2751
|
Gatzos LC, Barbetti S, Bas-Davis S, Mailman A, Brzezinski P, Ruseau P, Barr Vermilya H, Schott D, Marston E, Sturtevant OJ, Ritz J, Shulman LN. Development and implementation of a computerized system for collection, processing, and administration of cellular therapy products. J Oncol Pract 2013; 8:262-6. [PMID: 23277761 DOI: 10.1200/jop.2011.000499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2012] [Indexed: 11/20/2022] Open
Abstract
Great strides have been made in computerization of ordering processes for general medications and chemotherapy agents. However, systems for ordering, processing, and administration of cellular therapies continue to be largely paper-based, without the safety features of computerized order entry. To address this deficit, Partners Healthcare System Information Services (PHS-IS; Boston, MA) has worked with oncologists and staff in the cell processing laboratory at the Dana-Farber Cancer Institute (Boston, MA) to develop and implement a novel, comprehensive computerized system for physician ordering and management of cellular products. A multidisciplinary team was formed to accomplish the task of developing a cellular product management system. This team identified the unique characteristics of cellular therapies and sought to develop a comprehensive computerized system that addressed these needs. The biotherapy order entry system developed and implemented by PHS-IS includes a suite of three interrelated applications that addresses all requirements of a traditional computerized provider order entry system, as well as features unique to cellular therapies. The biotherapy suite of applications has addressed patient safety concerns, streamlined the ordering of cellular therapy products, and has reduced opportunities for error and delay in product administration.
Collapse
Affiliation(s)
- Laura C Gatzos
- Partners Healthcare Information Services, Charlestown, MA 02129-2000, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2752
|
Fu L, Kettner NM. The circadian clock in cancer development and therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:221-82. [PMID: 23899600 PMCID: PMC4103166 DOI: 10.1016/b978-0-12-396971-2.00009-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, with the industrialization of the world, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to an increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function, and aging, which are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism, and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anticancer therapies.
Collapse
Affiliation(s)
- Loning Fu
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Nicole M. Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2753
|
Loquai C, Müller-Brenne T, Schadmand-Fischer S, Grabbe S. Serum S100B Levels Correlate with Clinical Benefit in a Metastatic Melanoma Patient Treated by CTLA-4 Blockade: A Case Report. ACTA ACUST UNITED AC 2013; 36:578-81. [DOI: 10.1159/000355159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2754
|
Meraz IM, Segura-Ibarra V, Leonard F, Gonzalez J, Ally S, Godin B, Serda RE. Biological Microniches Characterizing Pathological Lesions. Nanomedicine (Lond) 2013. [DOI: 10.1016/b978-0-08-098338-7.00006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
2755
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
2756
|
Auphan-Anezin N, Verdeil G, Grange M, Soudja SM, Wehbe M, Buferne M, Mas A, Schmitt-Verhulst AM. Immunosuppression in inflammatory melanoma: can it be resisted by adoptively transferred T cells? Pigment Cell Melanoma Res 2012; 26:167-75. [PMID: 23217139 DOI: 10.1111/pcmr.12056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/28/2012] [Indexed: 01/05/2023]
Abstract
Discovery of tumor antigen (TA) recognized by autologous T cells (TCs) in patients with melanoma has led to clinical protocols using either vaccination or adoptive transfer of TA-specific TCs. However, efficacy of these treatments has been hampered by inhibitory effects exerted on tumor-infiltrating TCs by tumor-intrinsic mediators or by recruitment of immunosuppressive cells. A mouse model of autochthonous melanoma recapitulates some aspects of inflammatory melanoma development in patients. These include a systemic Th2-/Th17-oriented chronic inflammation, recruitment of immunosuppressive myeloid cells and acquisition by tumor-infiltrating TCs of an 'exhausted' phenotype characterized by expression of multiple inhibitory receptors including programmed death-1, also expressed on patients' melanoma-infiltrating TCs. Rather than using extracellular blocking reagents to inhibitory surface molecules on TCs, we sought to dampen negative signaling exerted on them. Adoptively transferred TCs presenting increased cytokine receptor signaling due to expression of an active Stat5 transcription factor were efficient at inducing melanoma regression in the preclinical melanoma model. These transferred TCs thrived and retained expression of effector molecules in the melanoma microenvironment, defining a protocol endowing TCs with the ability to resist melanoma-induced immunosuppression.
Collapse
Affiliation(s)
- Nathalie Auphan-Anezin
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université UM2, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
2757
|
Bonini C, Parmiani G. When transgenes shape immunity: cancer immune-gene therapy. J Gene Med 2012; 14:384-5. [PMID: 22736622 DOI: 10.1002/jgm.2645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
2758
|
Saga K, Tamai K, Yamazaki T, Kaneda Y. Systemic administration of a novel immune-stimulatory pseudovirion suppresses lung metastatic melanoma by regionally enhancing IFN-γ production. Clin Cancer Res 2012; 19:668-79. [PMID: 23251005 DOI: 10.1158/1078-0432.ccr-12-1947] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer immunotherapy has encountered many difficulties in the face of the expectation to eradicate cancer, and new breakthroughs are required. We have previously shown that UV-inactivated Sendai virus particles (hemagglutinating virus of Japan envelope; HVJ-E) induce immunity against multiple tumor types. In this study, a novel pseudovirion that stimulates more robust antitumor immunity was designed for cancer treatment. EXPERIMENTAL DESIGN First, we found that culturing murine splenocytes with HVJ-E in combination with interleukin (IL)-12 resulted in a remarkable increase in IFN-γ production compared with that observed in splenocytes cultured with IL-12 alone. The synergistic effects of HVJ-E and IL-12 on IFN-γ production were caused by viral F proteins independently of HVJ-E fusion activity and not by hemagglutination from hemagglutinin-neuraminidase (HN) proteins. We next constructed HN-depleted HVJ-E expressing the Fc region of immunoglobulin G (IgG) on the envelope and single-chain IL-12 containing the ZZ domain of protein A to produce an IL-12-conjugated HVJ-E particle without hemagglutinating activity. RESULTS IL-12-conjugated HVJ-E dramatically enhanced the amount of IFN-γ produced by immune cells. Intratumoral injection of IL-12-conjugated HVJ-E eradicated murine melanomas more effectively than injection of wild-type HVJ-E through increased production of melanoma-specific CTLs. IL-12-conjugated HVJ-E preferentially accumulated in the lungs after systemic administration. When small metastatic melanoma foci were formed in the lungs, systemic administration of IL-12-conjugated HVJ-E significantly reduced the number of metastatic foci by inducing local production of IFN-γ in the lungs and generating large numbers of melanoma-specific CTLs. CONCLUSION IL-12-conjugated HVJ-E is a promising tool for the treatment of cancers, including lung metastasis.
Collapse
Affiliation(s)
- Kotaro Saga
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
2759
|
Shapira-Frommer R, Schachter J. Adoptive immunotherapy of advanced melanoma. Curr Treat Options Oncol 2012; 13:340-53. [PMID: 22864561 DOI: 10.1007/s11864-012-0203-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adoptive cell therapy (ACT) has emerged as an effective therapy for patients with metastatic melanoma. Since the first introduction of the protocol in 1988 [1], major improvements have been achieved with response rates of 40%-72% among patients who were resistant to previous treatment lines. Both cell product and conditioning regimen are major determinants of treatment efficacy; therefore, developing ACT protocols explore diverse ways to establish autologous intra-tumoral lymphocyte cultures or peripheral effector cells as well as different lymphodepleting regimens. While a proof of feasibility and a proof of concept had been established with previous published results, ACT will need to move beyond single-center experiences, to confirmatory, multi-center studies. If ACT is to move into widespread practice, it will be necessary to develop reproducible high quality cell production methods and accepted lymphodepleting regimen. Two new drugs, ipilimumab (Yervoy, Bristol-Myers Squibb) and vemurafenib (Zelboraf, Roche), were approved in 2011 for the treatment of metastatic melanoma based on positive phase III trials. Both drugs show a clear overall survival benefit, so the timing of when to use ACT will need to be carefully thought out. In contrast to these 2 new, commercially available outpatient treatments, ACT is a personally-specified product and labor-intensive therapy that demands both acquisition of high standard laboratory procedures and close clinical inpatient monitoring during treatment. It is unique among other anti-melanoma treatments, providing the potential for a durable response following a single, self-limited treatment. This perspective drives the efforts to make this protocol accessible for more patients and to explore modifications that may optimize treatment results.
