2701
|
Kersten RD, Lee S, Fujita D, Pluskal T, Kram S, Smith JE, Iwai T, Noel JP, Fujita M, Weng JK. A Red Algal Bourbonane Sesquiterpene Synthase Defined by Microgram-Scale NMR-Coupled Crystalline Sponge X-ray Diffraction Analysis. J Am Chem Soc 2017; 139:16838-16844. [PMID: 29083151 DOI: 10.1021/jacs.7b09452] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sesquiterpene scaffolds are the core backbones of many medicinally and industrially important natural products. A plethora of sesquiterpene synthases, widely present in bacteria, fungi, and plants, catalyze the formation of these intricate structures often with multiple stereocenters starting from linear farnesyl diphosphate substrates. Recent advances in next-generation sequencing and metabolomics technologies have greatly facilitated gene discovery for sesquiterpene synthases. However, a major bottleneck limits biochemical characterization of recombinant sesquiterpene synthases: the absolute structural elucidation of the derived sesquiterpene products. Here, we report the identification and biochemical characterization of LphTPS-A, a sesquiterpene synthase from the red macroalga Laurencia pacifica. Using the combination of transcriptomics, sesquiterpene synthase expression in yeast, and microgram-scale nuclear magnetic resonance-coupled crystalline sponge X-ray diffraction analysis, we resolved the absolute stereochemistry of prespatane, the major sesquiterpene product of LphTPS-A, and thereby functionally define LphTPS-A as the first bourbonane-producing sesquiterpene synthase and the first biochemically characterized sesquiterpene synthase from red algae. Our study showcases a workflow integrating multiomics approaches, synthetic biology, and the crystalline sponge method, which is generally applicable for uncovering new terpene chemistry and biochemistry from source-limited living organisms.
Collapse
Affiliation(s)
- Roland D Kersten
- Whitehead Institute for Biomedical Research , 455 Main Street, Cambridge, Massachusetts 02142, United States
| | - Shoukou Lee
- Graduate School of Engineering, The University of Tokyo, JST-ACCEL , Tokyo 113-8654, Japan
| | - Daishi Fujita
- Whitehead Institute for Biomedical Research , 455 Main Street, Cambridge, Massachusetts 02142, United States.,Graduate School of Engineering, The University of Tokyo, JST-ACCEL , Tokyo 113-8654, Japan
| | - Tomáš Pluskal
- Whitehead Institute for Biomedical Research , 455 Main Street, Cambridge, Massachusetts 02142, United States
| | - Susan Kram
- Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California 92093, United States
| | - Jennifer E Smith
- Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California 92093, United States
| | - Takahiro Iwai
- Graduate School of Engineering, The University of Tokyo, JST-ACCEL , Tokyo 113-8654, Japan
| | - Joseph P Noel
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies , La Jolla, California 92037, United States
| | - Makoto Fujita
- Graduate School of Engineering, The University of Tokyo, JST-ACCEL , Tokyo 113-8654, Japan
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research , 455 Main Street, Cambridge, Massachusetts 02142, United States.,Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2702
|
Noborn F, Gomez Toledo A, Nasir W, Nilsson J, Dierker T, Kjellén L, Larson G. Expanding the chondroitin glycoproteome of Caenorhabditis elegans. J Biol Chem 2017; 293:379-389. [PMID: 29138239 DOI: 10.1074/jbc.m117.807800] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are important structural components of connective tissues in essentially all metazoan organisms. In vertebrates, CSPGs are involved also in more specialized processes such as neurogenesis and growth factor signaling. In invertebrates, however, knowledge of CSPGs core proteins and proteoglycan-related functions is relatively limited, even for Caenorhabditis elegans. This nematode produces large amounts of non-sulfated chondroitin in addition to low-sulfated chondroitin sulfate chains. So far, only nine core proteins (CPGs) have been identified, some of which have been shown to be involved in extracellular matrix formation. We recently introduced a protocol to characterize proteoglycan core proteins by identifying CS-glycopeptides with a combination of biochemical enrichment, enzymatic digestion, and nano-scale liquid chromatography MS/MS analysis. Here, we have used this protocol to map the chondroitin glycoproteome in C. elegans, resulting in the identification of 15 novel CPG proteins in addition to the nine previously established. Three of the newly identified CPGs displayed homology to vertebrate proteins. Bioinformatics analysis of the primary protein sequences revealed that the CPG proteins altogether contained 19 unique functional domains, including Kunitz and endostatin domains, suggesting direct involvement in protease inhibition and axonal migration, respectively. The analysis of the core protein domain organization revealed that all chondroitin attachment sites are located in unstructured regions. Our results suggest that CPGs display a much greater functional and structural heterogeneity than previously appreciated and indicate that specialized proteoglycan-mediated functions evolved early in metazoan evolution.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg
| | - Alejandro Gomez Toledo
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg
| | - Waqas Nasir
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg
| | - Tabea Dierker
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg.
| |
Collapse
|
2703
|
Robertsen HL, Weber T, Kim HU, Lee SY. Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production. Biotechnol J 2017; 13. [DOI: 10.1002/biot.201700465] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Helene Lunde Robertsen
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Korea Advanced Institute of Science and Technology (KAIST); Yuseong-gu Daejeon 306-701 Republic of Korea
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Korea Advanced Institute of Science and Technology (KAIST); Yuseong-gu Daejeon 306-701 Republic of Korea
| |
Collapse
|
2704
|
Shaffer M, Armstrong AJS, Phelan VV, Reisdorph N, Lozupone CA. Microbiome and metabolome data integration provides insight into health and disease. Transl Res 2017; 189:51-64. [PMID: 28764956 PMCID: PMC5659916 DOI: 10.1016/j.trsl.2017.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
For much of our history, the most basic information about the microbial world has evaded characterization. Next-generation sequencing has led to a rapid increase in understanding of the structure and function of host-associated microbial communities in diverse diseases ranging from obesity to autism. Through experimental systems such as gnotobiotic mice only colonized with known microbes, a causal relationship between microbial communities and disease phenotypes has been supported. Now, microbiome research must move beyond correlations and general demonstration of causality to develop mechanistic understandings of microbial influence, including through their metabolic activities. Similar to the microbiome field, advances in technologies for cataloguing small molecules have broadened our understanding of the metabolites that populate our bodies. Integration of microbial and metabolomics data paired with experimental validation has promise for identifying microbial influence on host physiology through production, modification, or degradation of bioactive metabolites. Realization of microbial metabolic activities that affect health is hampered by gaps in our understanding of (1) biological properties of microbes and metabolites, (2) which microbial enzymes/pathways produce which metabolites, and (3) the effects of metabolites on hosts. Capitalizing on known mechanistic relationships and filling gaps in our understanding has the potential to enable translational microbiome research across disease contexts.
Collapse
Affiliation(s)
- Michael Shaffer
- Department of Medicine, University of Colorado Denver, Aurora, Colo; Computational Bioscience Program, University of Colorado Denver, Aurora, Colo
| | - Abigail J S Armstrong
- Department of Medicine, University of Colorado Denver, Aurora, Colo; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colo
| | - Vanessa V Phelan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colo
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colo
| | | |
Collapse
|
2705
|
Zuñiga C, Zaramela L, Zengler K. Elucidation of complexity and prediction of interactions in microbial communities. Microb Biotechnol 2017; 10:1500-1522. [PMID: 28925555 PMCID: PMC5658597 DOI: 10.1111/1751-7915.12855] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
Microorganisms engage in complex interactions with other members of the microbial community, higher organisms as well as their environment. However, determining the exact nature of these interactions can be challenging due to the large number of members in these communities and the manifold of interactions they can engage in. Various omic data, such as 16S rRNA gene sequencing, shotgun metagenomics, metatranscriptomics, metaproteomics and metabolomics, have been deployed to unravel the community structure, interactions and resulting community dynamics in situ. Interpretation of these multi-omic data often requires advanced computational methods. Modelling approaches are powerful tools to integrate, contextualize and interpret experimental data, thus shedding light on the underlying processes shaping the microbiome. Here, we review current methods and approaches, both experimental and computational, to elucidate interactions in microbial communities and to predict their responses to perturbations.
Collapse
Affiliation(s)
- Cristal Zuñiga
- Department of PediatricsUniversity of California, San Diego9500 Gilman DriveLa JollaCA92093‐0760USA
| | - Livia Zaramela
- Department of PediatricsUniversity of California, San Diego9500 Gilman DriveLa JollaCA92093‐0760USA
| | - Karsten Zengler
- Department of PediatricsUniversity of California, San Diego9500 Gilman DriveLa JollaCA92093‐0760USA
| |
Collapse
|
2706
|
Guan C, Parrot D, Wiese J, Sönnichsen FD, Saha M, Tasdemir D, Weinberger F. Identification of rosmarinic acid and sulfated flavonoids as inhibitors of microfouling on the surface of eelgrass Zostera marina. BIOFOULING 2017; 33:867-880. [PMID: 29032711 DOI: 10.1080/08927014.2017.1383399] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
A bioassay-guided approach was used to identify defense compounds that are present on the surface of Zostera marina and which inhibit settlement of microfoulers at natural concentrations. Moderately polar eelgrass surface extracts inhibited the settlement of seven marine bacteria and one yeast that originated from non-living substrata. In contrast, five other bacterial strains that had been directly isolated from eelgrass surfaces were all insensitive, which suggested a selective effect of surface metabolites on the microbial communities present on eelgrass. Bioassay-guided isolation of active compounds from the extracts in combination with UPLC-MS and 1H-NMR spectroscopy resulted in the identification of rosmarinic acid, luteolin-7-sulfate and diosmetin-7-sulfate or its isomer chrysoeriol-7-sulfate. All three compounds are nontoxic repellents, as they did not inhibit bacterial growth, but prevented bacterial settlement in a dose-dependent manner. Between 15.6 and 106.8 μg ml-1 of rosmarinic acid were present on the eelgrass surface, enough for half maximal settlement inhibition of bacteria.
