugated at 1300 rpm for 8 min with a fixed-angle centrifuge and a horizontal centrifuge in the field, at a temperature of 15-17 °C. Clots were measured and placed on the Wound Box® for a 2-min compression. Membranes were measured and fixed in 10% formalin for histological examination. Clot and membrane surface did not differ between sex and centrifuge. Haematological parameters did not show a significant correlation to clot and membrane size. Membranes obtained from both centrifugation protocols showed a loose fibrin structure and cells evenly distributed throughout the clot. Tubes' warming was effective to obtain A-PRF+ clots from all samples, regardless the environmental temperature. Further studies are needed to evaluate the influence of other blood molecules on the A-PRF+ structure and size.
Collapse
Affiliation(s)
- Montano Chiara
- Department of Veterinary Medicine and Animal Production, Unit of Surgery, University of Naples "Federico II", Via Federico Delpino 1, 80137 Naples, Italy
| | - de Chiara Mariaelena
- Department of Veterinary Medicine and Animal Production, Unit of Surgery, University of Naples "Federico II", Via Federico Delpino 1, 80137 Naples, Italy.
| | - Crisci Alessandro
- Unit of Dermosurgery, Cutaneous Transplantation and Hard-To-Heal Wound, "Villa Fiorita" Private Hospital, Via Filippo Saporito, 24, 81031 Aversa (CE), Italy
| | - De Biase Davide
- Department of Pharmacy University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Ciuca Lavinia
- Department of Veterinary Medicine and Animal Production, University of Napoles Federico II, CREMOPAR, WHO Collaborating Centre ITA-116, Naples, Italy
| | - Maurelli Maria Paola
- Department of Veterinary Medicine and Animal Production, University of Napoles Federico II, CREMOPAR, WHO Collaborating Centre ITA-116, Naples, Italy
| | - Lamagna Barbara
- Department of Veterinary Medicine and Animal Production, Unit of Surgery, University of Naples "Federico II", Via Federico Delpino 1, 80137 Naples, Italy
| | - Del Prete Chiara
- Department of Veterinary Medicine and Animal Production, Unit of Animal Reproduction, University of Naples "Federico II", Via Federico Delpino 1, 80137 Naples, Italy
| | - Fabiana Flagiello
- Analysis Laboratory "Villa Fiorita" Private Hospital, Aversa (CE), Italy
| | - Pasolini Maria Pia
- Department of Veterinary Medicine and Animal Production, Unit of Surgery, University of Naples "Federico II", Via Federico Delpino 1, 80137 Naples, Italy
| |
Collapse
|
232
|
Abdelaziz AG, Nageh H, Abdalla MS, Abdo SM, Amer AA, Loutfy SA, Abdel Fattah NF, Alsalme A, Cornu D, Bechelany M, Barhoum A. Development of polyvinyl alcohol nanofiber scaffolds loaded with flaxseed extract for bone regeneration: phytochemicals, cell proliferation, adhesion, and osteogenic gene expression. Front Chem 2024; 12:1417407. [PMID: 39144698 PMCID: PMC11322085 DOI: 10.3389/fchem.2024.1417407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction: Bone tissue engineering seeks innovative materials that support cell growth and regeneration. Electrospun nanofibers, with their high surface area and tunable properties, serve as promising scaffolds. This study explores the incorporation of flaxseed extract, rich in polyphenolic compounds, into polyvinyl alcohol (PVA) nanofibers to improve their application in bone tissue engineering. Methods: High-performance liquid chromatography (HPLC) identified ten key compounds in flaxseed extract, including polyphenolic acids and flavonoids. PVA nanofibers were fabricated with 30 wt.% flaxseed extract (P70/E30) via electrospinning. We optimized characteristics like diameter, hydrophilicity, swelling behavior, and hydrolytic degradation. MG-63 osteoblast cultures were used to assess scaffold efficacy through cell adhesion, proliferation, viability (MTT assay), and differentiation. RT-qPCR measured expression of osteogenic genes RUNX2, COL1A1, and OCN. Results: Flaxseed extract increased nanofiber diameter from 252 nm (pure PVA) to 435 nm (P70/E30). P70/E30 nanofibers showed higher cell viability (102.6% vs. 74.5% for pure PVA), although adhesion decreased (151 vs. 206 cells/section). Notably, P70/E30 enhanced osteoblast differentiation, significantly upregulating RUNX2, COL1A1, and OCN genes. Discussion: Flaxseed extract incorporation into PVA nanofibers enhances bone tissue engineering by boosting osteoblast proliferation and differentiation, despite reduced adhesion. These properties suggest P70/E30's potential for regenerative medicine, emphasizing scaffold optimization for biomedical applications.
