2851
|
Qi F, Wang J, Zhao L, Cai P, Tang W, Wang Z. Cinobufacini inhibits epithelial-mesenchymal transition of human hepatocellular carcinoma cells through c-Met/ERK signaling pathway. Biosci Trends 2018; 12:291-297. [DOI: 10.5582/bst.2018.01082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong University
| | - Jinjing Wang
- Shandong University of Traditional Chinese Medicine
| | - Lin Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong University
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong University
| | - Wei Tang
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, the University of Tokyo
| | - Zhixue Wang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong University
| |
Collapse
|
2852
|
Integrin α5 down-regulation by miR-205 suppresses triple negative breast cancer stemness and metastasis by inhibiting the Src/Vav2/Rac1 pathway. Cancer Lett 2018; 433:199-209. [PMID: 29964204 DOI: 10.1016/j.canlet.2018.06.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023]
Abstract
Triple negative breast cancer (TNBC) usually displays more aggressive metastasis, the underlying mechanism is unclear. Previous studies showed that microRNA-205 (miR-205) has controversial roles in cancer, however, its role in TNBC metastasis and the underlying mechanism have not been well-understood. In this study we found that miR-205 expression level is extremely low in basal mesenchymal-like highly migratory and invasive TNBC cells. Stably re-expressing miR-205 in TNBC cells significantly reduced their migration, invasion capability and cancer stem cell (CSC)-like property. Nude mouse orthotopic mammary xenograft tumor model study revealed that miR-205 re-expression greatly decreases TNBC tumor growth and abolishes spontaneous lung metastasis. Mechanistic studies demonstrated that miR-205 inhibits TNBC cell metastatic traits and tumor metastasis by down-regulating integrin α5 (ITGA5). Moreover, ITGA5 knockout using the CRISPR/Cas9 technique achieved the same strong inhibitory effect on TNBC cell CSC-like property and tumor metastasis as re-expressing miR-205 did. Further mechanistic studies indicated that ITGA5 down-regulation by miR-205 re-expression impairs TNBC cell metastatic traits by inhibiting the Src/Vav2/Rac1 pathway. Together, our findings suggest that miR-205 and ITGA5 may serve as potential targets for developing effective therapies for metastatic TNBC.
Collapse
|
2853
|
van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, Burdziak C, Moon KR, Chaffer CL, Pattabiraman D, Bierie B, Mazutis L, Wolf G, Krishnaswamy S, Pe'er D. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell 2018; 174:716-729.e27. [PMID: 29961576 DOI: 10.1016/j.cell.2018.05.061] [Citation(s) in RCA: 968] [Impact Index Per Article: 138.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/19/2018] [Accepted: 05/30/2018] [Indexed: 01/06/2023]
Abstract
Single-cell RNA sequencing technologies suffer from many sources of technical noise, including under-sampling of mRNA molecules, often termed "dropout," which can severely obscure important gene-gene relationships. To address this, we developed MAGIC (Markov affinity-based graph imputation of cells), a method that shares information across similar cells, via data diffusion, to denoise the cell count matrix and fill in missing transcripts. We validate MAGIC on several biological systems and find it effective at recovering gene-gene relationships and additional structures. Applied to the epithilial to mesenchymal transition, MAGIC reveals a phenotypic continuum, with the majority of cells residing in intermediate states that display stem-like signatures, and infers known and previously uncharacterized regulatory interactions, demonstrating that our approach can successfully uncover regulatory relations without perturbations.
Collapse
Affiliation(s)
- David van Dijk
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Applied Physics and Applied Math, Columbia University, New York, NY, USA
| | - Juozas Nainys
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Kristina Yim
- Department of Genetics, Department of Computer Science, Yale University, New Haven, CT, USA
| | - Pooja Kathail
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ambrose J Carr
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Cassandra Burdziak
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin R Moon
- Department of Genetics, Department of Computer Science, Yale University, New Haven, CT, USA; Applied Mathematics Program, Yale University, New Haven, CT, USA
| | | | | | - Brian Bierie
- Whitehead Institute for Biomedical Research, MIT, Cambridge, MA, USA
| | - Linas Mazutis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guy Wolf
- Applied Mathematics Program, Yale University, New Haven, CT, USA
| | - Smita Krishnaswamy
- Department of Genetics, Department of Computer Science, Yale University, New Haven, CT, USA; Applied Mathematics Program, Yale University, New Haven, CT, USA.
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2854
|
Yu L, Li J, Hong J, Takashima Y, Fujimoto N, Nakajima M, Yamamoto A, Dong X, Dang Y, Hou Y, Yang W, Minami I, Okita K, Tanaka M, Luo C, Tang F, Chen Y, Tang C, Kotera H, Liu L. Low Cell-Matrix Adhesion Reveals Two Subtypes of Human Pluripotent Stem Cells. Stem Cell Reports 2018; 11:142-156. [PMID: 30008324 PMCID: PMC6067523 DOI: 10.1016/j.stemcr.2018.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/06/2023] Open
Abstract
We show that a human pluripotent stem cell (hPSC) population cultured on a low-adhesion substrate developed two hPSC subtypes with different colony morphologies: flat and domed. Notably, the dome-like cells showed higher active proliferation capacity and increased several pluripotent genes’ expression compared with the flat monolayer cells. We further demonstrated that cell-matrix adhesion mediates the interaction between cell morphology and expression of KLF4 and KLF5 through a serum response factor (SRF)-based regulatory double loop. Our results provide a mechanistic view on the coupling among adhesion, stem cell morphology, and pluripotency, shedding light on the critical role of cell-matrix adhesion in the induction and maintenance of hPSC. Low-adhesion substrates reveal two different subtypes co-exist in the hPSC population SRF-based regulatory loop-coupled adhesion, cell morphology, and KLF4/5 expression The low-adhesion substrates are more suitable for high-pluripotency cell culture
Collapse
Affiliation(s)
- Leqian Yu
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Nanometrics Laboratory, Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Junjun Li
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Jiayin Hong
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yasuhiro Takashima
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Nanae Fujimoto
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Nanometrics Laboratory, Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Minako Nakajima
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Nanometrics Laboratory, Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Akihisa Yamamoto
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Xiaofeng Dong
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yujiao Dang
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100876, China
| | - Yu Hou
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100876, China
| | - Wei Yang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Itsunari Minami
- Department of Cell Design for Tissue Construction Faculty of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Motomu Tanaka
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Physical Chemistry of Biosystems, Institute for Physical Chemistry, Heidelberg University, Heidelberg D69120, Germany
| | - Chunxiong Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100876, China
| | - Yong Chen
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 Rue Lhomond, Paris 75005, France
| | - Chao Tang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Hidetoshi Kotera
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Nanometrics Laboratory, Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan.
| | - Li Liu
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| |
Collapse
|
2855
|
Schiffmacher AT, Adomako-Ankomah A, Xie V, Taneyhill LA. Cadherin-6B proteolytic N-terminal fragments promote chick cranial neural crest cell delamination by regulating extracellular matrix degradation. Dev Biol 2018; 444 Suppl 1:S237-S251. [PMID: 29958899 DOI: 10.1016/j.ydbio.2018.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
During epithelial-to-mesenchymal transitions (EMTs), chick cranial neural crest cells simultaneously delaminate from the basement membrane and segregate from the epithelia, in part, via multiple protease-mediated mechanisms. Proteolytic processing of Cadherin-6B (Cad6B) in premigratory cranial neural crest cells by metalloproteinases not only disassembles cadherin-based junctions but also generates shed Cad6B ectodomains or N-terminal fragments (NTFs) that may possess additional roles. Here we report that Cad6B NTFs promote delamination by enhancing local extracellular proteolytic activity around neural crest cells undergoing EMT en masse. During EMT, Cad6B NTFs of varying molecular weights are observed, indicating that Cad6B may be cleaved at different sites by A Disintegrin and Metalloproteinases (ADAMs) 10 and 19 as well as by other matrix metalloproteinases (MMPs). To investigate Cad6B NTF function, we first generated NTF constructs that express recombinant NTFs with similar relative mobilities to those NTFs shed in vivo. Overexpression of either long or short Cad6B NTFs in premigratory neural crest cells reduces laminin and fibronectin levels within the basement membrane, which then facilitates precocious neural crest cell delamination. Zymography assays performed with supernatants of neural crest cell explants overexpressing Cad6B long NTFs demonstrate increased MMP2 activity versus controls, suggesting that Cad6B NTFs promote delamination through a mechanism involving MMP2. Interestingly, this increase in MMP2 does not involve up-regulation of MMP2 or its regulators at the transcriptional level but instead may be attributed to a physical interaction between shed Cad6B NTFs and MMP2. Taken together, these results highlight a new function for Cad6B NTFs and provide insight into how cadherins regulate cellular delamination during normal developmental EMTs as well as aberrant EMTs that underlie human disease.
Collapse
Affiliation(s)
- Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | - Vivien Xie
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
2856
|
Li L, Cui Y, Ye L, Zhao Z, Jiang WG, Ji J. Psoriasin overexpression confers drug resistance to cisplatin by activating ERK in gastric cancer. Int J Oncol 2018; 53:1171-1182. [PMID: 29956751 DOI: 10.3892/ijo.2018.4455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/17/2018] [Indexed: 11/06/2022] Open
Abstract
Psoriasin, a member of the S100 multigenic family, which is aberrantly expressed in a variety of human tumors, is considered as an attractive molecular target for cancer treatment. The present study aimed to characterize the role of psoriasin in gastric cancer (GC), the associated pathways through which it contributes to cancer development and progression, and the effect of psoriasin on cellular response to pre-operative chemotherapy in patients with GC. Expression of psoriasin mRNA and protein were analyzed using quantitative polymerase chain reaction and immunohistochemistry of gastric cancer cohorts, respectively. Gastric cancer cell models with differential expression of psoriasin were generated using stable cell lines that overexpressed psoriasin. The in vitro biological functions of the cells in response to psoriasin overexpression and to chemotherapeutic agents were assessed using various cell-based assays. Psoriasin was overexpressed in patients with advanced GC, and high psoriasin levels led to poor clinical outcomes. Increasing psoriasin expression in GC cell lines promoted cell proliferation, migration and invasion in vitro. Furthermore, psoriasin overexpression caused alterations in the levels of epithelial-mesenchymal transition-associated proteins, and activated the extracellular signal-regulated kinase signaling pathway. Additionally, higher levels of psoriasin expression were significantly associated a lack of response to neoadjuvant chemotherapy in patients with GC. Psoriasin overexpression tended to decrease the sensitivity of GC cells to cisplatin, potentially by inhibiting apoptosis or increasing the S-phase population. Taken together, these results indicate that psoriasin may be a promising therapeutic target for GC treatment, and a potential molecular marker to predict patient response to pre-operative chemotherapy.