Collapse
Affiliation(s)
- Chi Guan
- a Research Unit Benthic Ecology , GEOMAR Helmholtz Centre for Ocean Research Kiel , Kiel , Germany
| | - Delphine Parrot
- b Research Unit Marine Natural Products Chemistry , GEOMAR Helmholtz Centre for Ocean Research Kiel, GEOMAR Centre for Marine Biotechnology , Kiel , Germany
| | - Jutta Wiese
- c Research Unit Marine Microbiology , GEOMAR Helmholtz Centre for Ocean Research Kiel , Kiel , Germany
| | - Frank D Sönnichsen
- d Otto-Diels-Institute für Organische Chemie , Christian-Albrechts-Universität zu Kiel , Kiel , Germany
| | - Mahasweta Saha
- a Research Unit Benthic Ecology , GEOMAR Helmholtz Centre for Ocean Research Kiel , Kiel , Germany
- e School of Biological Science , Trace Gas Biology , Colchester , UK
| | - Deniz Tasdemir
- b Research Unit Marine Natural Products Chemistry , GEOMAR Helmholtz Centre for Ocean Research Kiel, GEOMAR Centre for Marine Biotechnology , Kiel , Germany
- f Faculty of Mathematics and Natural Sciences , Christian-Albrechts-Universitätzu Kiel , Kiel , Germany
| | - Florian Weinberger
- a Research Unit Benthic Ecology , GEOMAR Helmholtz Centre for Ocean Research Kiel , Kiel , Germany
| |
Collapse
|
2707
|
Nothias LF, Boutet-Mercey S, Cachet X, De La Torre E, Laboureur L, Gallard JF, Retailleau P, Brunelle A, Dorrestein PC, Costa J, Bedoya LM, Roussi F, Leyssen P, Alcami J, Paolini J, Litaudon M, Touboul D. Environmentally Friendly Procedure Based on Supercritical Fluid Chromatography and Tandem Mass Spectrometry Molecular Networking for the Discovery of Potent Antiviral Compounds from Euphorbia semiperfoliata. JOURNAL OF NATURAL PRODUCTS 2017; 80:2620-2629. [PMID: 28925702 DOI: 10.1021/acs.jnatprod.7b00113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A supercritical fluid chromatography-based targeted purification procedure using tandem mass spectrometry and molecular networking was developed to analyze, annotate, and isolate secondary metabolites from complex plant extract mixture. This approach was applied for the targeted isolation of new antiviral diterpene esters from Euphorbia semiperfoliata whole plant extract. The analysis of bioactive fractions revealed that unknown diterpene esters, including jatrophane esters and phorbol esters, were present in the samples. The purification procedure using semipreparative supercritical fluid chromatography led to the isolation and identification of two new jatrophane esters (13 and 14) and one known (15) and three new 4-deoxyphorbol esters (16-18). The structure and absolute configuration of compound 16 were confirmed by X-ray crystallography. This compound was found to display antiviral activity against Chikungunya virus (EC50 = 0.45 μM), while compound 15 proved to be a potent and selective inhibitor of HIV-1 replication in a recombinant virus assay (EC50 = 13 nM). This study showed that a supercritical fluid chromatography-based protocol and molecular networking can facilitate and accelerate the discovery of bioactive small molecules by targeting molecules of interest, while minimizing the use of toxic solvents.
Collapse
Affiliation(s)
- Louis-Félix Nothias
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica , 20250 Corte, France
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Stéphanie Boutet-Mercey
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - Xavier Cachet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
- Laboratoire de Pharmacognosie, UMR 8638 COMETE CNRS, Faculté de Pharmacie, University of Paris Descartes , Sorbonne Paris Cité, 75270 Paris, France
| | - Erick De La Torre
- Departamento de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III , Ctra. Pozuelo Km.2, 28220, Majadahonda, Madrid, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid . Pz. Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Laurent Laboureur
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - Alain Brunelle
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Jean Costa
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica , 20250 Corte, France
| | - Luis M Bedoya
- Departamento de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III , Ctra. Pozuelo Km.2, 28220, Majadahonda, Madrid, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid . Pz. Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - Pieter Leyssen
- Laboratory for Virology and Experimental Chemotherapy, Rega Institute for Medical Research, KU Leuven , B-3000 Leuven, Belgium
| | - José Alcami
- Departamento de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III , Ctra. Pozuelo Km.2, 28220, Majadahonda, Madrid, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid . Pz. Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Julien Paolini
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica , 20250 Corte, France
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay , 91198 Gif-sur-Yvette, France
| |
Collapse
|
2708
|
Péresse T, Jézéquel G, Allard PM, Pham VC, Huong DTM, Blanchard F, Bignon J, Lévaique H, Wolfender JL, Litaudon M, Roussi F. Cytotoxic Prenylated Stilbenes Isolated from Macaranga tanarius. JOURNAL OF NATURAL PRODUCTS 2017; 80:2684-2691. [PMID: 28972755 DOI: 10.1021/acs.jnatprod.7b00409] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With the aim of discovering new cytotoxic prenylated stilbenes of the schweinfurthin series, Macaranga tanarius was selected for detailed phytochemical investigation among 21 Macaranga species examined by using a molecular networking approach. From an ethanol extract of the fruits, seven new prenylated stilbenes, schweinfurthins K-Q (7-13), were isolated, along with vedelianin (1), schwenfurthins E-G (2-4), mappain (5), and methyl-mappain (6). The structures of the new compounds were established by spectroscopic data analysis. The relative configurations of compounds 8, 12, and 13 were determined based on ROESY NMR spectroscopic analysis. The cytotoxic activities of compounds 1-13 were evaluated against the human glioblastoma (U87) and lung (A549) cancer cell lines.
Collapse
Affiliation(s)
- Tiphaine Péresse
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR2301, University of Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Gwenaëlle Jézéquel
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR2301, University of Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , CMU-Rue Michel Servet 1, 1211 Geneva 11, Switzerland
| | - Van-Cuong Pham
- Advanced Center for Bioorganic Chemistry of the Institute of Marine Biochemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet, 8404, Caugiay, Hanoi, Vietnam
| | - Doan T M Huong
- Advanced Center for Bioorganic Chemistry of the Institute of Marine Biochemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet, 8404, Caugiay, Hanoi, Vietnam
| | - Florent Blanchard
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR2301, University of Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR2301, University of Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Hélène Lévaique
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR2301, University of Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , CMU-Rue Michel Servet 1, 1211 Geneva 11, Switzerland
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR2301, University of Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR2301, University of Paris-Saclay , 91198, Gif-sur-Yvette, France
| |
Collapse
|
2709
|
Olivon F, Allard PM, Koval A, Righi D, Genta-Jouve G, Neyts J, Apel C, Pannecouque C, Nothias LF, Cachet X, Marcourt L, Roussi F, Katanaev VL, Touboul D, Wolfender JL, Litaudon M. Bioactive Natural Products Prioritization Using Massive Multi-informational Molecular Networks. ACS Chem Biol 2017; 12:2644-2651. [PMID: 28829118 DOI: 10.1021/acschembio.7b00413] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural products represent an inexhaustible source of novel therapeutic agents. Their complex and constrained three-dimensional structures endow these molecules with exceptional biological properties, thereby giving them a major role in drug discovery programs. However, the search for new bioactive metabolites is hampered by the chemical complexity of the biological matrices in which they are found. The purification of single constituents from such matrices requires such a significant amount of work that it should be ideally performed only on molecules of high potential value (i.e., chemical novelty and biological activity). Recent bioinformatics approaches based on mass spectrometry metabolite profiling methods are beginning to address the complex task of compound identification within complex mixtures. However, in parallel to these developments, methods providing information on the bioactivity potential of natural products prior to their isolation are still lacking and are of key interest to target the isolation of valuable natural products only. In the present investigation, we propose an integrated analysis strategy for bioactive natural products prioritization. Our approach uses massive molecular networks embedding various informational layers (bioactivity and taxonomical data) to highlight potentially bioactive scaffolds within the chemical diversity of crude extracts collections. We exemplify this workflow by targeting the isolation of predicted active and nonactive metabolites from two botanical sources (Bocquillonia nervosa and Neoguillauminia cleopatra) against two biological targets (Wnt signaling pathway and chikungunya virus replication). Eventually, the detection and isolation processes of a daphnane diterpene orthoester and four 12-deoxyphorbols inhibiting the Wnt signaling pathway and exhibiting potent antiviral activities against the CHIKV virus are detailed. Combined with efficient metabolite annotation tools, this bioactive natural products prioritization pipeline proves to be efficient. Implementation of this approach in drug discovery programs based on natural extract screening should speed up and rationalize the isolation of bioactive natural products.
Collapse
Affiliation(s)
- Florent Olivon
- Institut
de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Pierre-Marie Allard
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU − Rue Michel Servet 1, 1211 Geneva 11, Switzerland
| | - Alexey Koval
- Department
of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Davide Righi
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU − Rue Michel Servet 1, 1211 Geneva 11, Switzerland
| | - Gregory Genta-Jouve
- Equipe C-TAC, UMR CNRS 8638 COMETE - Université Paris Descartes, 4 avenue de l’Observatoire, 75006 Paris, France
| | - Johan Neyts
- Laboratory
for Virology and Experimental Chemotherapy, Rega Institute for Medical Research, KU Leuven Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Cécile Apel
- Institut
de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Christophe Pannecouque
- Laboratory
for Virology and Experimental Chemotherapy, Rega Institute for Medical Research, KU Leuven Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Louis-Félix Nothias
- Institut
de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Xavier Cachet
- Laboratoire de Pharmacognosie, UMR CNRS 8638 COMETE - Université Paris Descartes, 4 avenue de
l’Observatoire, 75006 Paris, France
| | - Laurence Marcourt
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU − Rue Michel Servet 1, 1211 Geneva 11, Switzerland
| | - Fanny Roussi
- Institut
de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Vladimir L. Katanaev
- Department
of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland
- School
of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - David Touboul
- Institut
de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Jean-Luc Wolfender
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU − Rue Michel Servet 1, 1211 Geneva 11, Switzerland
| | - Marc Litaudon
- Institut
de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
2710
|
Garg N, Wang M, Hyde E, da Silva RR, Melnik AV, Protsyuk I, Bouslimani A, Lim YW, Wong R, Humphrey G, Ackermann G, Spivey T, Brouha SS, Bandeira N, Lin GY, Rohwer F, Conrad DJ, Alexandrov T, Knight R, Dorrestein PC. Three-Dimensional Microbiome and Metabolome Cartography of a Diseased Human Lung. Cell Host Microbe 2017; 22:705-716.e4. [PMID: 29056429 DOI: 10.1016/j.chom.2017.10.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/12/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Our understanding of the spatial variation in the chemical and microbial makeup of an entire human organ remains limited, in part due to the size and heterogeneity of human organs and the complexity of the associated metabolome and microbiome. To address this challenge, we developed a workflow to enable the cartography of metabolomic and microbiome data onto a three-dimensional (3D) organ reconstruction built off radiological images. This enabled the direct visualization of the microbial and chemical makeup of a human lung from a cystic fibrosis patient. We detected host-derived molecules, microbial metabolites, medications, and region-specific metabolism of medications and placed it in the context of microbial distributions in the lung. Our tool further created browsable maps of a 3D microbiome/metabolome reconstruction map on a radiological image of a human lung and forms an interactive resource for the scientific community.