Collapse
Affiliation(s)
- Ahmed G. Abdelaziz
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hassan Nageh
- Nanotechnology Research Centre (NTRC), The British University in Egypt, Cairo, Egypt
| | - Mohga S. Abdalla
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Sara M. Abdo
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Asmaa A. Amer
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Samah A. Loutfy
- Nanotechnology Research Centre (NTRC), The British University in Egypt, Cairo, Egypt
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nasra F. Abdel Fattah
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - David Cornu
- Institut Européen des Membranes (IEM), UMR 5635, University of Montpellier, ENSCM, CNRS, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University of Montpellier, ENSCM, CNRS, Montpellier, France
- Gulf University for Science and Technology, GUST, Mubarak Al-Abdullah, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
233
|
Power DJ, Ho V, Zhou J. Association between Oral Microbiome and Gastroesophageal Reflux Severity. J Clin Med 2024; 13:4479. [PMID: 39124746 PMCID: PMC11313057 DOI: 10.3390/jcm13154479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives: Gastroesophageal reflux disease (GORD) is caused by gastric contents refluxing back into the oesophagus and oral cavity. It can lead to injuries to the mucosa in the form of erosion and ulcers. Our past research have shown acid reflux severity and disease progression is associated with alternations in the microbiota of the distal oesophagus. The aim of this study was to explore whether changes in the oral microbiota occurred in GORD patients and establish any associations with reflux severity. Methods: Fresh mouthwash samples were collected from 58 patients experiencing reflux symptoms referred for 24 h pH monitoring. The participants were categorised into three groups based on their DeMeester scores: Normal (<14.72), Mild (14.2-50), and Moderate/severe (>51). Microorganism identity and diversity were generated using hypervariable tag sequencing and analysing the V1-V3 region of the 16S rRNA gene. Results: No differences in microbiota diversity were found in oral microbiota between groups using the Chiao1 diversity index and Shannon diversity index. Microbiota in the Mild group showed reductions in Rothia dentocariosa and Lautropia, while Moryella and Clostridiales_1 were increased compared with the Normal group. In the Moderate/severe group, the abundance of Rothia aeria was reduced compared with the Normal group, while Schwartzia, Rs_045, Paludibacter, S. satelles, Treponema, and T. socranskii all had increased abundance. The abundance of Prevotella pallens was higher in the Mild group compared with Moderate/severe, while S. satelles and Paludibacter abundances were lower. Conclusions: Our study shows the oral microbiome show significant differences between acid reflux severity groups, as categorised by DeMeester score.
Collapse
Affiliation(s)
| | | | - Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (D.J.P.); (V.H.)
| |
Collapse
|
234
|
Li Y, Cheng L, Li M. Effects of Green Tea Extract Epigallocatechin-3-Gallate on Oral Diseases: A Narrative Review. Pathogens 2024; 13:634. [PMID: 39204235 PMCID: PMC11357325 DOI: 10.3390/pathogens13080634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVES Oral diseases are among the most prevalent diseases globally. Accumulating new evidence suggests considerable benefits of epigallocatechin-3-gallate (EGCG) for oral health. This review aims to explore the role and application of EGCG in main oral diseases. METHODS This narrative review thoroughly examines and summarizes the most recent literature available in scientific databases (PubMed, Web of Science, Scopus, and Google Scholar) reporting advances in the role and application of EGCG within the dental field. The major keywords used included "EGCG", "green tea extract", "oral health", "caries", "pulpitis", "periapical disease", "periodontal disease", "oral mucosa", "salivary gland", and "oral cancer". CONCLUSIONS EGCG prevents and manages various oral diseases through its antibacterial, anti-inflammatory, antioxidant, and antitumor properties. Compared to traditional treatments, EGCG generally exhibits lower tissue irritation and positive synergistic effects when combined with other therapies. Novel delivery systems or chemical modifications can significantly enhance EGCG's bioavailability, prolong its action, and reduce toxicity, which are current hotspots in developing new materials. CLINICAL SIGNIFICANCE this review provides an exhaustive overview of the biological activities of EGCG to major oral diseases, alongside an exploration of applications and limitations, which serves as a reference for preventing and managing oral ailments.
Collapse
Affiliation(s)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
235
|
Osak P, Skwarek S, Łukowiec D, Przeliorz G, Łosiewicz B. Preparation and Characterization of Oxide Nanotubes on Titanium Surface for Use in Controlled Drug Release Systems. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3753. [PMID: 39124417 PMCID: PMC11313194 DOI: 10.3390/ma17153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Preventing or treating infections at implantation sites where the risk of bacterial contamination is high requires the development of intelligent drug delivery systems. The objective of this work was to develop a production method and characterization of fourth-generation oxide nanotubes on titanium grade 4 surface as a potential drug carrier. This study focused on the anodizing process; physico-chemical characterization using FE-SEM, EDS, and FTIR; in vitro corrosion resistance in an artificial saliva solution; and determining the drug release kinetics of gentamicin sulfate using UV-VIS. The anodizing process was optimized to produce fourth-generation oxide nanotubes in a fluoride-free electrolyte, ensuring rapid growth and lack of order. Results showed that the length of the oxide nanotubes was inversely proportional to the anodizing voltage, with longer nanotubes formed at lower voltages. The nanotubes were shown to have a honeycomb structure with silver particles co-deposited on the surface for antibacterial properties and were capable of carrying and releasing the antibiotic gentamicin sulfate in a controlled manner, following Fick's first law of diffusion. The corrosion resistance study demonstrates that the oxide nanotubes enhance the corrosion resistance of the titanium surface. The oxide nanotubes show promise in enhancing osseointegration and reducing post-implantation complications.