Collapse
Affiliation(s)
- Ronnie Shapira-Frommer
- Ella Institute for the Treatment and Research of Melanoma, Sheba Medical Center, Ramat-Gan, 52621, Israel.
| | | |
Collapse
|
2760
|
Chalker JM. Prospects in the Total Synthesis of Protein Therapeutics. Chem Biol Drug Des 2012; 81:122-35. [DOI: 10.1111/cbdd.12007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2761
|
Systemic administration of a bispecific antibody targeting EGFRvIII successfully treats intracerebral glioma. Proc Natl Acad Sci U S A 2012; 110:270-5. [PMID: 23248284 DOI: 10.1073/pnas.1219817110] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bispecific antibodies (bscAbs), particularly those of the bispecific T-cell engager (BiTE) subclass, have been shown to effectively redirect T cells against cancer. Previous efforts to target antigens expressed in both tumors and normal tissues have produced significant toxicity, however. Moreover, like other large molecules, bscAbs may be restricted from entry into the "immunologically privileged" CNS. A tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, is a constitutively activated tyrosine kinase not found in normal tissues but frequently expressed in glioblastomas and many other neoplasms. Because it is localized solely to tumor tissue, EGFRvIII presents an ideal target for immunotherapy. Here we report the preclinical evaluation of an EGFRvIII-targeted BiTE, bscEGFRvIIIxCD3. Our results show that bscEGFRvIIIxCD3 activates T cells to mediate potent and antigen-specific lysis of EGFRvIII-expressing gliomas in vitro (P < 0.001) at exceedingly low concentrations (10 ng/mL) and effector-to-target ratios (2.5:1). Treatment with i.v. bscEGFRvIIIxCD3 yielded extended survival in mice with well-established intracerebral tumors (P < 0.05) and achieved durable complete cure at rates up to 75%. Antitumor efficacy was significantly abrogated on blockade of EGFRvIII binding, demonstrating the need for target antigen specificity both in vitro and in vivo. These results demonstrate that BiTEs can be used to elicit functional antitumor immunity in the CNS, and that peptide blockade of BiTE-mediated activity may greatly enhance the safety profile for antibody-redirected T-cell therapies. Finally, bscEGFRvIIIxCD3 represents a unique advancement in BiTE technology given its exquisite tumor specificity, which enables precise elimination of cancer without the risk of autoimmune toxicity.
Collapse
|
2762
|
Prognostic evaluation of the B cell/IL-8 metagene in different intrinsic breast cancer subtypes. Breast Cancer Res Treat 2012; 137:407-16. [DOI: 10.1007/s10549-012-2356-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/22/2012] [Indexed: 12/11/2022]
|
2763
|
Rich FJ, Kuhn S, Hyde EJ, Harper JL, Ronchese F, Kirman JR. Induction of T cell responses and recruitment of an inflammatory dendritic cell subset following tumor immunotherapy with Mycobacterium smegmatis. Cancer Immunol Immunother 2012; 61:2333-42. [PMID: 22714285 PMCID: PMC11042503 DOI: 10.1007/s00262-012-1291-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/21/2012] [Indexed: 01/07/2023]
Abstract
Mycobacteria and their cell wall components have been used with varying degrees of success to treat tumors, and Mycobacterium bovis BCG remains in use as a standard treatment for superficial bladder cancer. Mycobacterial immunotherapy is very effective in eliciting local immune responses against solid tumors when administered topically; however, its effectiveness in eliciting adaptive immune responses has been variable. Using a subcutaneous mouse thymoma model, we investigated whether immunotherapy with Mycobacterium smegmatis, a fast-growing mycobacterium of low pathogenicity, induces a systemic adaptive immune response. We found that M. smegmatis delivered adjacent to the tumor site elicited a systemic anti-tumor immune response that was primarily mediated by CD8(+) T cells. Of note, we identified a CD11c(+)CD40(int)CD11b(hi)Gr-1(+) inflammatory DC population in the tumor-draining lymph nodes that was found only in mice treated with M. smegmatis. Our data suggest that, rather than rescuing the function of the DC already present in the tumor and/or tumor-draining lymph node, M. smegmatis treatment may promote anti-tumor immune responses by inducing the involvement of a new population of inflammatory cells with intact function.
Collapse
Affiliation(s)
- Fenella J. Rich
- Malaghan Institute of Medical Research, Victoria University of Wellington, Kelburn Pde, Kelburn, Wellington, 6012 New Zealand
| | - Sabine Kuhn
- Malaghan Institute of Medical Research, Victoria University of Wellington, Kelburn Pde, Kelburn, Wellington, 6012 New Zealand
| | - Evelyn J. Hyde
- Malaghan Institute of Medical Research, Victoria University of Wellington, Kelburn Pde, Kelburn, Wellington, 6012 New Zealand
| | - Jacquie L. Harper
- Malaghan Institute of Medical Research, Victoria University of Wellington, Kelburn Pde, Kelburn, Wellington, 6012 New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Victoria University of Wellington, Kelburn Pde, Kelburn, Wellington, 6012 New Zealand
| | - Joanna R. Kirman
- Malaghan Institute of Medical Research, Victoria University of Wellington, Kelburn Pde, Kelburn, Wellington, 6012 New Zealand
| |
Collapse
|
2764
|
Ly LV, Sluijter M, van der Burg SH, Jager MJ, van Hall T. Effective cooperation of monoclonal antibody and peptide vaccine for the treatment of mouse melanoma. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23203930 DOI: 10.4049/jimmunol.1200135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
mAbs binding to tumor-associated surface Ags are therapeutically applied in a range of malignancies. Therapeutic vaccination only recently met with clinical success, and the first cancer vaccine received U.S. Food and Drug Administration approval last year. To improve current protocols, we combined peptide vaccines with mAb to the tyrosinase-related protein (TRP)-1 surface Ag for the treatment of B16F10 skin melanoma. Vaccine formulations with synthetic long peptides failed to elicit strong CD8 T cell responses to self-differentiation Ags gp100 and TRP-2, whereas altered peptide sequences recruited gp100-specific CD8 T cells from the endogenous repertoire with frequencies of 40%. However, these high frequencies were reached too late; large, progressively growing melanomas had already emerged. Addition of the TRP-1-directed mAb TA99 to the treatment protocol mediated eradication of s.c. lesions. The mode of action of the Ab did not depend on complement factor C3 and did not lead to improved Ag presentation and CD8 T cell immunity; rather, it recruited FcγR-bearing innate immune cells during early tumor control, thereby creating a window of time for the generation of protective cellular immunity. These data support the concept of combination therapy, in which passive transfer of mAbs is supplemented with cancer peptide vaccines. Moreover, we advocate that tumor Ag-specific T cell immunity directed against self-proteins can be exploited from the endogenous repertoire.
Collapse
Affiliation(s)
- Long V Ly
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
2765
|
Abstract
Brain tumor immunotherapy is often interpreted in terms of immune privilege and the blood-brain barrier (BBB), but a broader view is warranted. The delicate regulatory balance of the immune system is relevant at any site, as are the heterogeneity and plasticity of tumor growth. Criteria for tumor antigens, and often the antigens themselves, cut across tumor types. Here, this broader view, complemented by current understanding of privilege and the BBB, provides the context for review. Future success is likely to exploit simplified methods, used in combination; and similarities - more than differences - between the brain and other sites.
Collapse
Affiliation(s)
- Lois A Lampson
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2766
|
Abstract
The monoclonal antibody against the AC133 epitope of CD133 has been widely used as a cell surface marker of cancer stem cells in several different cancer types. Here, we describe the isolation and characterisation of two RNA aptamers, including the smallest described 15 nucleotide RNA aptamer, which specifically recognise the AC133 epitope and the CD133 protein with high sensitivity. As well, both these aptamers show superior tumour penetration and retention when compared to the AC133 antibody in a 3-D tumour sphere model. These novel CD133 aptamers will aid future development of cancer stem cell targeted therapeutics and molecular imaging.
