2851
|
Sun L, Li PB, Yao YF, Xiu AY, Peng Z, Bai YH, Gao YJ. Proteinase-activated receptor 2 promotes tumor cell proliferation and metastasis by inducing epithelial-mesenchymal transition and predicts poor prognosis in hepatocellular carcinoma. World J Gastroenterol 2018; 24:1120-1133. [PMID: 29563756 PMCID: PMC5850131 DOI: 10.3748/wjg.v24.i10.1120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/29/2017] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To clarify the role of proteinase-activated receptor 2 (PAR2) in hepatocellular carcinoma, especially in the process of metastasis.
METHODS PAR2 expression levels were assessed by qRT-PCR and immunohistochemistry (IHC) in patient tissues and in hepatocellular carcinoma cell lines SMMC-7721 and HepG2. Cell proliferation and metastasis were assessed both in vitro and in vitro. Immunoblotting was carried out to monitor the levels of mitogen-activated protein kinase (MAPK) and epithelial-mesenchymal transition markers.
RESULTS The prognosis was significantly poorer in patients with high PAR2 levels than in those with low PAR2 levels. Patients with high PAR2 levels had advanced tumor stage (P = 0.001, chi-square test), larger tumor size (P = 0.032, chi-square test), and high microvascular invasion rate (P = 0.037, chi-square test). The proliferation and metastasis ability of SMMC-7721 and HepG2 cells was increased after PAR2 overexpression, while knockdown of PAR2 decreased the proliferation and metastasis ability of SMMC-7721 and HepG2 cells. Knockdown of PAR2 also inhibited hepatocellular carcinoma tumor cell growth and liver metastasis in nude mice. Mechanistically, PAR2 increased the proliferation ability of SMMC-7721 and HepG2 cells via ERK activation. Activated ERK further promoted the epithelial-mesenchymal transition of these cells, which endowed them with enhanced migration and invasion ability.
CONCLUSION These data suggest that PAR2 plays an important role in the proliferation and metastasis of hepatocellular carcinoma. Therefore, targeting PAR2 may present a favorable target for treatment of this malignancy.
Collapse
Affiliation(s)
- Liang Sun
- Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Department of Critical Care Medicine, Shandong Traffic Hospital, Jinan 250000, Shandong Province, China
| | - Pi-Bao Li
- Department of Critical Care Medicine, Shandong Traffic Hospital, Jinan 250000, Shandong Province, China
| | - Yan-Fen Yao
- Department of Critical Care Medicine, Shandong Traffic Hospital, Jinan 250000, Shandong Province, China
| | - Ai-Yuan Xiu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Zhi Peng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yu-Huan Bai
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yan-Jing Gao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
2852
|
Qian B, Wang X, Mao C, Jiang Y, Shi Y, Chen L, Liu S, Wang B, Pan S, Tao Y, Shi H. Long non-coding RNA linc01433 promotes migration and invasion in non-small cell lung cancer. Thorac Cancer 2018. [PMID: 29532622 PMCID: PMC5928388 DOI: 10.1111/1759-7714.12623] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background For many years, lung cancer has been the most common and deadly cancer worldwide. Early diagnosis of non‐small cell lung cancer (NSCLC) in particular is very difficult because the symptoms are often ignored. The five‐year survival rate is very low despite great improvements to therapy. Thus, there is an urgent need to identify prognostic biomarkers and target molecules for the clinical diagnosis and individualized treatment of NSCLC. Methods We performed quantitative real‐time PCR to determine the expression levels of the long non‐coding RNA (lncRNA) linc01433 in NSCLC and normal matched lung tissue. Subsequently, we established cell lines with overexpression or knockdown of linc01433 to evaluate the effects on proliferation and metastasis in vitro. Epithelial‐to‐mesenchymal transition was examined using Western blot. Results Linc01433 was significantly overexpressed in NSCLC tissues compared to normal lung tissues. In addition, linc01433 levels were associated with smoking history. Linc01433 overexpression in lung cancer cells increased proliferation, migration, and invasion abilities, as well as epithelial‐to‐mesenchymal transition. Conclusions Linc01433 is a cancer‐related lncRNA that may have an oncogene‐like effect in NSCLC.
Collapse
Affiliation(s)
- Banglun Qian
- Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Hunan, China
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Hunan, China
| | - Yiqun Jiang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Hunan, China
| | - Ying Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Hunan, China
| | - Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Hunan, China
| | - Shuang Liu
- Institutes of Medical Sciences, Xiangya Hospital, Central South University, Hunan, China
| | - Bin Wang
- Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Hunan, China
| | - Shu Pan
- Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Hunan, China
| | - Yongguang Tao
- Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Hunan, China.,Institutes of Medical Sciences, Xiangya Hospital, Central South University, Hunan, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, Clinical College of Yangzhou University, Jiangsu, China
| |
Collapse
|
2853
|
Oncostatin M induces tumorigenic properties in non-transformed human prostate epithelial cells, in part through activation of signal transducer and activator of transcription 3 (STAT3). Biochem Biophys Res Commun 2018. [PMID: 29526757 DOI: 10.1016/j.bbrc.2018.03.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate cancer is one of the most common types of cancer in men in Western countries. Chronic inflammation in the prostate, regulated by a complex network of factors including inflammatory cytokines, is one of the established risk factors for development of prostate cancer. Interleukin-6 (IL-6) is a well-known promoter of inflammation-induced carcinogenesis and disease progression in prostate cancer. Presence in the prostate and possible roles in tumor development by other members of the IL-6 family of cytokines have, however, been less studied. Here we show that the IL-6-type cytokine oncostatin M (OSM) indeed induce cellular properties associated with tumorigenesis and disease progression in non-transformed human prostate epithelial cells, including morphological changes, epithelial-to-mesenchymal transition (EMT), enhanced migration and pro-invasive growth patterns. The effects by OSM were partly mediated by activation of signal transducer and activator of transcription 3 (STAT3), a transcription factor established as driver of cancer progression and treatment resistance in numerous types of cancer. The findings presented here further consolidate IL-6-type cytokines and STAT3 as promising future treatment targets for prostate cancer.
Collapse
|
2854
|
Valero-Jiménez A, Zúñiga J, Cisneros J, Becerril C, Salgado A, Checa M, Buendía-Roldán I, Mendoza-Milla C, Gaxiola M, Pardo A, Selman M. Transmembrane protease, serine 4 (TMPRSS4) is upregulated in IPF lungs and increases the fibrotic response in bleomycin-induced lung injury. PLoS One 2018; 13:e0192963. [PMID: 29529050 PMCID: PMC5846721 DOI: 10.1371/journal.pone.0192963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by epithelial cell activation, expansion of the fibroblast population and excessive extracellular matrix accumulation. The mechanisms are incompletely understood but evidence indicates that the deregulation of several proteases contributes to its pathogenesis. Transmembrane protease serine 4 (TMPRSS4) is a novel type II transmembrane serine protease that may promote migration and facilitate epithelial to mesenchymal transition (EMT), two critical processes in the pathogenesis of IPF. Thus, we hypothesized that over-expression of TMPRSS4 in the lung could promote the initiation and/or progression of IPF. In this study we first evaluated the expression and localization of TMPRSS4 in IPF lungs by real time PCR, western blot and immunohistochemistry. Then we examined the lung fibrotic response in wild-type and TMPRSS4 deficient mice using the bleomycin-induced lung injury model. We found that this protease is upregulated in IPF lungs, where was primarily expressed by epithelial and mast cells. Paralleling the findings in vivo, TMPRSS4 was expressed by alveolar and bronchial epithelial cells in vitro and unexpectedly, provoked an increase of E-cadherin. No expression was observed in normal human or IPF lung fibroblasts. The lung fibrotic response evaluated at 28 days after bleomycin injury was markedly attenuated in the haplodeficient and deficient TMPRSS4 mice. By morphology, a significant reduction of the fibrotic index was observed in KO and heterozygous mice which was confirmed by measurement of collagen content (hydroxyproline: WT: 164±21.1 μg/lung versus TMPRSS4 haploinsufficient: 110.2±14.3 μg/lung and TMPRSS4 deficient mice: 114.1±24.2 μg/lung (p<0.01). As in IPF, TMPRSS4 was also expressed in epithelial and mast cells. These findings indicate that TMPRSS4 is upregulated in IPF lungs and that may have a profibrotic role.
Collapse
Affiliation(s)
- Ana Valero-Jiménez
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - José Cisneros
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Carina Becerril
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Alfonso Salgado
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Marco Checa
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Ivette Buendía-Roldán
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Criselda Mendoza-Milla
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Miguel Gaxiola
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| |
Collapse
|
2855
|
Qi XK, Han HQ, Zhang HJ, Xu M, Li L, Chen L, Xiang T, Feng QS, Kang T, Qian CN, Cai MY, Tao Q, Zeng YX, Feng L. OVOL2 links stemness and metastasis via fine-tuning epithelial-mesenchymal transition in nasopharyngeal carcinoma. Am J Cancer Res 2018; 8:2202-2216. [PMID: 29721073 PMCID: PMC5928881 DOI: 10.7150/thno.24003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/13/2018] [Indexed: 01/06/2023] Open
Abstract
Rationale: Metastasis is the leading cause of disease-related death among patients with nasopharyngeal carcinoma (NPC). Mounting evidence suggest that epithelial-mesenchymal transition (EMT) is crucial for cancer cells to acquire metastatic ability. In this study, we aim to clarify the extent to which EMT is involved in various cancer properties and identify novel markers for predicting the prognosis of NPC patients. Methods: Two cellular models derived from the same NPC cell line with distinct metastasis ability were used for microarray analysis to identify key transcriptional factors that drive metastasis. Cell migration and invasion were analyzed by wound healing and Transwell analysis. Lung metatasis was determined by tail vein injection assay. Cancer stemness was analyzed using colony formation and xenograft assay. The EMT extent was evaluated using immunoblotting, RT-qPCR and immunofluorescence of EMT markers. The value of OVOL2 in prognosis was determined by immunohistochemistry in NPC biopsies. Results: OVOL2 was the most significantly down-regulated EMT transcription factor (EMT-TF) in cellular models of NPC metatasis. Low levels of OVOL2 were associated with poor overall survival of NPC patients and the reduced expression is partly due to promoter methylation and epithelial dedifferentiation. Knockout of OVOL2 in epithelial-like NPC cells partially activates EMT program and significantly promotes cancer stemness and metastatic phenotypes. Conversely, ectopically expression of OVOL2 in mesenchymal-like cells leads to a partial transition to an epithelial phenotype and reduced malignancy. Reversing EMT by depleting ZEB1, a major target of OVOL2, does not eliminate the stemness advantage of OVOL2-deficient cells but does reduce their invasion capacity. A comparison of subpopulations at different stages of EMT revealed that the extent of EMT is positively correlated with metastasis and drug resistance; however, only the intermediate EMT state is associated with cancer stemness. Conclusion: Distinct from other canonical EMT-TFs, OVOL2 only exhibits modest effect on EMT but has a strong impact on both metastasis and tumorigenesis. Therefore, OVOL2 could serve as a prognostic indicator for cancer patients.