Collapse
Affiliation(s)
- Patrycja Osak
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Sandra Skwarek
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Dariusz Łukowiec
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
| | | | - Bożena Łosiewicz
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
236
|
Shah WH, Khan W, Nisa S, Barfuss MH, Schinnerl J, Bacher M, Valant-Vetschera K, Ali A, Nafidi HA, Jardan YAB, Giesy JP. HPLC, NMR Based Characterization, Antioxidant and Anticancer Activities of Chemical Constituents from Therapeutically Active Fungal Endophytes. J Microbiol Biotechnol 2024; 34:1452-1463. [PMID: 38858094 PMCID: PMC11294646 DOI: 10.4014/jmb.2403.03036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024]
Abstract
Fungi generate different metabolites some of which are intrinsically bioactive and could therefore serve as templates for drug development. In the current study, six endophytic fungi namely Aspergillus flavus, Aspergillus tubigenesis, Aspergillus oryzae, Penicillium oxalicum, Aspergillus niger, and Aspergillus brasiliensis were isolated and identified from the medicinal plant, Silybum marianum. These endophytic fungi were identified through intra transcribed sequence (ITS) gene sequencing. The bioactive potentials of fungal extracts were investigated using several bioassays such as antibacterial activity by well-diffusion, MIC, MBC, anti-biofilm, antioxidant, and haemolysis. The Pseudomonas aeruginosa PAO1 was used to determine the antibiofilm activity. The ethyl acetate extract of Aspergillus flavus showed strong to moderate efficacy against Staphylococcus aureus, Escherichia coli, P. aeruginosa, and Bacillus spizizenii. Aspergillus flavus and Aspergillus brasiliensis exhibited significant antibiofilm activity with IC50 at 4.02 and 3.63 mg/ml, while A. flavus exhibited maximum antioxidant activity of 50.8%. Based on HPLC, LC-MS, and NMR experiments kojic acid (1) and carbamic acid (methylene-4, 1-phenylene) bis-dimethyl ester (2) were identified from A. flavus. Kojic acid exhibited DPPH free radical scavenging activity with an IC50 value of 99.3 μg/ml and moderate activity against ovarian teratocarcinoma (CH1), colon carcinoma (SW480), and non-small cell lung cancer (A549) cell lines. These findings suggest that endophytic fungi are able to produce promising bioactive compounds which deserve further investigation.
Collapse
Affiliation(s)
- Waqas Hussain Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences (BOKU), Tulln 3430, Austria
| | - Wajiha Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus
| | - Sobia Nisa
- Department of Microbiology, The University of Haripur, Haripur 22620, Pakistan
| | - Michael H.J. Barfuss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Markus Bacher
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences (BOKU), Tulln 3430, Austria
| | - Karin Valant-Vetschera
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Ashraf Ali
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur 22620, Pakistan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325 Quebec City, QC G1V 0A6, Canada
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - John P. Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Environmental Sciences, Baylor University, Waco, TX 76706, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyah, 11433, Saudi Arabia
| |
Collapse
|
237
|
Men XC, Du XP, Ji Y. Effects of personalized oral hygiene management on oral health status of pregnant women. World J Clin Cases 2024; 12:4566-4573. [PMID: 39070809 PMCID: PMC11235517 DOI: 10.12998/wjcc.v12.i21.4566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND The Cariostat caries activity test (CAT) was used to evaluate the effectiveness of personalized oral hygiene management combining oral health education and professional mechanical tooth cleaning on the oral health status of pregnant women. AIM To investigate whether personalized oral hygiene management enhances the oral health status of pregnant women. METHODS A total of 114 pregnant women who were examined at Dalian Women's and Children's Medical Center were divided into four groups: High-risk experimental group (n = 29; CAT score ≥ 2; received personalized oral hygiene management training), low-risk experimental group (n = 29; CAT score ≤ 1; received oral health education), high-risk control group (n = 28; CAT score ≥ 2), and low-risk control group (n = 28; CAT score ≤ 1). No hygiene intervention was provided to control groups. CAT scores at different times were compared using independent samples t-test and least significant difference t-test. RESULTS No significant difference in baseline CAT scores was observed between the experimental and control groups, either in the high-risk or low-risk groups. CAT scores were reduced significantly after 3 (1.74 ± 0.47 vs 2.50 ± 0.38, P < 0.0001) and 6 months (0.53 ± 0.50 vs 2.45 ± 0.42, P < 0.0001) of personalized oral hygiene management intervention but not after oral health education alone (0.43 ± 0.39 vs 0.46 ± 0.33, P > 0.05 and 0.45 ± 0.36 vs 0.57 ± 0.32, P > 0.05, respectively). Within groups, the decrease in CAT scores was significant (2.43 ± 0.44 vs 1.74 ± 0.47 vs 0.53 ± 0.50, P < 0.0001) for only the high-risk experimental group. CONCLUSION Personalized oral hygiene management is effective in improving the oral health of pregnant women and can improve pregnancy outcomes and the oral health of the general population.