Collapse
|
2767
|
Lenci RE, Bevier M, Brandt A, Bermejo JL, Sucker A, Moll I, Planelles D, Requena C, Nagore E, Hemminki K, Schadendorf D, Kumar R. Influence of genetic variants in type I interferon genes on melanoma survival and therapy. PLoS One 2012; 7:e50692. [PMID: 23209811 PMCID: PMC3507747 DOI: 10.1371/journal.pone.0050692] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/23/2012] [Indexed: 01/19/2023] Open
Abstract
Melanoma is an immunogenic tumor; however, the efficacy of immune-therapy shows large inter-individual variation with possible influence of background genetic variation. In this study we report the influence of genetic polymorphisms in the type I interferon gene cluster on chromosome 9p22 on melanoma survival. We genotyped 625 melanoma patients recruited in an oncology center in Germany for 44 polymorphisms located on chromosome 9p22 that were informative for 299 polymorphisms and spanned 15 type I interferon genes. Our results showed associations between time to metastasis/survival and two linked (r2 = 0.76) polymorphisms, rs10964859 (C>G) and rs10964862 (C>A). The rs10964859 polymorphism was located at 3′UTR and rs10964862 was 9.40 Kb towards 5′UTR of IFNW1 gene. The carriers of the variant alleles of the rs10964859 and rs10964862 polymorphisms were associated with a reduced disease-free survival. The validation of data in an independent group of 710 patients from Spain showed that the direction of the effect was similar. Stratification based on therapy showed that the adverse effect on metastasis development was statistically significant in the patients from Spain who did not receive any treatment and were homozygous for variant allele of rs10964862 (HR = 2.52, 95% CI 1.07–5.90; P = 0.03). Patients homozygous for rs10964859 (HR = 2.01, 95% CI 1.17–3.44; P = 0.01) and rs10964862 (HR 1.84, 95%CI 1.03–3.27, P = 0.04) were associated to increased risk of death following metastasis. GTCGACAA haplotype, found in 8.8% of the patients, was associated with an increased risk of death (HR 1.94, 95%CI 1.16–3.26, P = 0.01). In conclusion, our results identified genetic variants in interferon genes that influence melanoma progression and survival with modulation of effect due to treatment status.
Collapse
Affiliation(s)
- Romina Elizabeth Lenci
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Melanie Bevier
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Andreas Brandt
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Iris Moll
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Dolores Planelles
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Celia Requena
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
2768
|
Sprater F, Hovden AO, Appel S. Expression of ESE-3 isoforms in immunogenic and tolerogenic human monocyte-derived dendritic cells. PLoS One 2012. [PMID: 23185370 PMCID: PMC3501485 DOI: 10.1371/journal.pone.0049577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DC) are the only hematopoietic cells expressing the epithelial specific Ets transcription factor ESE-3. Here we analyzed presence and quantity of isoforms ESE-3a, ESE-3b and ESE-3j in various immunogenic and tolerogenic human monocyte-derived DC (moDC) and blood DC populations using quantitative real time PCR and immunoblot analyses. ESE-3a and ESE-3b were detectable in all moDC populations with ESE-3b being the main transcript. ESE-3b expression was upregulated in immunogenic moDC and downregulated in tolerogenic moDC compared to immature moDC. ESE-3a had similar transcript levels in immature and immunogenic moDC and had very low levels in tolerogenic moDC. In blood DC populations only splice variant ESE-3b was detectable. ESE-3j was not detectable in any of the DC populations. These findings suggest that ESE-3b is the functionally most important ESE-3 isoform in DC.
Collapse
Affiliation(s)
- Florian Sprater
- Broegelmann Research Laboratory, The Gade Institute, University of Bergen, Bergen, Norway
| | - Arnt-Ove Hovden
- Broegelmann Research Laboratory, The Gade Institute, University of Bergen, Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, The Gade Institute, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
2769
|
Tian Y, Nam S, Liu L, Yakushijin F, Yakushijin K, Buettner R, Liang W, Yang F, Ma Y, Horne D, Jove R. Spirooxindole derivative SOID-8 induces apoptosis associated with inhibition of JAK2/STAT3 signaling in melanoma cells. PLoS One 2012; 7:e49306. [PMID: 23166634 PMCID: PMC3500295 DOI: 10.1371/journal.pone.0049306] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/08/2012] [Indexed: 12/25/2022] Open
Abstract
Melanoma is generally refractory to current chemotherapy, thus new treatment strategies are needed. In this study, we synthesized a series of spirooxindole derivatives (SOID-1 to SOID-12) and evaluated their antitumor effects on melanoma. Among the 12 spirooxindole derivatives, SOID-8 showed the strongest antitumor activity by viability screening. SOID-8 inhibited viability of A2058, A375, SK-MEL-5 and SK-MEL-28 human melanoma cells in a dose- and time-dependent manner. SOID-8 also induced apoptosis of these tumor cells, which was confirmed by positive Annexin V staining and an increase of poly(ADP-ribose) polymerase cleavage. The antiapoptotic protein Mcl-1, a member of the Bcl-2 family, was downregulated and correlated with SOID-8 induced apoptosis. In addition, SOID-8 reduced tyrosine phosphorylation of Signal Tansducer and Activator of Transcription 3 (STAT3) in both dose- and time-dependent manners. This inhibition was associated with decreased levels of phosphorylation of Janus-activated kinase-2 (JAK2), an upstream kinase that mediates STAT3 phosphorylation at Tyr705. Accordingly, SOID-8 inhibited IL-6-induced activation of STAT3 and JAK2 in melanoma cells. Finally, SOID-8 suppressed melanoma tumor growth in a mouse xenograft model, accompanied with a decrease of phosphorylation of JAK2 and STAT3. Our results indicate that the antitumor activity of SOID-8 is at least partially due to inhibition of JAK2/STAT3 signaling in melanoma cells. These findings suggest that the spirooxindole derivative SOID-8 is a promising lead compound for further development of new preventive and therapeutic agents for melanoma.
Collapse
Affiliation(s)
- Yan Tian
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2770
|
Abstract
A key requirement for the development of cancer immunotherapy is the identification of tumour-associated antigens that are differentially or exclusively expressed on the tumour and recognized by the host immune system. However, immune responses to such antigens are often muted or lacking due to the antigens being recognized as "self", and further complicated by the tumour environment and regulation of immune cells within. In an effort to circumvent the lack of immune responses to tumour antigens, we have devised a strategy to develop potential synthetic immunogens. The strategy, termed mirror image phage display, is based on the concept of molecular mimicry as demonstrated by the idiotype/anti-idiotype paradigm in the immune system. Here as 'proof of principle' we have selected molecular mimics of the well-characterised tumour associated antigen, the human mucin1 protein (MUC1) from two different peptide phage display libraries. The putative mimics were compared in structure and function to that of the native antigen. Our results demonstrate that several of the mimic peptides display T-cell stimulation activity in vitro when presented by matured dendritic cells. The mimic peptides and the native MUC1 antigenic epitopes can cross-stimulate T-cells. The data also indicate that sequence homology and/or chemical properties to the original epitope are not the sole determining factors for the observed immunostimulatory activity of the mimic peptides.
Collapse
Affiliation(s)
- Tharappel C. James
- Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin, Ireland
| | - Ursula Bond
- Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
2771
|
Fokas E, Steinbach JP, Rödel C. Biology of brain metastases and novel targeted therapies: time to translate the research. Biochim Biophys Acta Rev Cancer 2012; 1835:61-75. [PMID: 23142311 DOI: 10.1016/j.bbcan.2012.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 01/23/2023]
Abstract
Brain metastases (BM) occur in 20% to 40% of patients with cancer and result in significant morbidity and poor survival. The main therapeutic options include surgery, whole brain radiotherapy, stereotactic radiosurgery and chemotherapy. Although significant progress has been made in diagnostic and therapeutic methods, the prognosis in these patients remains poor. Furthermore, the poor penetrability of chemotherapy agents through the blood brain barrier (BBB) continues to pose a challenge in the management of this disease. Preclinical evidence suggests that new targeted treatments can improve local tumor control but our clinical experience with these agents remains limited. In addition, several clinical studies with these novel agents have produced disappointing results. This review will examine the knowledge of targeted therapies in BM. The preclinical and clinical evidence of their use in BM induced by breast cancer, non-small cell lung cancer and melanoma will be presented. In addition, we will discuss the role of antiangiogenic and radiosensitising agents in the treatment of BM and the current strategies available to increase BBB permeability. A better understanding of the mechanism of action of these agents will help us to identify the best targets for testing in future clinical studies.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Radiation Therapy and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | |
Collapse
|
2772
|
Liechtenstein T, Dufait I, Bricogne C, Lanna A, Pen J, Breckpot K, Escors D. PD-L1/PD-1 Co-Stimulation, a Brake for T cell Activation and a T cell Differentiation Signal. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2012; S12:006. [PMID: 23525238 PMCID: PMC3605779 DOI: 10.4172/2155-9899.s12-006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For T cell activation, three signals have to be provided from the antigen presenting cell; Signal 1 (antigen recognition), signal 2 (co-stimulation) and signal 3 (cytokine priming). Blocking negative co-stimulation during antigen presentation to T cells is becoming a promising therapeutic strategy to enhance cancer immunotherapy. Here we will focus on interference with PD-1/PD-L1 negative co-stimulation during antigen presentation to T cells as a therapeutic approach. We will discuss the potential mechanisms and the therapeutic consequences by which interference/inhibition with this interaction results in anti-tumour immunity. Particularly, we will comment on whether blocking negative co-stimulation provides differentiation signals to T cells undergoing antigen presentation. A major dogma in immunology states that T cell differentiation signals are given by cytokines and chemokines (signal 3) rather than co-stimulation (signal 2). We will discuss whether this is the case when blocking PD-L1/PD-1 negative co-stimulation.