Collapse
|
2856
|
Zhou J, Wu HG, Shi Y. Roles of TNF-α/NF-κB/Snail pathway in regulating epithelial-mesenchymal transition. Shijie Huaren Xiaohua Zazhi 2018; 26:441-448. [DOI: 10.11569/wcjd.v26.i7.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process of transformation of epithelial cells to mesenchymal cells, and it not only plays an important role in the developmental process, but also participates in tissue healing, organ fibrosis, tumorigenesis, and metastasis. In recent years, it has been found that tumor necrosis factor-α (TNF-α) is a major inflammatory factor that can induce snail expression by binding to nuclear factor-κB (NF-κB), thus mediating EMT. This article briefly introduces the roles of the TNF-α/NF-κB/Snail pathway in mediating EMT, aiming to promote a further understanding of the mechanism of TNF-α in regulating EMT.
Collapse
|
2857
|
Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells. Oncogene 2018; 37:2757-2772. [PMID: 29511349 PMCID: PMC5966364 DOI: 10.1038/s41388-018-0144-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 12/18/2022]
Abstract
Tumor microenvironment plays a pivotal role in cancer progression; however, little is known regarding how differences in the microenvironment affect characteristics of cancer cells. Here, we investigated the effects of tumor microenvironment on cancer cells by using mouse tumor models. After three cycles of inoculation and extraction of human pancreatic cancer cells, including SUIT-2 and Panc-1 cells, from tumors, distinct cancer cell lines were established: 3P cells from the pancreas obtained using the orthotopic tumor model and 3sc cells from subcutaneous tissue obtained using the subcutaneous tumor model. On re-inoculation of these cells, the 3sc cells and, more prominently, the 3P cells, exhibited higher tumorigenic activity than the parental cells. The 3P cells specifically exhibited low E-cadherin expression and high invasiveness, suggesting that they were endowed with the highest malignant characteristics. RNA-sequence analysis demonstrated that distinct signaling pathways were activated in each cell line and that the 3P cells acquired a cancer stem cell-like phenotype. Among cancer stem cell-related genes, those specifically expressed in the 3P cells, including NES, may be potential new targets for cancer therapy. The mechanisms underlying the development of highly malignant cancer cell lines were investigated. Individual cell clones within the parental cells varied in tumor-forming ability, indicating the presence of cellular heterogeneity. Moreover, the tumor-forming ability and the gene expression profile of each cell clone were altered after serial orthotopic inoculations. The present study thus suggests that both selection and education processes by tumor microenvironment are involved in the development of highly malignant cancer cells.
Collapse
|
2858
|
Rani B, Malfettone A, Dituri F, Soukupova J, Lupo L, Mancarella S, Fabregat I, Giannelli G. Galunisertib suppresses the staminal phenotype in hepatocellular carcinoma by modulating CD44 expression. Cell Death Dis 2018. [PMID: 29515105 PMCID: PMC5841307 DOI: 10.1038/s41419-018-0384-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) niche in the tumor microenvironment is
responsible for cancer recurrence and therapy failure. To better understand its
molecular and biological involvement in hepatocellular carcinoma (HCC) progression,
one can design more effective therapies and tailored then to individual patients.
While sorafenib is currently the only approved drug for first-line treatment of
advanced stage HCC, its role in modulating the CSC niche is estimated to be small.
By contrast, transforming growth factor (TGF)-β
pathway seems to influence the CSC and thus may impact hallmarks of HCC, such as
liver fibrosis, cirrhosis, and tumor progression. Therefore, blocking this pathway
may offer an appealing and druggable target. In our study, we have used galunisertib
(LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGFβI/ALK5)
activation, currently under clinical investigation in HCC patients. Because the drug
resistance is mainly mediated by CSCs, we tested the effects of galunisertib on
stemness phenotype in HCC cells to determine whether TGF-β signaling modulates CSC
niche and drug resistance. Galunisertib modulated the expression of stemness-related
genes only in the invasive (HLE and HLF) HCC cells inducing a decreased expression
of CD44 and THY1. Furthermore, galunisertib also reduced the stemness-related
functions of invasive HCC cells decreasing the formation of colonies, liver
spheroids and invasive growth ability. Interestingly, CD44 loss of function mimicked
the galunisertib effects on HCC stemness-related functions. Galunisertib treatment
also reduced the expression of stemness-related genes in ex vivo human HCC
specimens. Our observations are the first evidence that galunisertib effectiveness
overcomes stemness-derived aggressiveness via decreased expression CD44 and
THY1.
Collapse
Affiliation(s)
- Bhavna Rani
- School of Medicine, University of Bari, Bari, Italy
| | - Andrea Malfettone
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Francesco Dituri
- National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Jitka Soukupova
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Luigi Lupo
- School of Medicine, University of Bari, Bari, Italy
| | - Serena Mancarella
- National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Isabel Fabregat
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain.,Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy.
| |
Collapse
|
2859
|
Puram SV, Parikh AS, Tirosh I. Single cell RNA-seq highlights a role for a partial EMT in head and neck cancer. Mol Cell Oncol 2018; 5:e1448244. [PMID: 30250901 PMCID: PMC6149805 DOI: 10.1080/23723556.2018.1448244] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 02/25/2018] [Accepted: 02/25/2018] [Indexed: 01/03/2023]
Abstract
Studies in single cell transcriptomics have significantly expanded our understanding of tumor biology, including recent analyses in head and neck squamous cell carcinoma. Here, we focus on the role of a partial epithelial-to-mesenchymal (EMT) program in these tumors, with discussion of its dynamics, regulation, and implications for diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.,Department of Otolaryngology and Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anuraag S Parikh
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2860
|
Epithelial-Mesenchymal Transition during Metastasis of HPV-Negative Pharyngeal Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7929104. [PMID: 29693014 PMCID: PMC5859914 DOI: 10.1155/2018/7929104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
In epithelial tumors, a shift towards a mesenchymal phenotype has been associated with increased invasiveness and metastasis. It is assumed that this phenomenon plays a major role in disease progression and ultimately prognosis. This study investigated epithelial-mesenchymal transition (EMT) in human papillomavirus- (HPV-) negative pharyngeal squamous cell carcinoma. Tissue was obtained from one hypopharyngeal primary tumor and a regional lymph node metastasis during surgery with curative intention. A cell culture was established from the primary tumor and mesenchymal growth conditions were emulated. Gene expression profiling was performed (Human 8 × 60 K design array, Agilent Technologies) and EMT was assessed by a gene set (MSigDB: M5930, Hallmark_epithelial_mesenchymal_transition), applying gene set expression analysis (GSEA). Immunohistochemical staining and flow cytometry of CD44 and E-cadherin were compared in primary tumor, metastasis, and cell cultures. Primary tumor and metastasis were highly positive for CD44. A loss of E-cadherin occurred in the metastasis. Flow cytometry showed the appearance of a population without E-cadherin in spheroid colonies. In GSEA, the EMT phenotype was enriched in the primary tumor compared to metastasis and cell cultures (FDR < 25%, p < 5%). EMT showed variable expression during metastasis. It may thereby be a dynamic state in HPV-negative pharyngeal squamous cell carcinoma that is active only during the process of metastasis itself. Thereby, the primary tumor as well as the metastasis may exhibit fewer EMT properties.
Collapse
|
2861
|
|
2862
|
Nakazawa Y, Taniyama Y, Sanada F, Morishita R, Nakamori S, Morimoto K, Yeung KT, Yang J. Periostin blockade overcomes chemoresistance via restricting the expansion of mesenchymal tumor subpopulations in breast cancer. Sci Rep 2018; 8:4013. [PMID: 29507310 PMCID: PMC5838092 DOI: 10.1038/s41598-018-22340-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/21/2018] [Indexed: 01/06/2023] Open
Abstract
Recent studies suggest a functional involvement of Epithelial-Mesenchymal Transition (EMT) in tumor chemoresistance. Specifically, EMT is associated with chemoresistance and poor prognosis in triple-negative breast cancer. However, no effective therapy targeting EMT has been developed. Here, we report that periostin, an extracellular matrix protein, was induced upon chemotherapy and tightly correlated with the EMT gene signature and poor prognosis in breast cancer. In triple-negative breast cancer xenografts, chemotherapy upregulated periostin expression in tumor cells, triggered expansion of mesenchymal tumor cells and promoted invasion in residual tumors. Knockdown of periostin inhibited outgrowth and invasion of mesenchymal tumor cells upon chemotherapy. Furthermore, chemotherapy upregulated cancer-specific variants of periostin and application of a blocking antibody specifically targeting those variants overcame chemoresistance and halted disease progression without toxicity. Together, these data indicate that periostin plays a key role in EMT-dependent chemoresistance and is a promising target to overcome chemoresistance in triple-negative breast cancer.
Collapse
Affiliation(s)
- Youya Nakazawa
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, California, USA.
| | - Yoshiaki Taniyama
- Department of Clinical Gene Therapy and Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumihiro Sanada
- Department of Clinical Gene Therapy and Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy and Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shoji Nakamori
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - Koji Morimoto
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka National Hospital, National Hospital Organization, Osaka, Japan
- Osaka Women's Junior College, Osaka, Japan
| | - Kay T Yeung
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, California, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
2863
|
Aguirre-Ghiso JA, Sosa MS. Emerging Topics on Disseminated Cancer Cell Dormancy and the Paradigm of Metastasis. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050446] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julio A. Aguirre-Ghiso
- Division of Hematology and Medical Oncology, Department of Medicine, Department of Otolaryngology, Tisch Cancer Institute, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2864
|
Losa M, Risolino M, Li B, Hart J, Quintana L, Grishina I, Yang H, Choi IF, Lewicki P, Khan S, Aho R, Feenstra J, Vincent CT, Brown AMC, Ferretti E, Williams T, Selleri L. Face morphogenesis is promoted by Pbx-dependent EMT via regulation of Snail1 during frontonasal prominence fusion. Development 2018; 145:dev157628. [PMID: 29437830 PMCID: PMC5868993 DOI: 10.1242/dev.157628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
Abstract
Human cleft lip with or without cleft palate (CL/P) is a common craniofacial abnormality caused by impaired fusion of the facial prominences. We have previously reported that, in the mouse embryo, epithelial apoptosis mediates fusion at the seam where the prominences coalesce. Here, we show that apoptosis alone is not sufficient to remove the epithelial layers. We observed morphological changes in the seam epithelia, intermingling of cells of epithelial descent into the mesenchyme and molecular signatures of epithelial-mesenchymal transition (EMT). Utilizing mouse lines with cephalic epithelium-specific Pbx loss exhibiting CL/P, we demonstrate that these cellular behaviors are Pbx dependent, as is the transcriptional regulation of the EMT driver Snail1. Furthermore, in the embryo, the majority of epithelial cells expressing high levels of Snail1 do not undergo apoptosis. Pbx1 loss- and gain-of-function in a tractable epithelial culture system revealed that Pbx1 is both necessary and sufficient for EMT induction. This study establishes that Pbx-dependent EMT programs mediate murine upper lip/primary palate morphogenesis and fusion via regulation of Snail1. Of note, the EMT signatures observed in the embryo are mirrored in the epithelial culture system.