Collapse
Affiliation(s)
- Xiao-Chen Men
- Department of Prevention, Dalian Stomatological Hospital, Dalian 116021, Liaoning Province, China
| | - Xiao-Pei Du
- Department of Dentistry and Endodontics, Dalian Stomatological Hospital, Dalian 116021, Liaoning Province, China
| | - Ying Ji
- Department of Prevention, Dalian Stomatological Hospital, Dalian 116021, Liaoning Province, China
| |
Collapse
|
238
|
Ren C, Zhu Y, Li Q, Wang M, Qi S, Sun D, Wu L, Zhao L. Lespedeza bicolor Turcz. Honey Prevents Inflammation Response and Inhibits Ferroptosis by Nrf2/ HO-1 Pathway in DSS-Induced Human Caco-2 Cells. Antioxidants (Basel) 2024; 13:900. [PMID: 39199146 PMCID: PMC11351236 DOI: 10.3390/antiox13080900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Lespedeza bicolor Turcz. (L. bicolor) honey, a monofloral honey, has garnered increased attention due to its origin in the L. bicolor plant. A previous study has shown that L. bicolor honey can ameliorate inflammation. In this study, we aimed to investigate the effects of L. bicolor honey extract and its biomarker (Trifolin) on DSS-induced ulcerative colitis (UC). Our results demonstrated that L. bicolor honey extract and Trifolin significantly increased the expression levels of the tight junction cytokines Claudin-1 and ZO-1. Additionally, they decreased the pro-inflammatory factors TNF-α and IL-6 and enhanced the antioxidant factors NQO1 and GSTA1. Based on metabolomic analyses, L. bicolor honey extract and Trifolin regulated the progression of UC by inhibiting ferroptosis. Mechanistically, they improved the levels of SOD and iron load, increased the GSH/GSSG ratio, reduced MDA content and ROS release, and upregulated the Nrf2/HO-1 pathway, thereby inhibiting DSS-induced UC. Moreover, the expression levels of ferroptosis-related genes indicated that they decreased FTL, ACSL4, and PTGS2 while increasing SLC7A11 expression to resist ferroptosis. In conclusion, our study found that L. bicolor honey improves DSS-induced UC by inhibiting ferroptosis by activating the Nrf2/HO-1 pathway. These findings further elucidate the understanding of anti-inflammatory and antioxidant activities of L. bicolor honey.
Collapse
Affiliation(s)
- Caijun Ren
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Yuying Zhu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Qiangqiang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Miao Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Dandan Sun
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| | - Liming Wu
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Beijing 100093, China
| | - Liuwei Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Y.Z.); (Q.L.); (M.W.); (S.Q.); (D.S.)
| |
Collapse
|
239
|
Afradi Z, Panahipour L, Abbas Zadeh S, Gruber R. PRF Lysates Modulate Chemokine Expression in Oral Squamous Carcinoma and Healthy Epithelial Cells. Bioengineering (Basel) 2024; 11:746. [PMID: 39199704 PMCID: PMC11351820 DOI: 10.3390/bioengineering11080746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Platelet-rich fibrin (PRF), originally used to support soft tissue healing, is also considered a therapeutic option for treating oral lichen planus and leukoplakia. The progression from the two premalignant lesions to the aggressive malignant oral squamous cell carcinoma involves an inflammatory process linked to chemokine expression. Thus, there is a rationale for studying how PRF modulates the expression of chemokines in oral squamous carcinoma cells. To this aim, we expose the oral squamous carcinoma cell line HSC2 to IL1β and TNFα either alone or in the presence of lysates obtained from solid PRF membranes. We report here that in HSC2 cells, PRF lysates significantly reduce the forced transcription of chemokines, e.g., CXCL1, CXCL2, CXCL8, CXCL10, and CCL5. Moreover, PRF lysates attenuate the nuclear translocation of p65 in HSC2 oral epithelial cells when exposed to IL1β and TNFα. PRF lysates further reduce chemokine expression provoked by poly:IC HMW. Even though less pronounced, PRF lysates reduce IL1β- and TNFα-induced chemokine expression in TR146 cells. In primary oral epithelial cells, however, PRF lysates increase the basal expression of CXCL1, CXCL2 and CXCL8. Thus, PRF can exert a biphasic effect on chemokine expression in oral squamous cell carcinoma cell lines and primary oral epithelial cells. These findings suggest that PRF may reduce inflammation in a malignant environment while provoking an immunological response in healthy oral epithelium.