Collapse
Affiliation(s)
- Therese Liechtenstein
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, WC1E 6JF, London, UK
| | - Ines Dufait
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, WC1E 6JF, London, UK
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103/E, B-1090 Jette, Belgium
| | - Christopher Bricogne
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, WC1E 6JF, London, UK
| | - Alessio Lanna
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, WC1E 6JF, London, UK
| | - Joeri Pen
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103/E, B-1090 Jette, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103/E, B-1090 Jette, Belgium
| | - David Escors
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, WC1E 6JF, London, UK
| |
Collapse
|
2773
|
The immune microenvironment of human tumors: general significance and clinical impact. CANCER MICROENVIRONMENT 2012; 6:117-22. [PMID: 23108700 DOI: 10.1007/s12307-012-0124-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 12/12/2022]
Abstract
Human cancers grow in a microenvironment of stromal, inflammatory and immunocompetent cells which is variable from tumor to tumor. The characterization of the immune contexture, i.e. the type, density and functional orientation of immunocompetent cells, the presence or absence of tertiary lymphoid structures is a major prognostic factor for patients survival and represent a guide and a target for innovative cancer therapies.
Collapse
|
2774
|
Urdinguio RG, Fernandez AF, Moncada-Pazos A, Huidobro C, Rodriguez RM, Ferrero C, Martinez-Camblor P, Obaya AJ, Bernal T, Parra-Blanco A, Rodrigo L, Santacana M, Matias-Guiu X, Soldevilla B, Dominguez G, Bonilla F, Cal S, Lopez-Otin C, Fraga MF. Immune-dependent and independent antitumor activity of GM-CSF aberrantly expressed by mouse and human colorectal tumors. Cancer Res 2012; 73:395-405. [PMID: 23108143 DOI: 10.1158/0008-5472.can-12-0806] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF2) is a cytokine produced in the hematologic compartment that may enhance antitumor immune responses, mainly by activation of dendritic cells. Here, we show that more than one-third of human colorectal tumors exhibit aberrant DNA demethylation of the GM-CSF promoter and overexpress the cytokine. Mouse engraftment experiments with autologous and homologous colon tumors engineered to repress the ectopic secretion of GM-CSF revealed the tumor-secreted GM-CSF to have an immune-associated antitumor effect. Unexpectedly, an immune-independent antitumor effect was observed that depended on the ectopic expression of GM-CSF receptor subunits by tumors. Cancer cells expressing GM-CSF and its receptor did not develop into tumors when autografted into immunocompetent mice. Similarly, 100% of the patients with human colon tumors that overexpressed GM-CSF and its receptor subunits survived at least 5 years after diagnosis. These data suggest that expression of GM-CSF and its receptor subunits by colon tumors may be a useful marker for prognosis as well as for patient stratification in cancer immunotherapy.
Collapse
Affiliation(s)
- Rocio G Urdinguio
- Cancer Epigenetics Laboratory, HUCA, Institute of Oncology of Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2775
|
CD73-generated adenosine: orchestrating the tumor-stroma interplay to promote cancer growth. J Biomed Biotechnol 2012; 2012:485156. [PMID: 23125525 PMCID: PMC3482007 DOI: 10.1155/2012/485156] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/05/2012] [Indexed: 12/13/2022] Open
Abstract
Despite the coming of age of cancer immunotherapy, clinical benefits are still modest. An important barrier to successful cancer immunotherapy is that tumors employ a number of mechanisms to facilitate immune escape, including the production of anti-inflammatory cytokines, the recruitment of regulatory immune subsets, and the production of immunosuppressive metabolites. Significant therapeutic opportunity exists in targeting these immunosuppressive pathways. One such immunosuppressive pathway is the production of extracellular adenosine by CD73, an ectonucleotidase overexpressed in various types of cancer. We hereafter review the biology of CD73 and its role in cancer progression and metastasis. We describe the role of extracellular adenosine in promoting tumor growth through paracrine and autocrine action on tumor cells, endothelial cells, and immune cells.
Collapse
|
2776
|
Production of adenosine by ectonucleotidases: a key factor in tumor immunoescape. J Biomed Biotechnol 2012; 2012:473712. [PMID: 23133312 PMCID: PMC3481458 DOI: 10.1155/2012/473712] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023] Open
Abstract
It is now well known that tumor immunosurveillance contributes to the control of cancer growth. Many mechanisms can be used by cancer cells to avoid the antitumor immune response. One such mechanism relies on the capacity of cancer cells or more generally of the tumor microenvironment to generate adenosine, a major molecule involved in antitumor T cell response suppression. Adenosine is generated by the dephosphorylation of extracellular ATP released by dying tumor cells. The conversion of ATP into adenosine is mediated by ectonucleotidase molecules, namely, CD73 and CD39. These molecules are frequently expressed in the tumor bed by a wide range of cells including tumor cells, regulatory T cells, Th17 cells, myeloid cells, and stromal cells. Recent evidence suggests that targeting adenosine by inhibiting ectonucleotidases may restore the resident antitumor immune response or enhance the efficacy of antitumor therapies. This paper will underline the impact of adenosine and ectonucleotidases on the antitumor response.
Collapse
|
2777
|
Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, Fatho M, Lennerz V, Wölfel T, Hölzel M, Tüting T. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 2012; 490:412-6. [PMID: 23051752 DOI: 10.1038/nature11538] [Citation(s) in RCA: 450] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/24/2012] [Indexed: 12/23/2022]
Abstract
Adoptive cell transfer therapies (ACTs) with cytotoxic T cells that target melanocytic antigens can achieve remissions in patients with metastatic melanomas, but tumours frequently relapse. Hypotheses explaining the acquired resistance to ACTs include the selection of antigen-deficient tumour cell variants and the induction of T-cell tolerance. However, the lack of appropriate experimental melanoma models has so far impeded clear insights into the underlying mechanisms. Here we establish an effective ACT protocol in a genetically engineered mouse melanoma model that recapitulates tumour regression, remission and relapse as seen in patients. We report the unexpected observation that melanomas acquire ACT resistance through an inflammation-induced reversible loss of melanocytic antigens. In serial transplantation experiments, melanoma cells switch between a differentiated and a dedifferentiated phenotype in response to T-cell-driven inflammatory stimuli. We identified the proinflammatory cytokine tumour necrosis factor (TNF)-α as a crucial factor that directly caused reversible dedifferentiation of mouse and human melanoma cells. Tumour cells exposed to TNF-α were poorly recognized by T cells specific for melanocytic antigens, whereas recognition by T cells specific for non-melanocytic antigens was unaffected or even increased. Our results demonstrate that the phenotypic plasticity of melanoma cells in an inflammatory microenvironment contributes to tumour relapse after initially successful T-cell immunotherapy. On the basis of our work, we propose that future ACT protocols should simultaneously target melanocytic and non-melanocytic antigens to ensure broad recognition of both differentiated and dedifferentiated melanoma cells, and include strategies to sustain T-cell effector functions by blocking immune-inhibitory mechanisms in the tumour microenvironment.
Collapse
Affiliation(s)
- Jennifer Landsberg
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, D-53105 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2778
|
Weiss EM, Wunderlich R, Ebel N, Rubner Y, Schlücker E, Meyer-Pittroff R, Ott OJ, Fietkau R, Gaipl US, Frey B. Selected anti-tumor vaccines merit a place in multimodal tumor therapies. Front Oncol 2012; 2:132. [PMID: 23087898 PMCID: PMC3466463 DOI: 10.3389/fonc.2012.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/17/2012] [Indexed: 12/12/2022] Open
Abstract
Multimodal approaches are nowadays successfully applied in cancer therapy. Primary locally acting therapies such as radiotherapy (RT) and surgery are combined with systemic administration of chemotherapeutics. Nevertheless, the therapy of cancer is still a big challenge in medicine. The treatments often fail to induce long-lasting anti-tumor responses. Tumor recurrences and metastases result. Immunotherapies are therefore ideal adjuncts to standard tumor therapies since they aim to activate the patient's immune system against malignant cells even outside the primary treatment areas (abscopal effects). Especially cancer vaccines may have the potential both to train the immune system against cancer cells and to generate an immunological memory, resulting in long-lasting anti-tumor effects. However, despite promising results in phase I and II studies, most of the concepts finally failed. There are some critical aspects in development and application of cancer vaccines that may decide on their efficiency. The time point and frequency of medication, usage of an adequate immune adjuvant, the vaccine's immunogenic potential, and the tumor burden of the patient are crucial. Whole tumor cell vaccines have advantages compared to peptide-based ones since a variety of tumor antigens (TAs) are present. The master requirements of cell-based, therapeutic tumor vaccines are the complete inactivation of the tumor cells and the increase of their immunogenicity. Since the latter is highly connected with the cell death modality, the inactivation procedure of the tumor cell material may significantly influence the vaccine's efficiency. We therefore also introduce high hydrostatic pressure (HHP) as an innovative inactivation technology for tumor cell-based vaccines and outline that HHP efficiently inactivates tumor cells by enhancing their immunogenicity. Finally studies are presented proving that anti-tumor immune responses can be triggered by combining RT with selected immune therapies.