Collapse
Affiliation(s)
- Liting Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Peking University, Beijing 100142, P.R. China
| | - Yuxin Cui
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Zehang Zhao
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Peking University, Beijing 100142, P.R. China
| |
Collapse
|
2857
|
Wu C, Peng S, Sun W, Luo M, Su B, Liu D, Hu G. Association of E-cadherin methylation with risk of nasopharyngeal cancer: A meta-analysis. Head Neck 2018; 40:2538-2545. [PMID: 29947108 DOI: 10.1002/hed.25319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Various studies have assessed the association between E-cadherin methylation and risk of nasopharyngeal cancer (NPC) but the conclusion remains unclear. This meta-analysis was conducted to evaluate the effects of E-cadherin methylation on the incidence and clinicopathological characteristics of NPC. METHODS Ten studies published up to June 30, 2016, were collected. Odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated and summarized, respectively. RESULTS The E-cadherin methylation in NPC was significantly higher than those in normal groups (OR 16.23; 95% CI 8.34-31.60; P < .001). Ethnicity-stratified analysis indicated that E-cadherin methylation was strongly correlated with NPC among both Asians (OR 16.98; 95% CI 8.45-34.14; P < .001) and North Africans (OR 10.67; 95% CI 1.21-93.72; P = .033). However, further analysis showed that E-cadherin methylation was not strongly associated with clinicopathological feathers in patients with NPC. CONCLUSION The E-cadherin methylation is strongly associated with the incidence of NPC, which can serve as an effective biomarker for early detection of NPC.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shan Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Min Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Beibei Su
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dongbo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
2858
|
Sundaram GM, Quah S, Sampath P. Cancer: the dark side of wound healing. FEBS J 2018; 285:4516-4534. [PMID: 29905002 DOI: 10.1111/febs.14586] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Complex multicellular organisms have evolved sophisticated mechanisms to rapidly resolve epithelial injuries. Epithelial integrity is critical to maintaining internal homeostasis. An epithelial breach represents the potential for pathogen ingress and fluid loss, both of which may have severe consequences if not limited. The mammalian wound healing response involves a finely tuned, self-limiting series of cellular and molecular events orchestrated by the transient activation of specific signalling pathways. Accurate regulation of these events is essential; failure to initiate key steps at the right time delays healing and leads to chronic wounds, while aberrant initiation of wound healing processes may produce cell behaviours that promote cancer progression. In this review, we discuss how wound healing pathways co-opted in cancer lose their stringent regulation and become compromised in their reversibility. We hypothesize on how the commandeering of wound healing 'master regulators' is involved in this process, and also highlight the implications of these findings in the treatment of both chronic wounds and cancer.
Collapse
Affiliation(s)
- Gopinath M Sundaram
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore
| | - Shan Quah
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore
| | - Prabha Sampath
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore City, Singapore
| |
Collapse
|
2859
|
Liang H, Zhao X, Wang C, Sun J, Chen Y, Wang G, Fang L, Yang R, Yu M, Gu Y, Shan H. Systematic analyses reveal long non-coding RNA (PTAF)-mediated promotion of EMT and invasion-metastasis in serous ovarian cancer. Mol Cancer 2018; 17:96. [PMID: 29929545 PMCID: PMC6013988 DOI: 10.1186/s12943-018-0844-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/08/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A deeper mechanistic understanding of epithelial-to-mesenchymal transition (EMT) regulation is needed to improve current anti-metastasis strategies in ovarian cancer (OvCa). This study was designed to investigate the role of lncRNAs in EMT regulation during process of invasion-metastasis in serous OvCa to improve current anti-metastasis strategies for OvCa. METHODS We systematically analyzes high-throughput gene expression profiles of both lncRNAs and protein-coding genes in OvCa samples with integrated epithelial (iE) subtype and integrated mesenchymal (iM) subtype labels. Mouse models, cytobiology, molecular biology assays and clinical samples were performed to elucidate the function and underlying mechanisms of lncRNA PTAF-mediated promotion of EMT and invasion-metastasis in serous OvCa. RESULTS We constructed a lncRNA-mediated competing endogenous RNA (ceRNA) regulatory network that affects the expression of many EMT-related protein-coding genes in mesenchymal OvCa. Using a combination of in vitro and in vivo studies, we provided evidence that the lncRNA PTAF-miR-25-SNAI2 axis controlled EMT in OvCa. Our results revealed that up-regulated PTAF induced elevated SNAI2 expression by competitively binding to miR-25, which in turn promoted OvCa cell EMT and invasion. Moreover, we found that silencing of PTAF inhibited tumor progression and metastasis in an orthotopic mouse model of OvCa. We then observed a significant correlation between PTAF expression and EMT markers in OvCa patients. CONCLUSIONS The lncRNA PTAF, a mediator of TGF-β signaling, can predispose OvCa patients to metastases and may serve as a potential target for anti-metastatic therapies for mesenchymal OvCa patients.
Collapse
Affiliation(s)
- Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Xiaoguang Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Chengyu Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150001, China
| | - Jian Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Yingzhun Chen
- Department of Pathology of The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Guoyuan Wang
- Department of Pathology of The First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Lei Fang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Rui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Mengxue Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China. .,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, 150086, China.
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
2860
|
Voelkel-Johnson C, Norris JS, White-Gilbertson S. Interdiction of Sphingolipid Metabolism Revisited: Focus on Prostate Cancer. Adv Cancer Res 2018; 140:265-293. [PMID: 30060812 PMCID: PMC6460930 DOI: 10.1016/bs.acr.2018.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipid metabolism is known to play a role in cell death, survival, and therapy resistance in cancer. Sphingolipids, particularly dihydroceramide and ceramide, are associated with antiproliferative or cell death responses, respectively, and are central to effective cancer therapy. Within the last decade, strides have been made in elucidating many intricacies of sphingolipid metabolism. New information has emerged on the mechanisms by which sphingolipid metabolism is dysregulated during malignancy and how cancer cells survive and/or escape therapeutic interventions. This chapter focuses on three main themes: (1) sphingolipid enzymes that are dysregulated in cancer, particularly in prostate cancer; (2) inhibitors of sphingolipid metabolism that antagonize prosurvival responses; and (3) sphingolipid-driven escape mechanisms that allow cancer cells to evade therapies. We explore clinical and preclinical approaches to interdict sphingolipid metabolism and provide a rationale for combining strategies to drive the generation of antiproliferative ceramides with prevention of ceramide clearance.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - James S. Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
2861
|
Xu J, Zhou J, Dai H, Liu F, Li W, Wang W, Guo F. CHIP functions as an oncogene by promoting colorectal cancer metastasis via activation of MAPK and AKT signaling and suppression of E-cadherin. J Transl Med 2018; 16:169. [PMID: 29921293 PMCID: PMC6008917 DOI: 10.1186/s12967-018-1540-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The carboxyl terminus of Hsc70-interacting protein (CHIP) is an E3 ubiquitin ligase that plays a controversial role in different cancers, either as a tumor suppressor or a tumor promoter. To date, the exact function and underlying mechanism of CHIP in colorectal cancer (CRC) is not yet clear. Here we aimed to determine whether CHIP could affect the biological behaviors of CRC cells and its underlying mechanisms. METHODS Stably transfected CHIP overexpression and depletion DLD-1 and HT-29 cells were established using Lipofectamine 2000. Cell growth was monitored by x-Celligence system. Cell proliferation was detected using CCK-8 and Brdu proliferation assay. Cell apoptosis and cell cycle were detected by flow cytometry analysis. Cell migration and invasion abilities were monitored by x-Celligence system, wound healing assay and transwell assay. In vivo intraperitoneal metastasis assay was performed to investigate the influence of CHIP on the tumor metastasis of CRC cells in nude mice. The expression of ERK, AKT, NF-кB signaling subunits and EMT related proteins were detected by Western blotting. The influence and function of CHIP on the protein expression of CRC cells were also elucidated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. CRC microarray tissue was analyzed to investigate the CHIP expression and its clinical significance. RESULTS CHIP depletion inhibited cell growth, migration and invasion potential of CRC cells, accompanied by downregulation of MAPK and AKT signaling activities and upregulation of E-cadherin. CHIP overexpression dramatically enhanced the migration and invasion abilities, due to the upregulation of MAPK and AKT signaling and downregulation of E-cadherin. The proteomic analysis confirmed that E-cadherin was decreased in CHIP-overexpressing CRC cells. Furthermore, clinical tissue data revealed that CHIP expression was upregulated in CRC samples and was significantly correlated with poor survival of CRC patients. Mechanically, CHIP probably activated the MAPK and AKT signaling, which inactivated GSK-3β. The GSK-3β inactivation, in turn, upregulated Slug and led to E-cadherin downregulation and EMT initiation. CONCLUSIONS Our finding suggested that CHIP functions as an oncogene in the migration and metastasis of CRC, and is a potential unfavorable independent predictive biomarker for CRC. CHIP activates the AKT pathway to promote EMT and metastasis in CRC through the CHIP-MAPK/AKT-GSK-3β-Slug-E-cadherin pathways.