Collapse
Affiliation(s)
- Zohreh Afradi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.A.); (L.P.)
| | - Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.A.); (L.P.)
| | | | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (Z.A.); (L.P.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
240
|
Takemoto R, Kobayashi J, Oomori Y, Takahashi K, Saito I, Kawai M, Mitsumata T. Fabrication of Apparatus Specialized for Measuring the Elasticity of Perioral Tissues. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3654. [PMID: 39124318 PMCID: PMC11313372 DOI: 10.3390/ma17153654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
On the human face, the lips are one of the most important anatomical elements, both morphologically and functionally. Morphologically, they have a significant impact on aesthetics, and abnormal lip morphology causes sociopsychological problems. Functionally, they play a crucial role in breathing, articulation, feeding, and swallowing. An apparatus that can accurately and easily measure the elastic modulus of perioral tissues in clinical tests was developed, and its measurement sensitivity was evaluated. The apparatus is basically a uniaxial compression apparatus consisting of a force sensor and a displacement sensor. The displacement sensor works by enhancing the restoring force due to the deformation of soft materials. Using the apparatus, the force and the displacement were measured for polyurethane elastomers with various levels of softness, which are a model material of human tissues. The stress measured by the developed apparatus increased in proportion to Young's modulus, and was measured by the compression apparatus at the whole region of Young's modulus, indicating that the relation can be used for calibration. Clinical tests using the developed apparatus revealed that Young's moduli for upper lip, left cheek, and right cheek were evaluated to be 45, 4.0, and 9.9 kPa, respectively. In this paper, the advantages of this apparatus and the interpretation of the data obtained are discussed from the perspective of orthodontics.
Collapse
Affiliation(s)
- Ryo Takemoto
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Junya Kobayashi
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Yuko Oomori
- Department of Orthodontics, Niigata University Medical & Dental Hospital, Niigata 951-8520, Japan
| | - Kojiro Takahashi
- Department of Orthodontics, Niigata University Medical & Dental Hospital, Niigata 951-8520, Japan
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Mika Kawai
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Tetsu Mitsumata
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
241
|
Valverde A, George A, Nares S, Naqvi AR. Emerging therapeutic strategies targeting bone signaling pathways in periodontitis. J Periodontal Res 2024. [PMID: 39044454 DOI: 10.1111/jre.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Periodontitis is a multifactorial immune-mediated disease exacerbated by dysregulated alveolar bone homeostasis. Timely intervention is crucial for disease management to prevent tooth loss. To successfully manage periodontitis, it is imperative to understand the cellular and molecular mechanisms involved in its pathogenesis to develop novel treatment modalities. Non-surgical periodontal therapy (NSPT) such as subgingival instrumentation/debridement has been the underlying treatment strategy over the past decades. However, new NSPT approaches that target key signaling pathways regulating alveolar bone homeostasis have shown positive clinical outcomes. This narrative review aims to discuss endogenous bone homeostasis mechanisms impaired in periodontitis and highlight the clinical outcomes of preventive periodontal therapy to avoid invasive periodontal therapies. Although the anti-resorptive therapeutic adjuncts have demonstrated beneficial outcomes, adverse events have been reported. Diverse immunomodulatory therapies targeting the osteoblast/osteoclast (OB/OC) axis have shown promising outcomes in vivo. Future controlled randomized clinical trials (RCT) would help clinicians and patients in the selection of novel preventing therapies targeting key molecules to effectively treat or prevent periodontitis.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Anne George
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
242
|
Maher N, Mahmood A, Fareed MA, Kumar N, Rokaya D, Zafar MS. An updated review and recent advancements in carbon-based bioactive coatings for dental implant applications. J Adv Res 2024:S2090-1232(24)00300-X. [PMID: 39033875 DOI: 10.1016/j.jare.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Surface coating of dental implants with a bioactive biomaterial is one of the distinguished approaches to improve the osseointegration potential, antibacterial properties, durability, and clinical success rate of dental implants. Carbon-based bioactive coatings, a unique class of biomaterial that possesses excellent mechanical properties, high chemical and thermal stability, osteoconductivity, corrosion resistance, and biocompatibility, have been utilized successfully for this purpose. AIM This review aims to present a comprehensive overview of the structure, properties, coating techniques, and application of the various carbon-based coatings for dental implant applicationswith a particular focuson Carbon-based nanomaterial (CNMs), which is an advanced class of biomaterials. KEY SCIENTIFIC CONCEPTS OF REVIEW Available articles on carbon coatings for dental implants were reviewed using PubMed, Science Direct, and Google Scholar resources. Carbon-based coatings are non-cytotoxic, highly biocompatible, chemically inert, and osteoconductive, which allows the bone cells to come into close contact with the implant surface and prevents bacterial attachment and growth. Current research and advancements are now more focused on carbon-based nanomaterial (CNMs), as this emerging class of biomaterial possesses the advantage of both nanotechnology and carbon and aligns closely with ideal coating material characteristics. Carbon nanotubes, graphene, and its derivatives have received the most attention for dental implant coating. Various coating techniques are available for carbon-based materials, chosen according to substrate type, application requirements, and desired coating thickness. Vapor deposition technique, plasma spraying, laser deposition, and thermal spraying techniques are most commonly employed to coat the carbon structures on the implant surface. Longer duration trials and monitoring are required to ascertain the role of carbon-based bioactive coating for dental implant applications.