Collapse
Affiliation(s)
- Eva-Maria Weiss
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2779
|
Aarntzen EHJG, Srinivas M, Radu CG, Punt CJA, Boerman OC, Figdor CG, Oyen WJG, de Vries IJM. In vivo imaging of therapy-induced anti-cancer immune responses in humans. Cell Mol Life Sci 2012; 70:2237-57. [PMID: 23052208 PMCID: PMC3676735 DOI: 10.1007/s00018-012-1159-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/27/2012] [Accepted: 09/03/2012] [Indexed: 12/16/2022]
Abstract
Immunotherapy aims to re-engage and revitalize the immune system in the fight against cancer. Research over the past decades has shown that the relationship between the immune system and human cancer is complex, highly dynamic, and variable between individuals. Considering the complexity, enormous effort and costs involved in optimizing immunotherapeutic approaches, clinically applicable tools to monitor therapy-induced immune responses in vivo are most warranted. However, the development of such tools is complicated by the fact that a developing immune response encompasses several body compartments, e.g., peripheral tissues, lymph nodes, lymphatic and vascular systems, as well as the tumor site itself. Moreover, the cells that comprise the immune system are not static but constantly circulate through the vascular and lymphatic system. Molecular imaging is considered the favorite candidate to fulfill this task. The progress in imaging technologies and modalities has provided a versatile toolbox to address these issues. This review focuses on the detection of therapy-induced anticancer immune responses in vivo and provides a comprehensive overview of clinically available imaging techniques as well as perspectives on future developments. In the discussion, we will focus on issues that specifically relate to imaging of the immune system and we will discuss the strengths and limitations of the current clinical imaging techniques. The last section provides future directions that we envision to be crucial for further development.
Collapse
Affiliation(s)
- Erik H J G Aarntzen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
2780
|
Strategies for enhancing vaccine-induced CTL antitumor immune responses. J Biomed Biotechnol 2012; 2012:605045. [PMID: 23093850 PMCID: PMC3470898 DOI: 10.1155/2012/605045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/13/2012] [Indexed: 12/22/2022] Open
Abstract
Vaccine-induced cytotoxic T lymphocytes (CTLs) play a critical role in adaptive immunity against cancers. An important goal of current vaccine research is to induce durable and long-lasting functional CTLs that can mediate cytotoxic effects on tumor cells. To attain this goal, there are four distinct steps that must be achieved. To initiate a vaccine-induced CTL antitumor immune response, dendritic cells (DCs) must capture antigens derived from exogenous tumor vaccines in vivo or autologous DCs directly loaded in vitro with tumor antigens must be injected. Next, tumor-antigen-loaded DCs must activate CTLs in lymphoid organs. Subsequently, activated CTLs must enter the tumor microenvironment to perform their functions, at which point a variety of negative regulatory signals suppress the immune response. Finally, CTL-mediated cytotoxic effects must overcome the tolerance induced by tumor cells. Each step is a complex process that may be impeded in many ways. However, if these steps happen under appropriate regulation, the vaccine-induced CTL antitumor immune response will be more successful. For this reason, we should gain a better understanding of the basic mechanisms that govern the immune response. This paper, based on the steps necessary to induce an immune response, discusses current strategies for enhancing vaccine-induced CTL antitumor immune responses.
Collapse
|
2781
|
Matsueda S, Wang M, Weng J, Li Y, Yin B, Zou J, Li Q, Zhao W, Peng W, Legras X, Loo C, Wang RF, Wang HY. Identification of prostate-specific G-protein coupled receptor as a tumor antigen recognized by CD8(+) T cells for cancer immunotherapy. PLoS One 2012; 7:e45756. [PMID: 23029225 PMCID: PMC3447865 DOI: 10.1371/journal.pone.0045756] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/24/2012] [Indexed: 11/18/2022] Open
Abstract
Background Prostate cancer is the most common cancer among elderly men in the US, and immunotherapy has been shown to be a promising strategy to treat patients with metastatic castration-resistant prostate cancer. Efforts to identify novel prostate specific tumor antigens will facilitate the development of effective cancer vaccines against prostate cancer. Prostate-specific G-protein coupled receptor (PSGR) is a novel antigen that has been shown to be specifically over-expressed in human prostate cancer tissues. In this study, we describe the identification of PSGR-derived peptide epitopes recognized by CD8+ T cells in an HLA-A2 dependent manner. Methodology/Principal Findings Twenty-one PSGR-derived peptides were predicted by an immuno-informatics approach based on the HLA-A2 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from either HLA-A2+ healthy donors or HLA-A2+ prostate cancer patients. The recognition of HLA-A2 positive and PSGR expressing LNCaP cells was also tested. Among the 21 PSGR-derived peptides, three peptides, PSGR3, PSGR4 and PSGR14 frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and prostate cancer patients. Importantly, these peptide-specific T cells recognized and killed LNCaP prostate cancer cells in an HLA class I-restricted manner. Conclusions/Significance We have identified three novel HLA-A2-restricted PSGR-derived peptides recognized by CD8+ T cells, which, in turn, recognize HLA-A2+ and PSGR+ tumor cells. The PSGR-derived peptides identified may be used as diagnostic markers as well as immune targets for development of anticancer vaccines.
Collapse
Affiliation(s)
- Satoko Matsueda
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2782
|
Sasaki H, Suzuki A, Shitara M, Hikosaka Y, Okuda K, Moriyama S, Yano M, Fujii Y. PD-L1 gene expression in Japanese lung cancer patients. Biomed Rep 2012; 1:93-96. [PMID: 24648901 DOI: 10.3892/br.2012.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/12/2012] [Indexed: 12/31/2022] Open
Abstract
An imbalance in immune regulation affects tumor-specific T-cell immunity in the cancer microenvironment and reshapes tumor progression and metastasis. Blockade of interactions of immune function mediates anti-tumor activity in preclinical models. In the present study, we investigated programmed cell death 1 ligand 1 (PD-L1) mRNA expression by real-time polymerase chain reaction (RT-PCR) using a LightCycler in surgically treated non-small cell lung cancer (NSCLC) cases. This study included 123 surgically removed NSCLC cases for mRNA level analyses. The PD-L1/β-actin mRNA levels showed no marked difference in lung cancer (131.398±421.596) and adjacent normal lung tissues (78.182±254092, P=0.1482). The tumor/normal (T/N) ratio of PD-L1/β-actin mRNA levels was more than 2 in 49 cases and more than 1 in 63 cases. No difference was found in the T/N ratio of PD-L1/β actin mRNA levels among factors inlcuding gender, age, smoking status and pathological subtypes. The T/N ratio of PD-L1/β actin mRNA levels was markedly higher in pathological T4 cases (15.811±36.883) compared to T1 cases (3.492±8.494, P=0.0235). However, the PD-L1 mRNA status did not correlate with lymph node metastasis status. Thus, PD-L1 may drive tumor invasion, while providing a candidate for blockade of its function as a strategy to antagonize the progression process in NSCLC.