Collapse
Affiliation(s)
- Jingjing Xu
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jun Zhou
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Hanjue Dai
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Wenjing Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Wenjuan Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250012 China
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Jinan, 250012 China
| | - Feng Guo
- Department of Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Baita West Road 16, Suzhou, 215001 China
| |
Collapse
|
2862
|
Kolijn K, Verhoef EI, Smid M, Böttcher R, Jenster GW, Debets R, van Leenders GJLH. Epithelial-Mesenchymal Transition in Human Prostate Cancer Demonstrates Enhanced Immune Evasion Marked by IDO1 Expression. Cancer Res 2018; 78:4671-4679. [PMID: 29921693 DOI: 10.1158/0008-5472.can-17-3752] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/16/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
Abstract
Cancer invasion and metastasis are driven by epithelial-mesenchymal transition (EMT), yet the exact mechanisms that account for EMT in clinical prostate cancer are not fully understood. Expression of N-cadherin is considered a hallmark of EMT in clinical prostate cancer. In this study, we determined the molecular mechanisms associated with N-cadherin expression in patients with prostate cancer. We performed laser capture microdissection of matched N-cadherin-positive and -negative prostate cancer areas from patient samples (n = 8), followed by RNA sequencing. N-cadherin expression was significantly associated with an immune-regulatory signature including profound upregulation of indoleamine 2,3-dioxygenase (IDO1; log2-fold change = 5.1; P = 2.98E-04). Fluorescent immunostainings of patient samples confirmed expression of IDO1 protein and also its metabolite kynurenine in primarily N-cadherin-positive areas. N-cadherin-positive areas also exhibited a local decrease of intraepithelial cytotoxic (CD8+) T cells and an increase of immunosuppressive regulatory T cells (CD4+/FOXP3+). In conclusion, EMT in clinical prostate cancer is accompanied by upregulated expression of IDO1 and an increased number of regulatory T cells. These data indicate that EMT, which is an important step in tumor progression, can be protected from effective immune control in patients with prostate cancer.Significance: These findings demonstrate EMT is linked to an immunosuppressive environment in clinical prostate cancer, suggesting that patients with prostate cancer can potentially benefit from combinatorial drug therapy. Cancer Res; 78(16); 4671-9. ©2018 AACR.
Collapse
Affiliation(s)
- Kimberley Kolijn
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Esther I Verhoef
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - René Böttcher
- Department of Urology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Guido W Jenster
- Department of Urology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Reno Debets
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
2863
|
Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S, Yamazoe T, Black T, Sahmoud A, Furth EE, Bar-Sagi D, Stanger BZ. EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration. Dev Cell 2018; 45:681-695.e4. [PMID: 29920274 PMCID: PMC6014628 DOI: 10.1016/j.devcel.2018.05.027] [Citation(s) in RCA: 457] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/20/2017] [Accepted: 05/21/2018] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is strongly implicated in tumor cell invasion and metastasis. EMT is thought to be regulated primarily at the transcriptional level through the repressive activity of EMT transcription factors. However, these classical mechanisms have been parsed out almost exclusively in vitro, leaving questions about the programs driving EMT in physiological contexts. Here, using a lineage-labeled mouse model of pancreatic ductal adenocarcinoma to study EMT in vivo, we found that most tumors lose their epithelial phenotype through an alternative program involving protein internalization rather than transcriptional repression, resulting in a "partial EMT" phenotype. Carcinoma cells utilizing this program migrate as clusters, contrasting with the single-cell migration pattern associated with traditionally defined EMT mechanisms. Moreover, many breast and colorectal cancer cell lines utilize this alternative program to undergo EMT. Collectively, these results suggest that carcinoma cells have different ways of losing their epithelial program, resulting in distinct modes of invasion and dissemination.
Collapse
Affiliation(s)
- Nicole M Aiello
- Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA
| | - Ravikanth Maddipati
- Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA
| | - Robert J Norgard
- Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA
| | - David Balli
- Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA
| | - Jinyang Li
- Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA
| | - Salina Yuan
- Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA
| | - Taiji Yamazoe
- Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA
| | - Taylor Black
- Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA
| | - Amine Sahmoud
- Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ben Z Stanger
- Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2864
|
Ghosh A, Degyatoreva N, Kukielski C, Story S, Bhaduri S, Maiti K, Nahar S, Ray A, Arya DP, Maiti S. Targeting miRNA by tunable small molecule binders: peptidic aminosugar mediated interference in miR-21 biogenesis reverts epithelial to mesenchymal transition. MEDCHEMCOMM 2018; 9:1147-1154. [PMID: 30109002 DOI: 10.1039/c8md00092a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a process in which epithelial cells lose cell polarity and cell-cell adhesion and gain migratory and invasive properties to become mesenchymal cells that are very vital for development, wound healing and stem cell behavior and contribute pathologically to fibrosis and cancer progression. miR21, a potent regulator of the tumor suppressor gene PTEN, can be silenced to reverse EMT, thereby providing an attractive target for abrogating the malignant behavior of breast cancer. Here, we report the design, synthesis and binding of a peptidic-aminoglycoside (PA) based chemical library against pre-miR21 that led to the identification of a group of small molecules that bind to pre-miR21 with high affinities and antagonize miR-21 maturation and function, thereby reversing EMT. The approach described here offers a promising miRNA targeting platform where such aminosugar conjugates can be similarly used to target other oncogenic miRNAs. Minor changes in the amino acid sequence allow us to tailor the binding effectiveness and downstream biological effects, thus making this approach a potentially tunable method of regulation of miRNA function.
Collapse
Affiliation(s)
- Arpita Ghosh
- CSIR, Institute of Genomics and Integrative Biology , New Delhi , India .
| | | | - Casey Kukielski
- Laboratory of Medicinal Chemistry , Clemson University , Clemson , SC 29634 , USA .
| | - Sandra Story
- NUBAD LLC , 900 B West Faris Road , Greenville , SC 29605 , USA
| | | | - Krishnagopal Maiti
- Laboratory of Medicinal Chemistry , Clemson University , Clemson , SC 29634 , USA .
| | - Smita Nahar
- CSIR, Institute of Genomics and Integrative Biology , New Delhi , India .
| | - Arjun Ray
- CSIR, Institute of Genomics and Integrative Biology , New Delhi , India .
| | - Dev P Arya
- NUBAD LLC , 900 B West Faris Road , Greenville , SC 29605 , USA.,Laboratory of Medicinal Chemistry , Clemson University , Clemson , SC 29634 , USA .
| | - Souvik Maiti
- CSIR, Institute of Genomics and Integrative Biology , New Delhi , India .
| |
Collapse
|
2865
|
|
2866
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
2867
|
Yu Z, Lou L, Zhao Y. Fibroblast growth factor 18 promotes the growth, migration and invasion of MDA‑MB‑231 cells. Oncol Rep 2018; 40:704-714. [PMID: 29901199 PMCID: PMC6072296 DOI: 10.3892/or.2018.6482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor 18 (FGF18) increases cell motility and invasion in colon tumors, and is linked with ovarian and lung tumors. Furthermore, the increased expression of FGF18 mRNA and protein has been associated with poor overall survival in cancer patients. However, its function has not been investigated in breast cancer. In the present study, we demonstrated that FGF18 promoted cell growth and metastasis in vitro and stimulated tumor growth in xenograft models in vivo. FGF18 mediated the proliferation of MDA-MB-231 cells via the ERK/c-Myc signaling pathway and induced epithelial-to-mesenchymal transition (EMT) factors to promote cancer migration and invasion. The decreased expression of FGF18 was strongly correlated with the loss/reduction of p-ERK, c-Myc, N-cadherin, vimentin and Snail 1 protein in MDA-MB-231 cells. Collectively, our results indicated that FGF18 played an important role in the growth and metastasis of breast cancer via the ERK/c-Myc signaling pathway and EMT, indicating that FGF18 may be a potential molecular treatment target for breast cancer.
Collapse
Affiliation(s)
- Ziyi Yu
- Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Longquan Lou
- Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Yi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
2868
|
Hojo N, Huisken AL, Wang H, Chirshev E, Kim NS, Nguyen SM, Campos H, Glackin CA, Ioffe YJ, Unternaehrer JJ. Snail knockdown reverses stemness and inhibits tumour growth in ovarian cancer. Sci Rep 2018; 8:8704. [PMID: 29880891 PMCID: PMC5992154 DOI: 10.1038/s41598-018-27021-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/23/2018] [Indexed: 12/29/2022] Open
Abstract
To develop effective therapies for advanced high grade serous ovarian cancer (HGSOC), understanding mechanisms of recurrence and metastasis is necessary. In this study, we define the epithelial/mesenchymal status of cell lines that accurately model HGSOC, and evaluate the therapeutic potential of targeting Snai1 (Snail), a master regulator of the epithelial/mesenchymal transition (EMT) in vitro and in vivo. The ratio of Snail to E-cadherin (S/E index) at RNA and protein levels was correlated with mesenchymal morphology in four cell lines. The cell lines with high S/E index (OVCAR8 and COV318) showed more CSC-like, motile, and chemoresistant phenotypes than those with low S/E index (OVSAHO and Kuramochi). We tested the role of Snail in regulation of malignant phenotypes including stemness, cell motility, and chemotherapy resistance: shRNA-mediated knockdown of Snail reversed these malignant phenotypes. Interestingly, the expression of let-7 tumour suppressor miRNA was upregulated in Snail knockdown cells. Furthermore, knockdown of Snail decreased tumour burden in an orthotopic xenograft mouse model. We conclude that Snail is important in controlling HGSOC malignant phenotypes and suggest that the Snail/Let-7 axis may be an attractive target for HGSOC treatment.