Collapse
Affiliation(s)
- Marta Losa
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Maurizio Risolino
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Bingsi Li
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - James Hart
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Laura Quintana
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Irina Grishina
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Hui Yang
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Irene F Choi
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrick Lewicki
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Sameer Khan
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Robert Aho
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Jennifer Feenstra
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
- Karolinska Institute, Department of Physiology and Pharmacology, Nanna svartz väg 2, 17177 Stockholm, Sweden
| | - C Theresa Vincent
- Karolinska Institute, Department of Physiology and Pharmacology, Nanna svartz väg 2, 17177 Stockholm, Sweden
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Anthony M C Brown
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Trevor Williams
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| |
Collapse
|
2865
|
Le Magnen C, Shen MM, Abate-Shen C. Lineage Plasticity in Cancer Progression and Treatment. ANNUAL REVIEW OF CANCER BIOLOGY 2018; 2:271-289. [PMID: 29756093 PMCID: PMC5942183 DOI: 10.1146/annurev-cancerbio-030617-050224] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Historically, it has been widely presumed that differentiated cells are determined during development and become irreversibly committed to their designated fates. In certain circumstances, however, differentiated cells can display plasticity by changing their identity, either by dedifferentiation to a progenitor-like state or by transdifferentiation to an alternative differentiated cell type. Such cellular plasticity can be triggered by physiological or oncogenic stress, or it can be experimentally induced through cellular reprogramming. Notably, physiological stresses that promote plasticity, such as severe tissue damage, inflammation, or senescence, also represent hallmarks of cancer. Furthermore, key drivers of cellular plasticity include major oncogenic and tumor suppressor pathways and can be exacerbated by drug treatment. Thus, plasticity may help cancer cells evade detection and treatment. We propose that cancer can be considered as a disease of excess plasticity, a notion that has important implications for intervention and treatment.
Collapse
Affiliation(s)
- Clémentine Le Magnen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael M Shen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
2866
|
Abstract
Glycolysis has long been considered as the major metabolic process for energy production and anabolic growth in cancer cells. Although such a view has been instrumental for the development of powerful imaging tools that are still used in the clinics, it is now clear that mitochondria play a key role in oncogenesis. Besides exerting central bioenergetic functions, mitochondria provide indeed building blocks for tumor anabolism, control redox and calcium homeostasis, participate in transcriptional regulation, and govern cell death. Thus, mitochondria constitute promising targets for the development of novel anticancer agents. However, tumors arise, progress, and respond to therapy in the context of an intimate crosstalk with the host immune system, and many immunological functions rely on intact mitochondrial metabolism. Here, we review the cancer cell-intrinsic and cell-extrinsic mechanisms through which mitochondria influence all steps of oncogenesis, with a focus on the therapeutic potential of targeting mitochondrial metabolism for cancer therapy.
Collapse
Affiliation(s)
- Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, 10124 Torino, Italy
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - José Manuel Bravo-San Pedro
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France
- Université Pierre et Marie Curie/Paris VI, 75006 Paris, France
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France
- INSERM, U1138, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France
- Université Pierre et Marie Curie/Paris VI, 75006 Paris, France
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France
- INSERM, U1138, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, 75015 Paris, France
- Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
| |
Collapse
|
2867
|
Bruner HC, Derksen PWB. Loss of E-Cadherin-Dependent Cell-Cell Adhesion and the Development and Progression of Cancer. Cold Spring Harb Perspect Biol 2018; 10:a029330. [PMID: 28507022 PMCID: PMC5830899 DOI: 10.1101/cshperspect.a029330] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical cadherins are the key molecules that control cell-cell adhesion. Notwithstanding this function, it is also clear that classical cadherins are more than just the "glue" that keeps the cells together. Cadherins are essential regulators of tissue homeostasis that govern multiple facets of cellular function and development, by transducing adhesive signals to a complex network of signaling effectors and transcriptional programs. In cancer, cadherins are often inactivated or functionally inhibited, resulting in disease development and/or progression. This review focuses on E-cadherin and its causal role in the development and progression of breast and gastric cancer. We provide a summary of the biochemical consequences and consider the conceptual impact of early (mutational) E-cadherin loss in cancer. We advocate that carcinomas driven by E-cadherin loss should be considered "actin-diseases," caused by the specific disruption of the E-cadherin-actin connection and a subsequent dependence on sustained actomyosin contraction for tumor progression. Based on the available data from mouse and human studies we discuss opportunities for targeted clinical intervention.
Collapse
Affiliation(s)
- Heather C Bruner
- Department of Medicine, University of California at San Diego, La Jolla, California 92093
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| |
Collapse
|
2868
|
PIM1 mediates epithelial-mesenchymal transition by targeting Smads and c-Myc in the nucleus and potentiates clear-cell renal-cell carcinoma oncogenesis. Cell Death Dis 2018; 9:307. [PMID: 29472550 PMCID: PMC5833424 DOI: 10.1038/s41419-018-0348-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/16/2017] [Accepted: 01/23/2018] [Indexed: 01/03/2023]
Abstract
Emerging evidence has shown that the PIM serine/threonine kinase family, including PIM1, PIM2 and PIM3, is associated with tumour progression towards metastasis. PIM1, an attractive molecular target, has been identified as a potential prognostic biomarker for haematological and epithelial malignancies. However, to date, the potential regulatory roles and molecular mechanisms by which PIM1 affects the development and progression of cancers, including clear-cell renal-cell carcinoma (ccRCC), remain largely unknown. Herein, we present the first evidence that PIM1 is aberrantly overexpressed in human ccRCC tissues and cell lines and positively correlated with human ccRCC progression. In our study, depletion of PIM1 attenuated ccRCC cell proliferation, colony formation, migration, invasion and angiogenesis, suggesting that PIM1 expression may be a cancer-promoting event in ccRCC. Mechanistically, we observed that PIM1 could interact with Smad2 or Smad3 in the nucleus and subsequently phosphorylate Smad2 and Smad3 to induce the expression of transcription factors, including ZEB1, ZEB2, Snail1, Snail2 and Twist, to promote epithelial-mesenchymal transition (EMT). In addition, PIM1-mediated phosphorylation of c-Myc activates the expression of the above transcription factors to synergistically promote EMT but does not activate Smads. Collectively, our results demonstrate that aberrant expression of PIM1 contributes to ccRCC development and progression. Moreover, our data reveal a potential molecular mechanism in which PIM1 mediates crosstalk between signalling pathways, including different Smad proteins and c-Myc, which target downstream transcription factors (ZEB1, ZEB2, Snail1, Snail2 and Twist) to trigger EMT. Together, our data suggest that PIM1 may be a potential therapeutic target for ccRCC patients.
Collapse
|
2869
|
Bresson L, Faraldo MM, Di-Cicco A, Quintanilla M, Glukhova MA, Deugnier MA. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling. Development 2018; 145:dev.160382. [PMID: 29361573 DOI: 10.1242/dev.160382] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/15/2018] [Indexed: 12/28/2022]
Abstract
Stem cells (SCs) drive mammary development, giving rise postnatally to an epithelial bilayer composed of luminal and basal myoepithelial cells. Dysregulation of SCs is thought to be at the origin of certain breast cancers; however, the molecular identity of SCs and the factors regulating their function remain poorly defined. We identified the transmembrane protein podoplanin (Pdpn) as a specific marker of the basal compartment, including multipotent SCs, and found Pdpn localized at the basal-luminal interface. Embryonic deletion of Pdpn targeted to basal cells diminished basal and luminal SC activity and affected the expression of several Wnt/β-catenin signaling components in basal cells. Moreover, Pdpn loss attenuated mammary tumor formation in a mouse model of β-catenin-induced breast cancer, limiting tumor-initiating cell expansion and promoting molecular features associated with mesenchymal-to-epithelial cell transition. In line with the loss-of-function data, we demonstrated that mechanistically Pdpn enhances Wnt/β-catenin signaling in mammary basal cells. Overall, this study uncovers a role for Pdpn in mammary SC function and, importantly, identifies Pdpn as a new regulator of Wnt/β-catenin signaling, a key pathway in mammary development and tumorigenesis.
Collapse
Affiliation(s)
- Laura Bresson
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,Université Paris Sud, Université Paris-Saclay, F-91405, Orsay, France.,Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
| | - Marisa M Faraldo
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,INSERM, Paris, F-75013, France
| | - Amandine Di-Cicco
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Marina A Glukhova
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,INSERM, Paris, F-75013, France
| | - Marie-Ange Deugnier
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France .,INSERM, Paris, F-75013, France
| |
Collapse
|
2870
|
Wang S, Cheng Y, Gao Y, He Z, Zhou W, Chang R, Peng Z, Zheng Y, Duan C, Zhang C. SH2B1 promotes epithelial-mesenchymal transition through the IRS1/β-catenin signaling axis in lung adenocarcinoma. Mol Carcinog 2018; 57:640-652. [PMID: 29380446 PMCID: PMC5900930 DOI: 10.1002/mc.22788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/13/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Lung adenocarcinoma (LADC), the most prevalent type of human lung cancer, is characterized by many molecular abnormalities. SH2B1, a member of the SH2‐domain containing family, have recently been shown to act as tumor activators in multiple cancers, including LADC. However, the mechanisms underlying SH2B1 overexpression are not completely understood. Here, we reported that SH2B1 expression levels were significantly upregulated and positively associated with EMT markers and poor patient survival in LADC specimens. Modulation of SH2B1 levels had distinct effects on cell proliferation, cell cycle, migration, invasion, and morphology in A549 and H1299 cells in vitro and in vivo. At the molecular level, overexpression of SH2B1 resulted in the upregulation of the EMT markers, especially induced β‐catenin accumulation and activated β‐catenin signaling to promote LADC cell proliferation and metastasis, while silencing SH2B1 had the opposite effect. Furthermore, ectopic expression of SH2B1 in H1299 cells increased IRS1 expression level. Reduced expression of IRS1 considerably inhibited H1299 cell proliferation, migration, and invasion which were driven by SH2B1 overexpression. Collectively, these results provide unequivocal evidence to establish that SH2B1‐IRS1‐β‐catenin axis is required for promoting EMT, and might prove to be a promising strategy for restraining tumor progression in LADC patients.