Collapse
Affiliation(s)
- Hidefumi Sasaki
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Ayumi Suzuki
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Masayuki Shitara
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yu Hikosaka
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Satoru Moriyama
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Motoki Yano
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yoshitaka Fujii
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
2783
|
Lin YC, Mahalingam J, Chiang JM, Su PJ, Chu YY, Lai HY, Fang JH, Huang CT, Chiu CT, Lin CY. Activated but not resting regulatory T cells accumulated in tumor microenvironment and correlated with tumor progression in patients with colorectal cancer. Int J Cancer 2012; 132:1341-50. [PMID: 22907255 DOI: 10.1002/ijc.27784] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 06/27/2012] [Accepted: 07/31/2012] [Indexed: 12/28/2022]
Abstract
Activated T regulatory (T(reg)) cells are potent suppressors that mediate immune tolerance. We investigated the relationship between activated T(reg) cells and the progression of human colon cancer. We designed a cross-sectional study of CD4(+) Foxp3(+) T cells from peripheral blood, primary tumor and nontumor colon tissue of 42 patients with colon cancer and correlated the percentages of different subgroups of T(reg) cells with colon cancer stage. The phenotypes, cytokine-release patterns and suppression ability of these T(reg) cells were analyzed. We found that T(reg) cells increased significantly in both peripheral blood and cancer tissue. In addition, the T(reg) cells expressed significantly lower levels of CCR7, CD62L and CD45RA in comparison to normal volunteers. Further dividing T(reg) cells into subgroups based on Foxp3 and CD45RA expression revealed that both activated T(reg) cells (Foxp3(hi) CD45RA(-)) and nonsuppressive T(reg) cells (Foxp3(lo) CD45RA(-)), but not resting T(reg) cells (Foxp3(low) CD45RA(+)), increased in the peripheral blood and cancer tissue of patients with colon cancer. Only the activated T(reg) cells expressed significantly higher levels of tumor necrosis factor receptor 2 and cytotoxic T-cell antigen-4. Activated T(reg) cells, however, secreted significantly lower levels of effector cytokines (interleukin-2, tumor necrosis factor-α and interferon-γ) than did resting T(reg) cells and nonsuppressive cells upon ex vivo stimulation. Activated, but not resting, T(reg) cells in cancer tissue correlated with tumor metastases. In summary, we confirmed that activated T(reg) cells are a distinct subgroup with effector memory phenotype and fully functional regulatory activity against human colorectal cancer immunity.
Collapse
Affiliation(s)
- Yung-Chang Lin
- Department of Hematology-Oncology, Linkou Medical Center, Chang Gung Memorial Hospital, Kweishan, Tayouan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2784
|
Larsen PA, Smith TPL. Application of circular consensus sequencing and network analysis to characterize the bovine IgG repertoire. BMC Immunol 2012; 13:52. [PMID: 22978666 PMCID: PMC3500647 DOI: 10.1186/1471-2172-13-52] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/04/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Next generation sequencing methods provide unique approaches to a number of immuno-based research areas including antibody discovery and engineering, disease surveillance, and host immune response to vaccines. In particular, single-molecule circular consensus sequencing permits the sequencing of antibody repertoires at previously unattainable depths of coverage and accuracy. We approached the bovine immunoglobulin G (IgG) repertoire with the objective of characterizing diversity of expressed IgG transcripts. Here we present single-molecule real-time sequencing data of expressed IgG heavy-chain repertoires of four individual cattle. We describe the diversity observed within antigen binding regions and visualize this diversity using a network-based approach. RESULTS We generated 49,945 high quality cDNA sequences, each spanning the entire IgG variable region from four Bos taurus calves. From these sequences we identified 49,521 antigen binding regions using the automated Paratome web server. Approximately 9% of all unique complementarity determining 2 (CDR2) sequences were of variable lengths. A bimodal distribution of unique CDR3 sequence lengths was observed, with common lengths of 5-6 and 21-25 amino acids. The average number of cysteine residues in CDR3s increased with CDR3 length and we observed that cysteine residues were centrally located in CDR3s. We identified 19 extremely long CDR3 sequences (up to 62 amino acids in length) within IgG transcripts. Network analyses revealed distinct patterns among the expressed IgG antigen binding repertoires of the examined individuals. CONCLUSIONS We utilized circular consensus sequencing technology to provide baseline data of the expressed bovine IgG repertoire that can be used for future studies important to livestock research. Somatic mutation resulting in base insertions and deletions in CDR2 further diversifies the bovine antibody repertoire. In contrast to previous studies, our data indicate that unusually long CDR3 sequences are not unique to IgM antibodies in cattle. Centrally located cysteine residues in bovine CDR3s provide further evidence that disulfide bond formation is likely of structural importance. We hypothesize that network or cluster-based analyses of expressed antibody repertoires from controlled challenge experiments will help identify novel natural antigen binding solutions to specific pathogens of interest.
Collapse
Affiliation(s)
- Peter A Larsen
- Genetics and Breeding Unit, United States Meat Animal Research Center, ARS, USDA, Clay Center, NE, USA
| | | |
Collapse
|
2785
|
Abstract
Cancer vaccines are beginning to show signs of clinical activity, but major uncertainties remain regarding antigen selection, strategy for immune stimulation, patient stratification, and monitoring of elicited response. A new study of peptide vaccines in advanced renal cell carcinoma patients provides important insights into these central issues.
Collapse
Affiliation(s)
- Glenn Dranoff
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
2786
|
Liechtenstein T, Dufait I, Lanna A, Breckpot K, Escors D. MODULATING CO-STIMULATION DURING ANTIGEN PRESENTATION TO ENHANCE CANCER IMMUNOTHERAPY. IMMUNOLOGY, ENDOCRINE & METABOLIC AGENTS IN MEDICINAL CHEMISTRY 2012; 12:224-235. [PMID: 22945252 PMCID: PMC3428911 DOI: 10.2174/187152212802001875] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the key roles of the immune system is the identification of potentially dangerous pathogens or tumour cells, and raising a wide range of mechanisms to eliminate them from the organism. One of these mechanisms is activation and expansion of antigen-specific cytotoxic T cells, after recognition of antigenic peptides on the surface of antigen presenting cells such as dendritic cells (DCs). However, DCs also process and present autoantigens. Therefore, antigen presentation has to occur in the appropriate context to either trigger immune responses or establishing immunological tolerance. This is achieved by co-stimulation of T cells during antigen presentation. Co-stimulation consists on the simultaneous binding of ligand-receptor molecules at the immunological synapse which will determine the type and extent of T cell responses. In addition, the type of cytokines/chemokines present during antigen presentation will influence the polarisation of T cell responses, whether they lead to tolerance, antibody responses or cytotoxicity. In this review, we will focus on approaches manipulating co-stimulation during antigen presentation, and the role of cytokine stimulation on effective T cell responses. More specifically, we will address the experimental strategies to interfere with negative co-stimulation such as that mediated by PD-L1 (Programmed cell death 1 ligand 1)/PD-1 (Programmed death 1) to enhance anti-tumour immunity.
Collapse
Affiliation(s)
- Therese Liechtenstein
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
| | - Ines Dufait
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
- Department of Physiology-Immunology. Medical School. Free University of Brussels. Laarbeeklaan 103. 1090 Jette. Belgium
| | - Alessio Lanna
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
| | - Karine Breckpot
- Department of Physiology-Immunology. Medical School. Free University of Brussels. Laarbeeklaan 103. 1090 Jette. Belgium
| | - David Escors
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
| |
Collapse
|
2787
|
Chornoguz O, Gapeev A, O'Neill MC, Ostrand-Rosenberg S. Major histocompatibility complex class II+ invariant chain negative breast cancer cells present unique peptides that activate tumor-specific T cells from breast cancer patients. Mol Cell Proteomics 2012; 11:1457-67. [PMID: 22942358 DOI: 10.1074/mcp.m112.019232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major histocompatibility complex (MHC) class II-associated Invariant chain (Ii) is present in professional antigen presenting cells where it regulates peptide loading onto MHC class II molecules and the peptidome presented to CD4+ T lymphocytes. Because Ii prevents peptide loading in neutral subcellular compartments, we reasoned that Ii- cells may present peptides not presented by Ii+ cells. Based on the hypothesis that patients are tolerant to MHC II-restricted tumor peptides presented by Ii+ cells, but will not be tolerant to novel peptides presented by Ii- cells, we generated MHC II vaccines to activate cancer patients' T cells. The vaccines are Ii- tumor cells expressing syngeneic HLA-DR and the costimulatory molecule CD80. We used liquid chromatography coupled with mass spectrometry to sequence MHC II-restricted peptides from Ii+ and Ii- MCF10 human breast cancer cells transfected with HLA-DR7 or the MHC Class II transactivator CIITA to determine if Ii- cells present novel peptides. Ii expression was induced in the HLA-DR7 transfectants by transfection of Ii, and inhibited in the CIITA transfectants by RNA interference. Peptides were analyzed and binding affinity predicted by artificial neural net analysis. HLA-DR7-restricted peptides from Ii- and Ii+ cells do not differ in size or in subcellular location of their source proteins; however, a subset of HLA-DR7-restricted peptides of Ii- cells are not presented by Ii+ cells, and are derived from source proteins not used by Ii+ cells. Peptides from Ii- cells with the highest predicted HLA-DR7 binding affinity were synthesized, and activated tumor-specific HLA-DR7+ human T cells from healthy donors and breast cancer patients, demonstrating that the MS-identified peptides are bonafide tumor antigens. These results demonstrate that Ii regulates the repertoire of tumor peptides presented by MHC class II+ breast cancer cells and identify novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.