Collapse
Affiliation(s)
- N Hojo
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - A L Huisken
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - H Wang
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - E Chirshev
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - N S Kim
- Department of Molecular Biology, Chonbuk National University, Dukjindong 664-14, Jeonju, Jeollabuk-do, 561-756, Republic of Korea
| | - S M Nguyen
- University of California, Riverside - School of Medicine, Riverside, CA, USA
| | - H Campos
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - C A Glackin
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Y J Ioffe
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - J J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
2869
|
Bagati A, Bianchi-Smiraglia A, Moparthy S, Kolesnikova K, Fink EE, Lipchick BC, Kolesnikova M, Jowdy P, Polechetti A, Mahpour A, Ross J, Wawrzyniak JA, Yun DH, Paragh G, Kozlova NI, Berman AE, Wang J, Liu S, Nemeth MJ, Nikiforov MA. Melanoma Suppressor Functions of the Carcinoma Oncogene FOXQ1. Cell Rep 2018; 20:2820-2832. [PMID: 28930679 DOI: 10.1016/j.celrep.2017.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Lineage-specific regulation of tumor progression by the same transcription factor is understudied. We find that levels of the FOXQ1 transcription factor, an oncogene in carcinomas, are decreased during melanoma progression. Moreover, in contrast to carcinomas, FOXQ1 suppresses epithelial-to-mesenchymal transition, invasion, and metastasis in melanoma cells. We find that these lineage-specific functions of FOXQ1 largely depend on its ability to activate (in carcinomas) or repress (in melanoma) transcription of the N-cadherin gene (CDH2). We demonstrate that FOXQ1 interacts with nuclear β-catenin and TLE proteins, and the β-catenin/TLE ratio, which is higher in carcinoma than melanoma cells, determines the effect of FOXQ1 on CDH2 transcription. Accordingly, other FOXQ1-dependent phenotypes can be manipulated by altering nuclear β-catenin or TLE proteins levels. Our data identify FOXQ1 as a melanoma suppressor and establish a mechanism underlying its inverse lineage-specific transcriptional regulation of transformed phenotypes.
Collapse
Affiliation(s)
- Archis Bagati
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Sudha Moparthy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kateryna Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Emily E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brittany C Lipchick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Masha Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Peter Jowdy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Anthony Polechetti
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Amin Mahpour
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jason Ross
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Joseph A Wawrzyniak
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Dong Hyun Yun
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA; Department of Dermatology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Albert E Berman
- Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mikhail A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
2870
|
Noguchi K, Dincman TA, Dalton AC, Howley BV, McCall BJ, Mohanty BK, Howe PH. Interleukin-like EMT inducer (ILEI) promotes melanoma invasiveness and is transcriptionally up-regulated by upstream stimulatory factor-1 (USF-1). J Biol Chem 2018; 293:11401-11414. [PMID: 29871931 PMCID: PMC6065179 DOI: 10.1074/jbc.ra118.003616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Indexed: 12/25/2022] Open
Abstract
Interleukin-like EMT inducer (ILEI, FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell-biological process that confers metastatic properties to a tumor cell. However, very little is known about how ILEI is regulated. Here we demonstrate that ILEI is an in vivo regulator of melanoma invasiveness and is transcriptionally up-regulated by the upstream stimulatory factor-1 (USF-1), an E-box-binding, basic-helix-loop-helix family transcription factor. shRNA-mediated knockdown of ILEI in melanoma cell lines attenuated lung colonization but not primary tumor formation. We also identified the mechanism underlying ILEI transcriptional regulation, which was through a direct interaction of USF-1 with the ILEI promoter. Of note, stimulation of endogenous USF-1 by UV-mediated activation increased ILEI expression, whereas shRNA-mediated USF-1 knockdown decreased ILEI gene transcription. Finally, we report that knocking down USF-1 decreases tumor cell migration. In summary, our work reveals that ILEI contributes to melanoma cell invasiveness in vivo without affecting primary tumor growth and is transcriptionally up-regulated by USF-1.
Collapse
Affiliation(s)
- Ken Noguchi
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Toros A Dincman
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Division of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Buckley J McCall
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Hollings Cancer Center, Charleston, South Carolina 29425.
| |
Collapse
|
2871
|
Dower CM, Wills CA, Frisch SM, Wang HG. Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy 2018; 14:1110-1128. [PMID: 29863947 DOI: 10.1080/15548627.2018.1450020] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy/autophagy is a fundamental cellular degradation mechanism that maintains cell homeostasis, regulates cell signaling, and promotes cell survival. Its role in promoting tumor cell survival in stress conditions is well characterized, and makes autophagy an attractive target for cancer therapy. Emerging research indicates that autophagy also influences cancer metastasis, which is the primary cause of cancer-associated mortality. However, data demonstrate that the regulatory role of autophagy in metastasis is multifaceted, and includes both metastasis-suppressing and -promoting functions. The metastasis-suppressing functions of autophagy, in particular, have important implications for autophagy-based treatments, as inhibition of autophagy may increase the risk of metastasis. In this review, we discuss the mechanisms and context underlying the role of autophagy in metastasis, which include autophagy-mediated regulation of focal adhesion dynamics, integrin signaling and trafficking, Rho GTPase-mediated cytoskeleton remodeling, anoikis resistance, extracellular matrix remodeling, epithelial-to-mesenchymal transition signaling, and tumor-stromal cell interactions. Through this, we aim to clarify the context-dependent nature of autophagy-mediated metastasis and provide direction for further research investigating the role of autophagy in cancer metastasis.
Collapse
Affiliation(s)
- Christopher M Dower
- a Department of Pediatrics , Pennsylvania State University College of Medicine , Hershey , PA USA
| | - Carson A Wills
- a Department of Pediatrics , Pennsylvania State University College of Medicine , Hershey , PA USA
| | - Steven M Frisch
- b WVU Cancer Institute, Department of Biochemistry , West Virginia University , Morgantown , WV USA
| | - Hong-Gang Wang
- a Department of Pediatrics , Pennsylvania State University College of Medicine , Hershey , PA USA
| |
Collapse
|
2872
|
Yan X, Yu Y, Li L, Chen N, Song W, He H, Dong J, Liu X, Cui J. Friend leukemia virus integration 1 is a predictor of poor prognosis of breast cancer and promotes metastasis and cancer stem cell properties of breast cancer cells. Cancer Med 2018; 7:3548-3560. [PMID: 29869379 PMCID: PMC6089157 DOI: 10.1002/cam4.1589] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide; despite the developments in diagnosis and therapy, recurrence and metastasis remain the main causes of death among patients with breast cancer. This study aimed to identify a promising biomarker for this disease. The study clarified (1) the association between Friend leukemia virus integration 1 (FLI-1) and various molecular subtypes and (2) the prognostic value of FLI-1 in breast cancer. To the best of our knowledge, this study is the first to report that FLI-1 is a predictor of poor prognosis in patients with breast cancer and overexpressed in the triple negative breast cancer (TNBC) subtype. To further verify the effect of FLI-1 in promoting the metastasis of TNBC, we performed a series of functional experiments in vitro and orthotopic xenograft experiments in the mammary fat pad of nude mice. FLI-1, as a transcription factor, bound to the promoters of key EMT-related genes (CDH1 and VIM), and regulated their expressions at the transcriptional level, thus induced epithelial-mesenchymal transition (EMT). The overexpression of FLI-1 significantly upregulated the expression of mesenchymal markers. After the modulation of FLI-1, the changes in mammary stem cell markers (ALDH1A1 and CD133) and the capacity to form mammospheres were consistent with those of the EMT-related markers. The orthotopic xenograft models further confirmed that the attenuation of stem cell traits after silencing FLI-1 decreased the ability of tumorigenesis. These results indicate that FLI-1 is a useful predictor of poor prognosis in patients with breast cancer. Furthermore, the preliminary exploration of metastatic mechanism in the patients with TNBC will provide a potential target to treat breast cancer in the near future.
Collapse
Affiliation(s)
- Xu Yan
- Pathological Diagnostic Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lingyu Li
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Naifei Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hua He
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jie Dong
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiangliang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2873
|
|
2874
|
Chen X, Zhao M, Huang J, Li Y, Wang S, Harrington CA, Qian DZ, Sun XX, Dai MS. microRNA-130a suppresses breast cancer cell migration and invasion by targeting FOSL1 and upregulating ZO-1. J Cell Biochem 2018; 119:4945-4956. [PMID: 29384218 DOI: 10.1002/jcb.26739] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023]
Abstract
FOSL1 is frequently overexpressed in multiple types of human cancers including invasive breast cancers and implicated in cancer invasion and metastasis. However, how FOSL1 is overexpressed in cancers remains to be elucidated. Several microRNAs (miRNAs) have been shown to target FOSL1 and are downregulated in human cancers. Here, we report that miR-130a is a novel FOSL1 targeting miRNA. Using gene expression microarray analysis, we found that FOSL1 is among the most up-regulated genes in cells transfected with miR-130a inhibitors. Transient transfection-immunoblot, RNA-immunoprecipitation, and luciferase reporter assays revealed that miR-130a directly targets FOSL1 mRNA at its 3'-UTR. Overexpression of miR-130a significantly reduced the levels of FOSL1 in invasive breast cancer MDA-MB-231 and Hs578T cell lines and suppresses their migration and invasion. This inhibition can be rescued by ectopic expression of miR-130a-resistant FOSL1. Interestingly, we show that overexpression of miR-130a increased the levels of tight-junction protein ZO-1 while inhibition of miR-130a reduced the levels of ZO-1. We further show that miR-130a expression is significantly reduced in cancer tissues from triple-negative breast cancer (TNBC) patients, correlating significantly with the upregulation of FOSL1 expression, compared to non-TNBC tissues. Together, our results reveal that miR-130a directly targets FOSL1 and suppresses the inhibition of ZO-1, thus inhibiting cancer cell migration and invasion, in TNBCs.