Collapse
Affiliation(s)
- Neha Garg
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mingxun Wang
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Embriette Hyde
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ricardo R da Silva
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ivan Protsyuk
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yan Wei Lim
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Richard Wong
- Department of Pathology, University of California, San Diego Health, San Diego, CA 92103, USA
| | - Greg Humphrey
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Timothy Spivey
- Department of Radiology, University of California, San Diego Health, San Diego, CA 92103, USA
| | - Sharon S Brouha
- Department of Radiology, University of California, San Diego Health, San Diego, CA 92103, USA
| | - Nuno Bandeira
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Grace Y Lin
- Department of Pathology, University of California, San Diego Health, San Diego, CA 92103, USA
| | - Forest Rohwer
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Douglas J Conrad
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Theodore Alexandrov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Rob Knight
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2711
|
Hollender J, Schymanski EL, Singer HP, Ferguson PL. Nontarget Screening with High Resolution Mass Spectrometry in the Environment: Ready to Go? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11505-11512. [PMID: 28877430 DOI: 10.1021/acs.est.7b02184] [Citation(s) in RCA: 417] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The vast, diverse universe of organic pollutants is a formidable challenge for environmental sciences, engineering, and regulation. Nontarget screening (NTS) based on high resolution mass spectrometry (HRMS) has enormous potential to help characterize this universe, but is it ready to go for real world applications? In this Feature article we argue that development of mass spectrometers with increasingly high resolution and novel couplings to both liquid and gas chromatography, combined with the integration of high performance computing, have significantly widened our analytical window and have enabled increasingly sophisticated data processing strategies, indicating a bright future for NTS. NTS has great potential for treatment assessment and pollutant prioritization within regulatory applications, as highlighted here by the case of real-time pollutant monitoring on the River Rhine. We discuss challenges for the future, including the transition from research toward solution-centered and robust, harmonized applications.
Collapse
Affiliation(s)
- Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich, 8092 Zürich, Switzerland
| | - Emma L Schymanski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
| | - Heinz P Singer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
| | - P Lee Ferguson
- Department of Civil & Environmental Engineering, Duke University , Box 90287, Durham, North Carolina 27708, United States
| |
Collapse
|
2712
|
Chevrette MG, Aicheler F, Kohlbacher O, Currie CR, Medema MH. SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria. Bioinformatics 2017; 33:3202-3210. [PMID: 28633438 PMCID: PMC5860034 DOI: 10.1093/bioinformatics/btx400] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/19/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
SUMMARY Nonribosomally synthesized peptides (NRPs) are natural products with widespread applications in medicine and biotechnology. Many algorithms have been developed to predict the substrate specificities of nonribosomal peptide synthetase adenylation (A) domains from DNA sequences, which enables prioritization and dereplication, and integration with other data types in discovery efforts. However, insufficient training data and a lack of clarity regarding prediction quality have impeded optimal use. Here, we introduce prediCAT, a new phylogenetics-inspired algorithm, which quantitatively estimates the degree of predictability of each A-domain. We then systematically benchmarked all algorithms on a newly gathered, independent test set of 434 A-domain sequences, showing that active-site-motif-based algorithms outperform whole-domain-based methods. Subsequently, we developed SANDPUMA, a powerful ensemble algorithm, based on newly trained versions of all high-performing algorithms, which significantly outperforms individual methods. Finally, we deployed SANDPUMA in a systematic investigation of 7635 Actinobacteria genomes, suggesting that NRP chemical diversity is much higher than previously estimated. SANDPUMA has been integrated into the widely used antiSMASH biosynthetic gene cluster analysis pipeline and is also available as an open-source, standalone tool. AVAILABILITY AND IMPLEMENTATION SANDPUMA is freely available at https://bitbucket.org/chevrm/sandpuma and as a docker image at https://hub.docker.com/r/chevrm/sandpuma/ under the GNU Public License 3 (GPL3). CONTACT chevrette@wisc.edu or marnix.medema@wur.nl. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marc G Chevrette
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology and J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Fabian Aicheler
- Applied Bioinformatics, Department of Computer Science, Quantitative Biology Center and Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, Quantitative Biology Center and Center for Bioinformatics, University of Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cameron R Currie
- Department of Bacteriology and J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
2713
|
Reich M, Labes A. How to boost marine fungal research: A first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry. Mar Genomics 2017; 36:57-75. [PMID: 29031541 DOI: 10.1016/j.margen.2017.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 12/30/2022]
Abstract
Marine fungi have attracted attention in recent years due to increased appreciation of their functional role in ecosystems and as important sources of new natural products. The concomitant development of various "omic" technologies has boosted fungal research in the fields of biodiversity, physiological ecology and natural product biosynthesis. Each of these research areas has its own research agenda, scientific language and quality standards, which have so far hindered an interdisciplinary exchange. Inter- and transdisciplinary interactions are, however, vital for: (i) a detailed understanding of the ecological role of marine fungi, (ii) unlocking their hidden potential for natural product discovery, and (iii) designing access routes for biotechnological production. In this review and opinion paper, we describe the two different "worlds" of marine fungal natural product chemists and marine fungal molecular ecologists. The individual scientific approaches and tools employed are summarised and explained, and enriched with a first common glossary. We propose a strategy to find a multidisciplinary approach towards a comprehensive view on marine fungi and their chemical potential.
Collapse
Affiliation(s)
- Marlis Reich
- University of Bremen, BreMarE, NW2 B3320, Leobener Str. 5, D-28359 Bremen, Germany.
| | - Antje Labes
- Flensburg University of Applied Sciences, Kanzleistr. 91-93, D-24943 Flensburg, Germany.
| |
Collapse
|
2714
|
Abstract
Untargeted metabolomics of environmental samples routinely detects thousands of small molecules, the vast majority of which cannot be identified. Meta-mass shift chemical (MeMSChem) profiling was developed to identify mass differences between related molecules using molecular networks. This approach illuminates metabolome-wide relationships between molecules and the putative chemical groups that differentiate them (e.g., H2, CH2, COCH2). MeMSChem profiling was used to analyze a publicly available metabolomic dataset of coral, algal, and fungal mat holobionts (i.e., the host and its associated microbes and viruses) sampled from some of Earth's most remote and pristine coral reefs. Each type of holobiont had distinct mass shift profiles, even when the analysis was restricted to molecules found in all samples. This result suggests that holobionts modify the same molecules in different ways and offers insights into the generation of molecular diversity. Three genera of stony corals had distinct patterns of molecular relatedness despite their high degree of taxonomic relatedness. MeMSChem profiles also partially differentiated between individuals, suggesting that every coral reef holobiont is a potential source of novel chemical diversity.
Collapse
|
2715
|
Linares-Otoya L, Linares-Otoya V, Armas-Mantilla L, Blanco-Olano C, Crüsemann M, Ganoza-Yupanqui ML, Campos-Florian J, König GM, Schäberle TF. Diversity and Antimicrobial Potential of Predatory Bacteria from the Peruvian Coastline. Mar Drugs 2017; 15:md15100308. [PMID: 29023396 PMCID: PMC5666416 DOI: 10.3390/md15100308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022] Open
Abstract
The microbiome of three different sites at the Peruvian Pacific coast was analyzed, revealing a lower bacterial biodiversity at Isla Foca than at Paracas and Manglares, with 89 bacterial genera identified, as compared to 195 and 173 genera, respectively. Only 47 of the bacterial genera identified were common to all three sites. In order to obtain promising strains for the putative production of novel antimicrobials, predatory bacteria were isolated from these sampling sites, using two different bait organisms. Even though the proportion of predatory bacteria was only around 0.5% in the here investigated environmental microbiomes, by this approach in total 138 bacterial strains were isolated as axenic culture. 25% of strains showed antibacterial activity, thereby nine revealed activity against clinically relevant methicillin resistant Staphylococcus aureus (MRSA) and three against enterohemorrhagic Escherichia coli (EHEC) strains. Phylogeny and physiological characteristics of the active strains were investigated. First insights into the chemical basis of the antibacterial activity indicated the biosynthetic production of the known compounds ariakemicin, kocurin, naphthyridinomycin, pumilacidins, resistomycin, and surfactin. However, most compounds remained elusive until now. Hence, the obtained results implicate that the microbiome present at the various habitats at the Peruvian coastline is a promising source for heterotrophic bacterial strains showing high potential for the biotechnological production of antibiotics.
Collapse
Affiliation(s)
- Luis Linares-Otoya
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, 5392 Giessen, Germany.
- Institute for Pharmaceutical Biology, University of Bonn, 3115 Bonn, Germany.
- Research Centre for Sustainable Development Uku Pacha, 13011 Uku Pacha, Peru.
| | - Virginia Linares-Otoya
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru.
- Research Centre for Sustainable Development Uku Pacha, 13011 Uku Pacha, Peru.
| | - Lizbeth Armas-Mantilla
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru.
| | - Cyntia Blanco-Olano
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru.
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, 3115 Bonn, Germany.
| | - Mayar L Ganoza-Yupanqui
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru.
| | - Julio Campos-Florian
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru.
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, 3115 Bonn, Germany.
- German Centre for Infection Research (DZIF) Partner Site Bonn/Cologne, Bonn 53115, Germany.
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, 5392 Giessen, Germany.
- Institute for Pharmaceutical Biology, University of Bonn, 3115 Bonn, Germany.
- German Centre for Infection Research (DZIF) Partner Site Bonn/Cologne, Bonn 53115, Germany.
| |
Collapse
|
2716
|
von Eckardstein L, Petras D, Dang T, Cociancich S, Sabri S, Grätz S, Kerwat D, Seidel M, Pesic A, Dorrestein PC, Royer M, Weston JB, Süssmuth RD. Total Synthesis and Biological Assessment of Novel Albicidins Discovered by Mass Spectrometric Networking. Chemistry 2017; 23:15316-15321. [DOI: 10.1002/chem.201704074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Leonard von Eckardstein
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Daniel Petras
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
| | - Tam Dang
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Stéphane Cociancich
- CIRAD; UMR BGPI; 34398 Montpellier France
- BGPI; Univ. Montpellier, CIRAD, INRA; Montpellier SupAgro; 34398 Montpellier France
| | - Souhir Sabri
- CIRAD; UMR BGPI; 34398 Montpellier France
- BGPI; Univ. Montpellier, CIRAD, INRA; Montpellier SupAgro; 34398 Montpellier France
| | - Stefan Grätz
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Dennis Kerwat
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Maria Seidel
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Alexander Pesic
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California, San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
| | - Monique Royer
- CIRAD; UMR BGPI; 34398 Montpellier France
- BGPI; Univ. Montpellier, CIRAD, INRA; Montpellier SupAgro; 34398 Montpellier France
| | - John B. Weston
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Roderich D. Süssmuth
- Institut für Chemie; Technische Unitersität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
2717
|
Tobias NJ, Wolff H, Djahanschiri B, Grundmann F, Kronenwerth M, Shi YM, Simonyi S, Grün P, Shapiro-Ilan D, Pidot SJ, Stinear TP, Ebersberger I, Bode HB. Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Nat Microbiol 2017; 2:1676-1685. [PMID: 28993611 DOI: 10.1038/s41564-017-0039-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
Xenorhabdus and Photorhabdus species dedicate a large amount of resources to the production of specialized metabolites derived from non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS). Both bacteria undergo symbiosis with nematodes, which is followed by an insect pathogenic phase. So far, the molecular basis of this tripartite relationship and the exact roles that individual metabolites and metabolic pathways play have not been well understood. To close this gap, we have significantly expanded the database for comparative genomics studies in these bacteria. Clustering the genes encoded in the individual genomes into hierarchical orthologous groups reveals a high-resolution picture of functional evolution in this clade. It identifies groups of genes-many of which are involved in secondary metabolite production-that may account for the niche specificity of these bacteria. Photorhabdus and Xenorhabdus appear very similar at the DNA sequence level, which indicates their close evolutionary relationship. Yet, high-resolution mass spectrometry analyses reveal a huge chemical diversity in the two taxa. Molecular network reconstruction identified a large number of previously unidentified metabolite classes, including the xefoampeptides and tilivalline. Here, we apply genomic and metabolomic methods in a complementary manner to identify and elucidate additional classes of natural products. We also highlight the ability to rapidly and simultaneously identify potentially interesting bioactive products from NRPSs and PKSs, thereby augmenting the contribution of molecular biology techniques to the acceleration of natural product discovery.