Collapse
Affiliation(s)
- Olesya Chornoguz
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
2788
|
Marincola FM, Sheikh JI. A road map to Translational Medicine in Qatar and a model for the world. J Transl Med 2012; 10:177. [PMID: 22929646 PMCID: PMC3436734 DOI: 10.1186/1479-5876-10-177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/15/2012] [Indexed: 02/02/2023] Open
Abstract
Translational Medicine (TM) in Qatar is part of a concerted effort of the Qatari medical and scientific leadership supported by a strong political will by Qatari authorities to deliver world-class health care to Qatari residents while participating in the worldwide quest to bridge the gap between bench-to-bedside-to-community. TM programs should embrace the Qatar National vision for research to become an international hub of excellence in research and development, based on intellectual merit, contributing to global knowledge and adhering to international standards, to innovate by translating new and original ideas into useful applications, to be inclusive at the national and international level, to build and maintain a competitive and diversified economy and ultimately improve the health and well-being of the Qatar’s population. Although this writing focuses on Qatar, we hope that the thoughts expressed here may be of broader use for the development of any TM program particularly in regions where an established academic community surrounded by a rich research infrastructure and/or a vibrant biotechnology enterprise is not already present.
Collapse
Affiliation(s)
- Francesco M Marincola
- Office of the Dean, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, PO Box 24144, Doha, Qatar.
| | | |
Collapse
|
2789
|
Jinushi M, Baghdadi M, Chiba S, Yoshiyama H. Regulation of cancer stem cell activities by tumor-associated macrophages. Am J Cancer Res 2012; 2:529-539. [PMID: 22957305 PMCID: PMC3433107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/05/2012] [Indexed: 06/01/2023] Open
Abstract
Recent studies revealed that tumor-associated macrophages play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. However, the role of cancer stem cells in the tumorigenic activities of tumor-associated macrophages during the course of transformation and treatment remains largely unknown. Recent studies have clarified the functional aspects of tumor-associated macrophages in the regulation of the tumorigenic activities and anticancer drug responsiveness of cancer stem cells through complex networks formed by distinct sets of cytokines, chemokines and growth factors. In this article we discuss recent advances and future perspectives regarding the molecular interplay between cancer stem cells and tumor-associated macrophages and provide future perspective about the therapeutic implication against treatment-resistant variants of cancer.
Collapse
Affiliation(s)
- Masahisa Jinushi
- Research Center for Infection-associated cancer, Institute for Genetic Medicine, Hokkaido University Sapporo, Japan
| | | | | | | |
Collapse
|
2790
|
Schaue D, Xie MW, Ratikan JA, McBride WH. Regulatory T cells in radiotherapeutic responses. Front Oncol 2012; 2:90. [PMID: 22912933 PMCID: PMC3421147 DOI: 10.3389/fonc.2012.00090] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/20/2012] [Indexed: 12/31/2022] Open
Abstract
Radiation therapy (RT) can extend its influence in cancer therapy beyond what can be attributed to in-field cytotoxicity by modulating the immune system. While complex, these systemic effects can help tip the therapeutic balance in favor of treatment success or failure. Engagement of the immune system is generally through recognition of damage-associated molecules expressed or released as a result of tumor and normal tissue radiation damage. This system has evolved to discriminate pathological from physiological forms of cell death by signaling "danger." The multiple mechanisms that can be evoked include a shift toward a pro-inflammatory, pro-oxidant microenvironment that can promote maturation of dendritic cells and, in cancer treatment, the development of effector T cell responses to tumor-associated antigens. Control over these processes is exerted by regulatory T cells (Tregs), suppressor macrophages, and immunosuppressive cytokines that act in consort to maintain tolerance to self, limit tissue damage, and re-establish tissue homeostasis. Unfortunately, by the time RT for cancer is initiated the tumor-host relationship has already been sculpted in favor of tumor growth and against immune-mediated mechanisms for tumor regression. Reversing this situation is a major challenge. However, recent data show that removal of Tregs can tip the balance in favor of the generation of radiation-induced anti-tumor immunity. The clinical challenge is to do so without excessive depletion that might precipitate serious autoimmune reactions and increase the likelihood of normal tissue complications. The selective modulation of Treg biology to maintain immune tolerance and control of normal tissue damage, while releasing the "brakes" on anti-tumor immune responses, is a worthy aim with promise for enhancing the therapeutic benefit of RT for cancer.
Collapse
Affiliation(s)
- Dörthe Schaue
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles Los Angeles, CA, USA
| | | | | | | |
Collapse
|
2791
|
Kudrin A. Overview of cancer vaccines: considerations for development. Hum Vaccin Immunother 2012; 8:1335-53. [PMID: 22894970 DOI: 10.4161/hv.20518] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer immunotherapy has seen a tremendous number of failures and only few recent regulatory successes. This is a review dedicated to determine major regulatory and developmental issues around cancer immunotherapeutics. A three pillar approach should be used in setting a development path: discovery platforms and sufficient pool of validated tumor antigens, product development strategy enabling to bring the product closer to the patient and clinical development strategy accounting for competitive landscape, treatment paradigm, technical and commercial risks. Regulatory framework existing around cancer vaccines in the EU, US, Japan and some developing countries is outlined. In addition, the review covers some specific issues on the design and conduct of clinical trials with cancer vaccines.
Collapse
|
2792
|
Ad3-hTERT-E1A, a fully serotype 3 oncolytic adenovirus, in patients with chemotherapy refractory cancer. Mol Ther 2012; 20:1821-30. [PMID: 22871667 DOI: 10.1038/mt.2012.115] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Twenty-five patients with chemotherapy refractory cancer were treated with a fully serotype 3-based oncolytic adenovirus Ad3-hTERT-E1A. In mice, Ad3 induced higher amounts of cytokines but less liver damage than Ad5 or Ad5/3. In humans, the only grade 3 adverse reactions were self-limiting cytopenias and generally the safety profile resembled Ad5-based oncolytic viruses. Patients that had been previously treated with Ad5 viruses presented longer lasting lymphocytopenia but no median increase in Ad3-specific T-cells in blood, suggesting immunological activity against antigens other than Ad3 hexon. Frequent alterations in antitumor T-cells in blood were seen regardless of previous virus exposure. Neutralizing antibodies against Ad3 increased in all patients, whereas Ad5 neutralizing antibodies remained stable. Treatment with Ad3-hTERT-E1A resulted in re-emergence of Ad5 viruses from previous treatments into blood and vice versa. Signs of possible efficacy were seen in 11/15 (73%) patients evaluable for tumor markers, four of which were treated only intravenously. Particularly promising results were seen in breast cancer patients and especially those receiving concomitant trastuzumab. Taken together, Ad3-hTERT-E1A seems safe for further clinical testing or development of armed versions. It offers an immunologically attractive alternative, with possible pharmacodynamic differences and a different receptor compared to Ad5.
Collapse
|
2793
|
A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer. J Transl Med 2012; 10:157. [PMID: 22863016 PMCID: PMC3439340 DOI: 10.1186/1479-5876-10-157] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/18/2012] [Indexed: 11/10/2022] Open
Abstract
PURPOSE In spite of increased rates of complete response to initial chemotherapy, most patients with advanced ovarian cancer relapse and succumb to progressive disease. RATIONALE Genetically reprogrammed, patient-derived chimeric antigen receptor (CAR)-T lymphocytes with the ability to recognize predefined surface antigens with high specificity in a non-MHC restricted manner have shown increasing anti-tumor efficacy in preclinical and clinical studies. Folate receptor-α (FRα) is an ovarian cancer-specific tumor target; however, it is expressed at low levels in certain organs with risk for toxicity. DESIGN Here we propose a phase I study testing the feasibility, safety and preliminary activity of FRα-redirected CAR-T cells bearing the CD137 (4-1BB) costimulatory domain, administered after lymphodepletion for the treatment of recurrent ovarian cancer. A novel trial design is proposed that maximizes safety features. INNOVATION This design involves an initial accelerated dose escalation phase of FR-α CAR-T cells followed by a standard 3 + 3 escalation phase. A split-dose approach is proposed to mitigate acute adverse events. Furthermore, infusion of bulk untransduced autologous peripheral blood lymphocytes (PBL) is proposed two days after CAR-T cell infusion at the lower dose levels of CAR-T cells, to suppress excessive expansion of CAR-T cells in vivo and mitigate toxicity.