Collapse
Affiliation(s)
- Xiaowei Chen
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Zhao
- Department of Pathology, the Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Jin Huang
- Department of Pathology, the Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Yuhuang Li
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Christina A Harrington
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oergon
- Integrated Genomics Laboratory, Oregon Health and Science University, Portland, Oergon
| | - David Z Qian
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oergon
| | - Xiao-Xin Sun
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oergon
| | - Mu-Shui Dai
- Departments of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oergon
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, Oergon
| |
Collapse
|
2875
|
MacLean AL, Hong T, Nie Q. Exploring intermediate cell states through the lens of single cells. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 9:32-41. [PMID: 30450444 PMCID: PMC6238957 DOI: 10.1016/j.coisb.2018.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As our catalog of cell states expands, appropriate characterization of these states and the transitions between them is crucial. Here we discuss the roles of intermediate cell states (ICSs) in this growing collection. We begin with definitions and discuss evidence for the existence of ICSs and their relevance in various tissues. We then provide a list of possible functions for ICSs with examples. Finally, we describe means by which ICSs and their functional roles can be identified from single-cell data or predicted from models.
Collapse
Affiliation(s)
- Adam L. MacLean
- Department of Mathematics and Center for Complex Biological Systems, University of California, Irvine, CA 92697, United States
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37966, United States
| | - Qing Nie
- Department of Mathematics and Center for Complex Biological Systems, University of California, Irvine, CA 92697, United States,Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States
| |
Collapse
|
2876
|
Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppalapati A, Luu HH, Haydon RC, He TC, Ren G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018; 5:77-106. [PMID: 30258937 PMCID: PMC6147049 DOI: 10.1016/j.gendis.2018.05.001] [Citation(s) in RCA: 680] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
As the most commonly occurring cancer in women worldwide, breast cancer poses a formidable public health challenge on a global scale. Breast cancer consists of a group of biologically and molecularly heterogeneous diseases originated from the breast. While the risk factors associated with this cancer varies with respect to other cancers, genetic predisposition, most notably mutations in BRCA1 or BRCA2 gene, is an important causative factor for this malignancy. Breast cancers can begin in different areas of the breast, such as the ducts, the lobules, or the tissue in between. Within the large group of diverse breast carcinomas, there are various denoted types of breast cancer based on their invasiveness relative to the primary tumor sites. It is important to distinguish between the various subtypes because they have different prognoses and treatment implications. As there are remarkable parallels between normal development and breast cancer progression at the molecular level, it has been postulated that breast cancer may be derived from mammary cancer stem cells. Normal breast development and mammary stem cells are regulated by several signaling pathways, such as estrogen receptors (ERs), HER2, and Wnt/β-catenin signaling pathways, which control stem cell proliferation, cell death, cell differentiation, and cell motility. Furthermore, emerging evidence indicates that epigenetic regulations and noncoding RNAs may play important roles in breast cancer development and may contribute to the heterogeneity and metastatic aspects of breast cancer, especially for triple-negative breast cancer. This review provides a comprehensive survey of the molecular, cellular and genetic aspects of breast cancer.
Collapse
Affiliation(s)
- Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mia Spezia
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shifeng Huang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang 443002, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Wei Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Bo Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yan Lei
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Scott Du
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Akhila Vuppalapati
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2877
|
FGFR1-ERK1/2-SOX2 axis promotes cell proliferation, epithelial-mesenchymal transition, and metastasis in FGFR1-amplified lung cancer. Oncogene 2018; 37:5340-5354. [PMID: 29858603 DOI: 10.1038/s41388-018-0311-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/24/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an important process for cancer metastasis, drug resistance, and cancer stem cells. Activation of fibroblast growth factor receptor 1 (FGFR1) was found to promote EMT and metastasis in prostate and breast cancers, but the effects and mechanisms in lung cancer was unclear. In this study, we aimed to explore whether and how activation of FGFR1 promotes EMT and metastasis in FGFR1-amplified lung cancer. We show that activation of FGFR1 by its ligand fibroblast growth factor 2 (FGF2) promoted proliferation, EMT, migration, and invasion in FGFR1-amplified lung cancer cell lines H1581 and DMS114, whereas inhibition of FGFR1 suppressed these processes. FGFR1 activation upregulated expression of Sry-related HMG box 2 (SOX2) by downstream phosphorylated ERK1/2; moreover, the upregulation of SOX2 by autophosphorylation variant ERK2_R67S plasmid transfection was not suppressed by FGFR1 inhibitor AZD4547 or MEK/ERK inhibitor AZD6244 in vitro. And SOX2 expression was also significantly upregulated in ERK2_R67S lentivirus-transfected stable cell lines in vivo. Overexpression of SOX2 promoted cell proliferation, EMT, migration, and invasion. Importantly, activation of FGFR1 could not promote these processes in SOX2-silenced stable cell lines. In orthotopic and subcutaneous lung cancer xenograft models, inhibition of FGFR1 suppressed tumor growth, SOX2 expression, EMT, and metastasis in vivo; however, these processes caused by SOX2-overexpressing stable cell lines were not suppressed by FGFR1 inhibition. Higher expression of FGFR1 and SOX2 were positively correlated, and both were associated with shorter survival in lung cancer patients. In conclusion, our findings reveal that activation of FGFR1 promotes cell proliferation, EMT, and metastasis by the newly defined FGFR1-ERK1/2-SOX2 axis in FGFR1-amplified lung cancer.
Collapse
|
2878
|
Suzuki K, Kawataki T, Endo K, Miyazawa K, Kinouchi H, Saitoh M. Expression of ZEBs in gliomas is associated with invasive properties and histopathological grade. Oncol Lett 2018; 16:1758-1764. [PMID: 30008863 DOI: 10.3892/ol.2018.8852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
The invasiveness of glioma cells is the predominant clinical problem associated with this tumor type, and is correlated with pathological malignant grade. ZEB1 is highly expressed in glioma cells and associated with the aggressiveness of various types of cancer. In the present study, the expression of ZEB1 and ZEB2 was examined with the aim of determining the role of ZEBs in glioma. ZEB1 and ZEB2 were highly expressed in all glioma cells used in this study. Double knockdown of ZEB1 and ZEB2 suppressed tumor invasiveness more effectively than knockdown of either alone, in both in vitro and in vivo experiments. ZEB1 and ZEB2 were marginally expressed in grade II, but expressed at higher levels in grade IV. Importantly, ZEB-positive cells were more abundant in recurrent glioma with malignant transformation than in initial grade II tissue from the same case. These results indicate that the levels of ZEB1 and ZEB2 are positively correlated with histopathological grade and invasiveness of glioma, suggesting that δEF1 family proteins (ZEB1 and ZEB2) could be useful as prognostic markers and therapeutic targets in patients with glioma.
Collapse
Affiliation(s)
- Keiko Suzuki
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Tomoyuki Kawataki
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kaori Endo
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Masao Saitoh
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan.,Department of Center for Medical Education and Sciences, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
2879
|
Weiner AMJ. MicroRNAs and the neural crest: From induction to differentiation. Mech Dev 2018; 154:98-106. [PMID: 29859253 DOI: 10.1016/j.mod.2018.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 01/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that can control gene expression by base pairing to partially complementary mRNAs. Regulation by microRNAs plays essential roles in diverse biological processes such as neural crest formation during embryonic development. The neural crest is a multipotent cell population that develops from the dorsal neural fold of vertebrate embryos in order to migrate extensively and differentiate into a variety of tissues. Gene regulatory networks that coordinate neural crest cell specification and differentiation have been considerably studied so far. Although it is known that microRNAs play important roles in neural crest development, posttranscriptional regulation by microRNAs has not been deeply characterized yet. This review is focused on the microRNAs identified so far in order to regulate gene expression of neural crest cells during vertebrate development.
Collapse
Affiliation(s)
- Andrea M J Weiner
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP Rosario, Argentina.
| |
Collapse
|
2880
|
Sittewelle M, Monsoro-Burq AH. AKT signaling displays multifaceted functions in neural crest development. Dev Biol 2018; 444 Suppl 1:S144-S155. [PMID: 29859890 DOI: 10.1016/j.ydbio.2018.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022]
Abstract
AKT signaling is an essential intracellular pathway controlling cell homeostasis, cell proliferation and survival, as well as cell migration and differentiation in adults. Alterations impacting the AKT pathway are involved in many pathological conditions in human disease. Similarly, during development, multiple transmembrane molecules, such as FGF receptors, PDGF receptors or integrins, activate AKT to control embryonic cell proliferation, migration, differentiation, and also cell fate decisions. While many studies in mouse embryos have clearly implicated AKT signaling in the differentiation of several neural crest derivatives, information on AKT functions during the earliest steps of neural crest development had remained relatively scarce until recently. However, recent studies on known and novel regulators of AKT signaling demonstrate that this pathway plays critical roles throughout the development of neural crest progenitors. Non-mammalian models such as fish and frog embryos have been instrumental to our understanding of AKT functions in neural crest development, both in neural crest progenitors and in the neighboring tissues. This review combines current knowledge acquired from all these different vertebrate animal models to describe the various roles of AKT signaling related to neural crest development in vivo. We first describe the importance of AKT signaling in patterning the tissues involved in neural crest induction, namely the dorsal mesoderm and the ectoderm. We then focus on AKT signaling functions in neural crest migration and differentiation.