Collapse
Affiliation(s)
- Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Anum Mahmood
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Muhammad Amber Fareed
- Clinical Sciences Department College of Dentistry Ajman University, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates.
| | - Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Dinesh Rokaya
- Department of Prosthodontics, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarrah 41311, Saudi Arabia; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Dentistry, University of Jordan, Amman 11942, Jordan; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan.
| |
Collapse
|
243
|
Wairooy VW, Bagio DA, Margono A, Amelia I. In vitro Analysis of DSPP and BSP Expression: Comparing the Odontogenic Influence of Bio-C Repair and Biodentine in hDPSCs. Eur J Dent 2024. [PMID: 39029909 DOI: 10.1055/s-0044-1786984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
OBJECTIVES This study compared the ability of BIO-C Repair (BC) and Biodentine (BD) in relation to odontogenic differentiation by evaluating the dentin sialophosphoprotein (DSPP) and bone sialoprotein (BSP) expression and mineral deposition of human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS BC and BD were pulverized and sterilized (ISO 10993-5:2009). The hDPSCs were the result of primary cultures that were 80% confluent (having gone through the stem cell marker tests CD90 98%, CD105 99.7%, CD73 94%, and LinNeg 0.5%) and reached P2-3 by means of serum starvation for 24 hours. This study involved seven groups, in which the hDPSCs were cultured on osteogenic media with the addition of either BD (Septodont, United States) at concentrations of 1:1, 1:2, or 1:5; BC (Angelus, Brazil) at concentrations of 1:1, 1:2, or 1:5; or the negative control (Dulbecco's modified eagle medium + osteogenic media). The hDPSC differentiation was determined via enzyme-linked immunosorbent assays of DSPP and BSP expression performed on days 7 and 14 and alizarin red staining performed on day 21. STATISTICAL ANALYSIS The data were analyzed using a one-way analysis of variance, followed by Tamhane's post hoc test, to compare the differences between groups. The t-test dependent was also used to identify differences between groups. RESULTS BC and BD at 1:1 concentration, there was a statistically significant difference in DSPP and BSP expression. However, at concentrations of 1:2 and 1:5, there was no significant difference observed in either duration of observation (p > 0.05). The highest DSPP and BSP concentrations after 7 and 14 days of observation were observed with BD and BC at 1:5 concentration (6.6-6.71 and 13.20-13.47 ng/mL). CONCLUSION The study shows that BC is as effective as BD in enhancing DSPP and BSP expression and mineral deposition in hDPSCs. The 1:5 concentration of BC showed the highest levels of DSPP and BSP expression and mineral deposition.
Collapse
Affiliation(s)
- Valeria Widita Wairooy
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Dini Asrianti Bagio
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Anggraini Margono
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Ingrid Amelia
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
244
|
Nadaf R, Kumbar VM, Ghagane S. Unravelling the intricacies of Porphyromonas gingivalis: virulence factors, lifecycle dynamics and phytochemical interventions for periodontal disease management. APMIS 2024. [PMID: 39030947 DOI: 10.1111/apm.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/14/2024] [Indexed: 07/22/2024]
Abstract
Porphyromonas gingivalis is a gram-negative anaerobic bacterium recognized for its pivotal role in the pathogenesis of periodontal diseases. This review covers an overview of the virulence factors and lifecycle stages of P. gingivalis, with a specific focus on attachment and colonization, biofilm formation, growth and multiplication, dormancy survival and dissemination. Additionally, we explore the significance of inter-bacterial cross-feeding within biofilms. Furthermore, we discuss potential phytochemical-based strategies to target P. gingivalis, including the use of curcumin, apigenin, quercetin and resveratrol. Understanding the virulence factors and lifecycle stages of P. gingivalis, along with the promising phytochemical-based interventions, holds promise for advancing strategies in periodontal disease management and oral health promotion.