Collapse
|
2794
|
Rubner Y, Wunderlich R, Rühle PF, Kulzer L, Werthmöller N, Frey B, Weiss EM, Keilholz L, Fietkau R, Gaipl US. How does ionizing irradiation contribute to the induction of anti-tumor immunity? Front Oncol 2012; 2:75. [PMID: 22848871 PMCID: PMC3404483 DOI: 10.3389/fonc.2012.00075] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/02/2012] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy (RT) with ionizing irradiation is commonly used to locally attack tumors. It induces a stop of cancer cell proliferation and finally leads to tumor cell death. During the last years it has become more and more evident that besides a timely and locally restricted radiation-induced immune suppression, a specific immune activation against the tumor and its metastases is achievable by rendering the tumor cells visible for immune attack. The immune system is involved in tumor control and we here outline how RT induces anti-inflammation when applied in low doses and contributes in higher doses to the induction of anti-tumor immunity. We especially focus on how local irradiation induces abscopal effects. The latter are partly mediated by a systemic activation of the immune system against the individual tumor cells. Dendritic cells are the key players in the initiation and regulation of adaptive anti-tumor immune responses. They have to take up tumor antigens and consecutively present tumor peptides in the presence of appropriate co-stimulation. We review how combinations of RT with further immune stimulators such as AnnexinA5 and hyperthermia foster the dendritic cell-mediated induction of anti-tumor immune responses and present reasonable combination schemes of standard tumor therapies with immune therapies. It can be concluded that RT leads to targeted killing of the tumor cells and additionally induces non-targeted systemic immune effects. Multimodal tumor treatments should therefore tend to induce immunogenic tumor cell death forms within a tumor microenvironment that stimulates immune cells.
Collapse
Affiliation(s)
- Yvonne Rubner
- Radiation Immunobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2795
|
Moon JJ, Huang B, Irvine DJ. Engineering nano- and microparticles to tune immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3724-46. [PMID: 22641380 PMCID: PMC3786137 DOI: 10.1002/adma.201200446] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Indexed: 05/13/2023]
Abstract
The immune system can be a cure or cause of disease, fulfilling a protective role in attacking cancer or pathogenic microbes but also causing tissue destruction in autoimmune disorders. Thus, therapies aimed to amplify or suppress immune reactions are of great interest. However, the complex regulation of the immune system, coupled with the potential systemic side effects associated with traditional systemic drug therapies, has presented a major hurdle for the development of successful immunotherapies. Recent progress in the design of synthetic micro- and nano-particles that can target drugs, deliver imaging agents, or stimulate immune cells directly through their physical and chemical properties is leading to new approaches to deliver vaccines, promote immune responses against tumors, and suppress autoimmunity. In addition, novel strategies, such as the use of particle-laden immune cells as living targeting agents for drugs, are providing exciting new approaches for immunotherapy. This progress report describes recent advances in the design of micro- and nano-particles for immunotherapies and diagnostics.
Collapse
Affiliation(s)
- James J Moon
- Dept. of Materials Science and Eng., Massachusetts Institute of Technology-MIT, Cambridge, MA, USA
| | | | | |
Collapse
|
2796
|
Turtle CJ, Hudecek M, Jensen MC, Riddell SR. Engineered T cells for anti-cancer therapy. Curr Opin Immunol 2012; 24:633-9. [PMID: 22818942 DOI: 10.1016/j.coi.2012.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 06/20/2012] [Accepted: 06/25/2012] [Indexed: 01/01/2023]
Abstract
Recent advances enabling efficient delivery of transgenes to human T cells have created opportunities to address obstacles that previously hindered the application of T cell therapy to cancer. Modification of T cells with transgenes encoding TCRs or chimeric antigen receptors allows tumor specificity to be conferred on functionally distinct T cell subsets, and incorporation of costimulatory molecules or cytokines can enable engineered T cells to bypass local and systemic tolerance mechanisms. Clinical studies of genetically modified T cell therapy for cancer have shown notable success; however, these trials demonstrate that tumor therapy with engineered high avidity tumor-reactive T cells may be accompanied by significant on-target toxicity, necessitating careful selection of target antigens and development of strategies to eliminate transferred cells.
Collapse
Affiliation(s)
- Cameron J Turtle
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | | | | | | |
Collapse
|
2797
|
Cancer Immunotherapy by Retargeting of Immune Effector Cells via Recombinant Bispecific Antibody Constructs. Antibodies (Basel) 2012. [DOI: 10.3390/antib1020172] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
2798
|
Andersen BM, Ohlfest JR. Increasing the efficacy of tumor cell vaccines by enhancing cross priming. Cancer Lett 2012; 325:155-64. [PMID: 22809568 DOI: 10.1016/j.canlet.2012.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 07/07/2012] [Indexed: 12/23/2022]
Abstract
Cancer immunotherapy has been attempted for more than a century, and investment has intensified in the last 20 years. The complexity of the immune system is exemplified by the myriad of immunotherapeutic approaches under investigation. While anti-tumor immunity has been achieved experimentally with multiple effector cells and molecules, particular promise is shown for harnessing the CD8 T cell response. Tumor cell-based vaccines have been employed in hundreds of clinical trials to date and offer several advantages over subunit and peptide vaccines. However, tumor cell-based vaccines, often aimed at cross priming tumor-reactive CD8 T cells, have shown modest success in clinical trials. Here we review the mechanisms of cross priming and discuss strategies to increase the efficacy of tumor cell-based vaccines. A synthesis of recent findings on tissue culture conditions, cell death, and dendritic cell activation reveals promising new avenues for clinical investigation.
Collapse
Affiliation(s)
- Brian M Andersen
- Department of Pediatrics, University of Minnesota, Minneapolis, 55455, United States
| | | |
Collapse
|
2799
|
Hiss DC, Fielding BC. Optimization and preclinical design of genetically engineered viruses for human oncolytic therapy. Expert Opin Biol Ther 2012; 12:1427-47. [PMID: 22788715 DOI: 10.1517/14712598.2012.707183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Oncolytic viruses (OVs) occupy a strategic niche in the dynamic era of biological and gene therapy of human cancers. However, the use of OVs is the subject of close scrutiny due to impediments such as the insufficiency of patient generalizations posed by heterogeneous tumor responses to treatment, inherent or potentially lethal viral pathogenicities, unanticipated host- or immune-related adverse effects, and the emergence of virus-resistant cancer cells. These challenges can be overcome by the design and development of more definitive (optimized, targeted, and individualized) cancer virotherapeutics. AREAS COVERED The translation of current knowledge and recent innovations into rational treatment prospects hinges on an iterative loop of variables pertaining to genetically engineered viral oncolytic efficacy and safety profiles, mechanism-of-action data, potencies of synergistic oncolytic viral combinations with conventional tumor, immuno-, chemo-, and radiation treatment modalities, optimization of the probabilities of treatment successes in heterogeneous (virus-sensitive and -resistant) tumor cell populations by mathematical modeling, and lessons learned from preclinical studies and human clinical trials. EXPERT OPINION In recent years, it has become increasingly clear that proof-of-principle is critical for the preclinical optimization of oncolytic viruses to target heterogeneous forms of cancer and to prioritize current concerns related to the efficacy and safety of oncolytic virotherapy.
Collapse
Affiliation(s)
- Donavon C Hiss
- University of the Western Cape, Department of Medical Biosciences, Molecular Oncology Research Laboratory, Bellville, 7535, South Africa.
| | | |
Collapse
|
2800
|
Internalization and endosomal degradation of receptor-bound antigens regulate the efficiency of cross presentation by human dendritic cells. Blood 2012; 120:2011-20. [PMID: 22791285 DOI: 10.1182/blood-2012-01-402370] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DCs) can capture extracellular antigens and load resultant peptides on to MHC class I molecules, a process termed cross presentation. The mechanisms of cross presentation remain incompletely understood, particularly in primary human DCs. One unknown is the extent to which antigen delivery to distinct endocytic compartments determines cross presentation efficiency, possibly by influencing antigen egress to the cytosol. We addressed the problem directly and quantitatively by comparing the cross presentation of identical antigens conjugated with antibodies against different DC receptors that are targeted to early or late endosomes at distinct efficiencies. In human BDCA1+ and monocyte-derived DCs, CD40 and mannose receptor targeted antibody conjugates to early endosomes, whereas DEC205 targeted antigen primarily to late compartments. Surprisingly, the receptor least efficient at internalization, CD40, was the most efficient at cross presentation. This did not reflect DC activation by CD40, but rather its relatively poor uptake or intra-endosomal degradation compared with mannose receptor or DEC205. Thus, although both early and late endosomes appear to support cross presentation in human DCs, internalization efficiency, especially to late compartments, may be a negative predictor of activity when selecting receptors for vaccine development.
Collapse
|