Collapse
Affiliation(s)
- Nicholas J Tobias
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Hendrik Wolff
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Bardya Djahanschiri
- Department of Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Florian Grundmann
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Max Kronenwerth
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Yi-Ming Shi
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Svenja Simonyi
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - Peter Grün
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany
| | - David Shapiro-Ilan
- USDA-ARS, SEA, SE Fruit and Tree Nut Research Unit, 21 Dunbar Road, Byron, GA, 31008, USA
| | - Sacha J Pidot
- Department of Microbiology and Immunology, University of Melbourne, at the Doherty Institute for Infection and Immunity, Parkville, Victoria, 3010, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne, at the Doherty Institute for Infection and Immunity, Parkville, Victoria, 3010, Australia
| | - Ingo Ebersberger
- Department of Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany.,Senckenberg Climate and Research Centre (BIK-F), Frankfurt am Main, 60325, Germany
| | - Helge B Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany. .,Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt, Frankfurt am Main, 60438, Germany.
| |
Collapse
|
2718
|
Warth B, Spangler S, Fang M, Johnson CH, Forsberg EM, Granados A, Martin RL, Domingo-Almenara X, Huan T, Rinehart D, Montenegro-Burke JR, Hilmers B, Aisporna A, Hoang LT, Uritboonthai W, Benton HP, Richardson SD, Williams AJ, Siuzdak G. Exposome-Scale Investigations Guided by Global Metabolomics, Pathway Analysis, and Cognitive Computing. Anal Chem 2017; 89:11505-11513. [DOI: 10.1021/acs.analchem.7b02759] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| | - Scott Spangler
- IBM Almaden Research Lab, 650 Harry Road, San Jose, California 95120, United States
| | - Mingliang Fang
- School
of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Caroline H. Johnson
- Department
of Environmental Health Sciences, Yale School of Public
Health, Yale University, 60 College Street, New Haven, Connecticut 06520, United States
| | | | | | - Richard L. Martin
- IBM Almaden Research Lab, 650 Harry Road, San Jose, California 95120, United States
| | | | | | | | | | | | | | | | | | | | - Susan D. Richardson
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Antony J. Williams
- National Center
for Computational Toxicology, U.S. Environmental Protection Agency, 109 T.W. Alexander
Drive, Research Triangle Park, North Carolina 27711, United States
| | | |
Collapse
|
2719
|
McCall LI, Morton JT, Bernatchez JA, de Siqueira-Neto JL, Knight R, Dorrestein PC, McKerrow JH. Mass Spectrometry-Based Chemical Cartography of a Cardiac Parasitic Infection. Anal Chem 2017; 89:10414-10421. [PMID: 28892370 PMCID: PMC6298790 DOI: 10.1021/acs.analchem.7b02423] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Trypanosoma cruzi parasites are the causative agents of Chagas disease, a leading infectious form of heart failure whose pathogenesis is still not fully characterized. In this work, we applied untargeted liquid chromatography-tandem mass spectrometry to heart sections from T. cruzi-infected and uninfected mice. We combined molecular networking and three-dimensional modeling to generate chemical cartographical heart models. This approach revealed for the first time preferential parasite localization to the base of the heart and regiospecific distributions of nucleoside derivatives and eicosanoids, which we correlated to tissue-damaging immune responses. We further detected novel cardiac chemical signatures related to the severity and ultimate outcome of the infection. These signatures included differential representation of higher- vs lower-molecular-weight carnitine and phosphatidylcholine family members in specific cardiac regions of mice infected with lethal or nonlethal T. cruzi strains and doses. Overall, this work provides new insights into Chagas disease pathogenesis and presents an analytical chemistry approach that can be broadly applied to the study of host-microbe interactions.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
- Present address: Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019-5251
| | - James T. Morton
- Department of Computer Science, University of California San Diego, La Jolla, CA 92093
| | - Jean A. Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Jair Lage de Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Rob Knight
- Department of Computer Science, University of California San Diego, La Jolla, CA 92093
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, California 92093
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
2720
|
Vázquez-Baeza Y, Callewaert C, Debelius J, Hyde E, Marotz C, Morton JT, Swafford A, Vrbanac A, Dorrestein PC, Knight R. Impacts of the Human Gut Microbiome on Therapeutics. Annu Rev Pharmacol Toxicol 2017; 58:253-270. [PMID: 28968189 DOI: 10.1146/annurev-pharmtox-042017-031849] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human microbiome contains a vast source of genetic and biochemical variation, and its impacts on therapeutic responses are just beginning to be understood. This expanded understanding is especially important because the human microbiome differs far more among different people than does the human genome, and it is also dramatically easier to change. Here, we describe some of the major factors driving differences in the human microbiome among individuals and populations. We then describe some of the many ways in which gut microbes modify the action of specific chemotherapeutic agents, including nonsteroidal anti-inflammatory drugs and cardiac glycosides, and outline the potential of fecal microbiota transplant as a therapeutic. Intriguingly, microbes also alter how hosts respond to therapeutic agents through various pathways acting at distal sites. Finally, we discuss some of the computational and practical issues surrounding use of the microbiome to stratify individuals for drug response, and we envision a future where the microbiome will be modified to increase everyone's potential to benefit from therapy.
Collapse
Affiliation(s)
- Yoshiki Vázquez-Baeza
- Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA;
| | - Chris Callewaert
- Department of Pediatrics, University of California, San Diego, California 92093, USA
| | - Justine Debelius
- Department of Pediatrics, University of California, San Diego, California 92093, USA
| | - Embriette Hyde
- Department of Pediatrics, University of California, San Diego, California 92093, USA
| | - Clarisse Marotz
- Biomedical Sciences, University of California, San Diego, California 92093, USA
| | - James T Morton
- Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA;
| | - Austin Swafford
- Center for Microbiome Innovation, University of California, San Diego, California 92093, USA
| | - Alison Vrbanac
- Biomedical Sciences, University of California, San Diego, California 92093, USA
| | - Pieter C Dorrestein
- Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093, USA
| | - Rob Knight
- Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA; .,Department of Pediatrics, University of California, San Diego, California 92093, USA.,Center for Microbiome Innovation, University of California, San Diego, California 92093, USA
| |
Collapse
|
2721
|
Hillman ET, Readnour LR, Solomon KV. Exploiting the natural product potential of fungi with integrated -omics and synthetic biology approaches. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2722
|
Machado H, Tuttle RN, Jensen PR. Omics-based natural product discovery and the lexicon of genome mining. Curr Opin Microbiol 2017; 39:136-142. [PMID: 29175703 PMCID: PMC5732065 DOI: 10.1016/j.mib.2017.10.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/28/2017] [Indexed: 11/29/2022]
Abstract
Genome sequencing and the application of omic techniques are driving many important advances in the field of microbial natural products research. Despite these gains, there remain aspects of the natural product discovery pipeline where our knowledge remains poor. These include the extent to which biosynthetic gene clusters are transcriptionally active in native microbes, the temporal dynamics of transcription, translation, and natural product assembly, as well as the relationships between small molecule production and detection. Here we touch on a number of these concepts in the context of continuing efforts to unlock the natural product potential revealed in genome sequence data and discuss nomenclatural issues that warrant consideration as the field moves forward.
Collapse
Affiliation(s)
- Henrique Machado
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA
| | - Robert N Tuttle
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA; Center for Microbiome Innovation, University of California, San Diego, USA.
| |
Collapse
|
2723
|
Recent development of computational resources for new antibiotics discovery. Curr Opin Microbiol 2017; 39:113-120. [DOI: 10.1016/j.mib.2017.10.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/28/2017] [Indexed: 11/22/2022]
|
2724
|
Adams RI, Lymperopoulou DS, Misztal PK, De Cassia Pessotti R, Behie SW, Tian Y, Goldstein AH, Lindow SE, Nazaroff WW, Taylor JW, Traxler MF, Bruns TD. Microbes and associated soluble and volatile chemicals on periodically wet household surfaces. MICROBIOME 2017; 5:128. [PMID: 28950891 PMCID: PMC5615633 DOI: 10.1186/s40168-017-0347-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/20/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Microorganisms influence the chemical milieu of their environment, and chemical metabolites can affect ecological processes. In built environments, where people spend the majority of their time, very little is known about how surface-borne microorganisms influence the chemistry of the indoor spaces. Here, we applied multidisciplinary approaches to investigate aspects of chemical microbiology in a house. METHODS We characterized the microbial and chemical composition of two common and frequently wet surfaces in a residential setting: kitchen sink and bathroom shower. Microbial communities were studied using culture-dependent and independent techniques, including targeting RNA for amplicon sequencing. Volatile and soluble chemicals from paired samples were analyzed using state-of-the-art techniques to explore the links between the observed microbiota and chemical exudates. RESULTS Microbial analysis revealed a rich biological presence on the surfaces exposed in kitchen sinks and bathroom shower stalls. Microbial composition, matched for DNA and RNA targets, varied by surface type and sampling period. Bacteria were found to have an average of 25× more gene copies than fungi. Biomass estimates based on qPCR were well correlated with measured total volatile organic compound (VOC) emissions. Abundant VOCs included products associated with fatty acid production. Molecular networking revealed a diversity of surface-borne compounds that likely originate from microbes and from household products. CONCLUSIONS Microbes played a role in structuring the chemical profiles on and emitted from kitchen sinks and shower stalls. Microbial VOCs (mVOCs) were predominately associated with the processing of fatty acids. The mVOC composition may be more stable than that of microbial communities, which can show temporal and spatial variation in their responses to changing environmental conditions. The mVOC output from microbial metabolism on kitchen sinks and bathroom showers should be apparent through careful measurement, even against a broader background of VOCs in homes, some of which may originate from microbes in other locations within the home. A deeper understanding of the chemical interactions between microbes on household surfaces will require experimentation under relevant environmental conditions, with a finer temporal resolution, to build on the observational study results presented here.