Collapse
Affiliation(s)
- Shaoqiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical College, Jining Medical College, Jining, Shandong, P.R. China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhiwei He
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Wolong Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhenzi Peng
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yingying Zheng
- Department of Endocrinology, Affiliated Hospital of Jining Medical College, Jining Medical College, Jining, Shandong, P.R. China
| | - Chaojun Duan
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
2871
|
Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol 2018; 15:271-286. [PMID: 29460922 DOI: 10.1038/nrurol.2018.22] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of next-generation androgen receptor (AR) pathway inhibitors, such as abiraterone acetate and enzalutamide, in treating prostate cancer has been hampered by the emergence of drug resistance. This acquired drug resistance is driven, in part, by the ability of prostate cancer cells to change their phenotype to adopt AR-independent pathways for growth and survival. Around one-quarter of resistant prostate tumours comprise cells that have undergone cellular reprogramming to become AR-independent and to acquire a continuum of neuroendocrine characteristics. These highly aggressive and lethal tumours, termed neuroendocrine prostate cancer (NEPC), exhibit reactivation of developmental programmes that are associated with epithelial-mesenchymal plasticity and acquisition of stem-like cell properties. In the past few years, our understanding of the link between lineage plasticity and an emergent NEPC phenotype has considerably increased. This new knowledge can contribute to novel therapeutic modalities that are likely to improve the treatment and clinical management of aggressive prostate cancer.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| |
Collapse
|
2872
|
Fujii-Nishimura Y, Yamazaki K, Masugi Y, Douguchi J, Kurebayashi Y, Kubota N, Ojima H, Kitago M, Shinoda M, Hashiguchi A, Sakamoto M. Mesenchymal-epithelial transition of pancreatic cancer cells at perineural invasion sites is induced by Schwann cells. Pathol Int 2018; 68:214-223. [DOI: 10.1111/pin.12641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/29/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Yoko Fujii-Nishimura
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Ken Yamazaki
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Yohei Masugi
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Junya Douguchi
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Yutaka Kurebayashi
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Naoto Kubota
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Hidenori Ojima
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Minoru Kitago
- Department of Surgery; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Masahiro Shinoda
- Department of Surgery; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Akinori Hashiguchi
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Michiie Sakamoto
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| |
Collapse
|
2873
|
Kleczko EK, Heasley LE. Mechanisms of rapid cancer cell reprogramming initiated by targeted receptor tyrosine kinase inhibitors and inherent therapeutic vulnerabilities. Mol Cancer 2018; 17:60. [PMID: 29458371 PMCID: PMC5817864 DOI: 10.1186/s12943-018-0816-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/13/2018] [Indexed: 01/06/2023] Open
Abstract
Receptor tyrosine kinase (RTK) pathways serve as frequent oncogene drivers in solid cancers and small molecule and antibody-based inhibitors have been developed as targeted therapeutics for many of these oncogenic RTKs. In general, these drugs, when delivered as single agents in a manner consistent with the principles of precision medicine, induce tumor shrinkage but rarely complete tumor elimination. Moreover, acquired resistance of treated tumors is nearly invariant such that monotherapy strategies with targeted RTK drugs fail to provide long-term control or cures. The mechanisms mediating acquired resistance in tumors at progression treated with RTK inhibitors are relatively well defined compared to the molecular and cellular understanding of the cancer cells that persist early on therapy. We and others propose that these persisting cancer cells, termed "residual disease", provide the reservoir from which acquired resistance eventually emerges. Herein, we will review the literature that describes rapid reprogramming induced upon inhibition of oncogenic RTKs in cancer cells as a mechanism by which cancer cells persist to yield residual disease and consider strategies for disrupting these intrinsic responses for future therapeutic gain.
Collapse
Affiliation(s)
- Emily K. Kleczko
- Division of Renal Diseases and Hypertension, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Lynn E. Heasley
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
2874
|
Roche J. The Epithelial-to-Mesenchymal Transition in Cancer. Cancers (Basel) 2018; 10:cancers10020052. [PMID: 29462906 PMCID: PMC5836084 DOI: 10.3390/cancers10020052] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) occurs during normal embryonic development, tissue regeneration, organ fibrosis, and wound healing.[...].
Collapse
Affiliation(s)
- Joëlle Roche
- Université de Poitiers, UMR-CNRS 7267, Laboratoire EBI, SEVE, F-86073 Poitiers, France.
| |
Collapse
|
2875
|
Noman MZ, Van Moer K, Marani V, Gemmill RM, Tranchevent LC, Azuaje F, Muller A, Chouaib S, Thiery JP, Berchem G, Janji B. CD47 is a direct target of SNAI1 and ZEB1 and its blockade activates the phagocytosis of breast cancer cells undergoing EMT. Oncoimmunology 2018; 7:e1345415. [PMID: 29632713 DOI: 10.1080/2162402x.2017.1345415] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 01/06/2023] Open
Abstract
We report that CD47 was upregulated in different EMT-activated human breast cancer cells versus epithelial MCF7 cells. Overexpression of SNAI1 or ZEB1 in epithelial MCF7 cells activated EMT and upregulated CD47 while siRNA-mediated targeting of SNAI1 or ZEB1 in mesenchymal MDA-MB-231 cells reversed EMT and strongly decreased CD47. Mechanistically, SNAI1 and ZEB1 upregulated CD47 by binding directly to E-boxes in the human CD47 promoter. TCGA and METABRIC data sets from breast cancer patients revealed that CD47 correlated with SNAI1 and Vimentin. At functional level, different EMT-activated breast cancer cells were less efficiently phagocytosed by macrophages vs. MCF7 cells. The phagocytosis of EMT-activated cells was rescued by using CD47 blocking antibody or by genetic targeting of SNAI1, ZEB1 or CD47. These results provide a rationale for an innovative preclinical combination immunotherapy based on PD-1/PD-L1 and CD47 blockade along with EMT inhibitors in patients with highly aggressive, mesenchymal, and metastatic breast cancer.
Collapse
Affiliation(s)
- Muhammad Zaeem Noman
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg City, Luxembourg
| | - Kris Van Moer
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg City, Luxembourg
| | - Vanessa Marani
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg City, Luxembourg
| | - Robert M Gemmill
- Division of Hematology-Oncology, Department of Medicine and the Hollings Cancer Center, Medical University of Charleston, SC, USA
| | - Léon-Charles Tranchevent
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Francisco Azuaje
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Arnaud Muller
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | | | - Jean Paul Thiery
- INSERM UMR1186, Gustave Roussy, Villejuif, France.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,CNRS UMR 7057, University Paris Denis Diderot, Paris, France
| | - Guy Berchem
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg City, Luxembourg.,Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Bassam Janji
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg City, Luxembourg
| |
Collapse
|
2876
|
Lee YA, Kim JJ, Lee J, Lee JHJ, Sahu S, Kwon HY, Park SJ, Jang SY, Lee JS, Wang Z, Tam WL, Lim B, Kang NY, Chang YT. Identification of Tumor Initiating Cells with a Small-Molecule Fluorescent Probe by Using Vimentin as a Biomarker. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yong-An Lee
- Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); Singapore 138667 Singapore
| | - Jong-Jin Kim
- Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); Singapore 138667 Singapore
| | - Jungyeol Lee
- Department of Chemistry; Pohang University of Science and Technology; Pohang 37673 Korea
- Present address: New drug discovery center; DGMIF; Daegu 41061 Korea
| | - Jia Hui Jane Lee
- Genome Institute of Singapore; Agency for Science Technology and Research (A*STAR); Singapore 138672 Singapore
- School of Biological Sciences; Nanyang Technological University; Singapore 637551 Singapore
| | - Srikanta Sahu
- Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); Singapore 138667 Singapore
| | - Haw-Young Kwon
- Center for Self-assembly and Complexity; Institute for Basic Science (IBS); Pohang 37673 Korea
| | - Sung-Jin Park
- Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); Singapore 138667 Singapore
| | - Se-Young Jang
- Molecular Recognition Research Center; Korea Institute of Science and Technology; Seoul 02792 Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center; Korea Institute of Science and Technology; Seoul 02792 Korea
| | - Zhenxun Wang
- Genome Institute of Singapore; Agency for Science Technology and Research (A*STAR); Singapore 138672 Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore; Agency for Science Technology and Research (A*STAR); Singapore 138672 Singapore
- Cancer Science Institute of Singapore; National University of Singapore; Singapore 117599 Singapore
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore 117596 Singapore
| | - Bing Lim
- Genome Institute of Singapore; Agency for Science Technology and Research (A*STAR); Singapore 138672 Singapore
- Present address: Merck Sharp and Dohme Translational Medicine Research Center; Singapore 138648 Singapore
| | - Nam-Young Kang
- Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); Singapore 138667 Singapore
- Present address: New drug discovery center; DGMIF; Daegu 41061 Korea
| | - Young-Tae Chang
- Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); Singapore 138667 Singapore
- Department of Chemistry; Pohang University of Science and Technology; Pohang 37673 Korea
- Center for Self-assembly and Complexity; Institute for Basic Science (IBS); Pohang 37673 Korea
| |
Collapse
|
2877
|
Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 2018; 554:523-527. [PMID: 29443958 PMCID: PMC6013044 DOI: 10.1038/nature25742] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 01/11/2018] [Indexed: 01/04/2023]
Abstract
Collective cell migration (CCM) is essential for morphogenesis, tissue remodelling, and cancer invasion1,2. In vivo, groups of cells move in an orchestrated way through tissues. This movement requires forces and involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in CCM is comparatively well understood1,2, how tissue mechanics influence CCM in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion3. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiated an epithelial-to-mesenchymal transition (EMT) in neural crest cells and triggered their collective migration. To detect changes in their mechanical environment, neural crest use integrin/vinculin/talin-mediated mechanosensing. By performing mechanical and molecular manipulations, we showed that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrated that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results unveil a novel role for mesodermal convergent extension as a mechanical coordinator of morphogenesis, and thus reveal a new link between two apparently unconnected processes, gastrulation and neural crest migration, via changes in tissue mechanics. Overall, we provide the first demonstration that changes in substrate stiffness can trigger CCM by promoting EMT in vivo. More broadly, our results raise the exciting idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis4.
Collapse
|
2878
|
Lee YA, Kim JJ, Lee J, Lee JHJ, Sahu S, Kwon HY, Park SJ, Jang SY, Lee JS, Wang Z, Tam WL, Lim B, Kang NY, Chang YT. Identification of Tumor Initiating Cells with a Small-Molecule Fluorescent Probe by Using Vimentin as a Biomarker. Angew Chem Int Ed Engl 2018; 57:2851-2854. [DOI: 10.1002/anie.201712920] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/16/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Yong-An Lee
- Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); Singapore 138667 Singapore
| | - Jong-Jin Kim
- Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); Singapore 138667 Singapore
| | - Jungyeol Lee
- Department of Chemistry; Pohang University of Science and Technology; Pohang 37673 Korea
- Present address: New drug discovery center; DGMIF; Daegu 41061 Korea
| | - Jia Hui Jane Lee
- Genome Institute of Singapore; Agency for Science Technology and Research (A*STAR); Singapore 138672 Singapore
- School of Biological Sciences; Nanyang Technological University; Singapore 637551 Singapore
| | - Srikanta Sahu
- Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); Singapore 138667 Singapore
| | - Haw-Young Kwon
- Center for Self-assembly and Complexity; Institute for Basic Science (IBS); Pohang 37673 Korea
| | - Sung-Jin Park
- Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); Singapore 138667 Singapore
| | - Se-Young Jang
- Molecular Recognition Research Center; Korea Institute of Science and Technology; Seoul 02792 Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center; Korea Institute of Science and Technology; Seoul 02792 Korea
| | - Zhenxun Wang
- Genome Institute of Singapore; Agency for Science Technology and Research (A*STAR); Singapore 138672 Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore; Agency for Science Technology and Research (A*STAR); Singapore 138672 Singapore
- Cancer Science Institute of Singapore; National University of Singapore; Singapore 117599 Singapore
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore 117596 Singapore
| | - Bing Lim
- Genome Institute of Singapore; Agency for Science Technology and Research (A*STAR); Singapore 138672 Singapore
- Present address: Merck Sharp and Dohme Translational Medicine Research Center; Singapore 138648 Singapore
| | - Nam-Young Kang
- Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); Singapore 138667 Singapore
- Present address: New drug discovery center; DGMIF; Daegu 41061 Korea
| | - Young-Tae Chang
- Singapore Bioimaging Consortium; Agency for Science Technology and Research (A*STAR); Singapore 138667 Singapore
- Department of Chemistry; Pohang University of Science and Technology; Pohang 37673 Korea
- Center for Self-assembly and Complexity; Institute for Basic Science (IBS); Pohang 37673 Korea
| |
Collapse
|
2879
|
Hypoxia Enhances Fusion of Oral Squamous Carcinoma Cells and Epithelial Cells Partly via the Epithelial-Mesenchymal Transition of Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5015203. [PMID: 29581976 PMCID: PMC5822897 DOI: 10.1155/2018/5015203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/03/2018] [Indexed: 01/06/2023]
Abstract
Increasing evidence and indications showed that cell fusion is crucial in tumor development and metastasis, and hypoxia, a closely linked factor to tumor microenvironment, which can lead to EMT, induces angiogenesis and metastasis in tumor growth. However, the relationship between hypoxia and fusion has not been reported yet. EMT will change some proteins in the epithelial cell surface and the changes of proteins in cell surface may increase cell fusion. This study found that hypoxia promotes the spontaneous cell fusion between Oral Squamous Carcinoma Cells (OSCCs) and Human Immortalized Oral Epithelial Cells (HIOECs). At the same time, Hypoxia can lead to EMT, and hypoxia-pretreated HIOECs increased fusion rate with OSCC, while the fusion rate was significantly reduced by DAPT, a kind of EMT blocker. Therefore, epithelial cells can increase spontaneously cell fusion with OSCC by EMT. Our study may provide a new insight to link among tumor microenvironment, cell fusion, and cancer.