Collapse
Affiliation(s)
- Méghane Sittewelle
- Univ. Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France
| | - Anne H Monsoro-Burq
- Univ. Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France; Institut Universitaire de France, F-75005 Paris, France.
| |
Collapse
|
2881
|
Kiweler N, Brill B, Wirth M, Breuksch I, Laguna T, Dietrich C, Strand S, Schneider G, Groner B, Butter F, Heinzel T, Brenner W, Krämer OH. The histone deacetylases HDAC1 and HDAC2 are required for the growth and survival of renal carcinoma cells. Arch Toxicol 2018; 92:2227-2243. [DOI: 10.1007/s00204-018-2229-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
|
2882
|
Huang JL, Cao SW, Ou QS, Yang B, Zheng SH, Tang J, Chen J, Hu YW, Zheng L, Wang Q. The long non-coding RNA PTTG3P promotes cell growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in hepatocellular carcinoma. Mol Cancer 2018; 17:93. [PMID: 29803224 PMCID: PMC5970477 DOI: 10.1186/s12943-018-0841-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Background Dysfunctions of long non-coding RNA (lncRNAs) have been associated with the initiation and progression of hepatocellular carcinoma (HCC), but the clinicopathologic significance and potential role of lncRNA PTTG3P (pituitary tumor-transforming 3, pseudogene) in HCC remains largely unknown. Methods We compared the expression profiles of lncRNAs in 3 HCC tumor tissues and adjacent non-tumor tissues by microarrays. In situ hybridization (ISH) and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to assess the level of PTTG3P and prognostic values of PTTG3P were assayed in two HCC cohorts (n = 46 and 90). Artificial modulation of PTTG3P (down- and over-expression) was performed to explore the role of PTTG3P in tumor growth and metastasis in vitro and in vivo. Involvement of PTTG1 (pituitary tumor-transforming 1), PI3K/AKT signaling and its downstream signals were validated by qRT-PCR and western blot. Results We found that PTTG3P was frequently up-regulated in HCC and its level was positively correlated to tumor size, TNM stage and poor survival of patients with HCC. Enforced expression of PTTG3P significantly promoted cell proliferation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, PTTG3P knockdown had opposite effects. Mechanistically, over-expression of PTTG3P up-regulated PTTG1, activated PI3K/AKT signaling and its downstream signals including cell cycle progression, cell apoptosis and epithelial-mesenchymal transition (EMT)-associated genes. Conclusions Our findings suggest that PTTG3P, a valuable marker of HCC prognosis, promotes tumor growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in HCC and might represent a potential target for gene-based therapy. Electronic supplementary material The online version of this article (10.1186/s12943-018-0841-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin-Lan Huang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Clinical Laboratory, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Shun-Wang Cao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qi-Shui Ou
- Department of Clinical Laboratory, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bin Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Shi-Hao Zheng
- Department of Neurosurgery, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jing Tang
- Department of Internal Medicine-Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Chen
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
2883
|
p53-Dependent and -Independent Epithelial Integrity: Beyond miRNAs and Metabolic Fluctuations. Cancers (Basel) 2018; 10:cancers10060162. [PMID: 29799511 PMCID: PMC6024951 DOI: 10.3390/cancers10060162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
In addition to its classical roles as a tumor suppressor, p53 has also been shown to act as a guardian of epithelial integrity by inducing the microRNAs that target transcriptional factors driving epithelial⁻mesenchymal transition. On the other hand, the ENCODE project demonstrated an enrichment of putative motifs for the binding of p53 in epithelial-specific enhancers, such as CDH1 (encoding E-cadherin) enhancers although its biological significance remained unknown. Recently, we identified two novel modes of epithelial integrity (i.e., maintenance of CDH1 expression): one involves the binding of p53 to a CDH1 enhancer region and the other does not. In the former, the binding of p53 is necessary to maintain permissive histone modifications around the CDH1 transcription start site, whereas in the latter, p53 does not bind to this region nor affect histone modifications. Furthermore, these mechanisms likely coexisted within the same tissue. Thus, the mechanisms involved in epithelial integrity appear to be much more complex than previously thought. In this review, we describe our findings, which may instigate further experimental scrutiny towards understanding the whole picture of epithelial integrity as well as the related complex asymmetrical functions of p53. Such understanding will be important not only for cancer biology but also for the safety of regenerative medicine.
Collapse
|
2884
|
The role of the epithelial-to-mesenchymal transition (EMT) in diseases of the salivary glands. Histochem Cell Biol 2018; 150:133-147. [DOI: 10.1007/s00418-018-1680-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 02/06/2023]
|
2885
|
Maturi V, Morén A, Enroth S, Heldin CH, Moustakas A. Genomewide binding of transcription factor Snail1 in triple-negative breast cancer cells. Mol Oncol 2018; 12:1153-1174. [PMID: 29729076 PMCID: PMC6026864 DOI: 10.1002/1878-0261.12317] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/28/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulation mediated by the zinc finger protein Snail1 controls early embryogenesis. By binding to the epithelial tumor suppressor CDH1 gene, Snail1 initiates the epithelial–mesenchymal transition (EMT). The EMT generates stem‐like cells and promotes invasiveness during cancer progression. Accordingly, Snail1 mRNA and protein is abundantly expressed in triple‐negative breast cancers with enhanced metastatic potential and phenotypic signs of the EMT. Such high endogenous Snail1 protein levels permit quantitative chromatin immunoprecipitation‐sequencing (ChIP‐seq) analysis. Snail1 associated with 185 genes at cis regulatory regions in the Hs578T triple‐negative breast cancer cell model. These genes include morphogenetic regulators and signaling components that control polarized differentiation. Using the CRISPR/Cas9 system in Hs578T cells, a double deletion of 10 bp each was engineered into the first exon and into the second exon–intron junction of Snail1, suppressing Snail1 expression and causing misregulation of several hundred genes. Specific attention to regulators of chromatin organization provides a possible link to new phenotypes uncovered by the Snail1 loss‐of‐function mutation. On the other hand, genetic inactivation of Snail1 was not sufficient to establish a full epithelial transition to these tumor cells. Thus, Snail1 contributes to the malignant phenotype of breast cancer cells via diverse new mechanisms.
Collapse
Affiliation(s)
- Varun Maturi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Sweden
| | - Anita Morén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Sweden
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Sweden
| |
Collapse
|
2886
|
Liu L, Huang C, Li L, Liang N, Li S. [Relationship between FGFR1 Gene Regulation of Circulating Tumor Cells and Clinical Features of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:365-374. [PMID: 29764586 PMCID: PMC5999920 DOI: 10.3779/j.issn.1009-3419.2018.05.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
背景与目的 目前检测非小细胞肺癌(non-small cell lung cancer, NSCLC)术后患者复发转移的方法均具有一定的滞后性及片面性。本研究总结分析了30例NSCLC患者外周血循环肿瘤细胞(circulating tumor cell, CTC)及成纤维细胞生长因子受体1(fibroblast growth factor receptor 1, FGFR1)表达情况与临床病理之间的关系,以期能够为肿瘤复发转移的检测提供新思路。 方法 分析北京协和医院胸外科2016年11月-2017年6月30例NSCLC患者临床资料及CTC检测数据并进行相关性分析。 结果 相关性数据分析可得,外周血CTC细胞阳性率与吸烟史相关(P=0.016),病理类型与CTC阳性率及FGFR1表达情况之间无明显关联(P=0.202, P=0.806),不同类型CTC细胞FGFR1表达情况并无明显差异(P=0.094)。 结论 CTC阳性率与NSCLC患者吸烟史相关,不同病理类型NSCLC中CTC分类及FGFR1表达情况无明显差异,不同类型CTC之间FGFR1表达情况无明显差异。我们期待着更大样本量及纳入随访数据后可得出与CTC及FGFR1基因表达相关的更多具有临床应用意义的结论。
Collapse
Affiliation(s)
- Lei Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Cheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Li Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
2887
|
Bisogno LS, Friedersdorf MB, Keene JD. Ras Post-transcriptionally Enhances a Pre-malignantly Primed EMT to Promote Invasion. iScience 2018; 4:97-108. [PMID: 30240757 PMCID: PMC6147080 DOI: 10.1016/j.isci.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/12/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is integral to cancer progression, with considerable evidence that EMT has multiple intermediary stages. Understanding the mechanisms of this stepwise activation is of great interest. We recreated a genetically defined model in which primary cells were immortalized, resulting in migratory capacity, and subsequently H-Ras-transformed, causing malignancy and invasion. To determine the mechanisms coordinating stepwise malignancy, we quantified the changes in messenger RNA (mRNA) and protein abundance. During immortalization, we found dramatic changes in mRNA, consistent with EMT, which correlated with protein abundance. Many of these same proteins also changed following Ras transformation, suggesting that pre-malignant cells were primed for malignant conversion. Unexpectedly, changes in protein abundance did not correlate with changes in mRNA following transformation. Importantly, proteins involved in cellular adhesion and cytoskeletal structure decreased during immortalization and decreased further following Ras transformation, whereas their encoding mRNAs only changed during the immortalization step. Thus, Ras induced EMT-associated invasion via post-transcriptional mechanisms in primed pre-malignant cells. Two-stage progressive cell culture model demonstrates partial EMT states Pre-malignant immortalization alters RNA abundance to induce cell migration Ras transformation alters protein abundance, but not RNA, to induce cell invasion Both stages cooperate to regulate protein expression of adhesion molecules and RBPs
Collapse
Affiliation(s)
- Laura S Bisogno
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew B Friedersdorf
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jack D Keene
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
2888
|
Zhang SL, Li C, Liu DL, Tan YY. Role of HDAC6 in primary digestive system malignancies. Shijie Huaren Xiaohua Zazhi 2018; 26:827-833. [DOI: 10.11569/wcjd.v26.i14.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the second leading cause of death around the world following cardiovascular disease. The morbidity and mortality of digestive system malignancies rank among the top in malignant tumors. Cancer occurrence and development are a multi-factor and multi-stage process. Acetylation and deacetylation play an important role in the development of cancer. Deacetylation of proteins is regulated by histone deacetylases (HDACs). A total of 18 human HDACs have been discovered, among which HDAC6 is the most widely studied. It has been demonstrated that HDAC6 is highly expressed in a variety of tumor tissues and associated with the clinicopathological characteristics of these tumors. What's more, HDAC6 selective inhibitors can inhibit the growth of many cancer cells. In the present review, we summarize the role of HDAC6 in primary digestive system malignancies.