Collapse
Affiliation(s)
- Rachel I. Adams
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | | | - Pawel K. Misztal
- Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
| | | | - Scott W. Behie
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Yilin Tian
- Civil and Environmental Engineering, University of California, Berkeley, CA USA
| | - Allen H. Goldstein
- Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Civil and Environmental Engineering, University of California, Berkeley, CA USA
| | - Steven E. Lindow
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - William W. Nazaroff
- Civil and Environmental Engineering, University of California, Berkeley, CA USA
| | - John W. Taylor
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Matt F. Traxler
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Thomas D. Bruns
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| |
Collapse
|
2725
|
Spicer RA, Salek R, Steinbeck C. Compliance with minimum information guidelines in public metabolomics repositories. Sci Data 2017; 4:170137. [PMID: 28949328 PMCID: PMC5613734 DOI: 10.1038/sdata.2017.137] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022] Open
Abstract
The Metabolomics Standards Initiative (MSI) guidelines were first published in 2007. These guidelines provided reporting standards for all stages of metabolomics analysis: experimental design, biological context, chemical analysis and data processing. Since 2012, a series of public metabolomics databases and repositories, which accept the deposition of metabolomic datasets, have arisen. In this study, the compliance of 399 public data sets, from four major metabolomics data repositories, to the biological context MSI reporting standards was evaluated. None of the reporting standards were complied with in every publicly available study, although adherence rates varied greatly, from 0 to 97%. The plant minimum reporting standards were the most complied with and the microbial and in vitro were the least. Our results indicate the need for reassessment and revision of the existing MSI reporting standards.
Collapse
Affiliation(s)
- Rachel A. Spicer
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, UK
| | - Reza Salek
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, UK
| | - Christoph Steinbeck
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, UK
- Friedrich-Schiller-University, Fürstengraben 1, 07743 Jena, Germany
| |
Collapse
|
2726
|
|
2727
|
Burgess KEV, Borutzki Y, Rankin N, Daly R, Jourdan F. MetaNetter 2: A Cytoscape plugin for ab initio network analysis and metabolite feature classification. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1071:68-74. [PMID: 29030098 PMCID: PMC5726607 DOI: 10.1016/j.jchromb.2017.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/07/2017] [Accepted: 08/13/2017] [Indexed: 01/19/2023]
Abstract
An update to the ab-initio network construction tool MetaNetter has been produced. The tool creates networks of masses from high resolution mass spectrometry data. The new plugin provides both chemical transformation and adduct mapping. Tables mapping adduct and transform counts across samples can be generated. Retention time windows are supported for both adduct and transform network generation.
Metabolomics frequently relies on the use of high resolution mass spectrometry data. Classification and filtering of this data remain a challenging task due to the plethora of complex mass spectral artefacts, chemical noise, adducts and fragmentation that occur during ionisation and analysis. Additionally, the relationships between detected compounds can provide a wealth of information about the nature of the samples and the biochemistry that gave rise to them. We present a biochemical networking tool: MetaNetter 2 that is based on the original MetaNetter, a Cytoscape plugin that creates ab initio networks. The new version supports two major improvements: the generation of adduct networks and the creation of tables that map adduct or transformation patterns across multiple samples, providing a readout of compound relationships. We have applied this tool to the analysis of adduct patterns in the same sample separated under two different chromatographies, allowing inferences to be made about the effect of different buffer conditions on adduct detection, and the application of the chemical transformation analysis to both a single fragmentation analysis and an all-ions fragmentation dataset. Finally, we present an analysis of a dataset derived from anaerobic and aerobic growth of the organism Staphylococcus aureus demonstrating the utility of the tool for biological analysis.
Collapse
Affiliation(s)
- K E V Burgess
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - Y Borutzki
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - N Rankin
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom; Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - R Daly
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - F Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
2728
|
Abstract
Recent technological advances in mass spectrometry and NMR spectroscopy have enabled new approaches for the rapid and insightful profiling of natural product mixtures. MALDI-MS with the provision of biosynthetic heavy-isotope-labeled precursors can be a powerful method by which to interrogate a natural product metabolome and to gain insight into its unique constituents; this is illustrated herein by the detection, isolation, and characterization of cryptomaldamide. MS/MS-based Molecular Networks, facilitated by the Global Natural Products Social (GNPS) platform, is rapidly changing the way in which we dereplicate known natural products in mixtures, find new analogues in desired structure classes, and identify fundamentally new chemical entities. This method can be linked to genomic information to assist in genome-driven natural products discovery and is illustrated here with the characterization of the columbamides. Similarly, algorithmic interpretation of NMR data is facilitating the automatic identification or classification of new natural products. We developed such a tool named the Small Molecule Accurate Recognition Technology (SMART), which employs a convolutional neural network to classify HSQC spectra of organic molecules using pattern recognition principles. The discovery and rapid classification of several new peptides from a marine cyanobacterium as members of the viequeamide class provides an example of its utility in natural products research. These three illustrations represent different methods by which to look at the external features of a chemical substance and derive valuable insights into its identity or, as described herein, the "face of a molecule".
Collapse
Affiliation(s)
- William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California 92093, United States
| |
Collapse
|
2729
|
LC–MS characterization, anti-kinetoplastide and cytotoxic activities of natural products from Eugenia jambolana Lam. and Eugenia uniflora. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
2730
|
Kind T, Fiehn O. Strategies for dereplication of natural compounds using high-resolution tandem mass spectrometry. PHYTOCHEMISTRY LETTERS 2017; 21:313-319. [PMID: 29225718 PMCID: PMC5720153 DOI: 10.1016/j.phytol.2016.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Complete structural elucidation of natural products is commonly performed by nuclear magnetic resonance spectroscopy (NMR), but annotating compounds to most likely structures using high-resolution tandem mass spectrometry is a faster and feasible first step. The CASMI contest 2016 (Critical Assessment of Small Molecule Identification) provided spectra of eighteen compounds for the best manual structure identification in the natural products category. High resolution precursor and tandem mass spectra (MS/MS) were available to characterize the compounds. We used the Seven Golden Rules, Sirius2 and MS-FINDER software for determination of molecular formulas, and then we queried the formulas in different natural product databases including DNP, UNPD, ChemSpider and REAXYS to obtain molecular structures. We used different in-silico fragmentation tools including CFM-ID, CSI:FingerID and MS-FINDER to rank these compounds. Additional neutral losses and product ion peaks were manually investigated. This manual and time consuming approach allowed for the correct dereplication of thirteen of the eighteen natural products.
Collapse
Affiliation(s)
- Tobias Kind
- West Coast Metabolomics Center, UC Davis, Davis 95616, California, U.S.A
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis, Davis 95616, California, U.S.A
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi-Arabia
| |
Collapse
|
2731
|
Shi Y, Pan C, Wang K, Chen X, Wu X, Chen CTA, Wu B. Synthetic multispecies microbial communities reveals shifts in secondary metabolism and facilitates cryptic natural product discovery. Environ Microbiol 2017; 19:3606-3618. [DOI: 10.1111/1462-2920.13858] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Yutong Shi
- Ocean College; Zhejiang University; Hangzhou 310058 China
| | - Chengqian Pan
- Ocean College; Zhejiang University; Hangzhou 310058 China
| | - Kuiwu Wang
- Department of Applied Chemistry; Zhejiang Gongshang University; Hangzhou 310058 China
| | - Xuegang Chen
- Ocean College; Zhejiang University; Hangzhou 310058 China
| | - Xiaodan Wu
- Ocean College; Zhejiang University; Hangzhou 310058 China
| | - Chen-Tung Arthur Chen
- Ocean College; Zhejiang University; Hangzhou 310058 China
- Department of Oceanography; National Sun Yat-Sen University; Kaohsiung 80424 Taiwan
| | - Bin Wu
- Ocean College; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
2732
|
Upregulation and Identification of Antibiotic Activity of a Marine-Derived Streptomyces sp. via Co-Cultures with Human Pathogens. Mar Drugs 2017; 15:md15080250. [PMID: 28800088 PMCID: PMC5577605 DOI: 10.3390/md15080250] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 02/04/2023] Open
Abstract
Marine natural product drug discovery has begun to play an important role in the treatment of disease, with several recently approved drugs. In addition, numerous microbial natural products have been discovered from members of the order Actinomycetales, particularly in the genus Streptomyces, due to their metabolic diversity for production of biologically active secondary metabolites. However, many secondary metabolites cannot be produced under laboratory conditions because growth conditions in flask culture differ from conditions in the natural environment. Various experimental conditions (e.g., mixed fermentation) have been attempted to increase yields of previously described metabolites, cause production of previously undetected metabolites, and increase antibiotic activity. Adult ascidians-also known as tunicates-are sessile marine invertebrates, making them vulnerable to predation and therefore are hypothesized to use host-associated bacteria that produce biologically active secondary metabolites for chemical defense. A marine-derived Streptomyces sp. strain PTY087I2 was isolated from a Panamanian tunicate and subsequently co-cultured with human pathogens including Bacillus subtilis, methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa, followed by extraction. Co-culture of Streptomyces sp. PTY087I2 with each of these human pathogens resulted in increased production of three antibiotics: granaticin, granatomycin D, and dihydrogranaticin B, as well as several analogues seen via molecular networking. In addition, co-cultures resulted in strongly enhanced biological activity against the Gram positive human pathogens used in these experiments. Expanded utilization of co-culture experiments to allow for competitive interactions may enhance metabolite production and further our understanding of these microbial interactions.
Collapse
|
2733
|
Abstract
Covering: up to 2017.Natural products are important secondary metabolites produced by bacterial and fungal species that play important roles in cellular growth and signaling, nutrient acquisition, intra- and interspecies communication, and virulence. A subset of natural products is produced by nonribosomal peptide synthetases (NRPSs), a family of large, modular enzymes that function in an assembly line fashion. Because of the pharmaceutical activity of many NRPS products, much effort has gone into the exploration of their biosynthetic pathways and the diverse products they make. Many interesting NRPS pathways have been identified and characterized from both terrestrial and marine bacterial sources. Recently, several NRPS pathways in human commensal bacterial species have been identified that produce molecules with antibiotic activity, suggesting another source of interesting NRPS pathways may be the commensal and pathogenic bacteria that live on the human body. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) have been identified as a significant cause of human bacterial infections that are frequently multidrug resistant. The emerging resistance profile of these organisms has prompted calls from multiple international agencies to identify novel antibacterial targets and develop new approaches to treat infections from ESKAPE pathogens. Each of these species contains several NRPS biosynthetic gene clusters. While some have been well characterized and produce known natural products with important biological roles in microbial physiology, others have yet to be investigated. This review catalogs the NRPS pathways of ESKAPE pathogens. The exploration of novel NRPS products may lead to a better understanding of the chemical communication used by human pathogens and potentially to the discovery of novel therapeutic approaches.