Collapse
Affiliation(s)
- Rubeen Nadaf
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| | - Shridhar Ghagane
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| |
Collapse
|
245
|
Alarcón-Sánchez MA, Becerra-Ruiz JS, Avetisyan A, Heboyan A. Activity and levels of TNF-α, IL-6 and IL-8 in saliva of children and young adults with dental caries: a systematic review and meta-analysis. BMC Oral Health 2024; 24:816. [PMID: 39026257 PMCID: PMC11264839 DOI: 10.1186/s12903-024-04560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Cytokines play an important role in the immunopathogenesis of dental caries. A systematic review and meta-analysis was carried out with the following three objectives: 1)To deepen and discuss through a comprehensive analysis of the literature the effects of dental caries on the activity and levels of TNF-α, IL-6 and IL-8 in saliva of children and young adults, 2)To compare the levels of this cytokines in saliva of the exposure group (moderate-severe dental caries) with the control group (caries-free or mild dental caries), and 3)To determine whether the levels of these cytokines could be used as a complementary clinical diagnostic tool to assess the severity of dental caries. METHODS The protocol followed PRISMA and Cochrane guidelines and was registered in the Open Science Framework (OSF): https://doi.org/10.17605/OSF.IO/MF74V . A digital search was performed in PubMed/MEDLINE, Cochrane, Scopus, and Google Schoolar databases from February 15th, 2012, to January 13th, 2024. The methodological validity of the selected studies was assessed using Joanna Briggs Institute (JBI) tool. A meta-analysis was performed using a random-effects model to evaluate the association between dental caries/health, and the concentration of TNF-α, IL-6 and IL-8. RESULTS The search strategy provided a total of 126 articles, of which 15 investigations met the inclusion criteria. The total number of patients studied was 1,148, of which 743 represented the case/exposure group, and 405 represented the control group. The age of the patients ranged from 3 to 25 years. IL-6 was the most prevalent cytokine in the saliva of children and young adults with active dental caries. The meta-analysis revealed that there are significant differences between the levels of IL-6 and TNF-α in saliva of children with active dental caries compared to their control groups. CONCLUSIONS The findings suggest that IL-6 and TNF-α levels may have potential as complementary biomarkers for assessing dental caries severity. However, further research is needed to validate these findings in larger and more diverse populations before clinical application.
Collapse
Affiliation(s)
- Mario Alberto Alarcón-Sánchez
- Biomedical Science, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo de los Bravo, Guerrero, 39090, Mexico.
| | - Julieta Sarai Becerra-Ruiz
- Institute of Research of Bioscience, University Center of Los Altos, University of Guadalajara, Tepatitlán de Morelos, Jalisco, 47600, Mexico
| | - Anna Avetisyan
- Department of Therapeutic Stomatology, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan, 0025, Armenia
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, 600 077, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan, 0025, Armenia.
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, North Karegar St, Tehran, Iran.
| |
Collapse
|
246
|
Ghalandarzadeh A, Ganjali M, Hosseini M. Tailoring zirconia surface topography via femtosecond laser-induced nanoscale features: effects on osteoblast cells and antibacterial properties. Biomed Mater 2024; 19:055017. [PMID: 39016135 DOI: 10.1088/1748-605x/ad606f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
The performance and long-term durability of dental implants hinge on the quality of bone integration and their resistance to bacteria. This research aims to introduce a surface modification strategy for zirconia implants utilizing femtosecond laser ablation techniques, exploring their impact on osteoblast cell behavior and bacterial performance, as well as the integral factors influencing the soft tissue quality surrounding dental implants. Ultrafast lasers were employed to craft nanoscale groove geometries on zirconia surfaces, with thorough analyses conducted using x-ray diffraction, scanning electron microscopy, atomic force microscopy, and water contact angle measurements. The study evaluated the response of human fetal osteoblastic cell lines to textured zirconia ceramics by assessing alkaline phosphatase activity, collagen I, and interleukin 1βsecretion over a 7 day period. Additionally, the antibacterial behavior of the textured surfaces was investigated usingFusobacterium nucleatum, a common culprit in infections associated with dental implants. Ciprofloxacin (CIP), a widely used antibacterial antibiotic, was loaded onto zirconia ceramic surfaces. The results of this study unveiled a substantial reduction in bacterial adhesion on textured zirconia surfaces. The fine biocompatibility of these surfaces was confirmed through the MTT assay and observations of cell morphology. Moreover, the human fetal osteoblastic cell line exhibited extensive spreading and secreted elevated levels of collagen I and interleukin 1βin the modified samples. Drug release evaluations demonstrated sustained CIP release through a diffusion mechanism, showcasing excellent antibacterial activity against pathogenic bacteria, includingStreptococcus mutans, Pseudomonas aeruginosa, andEscherichia coli.
Collapse
Affiliation(s)
- Arash Ghalandarzadeh
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, PO Box: 16846, Tehran, Iran
| | - Monireh Ganjali
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, PO Box: 31787-316, Karaj, Iran
| | - Milad Hosseini
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| |
Collapse
|
247
|
Yao L, Li Y, Fu D, Wang Y, Hua C, Zou L, Jiang L. The damage and remineralization strategies of dental hard tissues following radiotherapy. BMC Oral Health 2024; 24:805. [PMID: 39014355 PMCID: PMC11253375 DOI: 10.1186/s12903-024-04561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVES This study pursued two main purposes. The first aim was to expound on the microscopic factors of radiation-related caries (RRC). Further, it aimed to compare the remineralization effect of different remineralizing agents on demineralized teeth after radiotherapy. METHODS The enamel and dentin samples of bovine teeth were irradiated with different doses of radiation. After analysis of scanning electron microscope (SEM), X-Ray diffraction (XRD), and energy dispersive spectrometer (EDS), the samples irradiated with 50 Gy radiation were selected and divided into the demineralization group, the double distilled water (DDW) group, the Sodium fluoride (NaF) group, the Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) group, the NaF + CPP-ACP group, and the Titanium tetrafluoride (TiF4) group. After demineralization, remineralizing agents treatment, and remineralization, the samples were evaluated using SEM, atomic force microscope (AFM), EDS, and transverse microradiography (TMR). RESULTS A radiation dose of 30 Gy was sufficient to cause damage to the dentinal tubules, but 70 Gy radiation had little effect on the microstructure of enamel. Additionally, the NaF + CPP-ACP group and the TiF4 group significantly promoted deposit formation, decreased surface roughness, and reduced mineral loss and lesion depth of demineralized enamel and dentin samples after radiation. CONCLUSIONS Radiation causes more significant damage to dentin compared to enamel. NaF + CPP-ACP and TiF4 had a promising ability to promote remineralization of irradiated dental hard tissues. ADVANCES IN KNOWLEDGE This in vitro study contributes to determining a safer radiation dose range for teeth and identifying the most effective remineralization approach for RRC.