Collapse
Affiliation(s)
- Shi-Lan Zhang
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hu'nan Province, China
| | - Chen Li
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hu'nan Province, China
| | - De-Liang Liu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hu'nan Province, China
| | - Yu-Yong Tan
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hu'nan Province, China
| |
Collapse
|
2889
|
Liu W, Wang S, Sun Q, Yang Z, Liu M, Tang H. DCLK1 promotes epithelial-mesenchymal transition via the PI3K/Akt/NF-κB pathway in colorectal cancer. Int J Cancer 2018; 142:2068-2079. [PMID: 29277893 DOI: 10.1002/ijc.31232] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
Abstract
Double cortin-like kinase 1 (DCLK1) plays important roles during the epithelial-mesenchymal transition (EMT) process in human colorectal cancer (CRC). However, the role of DCLK1 in regulating the EMT of CRC is still poorly understood. In this study, we report evidence that DCLK1 acts as a potent oncogene to drive its extremely malignant character of EMT in an NF-κB-dependent manner in CRC cells. Mechanistic investigations showed that DCLK1 induced the NF-κBp65 subunit expression through the PI3K/Akt/Sp1 axis and activated NF-κBp65 through the PI3K/Akt/IκBα pathway during the EMT of CRC cells. Moreover, we found that silencing the expression of DCLK1 inhibited the invasion and metastasis of CRC cells in vivo. Collectively, our findings identify DCLK1 as a pivotal regulator of an EMT axis in CRC, thus implicating DCLK1 as a potential therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Weiying Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shixing Wang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Sun
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhen Yang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2890
|
ZEB Proteins in Leukemia: Friends, Foes, or Friendly Foes? Hemasphere 2018; 2:e43. [PMID: 31723771 PMCID: PMC6745990 DOI: 10.1097/hs9.0000000000000043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 01/06/2023] Open
Abstract
ZEB1 and ZEB2 play pivotal roles in solid cancer metastasis by allowing cancer cells to invade and disseminate through the transcriptional regulation of epithelial-to-mesenchymal transition. ZEB expression is also associated with the acquisition of cancer stem cell properties and therapy resistance. Consequently, expression levels of ZEB1/2 and of their direct target genes are widely seen as reliable prognostic markers for solid tumor aggressiveness and cancer patient outcome. Recent loss-of-function mouse models demonstrated that both ZEBs are also essential hematopoietic transcription factors governing blood lineage commitment and fidelity. Interestingly, both gain- and loss-of-function mutations have been reported in multiple hematological malignancies. Combined with emerging functional studies, these data suggest that ZEB1 and ZEB2 can act as tumor suppressors and/or oncogenes in blood borne malignancies, depending on the cellular context. Here, we review these novel insights and discuss how balanced expression of ZEB proteins may be essential to safeguard the functionality of the immune system and prevent leukemia.
Collapse
|
2891
|
Maturi V, Enroth S, Heldin CH, Moustakas A. Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells. J Cell Physiol 2018; 233:7113-7127. [PMID: 29744893 PMCID: PMC6055758 DOI: 10.1002/jcp.26634] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/30/2018] [Indexed: 12/22/2022]
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is a transcriptional regulator involved in embryonic development and cancer progression. ZEB1 induces epithelial-mesenchymal transition (EMT). Triple-negative human breast cancers express high ZEB1 mRNA levels and exhibit features of EMT. In the human triple-negative breast cancer cell model Hs578T, ZEB1 associates with almost 2,000 genes, representing many cellular functions, including cell polarity regulation (DLG2 and FAT3). By introducing a CRISPR-Cas9-mediated 30 bp deletion into the ZEB1 second exon, we observed reduced migratory and anchorage-independent growth capacity of these tumor cells. Transcriptomic analysis of control and ZEB1 knockout cells, revealed 1,372 differentially expressed genes. The TIMP metallopeptidase inhibitor 3 and the teneurin transmembrane protein 2 genes showed increased expression upon loss of ZEB1, possibly mediating pro-tumorigenic actions of ZEB1. This work provides a resource for regulators of cancer progression that function under the transcriptional control of ZEB1. The data confirm that removing a single EMT transcription factor, such as ZEB1, is not sufficient for reverting the triple-negative mesenchymal breast cancer cells into more differentiated, epithelial-like clones, but can reduce tumorigenic potential, suggesting that not all pro-tumorigenic actions of ZEB1 are linked to the EMT.
Collapse
Affiliation(s)
- Varun Maturi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, and Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, and Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, and Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2892
|
Ullmann P, Rodriguez F, Schmitz M, Meurer SK, Qureshi-Baig K, Felten P, Ginolhac A, Antunes L, Frasquilho S, Zügel N, Weiskirchen R, Haan S, Letellier E. The miR-371∼373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis. Cancer Res 2018; 78:3793-3808. [PMID: 29748374 DOI: 10.1158/0008-5472.can-17-3003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/09/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022]
Abstract
The vast majority of colorectal cancer-related deaths can be attributed to metastatic spreading of the disease. Therefore, deciphering molecular mechanisms of metastatic dissemination is a key prerequisite to improve future treatment options. With this aim, we took advantage of different colorectal cancer cell lines and recently established primary cultures enriched in colon cancer stem cells, also known as tumor-initiating cells (TIC), to identify genes and miRNAs with regulatory functions in colorectal cancer progression. We show here that metastasis-derived TICs display increased capacity for self-renewal, TGFβ signaling activity, and reduced expression of the miR-371∼373 cluster compared with nonmetastatic cultures. TGFβ receptor 2 (TGFBR2) and aldehyde dehydrogenase A1 (ALDH1A1) were identified as important target genes of the miR-371∼373 cluster. In addition, TGFBR2 repression, either by direct knockdown or indirectly via overexpression of the entire miR-371∼373 cluster, decreased tumor-initiating potential of TICs. We observed significantly reduced in vitro self-renewal activity as well as lowered tumor initiation and metastatic outgrowth capacity in vivo following stable overexpression of the miR-371∼373 cluster in different colon TIC cultures. Inhibitor of DNA binding 1 (ID1) was affected by both TGFBR2 and miR-371∼373 cluster alterations. Functional sphere and tumor formation as well as metastatic dissemination assays validated the link between miR-371∼373 and ID1. Altogether, our results establish the miR-371∼373/TGFBR2/ID1 signaling axis as a novel regulatory mechanism of TIC self-renewal and metastatic colonization.Significance: These findings establish the miR-371∼373/TGFBR2/ID1 signaling axis as a novel mechanism regulating self-renewal of tumor-initiating cell and metastatic colonization, potentially opening new concepts for therapeutic targeting of cancer metastasis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/14/3793/F1.large.jpg Cancer Res; 78(14); 3793-808. ©2018 AACR.
Collapse
Affiliation(s)
- Pit Ullmann
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Fabien Rodriguez
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Martine Schmitz
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Komal Qureshi-Baig
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Felten
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Aurélien Ginolhac
- Bioinformatics Core Facility, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | | | | | - Nikolaus Zügel
- Centre Hospitalier Emile Mayrisch, Rue Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Serge Haan
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
2893
|
Kovac B, Mäkelä TP, Vallenius T. Increased α-actinin-1 destabilizes E-cadherin-based adhesions and associates with poor prognosis in basal-like breast cancer. PLoS One 2018; 13:e0196986. [PMID: 29742177 PMCID: PMC5942811 DOI: 10.1371/journal.pone.0196986] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/24/2018] [Indexed: 01/04/2023] Open
Abstract
The controlled formation and stabilization of E-cadherin-based adhesions is vital for epithelial integrity. This requires co-operation between the E-cadherin-based adhesions and the associated actin cytoskeleton. In cancer, this co-operation often fails, predisposing cells to migration through molecular mechanisms that have only been partially characterized. Here, we demonstrate that the actin filament cross-linker α-actinin-1 is frequently increased in human breast cancer. In mammary epithelial cells, the increased α-actinin-1 levels promote cell migration and induce disorganized acini-like structures in Matrigel. This is accompanied by a major reorganization of the actin cytoskeleton and the associated E-cadherin-based adhesions. Increased expression of α-actinin-1 is particularly noted in basal-like breast cancer cell lines, and in breast cancer patients it associates with poor prognosis in basal-like subtypes. Downregulation of α-actinin-1 in E-cadherin expressing basal-like breast cancer cells demonstrate that α-actinin-1-assembled actin fibers destabilize E-cadherin-based adhesions. Taken together, these results indicate that increased α-actinin-1 expression destabilizes E-cadherin-based adhesions, which is likely to promote the migratory potential of breast cancer cells. Furthermore, our results identify α-actinin-1 as a candidate prognostic biomarker in basal-like breast cancer.