Collapse
Affiliation(s)
- Andrew M Gulick
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
2734
|
Pilon AC, Valli M, Dametto AC, Pinto MEF, Freire RT, Castro-Gamboa I, Andricopulo AD, Bolzani VS. NuBBE DB: an updated database to uncover chemical and biological information from Brazilian biodiversity. Sci Rep 2017; 7:7215. [PMID: 28775335 PMCID: PMC5543130 DOI: 10.1038/s41598-017-07451-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/28/2017] [Indexed: 01/24/2023] Open
Abstract
The intrinsic value of biodiversity extends beyond species diversity, genetic heritage, ecosystem variability and ecological services, such as climate regulation, water quality, nutrient cycling and the provision of reproductive habitats it is also an inexhaustible source of molecules and products beneficial to human well-being. To uncover the chemistry of Brazilian natural products, the Nuclei of Bioassays, Ecophysiology and Biosynthesis of Natural Products Database (NuBBEDB) was created as the first natural product library from Brazilian biodiversity. Since its launch in 2013, the NuBBEDB has proven to be an important resource for new drug design and dereplication studies. Consequently, continuous efforts have been made to expand its contents and include a greater diversity of natural sources to establish it as a comprehensive compendium of available biogeochemical information about Brazilian biodiversity. The content in the NuBBEDB is freely accessible online (https://nubbe.iq.unesp.br/portal/nubbedb.html) and provides validated multidisciplinary information, chemical descriptors, species sources, geographic locations, spectroscopic data (NMR) and pharmacological properties. Herein, we report the latest advancements concerning the interface, content and functionality of the NuBBEDB. We also present a preliminary study on the current profile of the compounds present in Brazilian territory.
Collapse
Affiliation(s)
- Alan C Pilon
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, Sao Paulo State University - UNESP, 14800-060, Araraquara, SP, Brazil
| | - Marilia Valli
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, Sao Paulo State University - UNESP, 14800-060, Araraquara, SP, Brazil
| | - Alessandra C Dametto
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, Sao Paulo State University - UNESP, 14800-060, Araraquara, SP, Brazil
| | - Meri Emili F Pinto
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, Sao Paulo State University - UNESP, 14800-060, Araraquara, SP, Brazil
| | - Rafael T Freire
- Centro de Imagens e Espectroscopia in vivo por Ressonância Magnética, Institute of Physics of Sao Carlos, University of Sao Paulo - USP, 13566-590, Sao Carlos, SP, Brazil
| | - Ian Castro-Gamboa
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, Sao Paulo State University - UNESP, 14800-060, Araraquara, SP, Brazil
| | - Adriano D Andricopulo
- Laboratório de Química Medicinal e Computacional (LQMC), Centro de Pesquisa e Inovação em Biodiversidade eFármacos, Institute of Physics of Sao Carlos, University of Sao Paulo - USP, 13563-120, Sao Carlos, SP, Brazil
| | - Vanderlan S Bolzani
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, Sao Paulo State University - UNESP, 14800-060, Araraquara, SP, Brazil.
| |
Collapse
|
2735
|
Cordell GA. Sixty Challenges – A 2030 Perspective on Natural Products and Medicines Security. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Natural products matter, for they are essential contributors to societal well-being and global health. Flavors, fragrances, essential oils, traditional medicines and phytopharmaceuticals, and prescription and over-the-counter products all utilize constituent materials from natural sources. However, these vast natural resources of Earth are disappearing, and climate change and market expansion by a dramatically increasing and ageing population will continue to strain plant sourcing in the decades ahead. It was with these and other considerations that the term “ecopharmacognosy” was developed as both a philosophy and a practice, and from which the necessity for a “medicines security” strategy evolved. Extending previous presentations, a series of sixty challenges for 2030 to the status quo promotes the discussion of a different vision for the natural product sciences as applied to traditional medicines. Among the topics presented are areas for global collaborative initiatives in science and in data management, the impact of climate change on medicinal plant accessibility, the sustainability and quality of the natural products that patients receive, and the integration of new technologies, particularly the genomics of secondary metabolite biosynthesis, hand-held detection systems and artificial intelligence, and the implications of increased life expectancy on future health care needs. The presentation closes with two examples of newer approaches in drug discovery.
Collapse
Affiliation(s)
- Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL, 60203, USA and Department of Pharmaceutics, College of Pharmacy, University of Florida, FL, 32610, USA
| |
Collapse
|
2736
|
Clevenger KD, Bok JW, Ye R, Miley GP, Verdan MH, Velk T, Chen C, Yang K, Robey MT, Gao P, Lamprecht M, Thomas PM, Islam MN, Palmer JM, Wu CC, Keller NP, Kelleher NL. A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat Chem Biol 2017; 13:895-901. [PMID: 28604695 PMCID: PMC5577364 DOI: 10.1038/nchembio.2408] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/13/2017] [Indexed: 12/02/2022]
Abstract
The genomes of filamentous fungi contain up to 90 biosynthetic gene clusters (BGCs) encoding diverse secondary metabolites-an enormous reservoir of untapped chemical potential. However, the recalcitrant genetics, cryptic expression, and unculturability of these fungi prevent scientists from systematically exploiting these gene clusters and harvesting their products. As heterologous expression of fungal BGCs is largely limited to the expression of single or partial clusters, we established a scalable process for the expression of large numbers of full-length gene clusters, called FAC-MS. Using fungal artificial chromosomes (FACs) and metabolomic scoring (MS), we screened 56 secondary metabolite BGCs from diverse fungal species for expression in Aspergillus nidulans. We discovered 15 new metabolites and assigned them with confidence to their BGCs. Using the FAC-MS platform, we extensively characterized a new macrolactone, valactamide A, and its hybrid nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS). The ability to regularize access to fungal secondary metabolites at an unprecedented scale stands to revitalize drug discovery platforms with renewable sources of natural products.
Collapse
Affiliation(s)
- Kenneth D Clevenger
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rosa Ye
- Intact Genomics, Inc., St. Louis, Missouri, USA
| | - Galen P Miley
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Maria H Verdan
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Thomas Velk
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - KaHoua Yang
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew T Robey
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Peng Gao
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | | | - Paul M Thomas
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | | | - Jonathan M Palmer
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, Wisconsin, USA
| | | | - Nancy P Keller
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
2737
|
Abstract
Data processing and analysis are major bottlenecks in high-throughput metabolomic experiments. Recent advancements in data acquisition platforms are driving trends toward increasing data size (e.g., petabyte scale) and complexity (multiple omic platforms). Improvements in data analysis software and in silico methods are similarly required to effectively utilize these advancements and link the acquired data with biological interpretations. Herein, we provide an overview of recently developed and freely available metabolomic tools, algorithms, databases, and data analysis frameworks. This overview of popular tools for MS and NMR-based metabolomics is organized into the following sections: data processing, annotation, analysis, and visualization. The following overview of newly developed tools helps to better inform researchers to support the emergence of metabolomics as an integral tool for the study of biochemistry, systems biology, environmental analysis, health, and personalized medicine.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, TX, USA
| | | |
Collapse
|
2738
|
Optimized experimental workflow for tandem mass spectrometry molecular networking in metabolomics. Anal Bioanal Chem 2017; 409:5767-5778. [DOI: 10.1007/s00216-017-0523-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
2739
|
Esposito M, Nothias LF, Retailleau P, Costa J, Roussi F, Neyts J, Leyssen P, Touboul D, Litaudon M, Paolini J. Isolation of Premyrsinane, Myrsinane, and Tigliane Diterpenoids from Euphorbia pithyusa Using a Chikungunya Virus Cell-Based Assay and Analogue Annotation by Molecular Networking. JOURNAL OF NATURAL PRODUCTS 2017; 80:2051-2059. [PMID: 28671832 DOI: 10.1021/acs.jnatprod.7b00233] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Six new premyrsinol esters (1-6) and one new myrsinol ester (8) were isolated from an aerial parts extract of Euphorbia pithyusa, together with a known premyrsinol (7) and two known dideoxyphorbol esters (9 and 10), following a bioactivity-guided purification procedure using a chikungunya virus (CHIKV) cell-based assay. The structures of the new diterpene esters (1-6 and 8) were elucidated by MS and NMR spectroscopic data interpretation. Compounds 1-10 were evaluated against CHIKV replication, and results showed that the 4β-dideoxyphorbol ester 10 was the most active compound, with an EC50 value of 4.0 ± 0.3 μM and a selectivity index of 10.6. To gain more insight into the structural diversity of diterpenoids produced by E. pithyusa, the initial extract and chromatographic fractions were analyzed by LC-MS/MS. The generated data were annotated using a molecular networking procedure and revealed that dozens of unknown premyrsinane, myrsinane, and tigliane analogues were present.