Collapse
|
2880
|
Campbell K, Lebreton G, Franch-Marro X, Casanova J. Differential roles of the Drosophila EMT-inducing transcription factors Snail and Serpent in driving primary tumour growth. PLoS Genet 2018; 14:e1007167. [PMID: 29420531 PMCID: PMC5821384 DOI: 10.1371/journal.pgen.1007167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/21/2018] [Accepted: 12/25/2017] [Indexed: 02/06/2023] Open
Abstract
Several transcription factors have been identified that activate an epithelial-to-mesenchymal transition (EMT), which endows cells with the capacity to break through basement membranes and migrate away from their site of origin. A key program in development, in recent years it has been shown to be a crucial driver of tumour invasion and metastasis. However, several of these EMT-inducing transcription factors are often expressed long before the initiation of the invasion-metastasis cascade as well as in non-invasive tumours. Increasing evidence suggests that they may promote primary tumour growth, but their precise role in this process remains to be elucidated. To investigate this issue we have focused our studies on two Drosophila transcription factors, the classic EMT inducer Snail and the Drosophila orthologue of hGATAs4/6, Serpent, which drives an alternative mechanism of EMT; both Snail and GATA are specifically expressed in a number of human cancers, particularly at the invasive front and in metastasis. Thus, we recreated conditions of Snail and of Serpent high expression in the fly imaginal wing disc and analysed their effect. While either Snail or Serpent induced a profound loss of epithelial polarity and tissue organisation, Serpent but not Snail also induced an increase in the size of wing discs. Furthermore, the Serpent-induced tumour-like tissues were able to grow extensively when transplanted into the abdomen of adult hosts. We found the differences between Snail and Serpent to correlate with the genetic program they elicit; while activation of either results in an increase in the expression of Yorki target genes, Serpent additionally activates the Ras signalling pathway. These results provide insight into how transcription factors that induce EMT can also promote primary tumour growth, and how in some cases such as GATA factors a ‘multi hit’ effect may be achieved through the aberrant activation of just a single gene. Many cancer cells acquire abnormal motility behaviour leading to metastasis, the main cause of cancer related deaths. In many cancers, transcription factors capable of inducing motile migratory cell behaviours, so-called EMT transcription factors, are found highly expressed. However, the expression of these genes is not restricted to metastatic invasive cancers; they are often found in benign tumours, or in tumours long before they show any sign of metastasis. This observation motivated us to ask if they may play a role in driving primary tumour growth. Our results show that the Drosophila EMT-inducers Snail and Serpent are both capable of driving overproliferation. However, Snail overproliferation is accompanied by a decrease in cell size as well as cell death, and consequently the tissue does not increase in size. Serpent also drives cell proliferation but this occurs together with an increase in cell size, but not cell death, thus having a profound effect on the overall size of the tissue. We show that both Snail and Serpent trigger activation of the Yorki pathway and in addition Serpent, but not Snail, also triggers activation of the Ras pathway. These results provide insight into how activation of some EMT-inducing genes can also promote primary tumour growth.
Collapse
Affiliation(s)
- Kyra Campbell
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- * E-mail: (KC); (JC)
| | - Gaëlle Lebreton
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Functional Genomics and Evolution, Department Passeig Marítim de la Barceloneta, Barcelona, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- * E-mail: (KC); (JC)
| |
Collapse
|
2881
|
Ma Z, Xin Z, Hu W, Jiang S, Yang Z, Yan X, Li X, Yang Y, Chen F. Forkhead box O proteins: Crucial regulators of cancer EMT. Semin Cancer Biol 2018; 50:21-31. [PMID: 29427645 DOI: 10.1016/j.semcancer.2018.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/02/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an acknowledged cellular transition process in which epithelial cells acquire mesenchymal-like properties that endow cancer cells with increased migratory and invasive behavior. Forkhead box O (FOXO) proteins have been shown to orchestrate multiple EMT-associated pathways and EMT-related transcription factors (EMT-TFs), thereby modulating the EMT process. The focus of the current review is to evaluate the latest research progress regarding the roles of FOXO proteins in cancer EMT. First, a brief overview of the EMT process in cancer and a general background on the FOXO family are provided. Next, we present the interactions between FOXO proteins and multiple EMT-associated pathways during malignancy development. Finally, we propose several novel potential directions for future research. Collectively, the information compiled herein should serve as a comprehensive repository of information on this topic and should aid in the design of additional studies and the future development of FOXO proteins as therapeutic targets.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhenlong Xin
- Department of Occupational and Environmental Health and The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China.
| |
Collapse
|
2882
|
Li R, Quan Y, Xia W. SIRT3 inhibits prostate cancer metastasis through regulation of FOXO3A by suppressing Wnt/β-catenin pathway. Exp Cell Res 2018; 364:143-151. [PMID: 29421536 DOI: 10.1016/j.yexcr.2018.01.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/12/2018] [Accepted: 01/27/2018] [Indexed: 12/15/2022]
Abstract
SIRT3, a mitochondrial NAD+-dependent deacetylase, has been reported to restrain prostate cancer growth both in vitro and in vivo, however, its role in metastatic prostate cancer has not been revealed. In this study, we reported that SIRT3 inhibited the epithelial-mesenchymal transition (EMT) and migration of prostatic cancer cells in vitro and their metastasis in vivo. Consistently, based on analyses of tissue microarray and microarray datasets, lower SIRT3 expression level was correlated with higher prostate cancer Gleason scores, and SIRT3 expression were significantly decreased in metastatic tissues compared with prostate tumor tissues. Mechanistically, SIRT3 promoted FOXO3A expression by attenuating Wnt/β-catenin pathway, thereby inhibiting EMT and migration of prostate cancer cells. Indeed, SIRT3's inhibitory effect on EMT and migration of prostate cancer cells can be rescued after applying Wnt/β-catenin pathway activator LiCl, or boosted by wnt inhibitor XAV939. Together, this study revealed a novel mechanism for prostate cancer metastasis that involves SIRT3/ Wnt/β-catenin/ FOXO3A signaling to modulate EMT and cell migration.
Collapse
Affiliation(s)
- Rong Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhou Quan
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2883
|
MiR-192 and miR-662 enhance chemoresistance and invasiveness of squamous cell lung carcinoma. Lung Cancer 2018; 118:111-118. [PMID: 29571988 DOI: 10.1016/j.lungcan.2018.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Overexpression of miR-192, miR-192* and miR-662 was previously found to correlate with poor prognosis of early-stage squamous cell lung cancer (SCC) patients. In this study, we investigated the relevance of these miRNAs to cancer cell biology and chemoresistance. MATERIALS AND METHODS MiRNA expression profile was analysed in 10 non-small cell lung cancer (NSCLC) cell lines using RT-qPCR. H520 and H1703 cells were transfected with miRNA inhibitors (anti-miR-192, -192* and -662) for functional studies. Chemoresistance to cisplatin and etoposide was evaluated using MTT colorimetric assay. H520 cells were subjected to 3D soft-agar colony formation assay and H1703 cells to wound healing assay. Whole transcriptome analysis was used to assess the effect of miR-192 and miR-662 inhibition on gene expression. RESULTS SCC cell lines, H520 and H1703, differed in miRNA expression and phenotypic features. MiR-192 and miR-662 inhibition decreased clonogenicity and motility of SCC cells. MiR-192 and miR-662 inhibition sensitized SCC cells to etoposide but not to cisplatin. Whole transcriptome analysis revealed genes regulated by miR-192 and miR-662 in SCC, relevant to maintaining chemoresistance, invasiveness, epithelial-mesenchymal transition (EMT) and immune evasion. CONCLUSIONS We showed for the first time that miR-192 and miR-662 have functional role in SCC cells. Our findings suggest that targeting these miRNAs may impact both chemoresistance and invasiveness of SCC, and add to the evidence linking these aspects of tumour biology. Overexpression of miR-192 and miR-662 might be useful as a marker of resistance to etoposide.
Collapse
|
2884
|
Tumour spheres with inverted polarity drive the formation of peritoneal metastases in patients with hypermethylated colorectal carcinomas. Nat Cell Biol 2018; 20:296-306. [PMID: 29403038 DOI: 10.1038/s41556-017-0027-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/12/2017] [Indexed: 01/05/2023]
Abstract
Metastases account for 90% of cancer-related deaths; thus, it is vital to understand the biology of tumour dissemination. Here, we collected and monitored >50 patient specimens ex vivo to investigate the cell biology of colorectal cancer (CRC) metastatic spread to the peritoneum. This reveals an unpredicted mode of dissemination. Large clusters of cancer epithelial cells displaying a robust outward apical pole, which we termed tumour spheres with inverted polarity (TSIPs), were observed throughout the process of dissemination. TSIPs form and propagate through the collective apical budding of hypermethylated CRCs downstream of canonical and non-canonical transforming growth factor-β signalling. TSIPs maintain their apical-out topology and use actomyosin contractility to collectively invade three-dimensional extracellular matrices. TSIPs invade paired patient peritoneum explants, initiate metastases in mice xenograft models and correlate with adverse patient prognosis. Thus, despite their epithelial architecture and inverted topology TSIPs seem to drive the metastatic spread of hypermethylated CRCs.