Collapse
Affiliation(s)
- Lin Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Yanyao Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Di Fu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Chengge Hua
- State Key Laboratory of Oral Diseases, Department of General Dentistry, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Li Jiang
- State Key Laboratory of Oral Diseases, Department of General Dentistry, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
248
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
249
|
Schwarcz HP, Nassif N, Kis VK. Curved mineral platelets in bone. Acta Biomater 2024; 183:201-209. [PMID: 38838906 DOI: 10.1016/j.actbio.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Bone is a composite material principally made up of a mineral phase (apatite) and collagen fibrils. The mineral component of bone occurs in the form of polycrystalline platelets 2-6 nm in thickness. These platelets are packed and probably glued together in stacks of two or more, ranging up to >30 platelets. Here we show that most of these stacks are curved flat sheets whose cylindrical axes are oriented parallel to the long axes of collagen fibrils. Consequently, the curvature of the platelets is not detectable in TEM sections cut parallel to the collagen fibril axes. The radius of curvature around these axes ranges from about 25 nm (the average radius of the collagen fibrils) to 100's of nm. The shapes of these curved forms contribute to the compressive strength of bone. STATEMENT OF SIGNIFICANCE: Bone, the material of which bones are made, is mainly composed of a protein, collagen, and the mineral apatite (calcium phosphate). The crystals have long been known to be flat plates about 5 nanometers (nm) thick. Here we show that the crystals are bound together in curved platelets with a radius of curvature between 25 and several hundred nm, which weave between fibrils of collagen. Some platelets wrap tightly around fibrils. The platelets form stacks of from two to up to 30. The crystals in the platelets are all oriented parallel to the cylindrical fibrils even though most crystals are not in contact with collagen. These curved structures provide greater strength to bone.
Collapse
Affiliation(s)
- H P Schwarcz
- School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.
| | - Nadine Nassif
- CNRS, Sorbonne Université, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), F-75005 Paris, France
| | - Viktoria Kovacs Kis
- HUN-REN Centre for Energy Research, Konkoly-Thege Miklós u. 29-33, H-1121 Budapest, Hungary; Department of Mineralogy, Eötvös Loránd University, Pázmány Péter sétány 1/c, H-1119 Budapest, Hungary
| |
Collapse
|
250
|
Shen YX, Lee PS, Wang CC, Teng MC, Huang JH, Fan HF. Exploring the Cellular Impact of Size-Segregated Cigarette Aerosols: Insights into Indoor Particulate Matter Toxicity and Potential Therapeutic Interventions. Chem Res Toxicol 2024; 37:1171-1186. [PMID: 38870402 PMCID: PMC11256904 DOI: 10.1021/acs.chemrestox.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Exposure to anthropogenic aerosols has been associated with a variety of adverse health effects, increased morbidity, and premature death. Although cigarette smoke poses one of the most significant public health threats, the cellular toxicity of particulate matter contained in cigarette smoke has not been systematically interrogated in a size-segregated manner. In this study, we employed a refined particle size classification to collect cigarette aerosols, enabling a comprehensive assessment and comparison of the impacts exerted by cigarette aerosol extract (CAE) on SH-SY5Y, HEK293T, and A549 cells. Exposure to CAE reduced cell viability in a dose-dependent manner, with organic components having a greater impact and SH-SY5Y cells displaying lower tolerance compared to HEK293T and A549 cells. Moreover, CAE was found to cause increased oxidative stress, mitochondrial dysfunction, and increased levels of apoptosis, pyroptosis, and autophagy, leading to increased cell death. Furthermore, we found that rutin, a phytocompound with antioxidant potential, could reduce intracellular reactive oxygen species and protect against CAE-triggered cell death. These findings underscore the therapeutic potential of antioxidant drugs in mitigating the adverse effects of cigarette aerosol exposure for better public health outcomes.
Collapse
Affiliation(s)
- Yu-Xin Shen
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Pe-Shuen Lee
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Chia C. Wang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Ming-Chu Teng
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Jhih-Hong Huang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Hsiu-Fang Fan
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| |
Collapse
|