Collapse
Affiliation(s)
- Mélissa Esposito
- Laboratory of Natural Products Chemistry, UMR CNRS SPE 6134, University of Corsica , 20250, Corte, France
- Institute of Natural Substances Chemistry, CNRS UPR 2301, University of Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Louis-Félix Nothias
- Institute of Natural Substances Chemistry, CNRS UPR 2301, University of Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Pascal Retailleau
- Institute of Natural Substances Chemistry, CNRS UPR 2301, University of Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Jean Costa
- Laboratory of Natural Products Chemistry, UMR CNRS SPE 6134, University of Corsica , 20250, Corte, France
| | - Fanny Roussi
- Institute of Natural Substances Chemistry, CNRS UPR 2301, University of Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Johan Neyts
- Laboratory for Virology and Experimental Chemotherapy, Rega Institute for Medical Research, KU Leuven , 3000 Leuven, Belgium
| | - Pieter Leyssen
- Laboratory for Virology and Experimental Chemotherapy, Rega Institute for Medical Research, KU Leuven , 3000 Leuven, Belgium
| | - David Touboul
- Institute of Natural Substances Chemistry, CNRS UPR 2301, University of Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Marc Litaudon
- Institute of Natural Substances Chemistry, CNRS UPR 2301, University of Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Julien Paolini
- Laboratory of Natural Products Chemistry, UMR CNRS SPE 6134, University of Corsica , 20250, Corte, France
| |
Collapse
|
2740
|
Metabolic Fingerprints from the Human Oral Microbiome Reveal a Vast Knowledge Gap of Secreted Small Peptidic Molecules. mSystems 2017; 2:mSystems00058-17. [PMID: 28761934 PMCID: PMC5516222 DOI: 10.1128/msystems.00058-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is the ultimate tool for studies of microbial functions under any specific set of environmental conditions (D. S. Wishart, Nat Rev Drug Discov 45:473–484, 2016, https://doi.org/10.1038/nrd.2016.32). This is a great advance over studying genes alone, which only inform about metabolic potential. Approximately 25,000 compounds have been chemically characterized thus far; however, the richness of metabolites such as SMs has been estimated to be as high as 1 × 1030 in the biosphere (K. Garber, Nat Biotechnol 33:228–231, 2015, https://doi.org/10.1038/nbt.3161). Our classical, one-at-a-time activity-guided approach to compound identification continues to find the same known compounds and is also incredibly tedious, which represents a major bottleneck for global SM identification. These challenges have prompted new developments of databases and analysis tools that provide putative classifications of SMs by mass spectral alignments to already characterized tandem mass spectrometry spectra and databases containing structural information (e.g., PubChem and AntiMarin). In this study, we assessed secreted peptidic SMs (PSMs) from 27 oral bacterial isolates and a complex oral in vitro biofilm community of >100 species by using the Global Natural Products Social molecular Networking and the DEREPLICATOR infrastructures, which are methodologies that allow automated and putative annotation of PSMs. These approaches enabled the identification of an untapped resource of PSMs from oral bacteria showing species-unique patterns of secretion with putative matches to known bioactive compounds. Recent research indicates that the human microbiota play key roles in maintaining health by providing essential nutrients, providing immune education, and preventing pathogen expansion. Processes underlying the transition from a healthy human microbiome to a disease-associated microbiome are poorly understood, partially because of the potential influences from a wide diversity of bacterium-derived compounds that are illy defined. Here, we present the analysis of peptidic small molecules (SMs) secreted from bacteria and viewed from a temporal perspective. Through comparative analysis of mass spectral profiles from a collection of cultured oral isolates and an established in vitro multispecies oral community, we found that the production of SMs both delineates a temporal expression pattern and allows discrimination between bacterial isolates at the species level. Importantly, the majority of the identified molecules were of unknown identity, and only ~2.2% could be annotated and classified. The catalogue of bacterially produced SMs we obtained in this study reveals an undiscovered molecular world for which compound isolation and ecosystem testing will facilitate a better understanding of their roles in human health and disease. IMPORTANCE Metabolomics is the ultimate tool for studies of microbial functions under any specific set of environmental conditions (D. S. Wishart, Nat Rev Drug Discov 45:473–484, 2016, https://doi.org/10.1038/nrd.2016.32). This is a great advance over studying genes alone, which only inform about metabolic potential. Approximately 25,000 compounds have been chemically characterized thus far; however, the richness of metabolites such as SMs has been estimated to be as high as 1 × 1030 in the biosphere (K. Garber, Nat Biotechnol 33:228–231, 2015, https://doi.org/10.1038/nbt.3161). Our classical, one-at-a-time activity-guided approach to compound identification continues to find the same known compounds and is also incredibly tedious, which represents a major bottleneck for global SM identification. These challenges have prompted new developments of databases and analysis tools that provide putative classifications of SMs by mass spectral alignments to already characterized tandem mass spectrometry spectra and databases containing structural information (e.g., PubChem and AntiMarin). In this study, we assessed secreted peptidic SMs (PSMs) from 27 oral bacterial isolates and a complex oral in vitro biofilm community of >100 species by using the Global Natural Products Social molecular Networking and the DEREPLICATOR infrastructures, which are methodologies that allow automated and putative annotation of PSMs. These approaches enabled the identification of an untapped resource of PSMs from oral bacteria showing species-unique patterns of secretion with putative matches to known bioactive compounds. Author Video: An author video summary of this article is available.
Collapse
|
2741
|
Boya P CA, Fernández-Marín H, Mejía LC, Spadafora C, Dorrestein PC, Gutiérrez M. Imaging mass spectrometry and MS/MS molecular networking reveals chemical interactions among cuticular bacteria and pathogenic fungi associated with fungus-growing ants. Sci Rep 2017; 7:5604. [PMID: 28717220 PMCID: PMC5514151 DOI: 10.1038/s41598-017-05515-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/31/2017] [Indexed: 01/25/2023] Open
Abstract
The fungus-growing ant-microbe symbiosis is an ideal system to study chemistry-based microbial interactions due to the wealth of microbial interactions described, and the lack of information on the molecules involved therein. In this study, we employed a combination of MALDI imaging mass spectrometry (MALDI-IMS) and MS/MS molecular networking to study chemistry-based microbial interactions in this system. MALDI IMS was used to visualize the distribution of antimicrobials at the inhibition zone between bacteria associated to the ant Acromyrmex echinatior and the fungal pathogen Escovopsis sp. MS/MS molecular networking was used for the dereplication of compounds found at the inhibition zones. We identified the antibiotics actinomycins D, X2 and X0β, produced by the bacterium Streptomyces CBR38; and the macrolides elaiophylin, efomycin A and efomycin G, produced by the bacterium Streptomyces CBR53.These metabolites were found at the inhibition zones using MALDI IMS and were identified using MS/MS molecular networking. Additionally, three shearinines D, F, and J produced by the fungal pathogen Escovopsis TZ49 were detected. This is the first report of elaiophylins, actinomycin X0β and shearinines in the fungus-growing ant symbiotic system. These results suggest a secondary prophylactic use of these antibiotics by A. echinatior because of their permanent production by the bacteria.
Collapse
Affiliation(s)
- Cristopher A Boya P
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, Apartado 0843-01103, Republic of Panama.,Department of Biotechnology, Acharya Nagarjuna University, Guntur, Nagarjuna Nagar, 522 510, India
| | - Hermógenes Fernández-Marín
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, Apartado 0843-01103, Republic of Panama
| | - Luis C Mejía
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, Apartado 0843-01103, Republic of Panama
| | - Carmenza Spadafora
- Centro de Biología Celular y Molecular de Enfermedades, INDICASAT AIP, Panamá, Apartado 0843-01103, Republic of Panama
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California, 92093, United States.,Department of Pharmacology, University of California at San Diego, San Diego, California, 92093, United States
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, Apartado 0843-01103, Republic of Panama.
| |
Collapse
|
2742
|
Caraballo-Rodríguez AM, Dorrestein PC, Pupo MT. Molecular inter-kingdom interactions of endophytes isolated from Lychnophora ericoides. Sci Rep 2017; 7:5373. [PMID: 28710400 PMCID: PMC5511137 DOI: 10.1038/s41598-017-05532-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022] Open
Abstract
The importance of microbial natural products has been widely demonstrated in the search for new antibiotics. However, the functional role of microbial metabolites in nature remains to be deciphered. Several natural products are known to mediate microbial interactions through metabolic exchange. One approach to investigate metabolic exchange in the laboratory is through microbial interactions. Here, we describe the chemical study of selected endophytes isolated from the Brazilian medicinal plant Lychnophora ericoides by pairwise inter-kingdom interactions in order to correlate the impact of co-cultivation to their metabolic profiles. Combining mass spectrometry tools and NMR analyses, a total of 29 compounds were identified. These compounds are members of polyene macrocycles, pyrroloindole alkaloids, angucyclines, and leupeptins chemical families. Two of the identified compounds correspond to a new fungal metabolite (29) and a new actinobacterial angucycline-derivative (23). Our results revealed a substantial arsenal of small molecules induced by microbial interactions, as we begin to unravel the complexity of microbial interactions associated with endophytic systems.
Collapse
Affiliation(s)
- Andrés M Caraballo-Rodríguez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, 92093, USA
| | - Monica T Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
2743
|
Chanana S, Thomas CS, Braun DR, Hou Y, Wyche TP, Bugni TS. Natural Product Discovery Using Planes of Principal Component Analysis in R (PoPCAR). Metabolites 2017; 7:metabo7030034. [PMID: 28703778 PMCID: PMC5618319 DOI: 10.3390/metabo7030034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 01/11/2023] Open
Abstract
Rediscovery of known natural products hinders the discovery of new, unique scaffolds. Efforts have mostly focused on streamlining the determination of what compounds are known vs. unknown (dereplication), but an alternative strategy is to focus on what is different. Utilizing statistics and assuming that common actinobacterial metabolites are likely known, focus can be shifted away from dereplication and towards discovery. LC-MS-based principal component analysis (PCA) provides a perfect tool to distinguish unique vs. common metabolites, but the variability inherent within natural products leads to datasets that do not fit ideal standards. To simplify the analysis of PCA models, we developed a script that identifies only those masses or molecules that are unique to each strain within a group, thereby greatly reducing the number of data points to be inspected manually. Since the script is written in R, it facilitates integration with other metabolomics workflows and supports automated mass matching to databases such as Antibase.
Collapse
Affiliation(s)
- Shaurya Chanana
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Chris S Thomas
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Doug R Braun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Yanpeng Hou
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Thomas P Wyche
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
- Exploratory Science Center, Merck & Co., 320 Bent St., Cambridge, MA 02141, USA.
| | - Tim S Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
2744
|
Olivon F, Grelier G, Roussi F, Litaudon M, Touboul D. MZmine 2 Data-Preprocessing To Enhance Molecular Networking Reliability. Anal Chem 2017. [PMID: 28644610 DOI: 10.1021/acs.analchem.7b01563] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Molecular networking is becoming more and more popular into the metabolomic community to organize tandem mass spectrometry (MS2) data. Even though this approach allows the treatment and comparison of large data sets, several drawbacks related to the MS-Cluster tool routinely used on the Global Natural Product Social Molecular Networking platform (GNPS) limit its potential. MS-Cluster cannot distinguish between chromatography well-resolved isomers as retention times are not taken into account. Annotation with predicted chemical formulas is also not implemented and semiquantification is only based on the number of MS2 scans. We propose to introduce a data-preprocessing workflow including the preliminary data treatment by MZmine 2 followed by a homemade Python script freely available to the community that clears the major previously mentioned GNPS drawbacks. The efficiency of this workflow is exemplified with the analysis of six fractions of increasing polarities obtained from a sequential supercritical CO2 extraction of Stillingia lineata leaves.