Collapse
|
2885
|
Konrad L, Gronbach J, Horné F, Mecha EO, Berkes E, Frank M, Gattenlöhner S, Omwandho COA, Oehmke F, Tinneberg HR. Similar Characteristics of Endometrial and Endometriotic Epithelial Cells. Reprod Sci 2018; 26:49-59. [PMID: 29402201 DOI: 10.1177/1933719118756745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is characterized by the loss of epithelial and acquisition of mesenchymal cell characteristics. Our aim was to assess the epithelial phenotype in the pathogenesis of endometriosis with epithelial and mesenchymal markers. We used 2 structural (keratin-18, -19 [K18, K19]), 1 membrane-associated (mucin-1 [MUC1]), and 2 mesenchymal proteins (vimentin; zinc finger E-box-binding homeobox 1, [ZEB1]) to compare epithelial and mesenchymal characteristics in eutopic endometrium with the 3 endometriotic entities, peritoneal, ovarian, and deep infiltrating endometriosis (DIE). Quantitation showed no differences for K18, K19, and MUC1 between endometrium with and without endometriosis. Also, K18 was not different between endometrium and endometriotic lesions. In contrast, K19 and MUC1 were modestly but significantly decreased in the endometriotic lesions compared to endometrium. However, the maintained expression of epithelial markers in all investigated tissues, regardless of the pathological condition, clearly indicates no loss of the epithelial phenotype. This is further supported by the reduced presence of epithelial vimentin in endometriotic lesions which is in contrast to an increase in stromal vimentin in ectopic endometrium, especially in ovarian endometriosis. The ZEB1 increase in endometriotic lesions, especially in DIE, on the other hand suggests a role of partial EMT in the development of endometriotic lesions, possibly connected with the gain of invasive capabilities or stemness. Taken together, although we found some hints for at least a partial EMT, we did not observe a severe loss of the epithelial cell phenotype. Thus, we propose that EMT is not a main factor in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Lutz Konrad
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany.,Lutz Konrad and Judith Gronbach contributed equally to the study
| | - Judith Gronbach
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany.,Lutz Konrad and Judith Gronbach contributed equally to the study
| | - Fabian Horné
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany
| | - Ezekiel O Mecha
- 2 Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Eniko Berkes
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany
| | - Matthias Frank
- 3 Department of Pathology, University of Giessen, Giessen, Germany
| | | | | | - Frank Oehmke
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany
| | | |
Collapse
|
2886
|
Tian P, Liu D, Sun L, Sun H. Cullin7 promotes epithelial‑mesenchymal transition of esophageal carcinoma via the ERK‑SNAI2 signaling pathway. Mol Med Rep 2018; 17:5362-5367. [PMID: 29393450 DOI: 10.3892/mmr.2018.8503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 12/15/2017] [Indexed: 11/06/2022] Open
Abstract
Cullin7 (CUL7) is a member of Cullin protein family and exhibits a tumor‑promoting role in several types of tumors, including breast, liver and ovarian. However, its roles in esophageal carcinoma (EC) have not yet been reported. In the present study, CUL7 expression in EC tissue was revealed to be significantly higher compared with nontumoral tissues, as detected by immunohistochemistry (IHC; P=0.000). χ2 analysis confirmed that CUL7 expression was positively associated with invasion depth (P=0.000), lymph node involvement (P=0.033) and advanced clinical stage (P=0.000). Survival analysis demonstrated that CUL7 was positively associated with poor overall survival (P=0.001) and poor disease‑free survival (P=0.0019). An association of CUL7 with endothelial‑mesenchymal transition (EMT) was examined, and IHC results indicated that high CUL7 expression was associated with increased zinc finger protein SNAI2 (SNAI2) expression (P=0.000) and decreased E‑cadherin (P=0.000). Western blot analysis demonstrated that short hairpin RNA silencing CUL7 in EC1 cells increased epithelial (E)‑cadherin protein expression level, and decreased expression of Vimentin and SNAI2; cell migration was also reduced. Western blot analysis demonstrated that over expression of CUL7 in EC9706 cells increased Vimentin and SNAI2 protein expression, but decreased E‑cadherin expression, and the number of migratory cells. Investigation into the potential molecular mechanisms demonstrated that over expressing CUL7 in EC9706 cells stimulated the phosphorylation of ERK. Inhibiting ERK through treatment with U0126 significantly abrogated CUL7‑induced alterations in Vimentin, SNAI2 and E‑cadherin expression levels. Results from the present study demonstrated that CUL7 expression was associated with EC progression and poor prognosis. CUL7 may promote EMT via the ERK‑SNAI2 pathway in EC. These data may improve our understanding of the role of CUL7 in tumors and provide supporting evidence for the development of novel therapeutic targets for EC.
Collapse
Affiliation(s)
- Ping Tian
- Department of Gastroenterology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Dandan Liu
- Department of Gastroenterology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Luyi Sun
- Department of Radiotherapy, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Hui Sun
- Department of Surgical Oncology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
2887
|
Asano Y. What can we learn from Fli1-deficient mice, new animal models of systemic sclerosis? JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2018; 3:6-13. [PMID: 35382130 DOI: 10.1177/2397198318758221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
Systemic sclerosis is a complex multifactorial disease characterized by autoimmunity, vasculopathy, and selective organ fibrosis. A series of genetic and epidemiological studies have demonstrated that environmental influences play a central role in the onset of systemic sclerosis, while genetic factors determine the susceptibility to and the severity of this disease. Therefore, the identification of predisposing factors related to environmental influences would provide us with an informative clue to better understand the pathological process of this disease. Based on this concept, the deficiency of transcription factor Friend leukemia virus integration 1, which is epigenetically suppressed in systemic sclerosis, seems to be a potential candidate acting as the predisposing factor of this disease. Indeed, Fli1-mutated mice serve as a set of useful disease models to disclose the complex pathology of systemic sclerosis. This article overviews the recent advancement in systemic sclerosis animal models associated with Friend leukemia virus integration 1 deficiency.
Collapse
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo - Japan
| |
Collapse
|
2888
|
Zhang F, Li J, Xiao H, Zou Y, Liu Y, Huang W. AFAP1-AS1: A novel oncogenic long non-coding RNA in human cancers. Cell Prolif 2018; 51:e12397. [PMID: 29057544 PMCID: PMC6528908 DOI: 10.1111/cpr.12397] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/24/2017] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein-coding RNAs with more than 200 nucleotides in length, are involved in multiple biological processes, such as the proliferation, apoptosis, migration and invasion. Moreover, numerous studies have shown that lncRNAs play important roles as oncogenes or tumour suppressor genes in human cancers. In this paper, we concentrate on actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1), a well-known long non-coding RNA that is overexpressed in various tumour tissues and cell lines, including oesophageal cancer, pancreatic ductal adenocarcinoma, nasopharyngeal carcinoma, lung cancer, hepatocellular carcinoma, ovarian cancer, colorectal cancer, biliary tract cancer and gastric cancer. Moreover, high expression of AFAP1-AS1 was associated with the clinicopathological features and cancer progression. In this review, we sum up the current studies on the characteristics of AFAP1-AS1 in the biological function and mechanism of human cancers.
Collapse
Affiliation(s)
- Fuyou Zhang
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
| | - Jianfa Li
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsInstitute of UrologyPeking University Shenzhen HospitalShenzhen PKU‐HKUST Medical CenterShenzhen518036China
| | - Huizhong Xiao
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- University of South ChinaHengyangHunan421001China
| | - Yifan Zou
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- Shantou University Medical CollegeShantou515041Guangdong ProvinceChina
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming TechnologyShenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhen518039Guangdong ProvinceChina
- University of South ChinaHengyangHunan421001China
- Shantou University Medical CollegeShantou515041Guangdong ProvinceChina
| |
Collapse
|
2889
|
Abstract
Similar to embryonic development, changes in cell phenotypes defined as an epithelial to mesenchymal transition (EMT) have been shown to play a role in the tumorigenic process. Although the first description of EMT in cancer was in cell cultures, evidence for its role in vivo is now widely reported but also actively debated. Moreover, current research has exemplified just how complex this phenomenon is in cancer, leaving many exciting, open questions for researchers to answer in the future. With these points in mind, we asked four scientists for their opinions on the role of EMT in cancer and the challenges faced by scientists working in this fast-moving field.
Collapse
Affiliation(s)
- Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - M Angela Nieto
- Instituto de Neurociencias CSIC-UMH, Avda. Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Ludwig Massachusetts Institute for Technology (MIT) Center for Molecular Oncology and MIT Department of Biology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
2890
|
Mowers EE, Sharifi MN, Macleod KF. Functions of autophagy in the tumor microenvironment and cancer metastasis. FEBS J 2018; 285:1751-1766. [PMID: 29356327 DOI: 10.1111/febs.14388] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/07/2018] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Macro-autophagy is an ancient and highly conserved self-degradative process that plays a homeostatic role in normal cells by eliminating organelles, pathogens, and protein aggregates. Autophagy, as it is routinely referred to, also allows cells to maintain metabolic sufficiency and survive under conditions of nutrient stress by recycling the by-products of autophagic degradation, such as fatty acids, amino acids, and nucleotides. Tumor cells are more reliant than normal cells on autophagy for survival in part due to their rapid growth rate, altered metabolism, and nutrient-deprived growth environment. How this dependence of tumor cells on autophagy affects their progression to malignancy and metastatic disease is an area of increasing research focus. Here, we review recent work identifying critical functions for autophagy in tumor cell migration and invasion, tumor stem cell maintenance and therapy resistance, and cross-talk between tumor cells and their microenvironment.
Collapse
Affiliation(s)
- Erin E Mowers
- The Ben May Department for Cancer Research, University of Chicago, IL, USA.,The Committee on Cancer Biology, Chicago, IL, USA.,Inter-disciplinary Scientist Training Program, Chicago, IL, USA
| | - Marina N Sharifi
- The Ben May Department for Cancer Research, University of Chicago, IL, USA.,The Committee on Cancer Biology, Chicago, IL, USA.,Medical Scientist Training Program, Chicago, IL, USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, University of Chicago, IL, USA.,The Committee on Cancer Biology, Chicago, IL, USA.,The University of Chicago, IL, USA
| |
Collapse
|
2891
|
Lalli E, Luconi M. The next step: mechanisms driving adrenocortical carcinoma metastasis. Endocr Relat Cancer 2018; 25:R31-R48. [PMID: 29142005 DOI: 10.1530/erc-17-0440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022]
Abstract
Endocrine tumors have the peculiarity to become clinically evident not only due to symptoms related to space occupation by the growing lesion, similarly to most other tumors, but also, and most often, because of their specific hormonal secretion, which significantly contributes to their pathological burden. Malignant endocrine tumors, in addition, have the ability to produce distant metastases. Here, we critically review the current knowledge about mechanisms and biomarkers characterizing the metastatic process in adrenocortical carcinoma (ACC), a rare endocrine malignancy with a high risk of relapse and metastatization even when the primary tumor is diagnosed and surgically removed at an early stage. We highlight perspectives of future research in the domain and possible new therapeutic avenues based on targeting factors having an important role in the metastatic process of ACC.