Collapse
Affiliation(s)
- Bianca Kovac
- Research Programs Unit, Faculty of Medicine and Helsinki Institute of Life Science HiLIFE, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
| | - Tomi P. Mäkelä
- Research Programs Unit, Faculty of Medicine and Helsinki Institute of Life Science HiLIFE, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
| | - Tea Vallenius
- Research Programs Unit, Faculty of Medicine and Helsinki Institute of Life Science HiLIFE, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
2894
|
Zheng L, Zhang Z, Zhang S, Guo Q, Zhang F, Gao L, Ni H, Guo X, Xiang C, Xi T. RNA Binding Protein RNPC1 Inhibits Breast Cancer Cell Metastasis via Activating STARD13-Correlated ceRNA Network. Mol Pharm 2018; 15:2123-2132. [PMID: 29733656 DOI: 10.1021/acs.molpharmaceut.7b01123] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Zhiting Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Shufang Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Qianqian Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Feng Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Lanlan Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Haiwei Ni
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Xinwei Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Chenxi Xiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
2895
|
Mammary Stem Cells and Breast Cancer Stem Cells: Molecular Connections and Clinical Implications. Biomedicines 2018; 6:biomedicines6020050. [PMID: 29734696 PMCID: PMC6026898 DOI: 10.3390/biomedicines6020050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 12/27/2022] Open
Abstract
Cancer arises from subpopulations of transformed cells with high tumor initiation and repopulation ability, known as cancer stem cells (CSCs), which share many similarities with their normal counterparts. In the mammary gland, several studies have shown common molecular regulators between adult mammary stem cells (MaSCs) and breast cancer stem cells (bCSCs). Cell plasticity and self-renewal are essential abilities for MaSCs to maintain tissue homeostasis and regenerate the gland after pregnancy. Intriguingly, these properties are similarly executed in breast cancer stem cells to drive tumor initiation, tumor heterogeneity and recurrence after chemotherapy. In addition, both stem cell phenotypes are strongly influenced by external signals from the microenvironment, immune cells and supportive specific niches. This review focuses on the intrinsic and extrinsic connections of MaSC and bCSCs with clinical implications for breast cancer progression and their possible therapeutic applications.
Collapse
|
2896
|
Hamilton DH, McCampbell KK, Palena C. Loss of the Cyclin-Dependent Kinase Inhibitor 1 in the Context of Brachyury-Mediated Phenotypic Plasticity Drives Tumor Resistance to Immune Attack. Front Oncol 2018; 8:143. [PMID: 29774202 PMCID: PMC5943507 DOI: 10.3389/fonc.2018.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
The acquisition of mesenchymal features by carcinoma cells is now recognized as a driver of metastasis and tumor resistance to a range of anticancer therapeutics, including chemotherapy, radiation, and certain small-molecule targeted therapies. With the recent successful implementation of immunotherapies for the treatment of various types of cancer, there is growing interest in understanding whether an immunological approach could be effective at eradicating carcinoma cells bearing mesenchymal features. Recent studies, however, demonstrated that carcinoma cells that have acquired mesenchymal features may also exhibit decreased susceptibility to lysis mediated by immune effector cells, including antigen-specific CD8+ T cells, innate natural killer (NK), and lymphokine-activated killer (LAK) cells. Here, we investigated the mechanism involved in the immune resistance of carcinoma cells that express very high levels of the transcription factor brachyury, a molecule previously shown to drive the acquisition of mesenchymal features by carcinoma cells. Our results demonstrate that very high levels of brachyury expression drive the loss of the cyclin-dependent kinase inhibitor 1 (p21CIP1, p21), an event that results in decreased tumor susceptibility to immune-mediated lysis. We show here that reconstitution of p21 expression markedly increases the lysis of brachyury-high tumor cells mediated by antigen-specific CD8+ T cells, NK, and LAK cells, TNF-related apoptosis-inducing ligand, and chemotherapy. Several reports have now demonstrated a role for p21 loss in cancer as an inducer of the epithelial–mesenchymal transition. The results from the present study situate p21 as a central player in many of the aspects of the phenomenon of brachyury-mediated mesenchymalization of carcinomas, including resistance to chemotherapy and immune-mediated cytotoxicity. We also demonstrate here that the defects in tumor cell death described in association with very high levels of brachyury could be alleviated via the use of a WEE1 inhibitor. Several vaccine platforms targeting brachyury have been developed and are undergoing clinical evaluation. These studies provide further rationale for the use of WEE1 inhibition in combination with brachyury-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kristen K McCampbell
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2897
|
Epigenetic silencing of miR-483-3p promotes acquired gefitinib resistance and EMT in EGFR-mutant NSCLC by targeting integrin β3. Oncogene 2018; 37:4300-4312. [PMID: 29717264 PMCID: PMC6072709 DOI: 10.1038/s41388-018-0276-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
All lung cancers patients with epidermal growth factor receptor (EGFR) mutation inevitably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKI). In up to 30% of cases, the mechanism underlying acquired resistance remains unknown. MicroRNAs (miRNAs) is a group of small non-coding RNAs commonly dysregulated in human cancers and have been implicated in therapy resistance. The aim of this study was to understand the roles of novel miRNAs in acquired EGFR TKI resistance in EGFR-mutant non-small cell lung cancer (NSCLC). Here, we reported the evidence of miR-483-3p silencing and epithelial-to-mesenchymal transition (EMT) phenotype in both in vitro and in vivo EGFR-mutant NSCLC models with acquired resistance to gefitinib. In those tumor models, forced expression of miR-483-3p efficiently increased sensitivity of gefitinib-resistant lung cancer cells to gefitinib by inhibiting proliferation and promoting apoptosis. Moreover, miR-483-3p reversed EMT and inhibited migration, invasion, and metastasis of gefitinib-resistant lung cancer cells. Mechanistically, miR-483-3p directly targeted integrin β3, and thus repressed downstream FAK/Erk signaling pathway. Furthermore, the silencing of miR-483-3p in gefitinib-resistant lung cancer cells was due to hypermethylation of its own promoter. Taken together, our data identify miR-483-3p as a promising target for combination therapy to overcome acquired EGFR TKI resistance in EGFR-mutant NSCLC.
Collapse
|
2898
|
Chen F, Zhang Y, Gibbons DL, Deneen B, Kwiatkowski DJ, Ittmann M, Creighton CJ. Pan-Cancer Molecular Classes Transcending Tumor Lineage Across 32 Cancer Types, Multiple Data Platforms, and over 10,000 Cases. Clin Cancer Res 2018; 24:2182-2193. [PMID: 29440175 PMCID: PMC5932236 DOI: 10.1158/1078-0432.ccr-17-3378] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/08/2018] [Accepted: 02/02/2018] [Indexed: 01/03/2023]
Abstract
Purpose: The Cancer Genome Atlas data resources represent an opportunity to explore commonalities across cancer types involving multiple molecular levels, but tumor lineage and histology can represent a barrier in moving beyond differences related to cancer type.Experimental Design: On the basis of gene expression data, we classified 10,224 cancers, representing 32 major types, into 10 molecular-based "classes." Molecular patterns representing tissue or histologic dominant effects were first removed computationally, with the resulting classes representing emergent themes across tumor lineages.Results: Key differences involving mRNAs, miRNAs, proteins, and DNA methylation underscored the pan-cancer classes. One class expressing neuroendocrine and cancer-testis antigen markers represented ∼4% of cancers surveyed. Basal-like breast cancers segregated into an exclusive class, distinct from all other cancers. Immune checkpoint pathway markers and molecular signatures of immune infiltrates were most strongly manifested within a class representing ∼13% of cancers. Pathway-level differences involving hypoxia, NRF2-ARE, Wnt, and Notch were manifested in two additional classes enriched for mesenchymal markers and miR200 silencing.Conclusions: All pan-cancer molecular classes uncovered here, with the important exception of the basal-like breast cancer class, involve a wide range of cancer types and would facilitate understanding the molecular underpinnings of cancers beyond tissue-oriented domains. Numerous biological processes associated with cancer in the laboratory setting were found here to be coordinately manifested across large subsets of human cancers. The number of cancers manifesting features of neuroendocrine tumors may be much higher than previously thought, which disease is known to occur in many different tissues. Clin Cancer Res; 24(9); 2182-93. ©2018 AACR.
Collapse
Affiliation(s)
- Fengju Chen
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
- Neurological Research Institute at Texas' Children's Hospital, Baylor College of Medicine, Houston, Texas
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
| | - David J Kwiatkowski
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas.
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
2899
|
Wang Y, Fu D, Chen Y, Su J, Wang Y, Li X, Zhai W, Niu Y, Yue D, Geng H. G3BP1 promotes tumor progression and metastasis through IL-6/G3BP1/STAT3 signaling axis in renal cell carcinomas. Cell Death Dis 2018; 9:501. [PMID: 29717134 PMCID: PMC5931548 DOI: 10.1038/s41419-018-0504-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Abstract
The chronic inflammatory microenvironment within or surrounding the primary renal cell carcinoma (RCC) site promotes oncogenic transformation as well as contributes to the development of metastasis. G3BP stress granule assembly factor 1 (G3BP1) was found to be involved in the regulation of multiple cellular functions. However, its functions in RCC have not been previously explored. Here, we first showed that the expression of G3BP1 is elevated in human RCC and correlates with RCC progression. In cultured RCC cells, knockdown of G3BP1 results in inhibition of tumor cell proliferation, migration, and invasion, consistently with the alteration of epithelial–mesenchymal transition (EMT) and cell proliferative markers, including Cadherins, Vimentin, Snail, Slug, c-Myc, and cyclin D1. Remarkably, knockdown of G3BP1 dramatically impaired the signaling connection of pro-inflammatory cytokine IL-6 stimulation and downstream STAT3 activation in RCC, thus eventually contributing to the disruption of IL-6-elicited RCC migration and metastasis. In addition, in vivo orthotopic tumor xenografts results confirmed that knockdown of G3BP1 suppressed RCC tumor growth and metastasis in mice. Collectively, our findings support the notion that G3BP1 promotes tumor progression and metastasis through IL-6/G3BP1/STAT3 signaling axis in RCC.
Collapse
Affiliation(s)
- Yong Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, 300211, China
| | - Donghe Fu
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China
| | - Yajing Chen
- Research Center of Molecular Biology, Inner Mongolia Medical University, Hohhot, 010059, China
| | - Jing Su
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yiting Wang
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Li
- Department of Pharmacology, Tianjin Medical University, Tianjin, 300070, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuanjie Niu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, 300211, China
| | - Dan Yue
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, China.
| | - Hua Geng
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
2900
|
Li YK, Ma DX, Wang ZM, Hu XF, Li SL, Tian HZ, Wang MJ, Shu YW, Yang J. The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis. Pharmacol Res 2018. [DOI: 10.1016/j.phrs.2018.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|