Collapse
Affiliation(s)
- Florent Olivon
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Gwendal Grelier
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay , 91198, Gif-sur-Yvette, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Saclay , 91198, Gif-sur-Yvette, France
| |
Collapse
|
2745
|
Melnik AV, da Silva RR, Hyde ER, Aksenov AA, Vargas F, Bouslimani A, Protsyuk I, Jarmusch AK, Tripathi A, Alexandrov T, Knight R, Dorrestein PC. Coupling Targeted and Untargeted Mass Spectrometry for Metabolome-Microbiome-Wide Association Studies of Human Fecal Samples. Anal Chem 2017. [PMID: 28628333 DOI: 10.1021/acs.analchem.7b01381] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increasing appreciation of the gut microbiome's role in health motivates understanding the molecular composition of human feces. To analyze such complex samples, we developed a platform coupling targeted and untargeted metabolomics. The approach is facilitated through split flow from one UPLC, joint timing triggered by contact closure relays, and a script to retrieve the data. It is designed to detect specific metabolites of interest with high sensitivity, allows for correction of targeted information, enables better quantitation thus providing an advanced analytical tool for exploratory studies. Procrustes analysis revealed that untargeted approach provides a better correlation to microbiome data, associating specific metabolites with microbes that produce or process them. With the subset of over one hundred human fecal samples from the American Gut project, the implementation of the described coupled workflow revealed that targeted analysis using combination of single transition per compound with retention time misidentifies 30% of the targeted data and could lead to incorrect interpretations. At the same time, the targeted analysis extends detection limits and dynamic range, depending on the compounds, by orders of magnitude. A software application has been developed as a part of the workflow to allows for quantitative assessments based on calibration curves. Using this approach, we detect expected microbially modified molecules such as secondary bile acids and unexpected microbial molecules including Pseudomonas-associated quinolones and rhamnolipids in feces, setting the stage for metabolome-microbiome-wide association studies (MMWAS).
Collapse
Affiliation(s)
- Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Ricardo R da Silva
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Embriette R Hyde
- Department of Pediatrics, University of California, San Diego , La Jolla, California 92093, United States
| | - Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Fernando Vargas
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Ivan Protsyuk
- Structural and Computational Biology Unit, European Molecular Biology Laboratory , Heidelberg 69117, Germany
| | - Alan K Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Anupriya Tripathi
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States.,Department of Pediatrics, University of California, San Diego , La Jolla, California 92093, United States.,UC San Diego Center for Microbiome Innovation, University of California, San Diego , La Jolla, California 92093, United States
| | - Theodore Alexandrov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States.,Structural and Computational Biology Unit, European Molecular Biology Laboratory , Heidelberg 69117, Germany
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego , La Jolla, California 92093, United States.,Department of Computer Science & Engineering, University of California, San Diego , La Jolla, California 92093, United States
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
2746
|
Aksenov AA, da Silva R, Knight R, Lopes NP, Dorrestein PC. Global chemical analysis of biology by mass spectrometry. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0054] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2747
|
van der Hooft JJJ, Wandy J, Young F, Padmanabhan S, Gerasimidis K, Burgess KEV, Barrett MP, Rogers S. Unsupervised Discovery and Comparison of Structural Families Across Multiple Samples in Untargeted Metabolomics. Anal Chem 2017. [PMID: 28621528 PMCID: PMC5524435 DOI: 10.1021/acs.analchem.7b01391] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
In
untargeted metabolomics
approaches, the inability to structurally
annotate relevant features and map them to biochemical pathways is
hampering the full exploitation of many metabolomics experiments.
Furthermore, variable metabolic content across samples result in sparse
feature matrices that are statistically hard to handle. Here, we introduce
MS2LDA+ that tackles both above-mentioned problems. Previously, we
presented MS2LDA, which extracts biochemically relevant molecular
substructures (“Mass2Motifs”) from a collection of fragmentation
spectra as sets of co-occurring molecular fragments and neutral losses,
thereby recognizing building blocks of metabolomics. Here, we extend
MS2LDA to handle multiple metabolomics experiments in one analysis,
resulting in MS2LDA+. By linking Mass2Motifs across samples, we expose
the variability in prevalence of structurally related metabolite families.
We validate the differential prevalence of substructures between two
distinct samples groups and apply it to fecal samples. Subsequently,
within one sample group of urines, we rank the Mass2Motifs based on
their variance to assess whether xenobiotic-derived substructures
are among the most-variant Mass2Motifs. Indeed, we could ascribe 22
out of the 30 most-variant Mass2Motifs to xenobiotic-derived substructures
including paracetamol/acetaminophen mercapturate and dimethylpyrogallol.
In total, we structurally characterized 101 Mass2Motifs with biochemically
or chemically relevant substructures. Finally, we combined the discovered
metabolite families with full scan feature intensity information to
obtain insight into core metabolites present in most samples and rare
metabolites present in small subsets now linked through their common
substructures. We conclude that by biochemical grouping of metabolites
across samples MS2LDA+ aids in structural annotation of metabolites
and guides prioritization of analysis by using Mass2Motif prevalence.
Collapse
Affiliation(s)
- Justin J J van der Hooft
- Glasgow Polyomics, University of Glasgow , Glasgow G61 1HQ, United Kingdom.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Joe Wandy
- Glasgow Polyomics, University of Glasgow , Glasgow G61 1HQ, United Kingdom
| | - Francesca Young
- Glasgow Polyomics, University of Glasgow , Glasgow G61 1HQ, United Kingdom
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow , New Lister Building, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
| | - Karl E V Burgess
- Glasgow Polyomics, University of Glasgow , Glasgow G61 1HQ, United Kingdom
| | - Michael P Barrett
- Glasgow Polyomics, University of Glasgow , Glasgow G61 1HQ, United Kingdom.,Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow G12 8TA, United Kingdom
| | - Simon Rogers
- Glasgow Polyomics, University of Glasgow , Glasgow G61 1HQ, United Kingdom.,School of Computing Science, University of Glasgow , Glasgow G12 8RZ, United Kingdom
| |
Collapse
|
2748
|
Perez de Souza L, Naake T, Tohge T, Fernie AR. From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web resources for mass spectral plant metabolomics. Gigascience 2017; 6:1-20. [PMID: 28520864 PMCID: PMC5499862 DOI: 10.1093/gigascience/gix037] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 01/19/2023] Open
Abstract
The grand challenge currently facing metabolomics is the expansion of the coverage of the metabolome from a minor percentage of the metabolic complement of the cell toward the level of coverage afforded by other post-genomic technologies such as transcriptomics and proteomics. In plants, this problem is exacerbated by the sheer diversity of chemicals that constitute the metabolome, with the number of metabolites in the plant kingdom generally considered to be in excess of 200 000. In this review, we focus on web resources that can be exploited in order to improve analyte and ultimately metabolite identification and quantification. There is a wide range of available software that not only aids in this but also in the related area of peak alignment; however, for the uninitiated, choosing which program to use is a daunting task. For this reason, we provide an overview of the pros and cons of the software as well as comments regarding the level of programing skills required to effectively exploit their basic functions. In addition, the torrent of available genome and transcriptome sequences that followed the advent of next-generation sequencing has opened up further valuable resources for metabolite identification. All things considered, we posit that only via a continued communal sharing of information such as that deposited in the databases described within the article are we likely to be able to make significant headway toward improving our coverage of the plant metabolome.
Collapse
Affiliation(s)
- Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Thomas Naake
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
2749
|
Almaliti J, Malloy KL, Glukhov E, Spadafora C, Gutiérrez M, Gerwick WH. Dudawalamides A-D, Antiparasitic Cyclic Depsipeptides from the Marine Cyanobacterium Moorea producens. JOURNAL OF NATURAL PRODUCTS 2017; 80:1827-1836. [PMID: 28535042 DOI: 10.1021/acs.jnatprod.7b00034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A family of 2,2-dimethyl-3-hydroxy-7-octynoic acid (Dhoya)-containing cyclic depsipeptides, named dudawalamides A-D (1-4), was isolated from a Papua New Guinean field collection of the cyanobacterium Moorea producens using bioassay-guided and spectroscopic approaches. The planar structures of dudawalamides A-D were determined by a combination of 1D and 2D NMR experiments and MS analysis, whereas the absolute configurations were determined by X-ray crystallography, modified Marfey's analysis, chiral-phase GCMS, and chiral-phase HPLC. Dudawalamides A-D possess a broad spectrum of antiparasitic activity with minimal mammalian cell cytotoxicity. Comparative analysis of the Dhoya-containing class of lipopeptides reveals intriguing structure-activity relationship features of these NRPS-PKS-derived metabolites and their derivatives.
Collapse
Affiliation(s)
- Jehad Almaliti
- Department Pharmaceutical Sciences, College of Pharmacy, The University of Jordan , Amman, 11942, Jordan
| | | | | | | | | | | |
Collapse
|
2750
|
Doberva M, Stien D, Sorres J, Hue N, Sanchez-Ferandin S, Eparvier V, Ferandin Y, Lebaron P, Lami R. Large Diversity and Original Structures of Acyl-Homoserine Lactones in Strain MOLA 401, a Marine Rhodobacteraceae Bacterium. Front Microbiol 2017; 8:1152. [PMID: 28690598 PMCID: PMC5479921 DOI: 10.3389/fmicb.2017.01152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/07/2017] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is a density-dependent mechanism allowing bacteria to synchronize their physiological activities, mediated by a wide range of signaling molecules including N-acyl-homoserine lactones (AHLs). Production of AHL has been identified in various marine strains of Proteobacteria. However, the chemical diversity of these molecules still needs to be further explored. In this study, we examined the diversity of AHLs produced by strain MOLA 401, a marine Alphaproteobacterium that belongs to the ubiquitous Rhodobacteraceae family. We combined an original biosensors-based guided screening of extract microfractions with liquid chromatography coupled to mass spectrometry (MS), High Resolution MS/MS and Nuclear Magnetic Resonance. This approach revealed the unsuspected capacity of a single Rhodobacteraceae strain to synthesize 20 different compounds, which are most likely AHLs. Also, some of these AHLs possessed original features that have never been previously observed, including long (up to 19 carbons) and poly-hydroxylated acyl side chains, revealing new molecular adaptations of QS to planktonic life and a larger molecular diversity than expected of molecules involved in cell–cell signaling within a single strain.
Collapse
Affiliation(s)
- Margot Doberva
- Sorbonne Universités, UPMC Univ Paris 6, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire OcéanologiqueBanyuls/Mer, France
| | - Didier Stien
- Sorbonne Universités, UPMC Univ Paris 6, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire OcéanologiqueBanyuls/Mer, France
| | - Jonathan Sorres
- Sorbonne Universités, UPMC Univ Paris 6, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire OcéanologiqueBanyuls/Mer, France
| | - Nathalie Hue
- CNRS, Institut de Chimie des Substances Naturelles (ICSN), Université Paris-SudGif-sur-Yvette, France
| | - Sophie Sanchez-Ferandin
- Sorbonne Universités, UPMC Univ Paris 6, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls/Mer, France
| | - Véronique Eparvier
- CNRS, Institut de Chimie des Substances Naturelles (ICSN), Université Paris-SudGif-sur-Yvette, France
| | - Yoan Ferandin
- Sorbonne Universités, UPMC Univ Paris 6, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire OcéanologiqueBanyuls/Mer, France
| | - Philippe Lebaron
- Sorbonne Universités, UPMC Univ Paris 6, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire OcéanologiqueBanyuls/Mer, France
| | - Raphaël Lami
- Sorbonne Universités, UPMC Univ Paris 6, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire OcéanologiqueBanyuls/Mer, France
| |
Collapse
|