Collapse
Affiliation(s)
- Enzo Lalli
- Université Côte d'AzurValbonne, France
- CNRS UMR7275Valbonne, France
- NEOGENEX CNRS International Associated LaboratoryValbonne, France
- Institut de Pharmacologie Moléculaire et CellulaireValbonne, France
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio'University of Florence, Florence, Italy
| |
Collapse
|
2892
|
ILK-induced epithelial-mesenchymal transition promotes the invasive phenotype in adenomyosis. Biochem Biophys Res Commun 2018; 497:950-956. [PMID: 29409901 DOI: 10.1016/j.bbrc.2018.01.184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Adenomyosis is a benign gynecological disease, characterized by the malignant biological behaviors of invasion and metastasis. ILK plays an important role in intercellular adhesion and triggers the process of EMT. In this study, we investigated the role of ILK-induced EMT in the pathogenesis of adenomyosis. METHODS ILK and EMT markers including E-cadherin, N-cadherin and Vimentin have been detected with Immunohistochemistry(IHC), RT-PCR and Western Blot, in normal endometrium, matched eutopic and ectopic endometrium respectively. Primary endometrial cells were isolated in order to observed the morphology features, as well as the change of invasiveness. RESULTS Hyper-activation of ILK were detected in the adenomyosis lesions, along with the typical aberrant expression of EMT markers. Furthermore, comparing with ESCs, the EuSCs showed a more invasive and dynamic phenotype. CONCLUSIONS ILK-induced EMT is a novel mechanism in the pathogenesis of adenomyosis and may be a potential therapeutic agent for adenomyosis.
Collapse
|
2893
|
Howley BV, Howe PH. TGF-beta signaling in cancer: post-transcriptional regulation of EMT via hnRNP E1. Cytokine 2018; 118:19-26. [PMID: 29396052 DOI: 10.1016/j.cyto.2017.12.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022]
Abstract
The TGFβ signaling pathway is a critical regulator of cancer progression in part through induction of the epithelial to mesenchymal transition (EMT). This process is aberrantly activated in cancer cells, facilitating invasion of the basement membrane, survival in the circulatory system, and dissemination to distant organs. The mechanisms through which epithelial cells transition to a mesenchymal state involve coordinated transcriptional and post-transcriptional control of gene expression. One such mechanism of control is through the RNA binding protein hnRNP E1, which regulates splicing and translation of a cohort of EMT and stemness-associated transcripts. A growing body of evidence indicates a major role for hnRNP E1 in the control of epithelial cell plasticity, especially in the context of carcinoma progression. Here, we review the multiple mechanisms through which hnRNP E1 functions to control EMT and metastatic progression.
Collapse
Affiliation(s)
- Breege V Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
2894
|
FBW7 loss promotes epithelial-to-mesenchymal transition in non-small cell lung cancer through the stabilization of Snail protein. Cancer Lett 2018; 419:75-83. [PMID: 29355657 DOI: 10.1016/j.canlet.2018.01.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/19/2017] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
The E3 ubiquitin ligase F-box and WD repeat domain containing 7 (FBW7α) functions as a putative tumor suppressor in non-small cell lung cancer (NSCLC) due to its regulation of a set of oncogenic proteins associated with cell proliferation and mitosis. Increasing efforts have been focused on the understanding of FBW7 in determining cell cycle progression and apoptosis induction, however, the correlation between FBW7 and tumor metastasis is not fully understood. In this study, we reported a potential anti-metastatic effect of FBW7 in non-small cell lung cancer (NSCLC). In this model, FBW7 inhibited cancer cell metastasis primarily by inducing ubiquitination and proteolysis of the transcriptional factor Snail, which suppressed E-cadherin cell tight junction protein expression. Loss of FBW7 would stabilize the Snail protein, thus, inhibit E-cadherin expression and promote metastasis in vitro and in vivo. Moreover, Snail ubiquitination and degradation were also achieved by pharmacological approach, in which the FBW7 agonist oridonin treatment led to Snail proteolysis. Furthermore, FBW7 silencing stabilized Snail protein and induced epithelial-to mesenchymal transition (EMT), and acquisition of migration and invasion properties in NSCLC. Overall, our study provides new insights into the FBW7-Snail axis in regulating cell migration and invasion, and suggests that targeting FBW7 may be a potent approach to inhibit metastasis in NSCLC.
Collapse
|
2895
|
Giacomelli C, Daniele S, Romei C, Tavanti L, Neri T, Piano I, Celi A, Martini C, Trincavelli ML. The A 2B Adenosine Receptor Modulates the Epithelial- Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells. Front Pharmacol 2018; 9:54. [PMID: 29445342 PMCID: PMC5797802 DOI: 10.3389/fphar.2018.00054] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different intracellular pathways could represent a mechanism at the basis of EMT maintenance/inhibition based on the extracellular microenvironment. Despite further investigations are needed, herein for the first time the A2BAR has been related to the EMT process, and therefore to the different EMT-related pathologies.
Collapse
Affiliation(s)
| | | | - Chiara Romei
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.,Radiology Unit, University Hospital of Pisa, Pisa, Italy
| | - Laura Tavanti
- Pneumology Unit, Cardio-Thoracic Department, University Hospital of Pisa, Pisa, Italy
| | - Tommaso Neri
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alessandro Celi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
2896
|
Tanas Isikci O, He H, Grossmann P, Alaghehbandan R, Ulamec M, Michalova K, Pivovarcikova K, Montiel DP, Ondic O, Daum O, Prochazkova K, Hora M, Michal M, Hes O. Low-grade spindle cell proliferation in clear cell renal cell carcinoma is unlikely to be an initial step in sarcomatoid differentiation. Histopathology 2018; 72:804-813. [PMID: 29194709 DOI: 10.1111/his.13447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
AIMS Spindle cell proliferation within clear cell renal cell carcinoma (ccRCC) is usually considered as a sarcomatoid differentiation. Low-grade spindle cell proliferation (LG-SCP) in ccRCC was first described in 2001. This phenomenon is not common and can pose diagnostic challenges, particularly in core biopsies. The aim of this study was to describe morphological, immunohistochemical and molecular characteristics of ccRCCs with LG-SCP. METHODS AND RESULTS Eleven cases of ccRCC with LG-SCP were retrieved from approximately 21 000 renal tumours in our registry. Ten cases of conventional ccRCC and 10 cases of typical sarcomatoid ccRCC were included as control groups. Morphological and immunohistochemical characteristics of epithelial-mesenchymal transition (EMT) were analysed. Von Hippel-Lindau syndrome gene abnormalities were also analysed using molecular genetics. Among ccRCC with LG-SCP cases, there were five males and five females (clinical information was not available in one case) with a median age of 67 years (mean: 68.5, range: 60-81 years). Average tumour size was 7.1 cm (median:7.5, range:1.7-12 cm). Follow-up data were available in nine cases (mean: 44.78 months), with no aggressive behaviour seen. On average, LG-SCP areas constituted 5-80% of tumour volume (mean: 32.3%). Necrotic/regressed areas were seen in all cases ranging from 5% to 30%. LG-SCP was clearly epithelial, with no mitoses or any evidence of mesenchymal differentiation. Immunohistochemical profile of LG-SCP was consistent with 'conventional' ccRCC. Compared with sarcomatoid ccRCC, some EMT markers showed alteration in LG-SCP, including lower expression of N-cadherin and Zeb1 as well as higher expression of E-cadherin. However, there were no significant differences in EMT markers between LG-SCP and conventional ccRCC. Abnormalities in VHL (mutations, LOH3p) were found in six of 11 cases. CONCLUSIONS Our findings showed that LG-SCP in ccRCC have comparable immunohistochemical and molecular characteristics to those seen in 'conventional' ccRCC. Further, immunohistochemical analysis of EMT markers showed that LG-SCP did not differ from 'conventional' ccRCC. We believe that LG-SCP is a part of morphological heterogeneity in ccRCCs and that they may not represent an initial stage of sarcomatoid differentiation. This is supported further by the fact that ccRCC with LG-SCP did not display more aggressive behaviour than 'conventional' ccRCC.
Collapse
Affiliation(s)
- Ozlem Tanas Isikci
- Department of Pathology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Huying He
- Department of Pathology, Peking University, Health Science Center, Beijing, China
| | - Petr Grossmann
- Department of Pathology, Charles University, Medical Faculty and Charles University Hospital Plzen, Plzen, Czech Republic
| | - Reza Alaghehbandan
- Department of Pathology, Faculty of Medicine, University of British Columbia, Royal Columbian Hospital, Vancouver, BC, Canada
| | - Monika Ulamec
- Clinical Hospital Center Sestre Milosrdnice, Medical Faculty Zagreb, Zagreb, Croatia
| | - Kvetoslava Michalova
- Department of Pathology, Charles University, Medical Faculty and Charles University Hospital Plzen, Plzen, Czech Republic
| | - Kristyna Pivovarcikova
- Department of Pathology, Charles University, Medical Faculty and Charles University Hospital Plzen, Plzen, Czech Republic
| | - Delia Perez Montiel
- Department of Pathology, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Ondrej Ondic
- Department of Pathology, Charles University, Medical Faculty and Charles University Hospital Plzen, Plzen, Czech Republic
| | - Ondrej Daum
- Department of Pathology, Charles University, Medical Faculty and Charles University Hospital Plzen, Plzen, Czech Republic
| | - Kristyna Prochazkova
- Department of Urology, Charles University, Medical Faculty and Charles University Hospital Plzen, Plzen, Czech Republic
| | - Milan Hora
- Department of Urology, Charles University, Medical Faculty and Charles University Hospital Plzen, Plzen, Czech Republic
| | - Michal Michal
- Department of Pathology, Charles University, Medical Faculty and Charles University Hospital Plzen, Plzen, Czech Republic
| | - Ondrej Hes
- Department of Pathology, Charles University, Medical Faculty and Charles University Hospital Plzen, Plzen, Czech Republic
| |
Collapse
|
2897
|
Merdrignac A, Angenard G, Allain C, Petitjean K, Bergeat D, Bellaud P, Fautrel A, Turlin B, Clément B, Dooley S, Sulpice L, Boudjema K, Coulouarn C. A novel transforming growth factor beta-induced long noncoding RNA promotes an inflammatory microenvironment in human intrahepatic cholangiocarcinoma. Hepatol Commun 2018; 2:254-269. [PMID: 29507901 PMCID: PMC5831019 DOI: 10.1002/hep4.1142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/20/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a deadly liver primary cancer associated with poor prognosis and limited therapeutic opportunities. Active transforming growth factor beta (TGFβ) signaling is a hallmark of the iCCA microenvironment. However, the impact of TGFβ on the transcriptome of iCCA tumor cells has been poorly investigated. Here, we have identified a specific TGFβ signature of genes commonly deregulated in iCCA cell lines, namely HuCCT1 and Huh28. Novel coding and noncoding TGFβ targets were identified, including a TGFβ-induced long noncoding RNA (TLINC), formerly known as cancer susceptibility candidate 15 (CASC15). TLINC is a general target induced by TGFβ in hepatic and nonhepatic cell types. In iCCA cell lines, the expression of a long and short TLINC isoform was associated with an epithelial or mesenchymal phenotype, respectively. Both isoforms were detected in the nucleus and cytoplasm. The long isoform of TLINC was associated with a migratory phenotype in iCCA cell lines and with the induction of proinflammatory cytokines, including interleukin 8, both in vitro and in resected human iCCA. TLINC was also identified as a tumor marker expressed in both epithelial and stroma cells. In nontumor livers, TLINC was only expressed in specific portal areas with signs of ductular reaction and inflammation. Finally, we provide experimental evidence of circular isoforms of TLINC, both in iCCA cells treated with TGFβ and in resected human iCCA. Conclusion: We identify a novel TGFβ-induced long noncoding RNA up-regulated in human iCCA and associated with an inflammatory microenvironment. (Hepatology Communications 2018;2:254-269).
Collapse
Affiliation(s)
- Aude Merdrignac
- Institut National de la Santé et de la Recherche Médicale, INRA, Université de Rennes, CHU Rennes, UMR 1241, Nutrition Metabolisms and Cancer, Service de Chirurgie Hépatobiliaire et Digestive, Biosit, Biogenouest, Core Facility H2P2 and CRB Santé Rennes France
| | - Gaëlle Angenard
- Institut National de la Santé et de la Recherche Médicale, INRA, Université de Rennes, CHU Rennes, UMR 1241, Nutrition Metabolisms and Cancer, Service de Chirurgie Hépatobiliaire et Digestive, Biosit, Biogenouest, Core Facility H2P2 and CRB Santé Rennes France
| | - Coralie Allain
- Institut National de la Santé et de la Recherche Médicale, INRA, Université de Rennes, CHU Rennes, UMR 1241, Nutrition Metabolisms and Cancer, Service de Chirurgie Hépatobiliaire et Digestive, Biosit, Biogenouest, Core Facility H2P2 and CRB Santé Rennes France
| | - Kilian Petitjean
- Institut National de la Santé et de la Recherche Médicale, INRA, Université de Rennes, CHU Rennes, UMR 1241, Nutrition Metabolisms and Cancer, Service de Chirurgie Hépatobiliaire et Digestive, Biosit, Biogenouest, Core Facility H2P2 and CRB Santé Rennes France
| | - Damien Bergeat
- Institut National de la Santé et de la Recherche Médicale, INRA, Université de Rennes, CHU Rennes, UMR 1241, Nutrition Metabolisms and Cancer, Service de Chirurgie Hépatobiliaire et Digestive, Biosit, Biogenouest, Core Facility H2P2 and CRB Santé Rennes France
| | - Pascale Bellaud
- Institut National de la Santé et de la Recherche Médicale, INRA, Université de Rennes, CHU Rennes, UMR 1241, Nutrition Metabolisms and Cancer, Service de Chirurgie Hépatobiliaire et Digestive, Biosit, Biogenouest, Core Facility H2P2 and CRB Santé Rennes France
| | - Allain Fautrel
- Institut National de la Santé et de la Recherche Médicale, INRA, Université de Rennes, CHU Rennes, UMR 1241, Nutrition Metabolisms and Cancer, Service de Chirurgie Hépatobiliaire et Digestive, Biosit, Biogenouest, Core Facility H2P2 and CRB Santé Rennes France
| | - Bruno Turlin
- Institut National de la Santé et de la Recherche Médicale, INRA, Université de Rennes, CHU Rennes, UMR 1241, Nutrition Metabolisms and Cancer, Service de Chirurgie Hépatobiliaire et Digestive, Biosit, Biogenouest, Core Facility H2P2 and CRB Santé Rennes France
| | - Bruno Clément
- Institut National de la Santé et de la Recherche Médicale, INRA, Université de Rennes, CHU Rennes, UMR 1241, Nutrition Metabolisms and Cancer, Service de Chirurgie Hépatobiliaire et Digestive, Biosit, Biogenouest, Core Facility H2P2 and CRB Santé Rennes France
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Laurent Sulpice
- Institut National de la Santé et de la Recherche Médicale, INRA, Université de Rennes, CHU Rennes, UMR 1241, Nutrition Metabolisms and Cancer, Service de Chirurgie Hépatobiliaire et Digestive, Biosit, Biogenouest, Core Facility H2P2 and CRB Santé Rennes France
| | - Karim Boudjema
- Institut National de la Santé et de la Recherche Médicale, INRA, Université de Rennes, CHU Rennes, UMR 1241, Nutrition Metabolisms and Cancer, Service de Chirurgie Hépatobiliaire et Digestive, Biosit, Biogenouest, Core Facility H2P2 and CRB Santé Rennes France
| | - Cédric Coulouarn
- Institut National de la Santé et de la Recherche Médicale, INRA, Université de Rennes, CHU Rennes, UMR 1241, Nutrition Metabolisms and Cancer, Service de Chirurgie Hépatobiliaire et Digestive, Biosit, Biogenouest, Core Facility H2P2 and CRB Santé Rennes France
| |
Collapse
|
2898
|
Wang X, Xu W, Zhan P, Xu T, Jin J, Miu Y, Zhou Z, Zhu Q, Wan B, Xi G, Ye L, Liu Y, Gao J, Li H, Lv T, Song Y. Overexpression of geranylgeranyl diphosphate synthase contributes to tumour metastasis and correlates with poor prognosis of lung adenocarcinoma. J Cell Mol Med 2018; 22:2177-2189. [PMID: 29377583 PMCID: PMC5867137 DOI: 10.1111/jcmm.13493] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
This study aimed to evaluate the biological role of geranylgeranyl diphosphate synthase (GGPPS) in the progression of lung adenocarcinoma. GGPPS expression was detected in lung adenocarcinoma tissues by qRT‐PCR, tissue microarray (TMA) and western blotting. The relationships between GGPPS expression and the clinicopathological characteristics and prognosis of lung adenocarcinoma patients were assessed. GGPPS was down‐regulated in SPCA‐1, PC9 and A549 cells using siRNA and up‐regulated in A549 cells using an adenoviral vector. The biological roles of GGPPS in cell proliferation, apoptosis, migration and invasion were determined by MTT and colony formation assays, flow cytometry, and transwell and wound‐healing assays, respectively. In addition, the regulatory roles of GGPPS on the expression of several epithelial‐mesenchymal transition (EMT) markers were determined. Furthermore, the Rac1/Cdc42 prenylation was detected after knockdown of GGPPS in SPCA‐1 and PC9 cells. GGPPS expression was significantly increased in lung adenocarcinoma tissues compared to that in adjacent normal tissues. Overexpression of GGPPS was correlated with large tumours, high TNM stage, lymph node metastasis and poor prognosis in patients. Knockdown of GGPPS inhibited the migration and invasion of lung adenocarcinoma cells, but did not affect cell proliferation and apoptosis. Meanwhile, GGPPS inhibition significantly increased the expression of E‐cadherin and reduced the expression of N‐cadherin and vimentin in lung adenocarcinoma cells. In addition, the Rac1/Cdc42 geranylgeranylation was reduced by GGPPS knockdown. Overexpression of GGPPS correlates with poor prognosis of lung adenocarcinoma and contributes to metastasis through regulating EMT.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Intensive Care Unit, Inner Mongolia People's Hospital, Hohhot, China
| | - Wujian Xu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Tianxiang Xu
- Center of Tumor, Inner Mongolia People's Hospital, Hohhot, China
| | - Jiajia Jin
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Yingying Miu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Zejun Zhou
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Guangmin Xi
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Liang Ye
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Yafang Liu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Jianwei Gao
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Huijuan Li
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| |
Collapse
|
2899
|
Duhamel S, Goyette MA, Thibault MP, Filion D, Gaboury L, Côté JF. The E3 Ubiquitin Ligase HectD1 Suppresses EMT and Metastasis by Targeting the +TIP ACF7 for Degradation. Cell Rep 2018; 22:1016-1030. [PMID: 29386124 DOI: 10.1016/j.celrep.2017.12.096] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/28/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer cells exploit the epithelial-to-mesenchymal transition (EMT) program to become metastatic. Cytoskeletal regulators are required in mesenchymal cells where they promote EMT and EMT-induced migration. In a search for regulators of metastasis, we conducted shRNA screens targeting the microtubule plus-end tracking proteins (+TIPs). We show that the +TIP ACF7 is essential both for the maintenance of the EMT program and to promote migration. We find that the E3 ubiquitin ligase HectD1 promotes ACF7-proteasome-mediated degradation. Depletion of HectD1 stabilized ACF7, and this enhanced EMT and migration. Decreased HectD1 expression increased metastases in mouse models and conferred increased resistance to the cytotoxic drug cisplatin. A retrospective analysis of biopsies from breast cancer patients also reveals a correlation between higher ACF7 or lower HectD1 expression with poor clinical outcomes. Together, these results suggest that the control of ACF7 levels by HectD1 modulates EMT and the efficiency of metastasis.
Collapse
Affiliation(s)
- Stéphanie Duhamel
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Marie-Anne Goyette
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | - Dominic Filion
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Louis Gaboury
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada.
| |
Collapse
|
2900
|
Ocaña OH, Coskun H, Minguillón C, Murawala P, Tanaka EM, Galcerán J, Muñoz-Chápuli R, Nieto MA. A right-handed signalling pathway drives heart looping in vertebrates. Nature 2018; 549:86-90. [PMID: 28880281 PMCID: PMC5590727 DOI: 10.1038/nature23454] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/29/2017] [Indexed: 12/19/2022]
Abstract
The majority of animals show external bilateral symmetry, precluding the observation of multiple internal left-right (L/R) asymmetries that are fundamental for organ packaging and function1,2. In vertebrates, left identity is mediated by the left-specific Nodal-Pitx2 axis that is repressed on the right-hand side by the epithelial-mesenchymal transition (EMT) inducer Snail13,4. Despite some existing evidence3,5, it remains unclear whether an equivalent instructive pathway provides right-hand specific information to the embryo. Here we show that in zebrafish, BMP mediates the L/R asymmetric activation of another EMT inducer, Prrx1a, in the lateral plate mesoderm (LPM) with higher levels on the right. Prrx1a drives L/R differential cell movements towards the midline leading to a leftward displacement of the cardiac posterior pole through an actomyosin-dependent mechanism. Downregulation of Prrx1a prevents heart looping and leads to mesocardia. Two parallel and mutually repressed pathways, respectively driven by Nodal and BMP on the left and right LPM, converge on the asymmetric activation of Pitx2 and Prrx1, two transcription factors that integrate left and right information to govern heart morphogenesis. This mechanism is conserved in the chicken embryo and, in the mouse, Snail1 fulfills the role played by Prrx1 in fish and chick. Thus, a differential L/R EMT produces asymmetric cell movements and forces, more prominent from the right, that drive heart laterality in vertebrates.
Collapse
Affiliation(s)
- Oscar H Ocaña
- Instituto de Neurociencias (CSIC-UMH), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Alicante, Spain
| | - Hakan Coskun
- Instituto de Neurociencias (CSIC-UMH), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Alicante, Spain
| | | | - Prayag Murawala
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden, Germany
| | - Elly M Tanaka
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden, Germany
| | - Joan Galcerán
- Instituto de Neurociencias (CSIC-UMH), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Alicante, Spain
| | - Ramón Muñoz-Chápuli
- University of Málaga, Department of Animal Biology, E-29071 Málaga, Spain.,Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|