251
|
Hu SW, Wang J, Zhang TT, Li XL, Chen HY, Xu JJ. Targeted Transmembrane Delivery of Ca 2+ via FA-Nanogel for Synergistically Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16412-16420. [PMID: 30990307 DOI: 10.1021/acsami.9b04967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal ion synergistically enhanced chemotherapy is a promising strategy for cancer treatment. However, targeting delivery of ions toward cancer cells remains challenging for decades. Herein, we developed a novel folic acid-nanogel (termed as FA-nanogel) with alkane chains as diffusion barriers for targeted transmembrane delivery of calcium ions into cancer cells. With the aid of hydrophobic diffusion barriers, the FA-nanogel showed a reduced and sustained speed for release of calcium ions, significantly prolonging the ion effect. Moreover, a pH-sensitive injectable hydrogel-loaded FA-nanogel and chemotherapeutic drug 5-fluorouracil (5-Fu) was synthesized for investigating the synergistic effect of nanogel on chemotherapy. Both in vitro and in vivo experiments confirmed that the intracellular calcium ions were continuously increased because of the targeted delivery ability and ion sustained release ability of the smart FA-nanogel, and the tumor growth was effectively inhibited by the ion synergistic chemotherapy. This study not only provides a powerful nanoplatform for sustained transmembrane delivery of ions into malignant cells but also creates better conditions for improving the therapeutic efficacy of chemotherapy.
Collapse
Affiliation(s)
- Shan-Wen Hu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering , Linyi University , Linyi 276005 , China
| | - Jin Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Ting-Ting Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xiang-Ling Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
252
|
Yao Y, Liu R, Gao C, Zhang T, Qi L, Liu G, Zhang W, Wang X, Li J, Li J, Sun C. Identification of prognostic biomarkers for breast cancer based on miRNA and mRNA co-expression network. J Cell Biochem 2019; 120:15378-15388. [PMID: 31037764 DOI: 10.1002/jcb.28805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Breast cancer (BC) remains a serious health threat for women due to its high incidence and the trend of rejuvenation. Accumulating evidence has highlighted that microRNAs (miRNAs) and messenger RNAs (mRNAs) could play important roles in various biological processes involved in the pathogenesis of BC. The present study aimed to identify potential prognostic biomarkers associated with BC. METHODS Here, original gene expression profiles of patients with BC was downloaded from The Cancer Genome Atlas (TCGA) database. TargetScan, miRDB, and miRTarBase databases were used to predict the target genes of prognostic-related differentially expressed miRNAs (DEMs). Subsequently, functional enrichment analysis and topological analysis were performed on the overlaps of target genes and differentially expressed mRNAs (DEGs), and Kaplan-Meier analysis was used to predict prognosis-related target genes to identify prognostic biomarkers. RESULTS A total of 218 DEMs and 2222 DEGs were extracted in which eight miRNAs were associated with prognosis, and 278 target DEGs were screened out incorporated into functional enrichment analysis and protein-protein interaction network visualization studies. Additionally, five hub genes (CXCL12, IGF1, LEF1, MMP1, and RACGAP1) were observed as potential biomarkers for BC prognosis through survival analysis. CONCLUSION We performed a distinctive correlation analysis of miRNA-mRNA in BC patients, and identified eight miRNAs and five hub genes may be effective biomarkers for the prognosis of BC patients.
Collapse
Affiliation(s)
- Yan Yao
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, People's Republic of China
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Tingting Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Lingyu Qi
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Gongxi Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, People's Republic of China
| | - Wenfeng Zhang
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Xue Wang
- Medical Colleges, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jie Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Jia Li
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Changgang Sun
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China.,Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| |
Collapse
|
253
|
Kim S, Back SK, Na HS, Kee SH. Capsaicin induces atopic dermatitis-like manifestations through dysregulation of proteolytic system and alteration of filaggrin processing in rats. Exp Dermatol 2019; 27:332-339. [PMID: 29509988 DOI: 10.1111/exd.13527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 01/08/2023]
Abstract
Atopic dermatitis (AD) is a complex disease featuring pruritic skin inflammation. Many animal models have been developed. In a rat model, subcutaneous capsaicin injection within 48 hours after birth induces AD-like skin manifestations of dermatitis and scratching behaviour 3 weeks after the injection. When 2- to 4-week-old rats were injected with capsaicin, the lag period was shortened, and the severity of skin manifestations was significantly reduced, suggesting influences of postnatal development. Lgr6 is an epidermal stem cell marker that is normally restricted to the isthmus area of hair follicles at postnatal 2 weeks. Lgr6 persisted in the interfollicular epidermis of capsaicin-injected rats beyond 3 weeks after birth, indicating that capsaicin-induced skin manifestations were influenced by postnatal epidermal development. Capsaicin injection induced alteration of proteolytic processing of filaggrin and corneodesmosin, suggesting epidermal barrier dysfunction. Inappropriate degradation of matriptase was observed. Degrees of proteolysis of these proteins were corelated with the severity of manifestations, suggesting that inappropriate proteolysis might be a possible cause of the skin manifestations. These results strongly suggest that capsaicin may dysregulate the protease system, resulting in alteration of profilaggrin and corneodesmosin proteolysis and skin manifestations. These events may be influenced by postnatal epidermal development.
Collapse
Affiliation(s)
- Sewon Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul, Korea
| | - Seung Keun Back
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Chungnam, Korea
| | - Heung Sik Na
- Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Sun-Ho Kee
- Department of Microbiology, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
254
|
Coelomic Fluid of Lumbricus rubellus Synergistically Enhances Cytotoxic Effect of 5-Fluorouracil through Modulation of Focal Adhesion Kinase and p21 in HT-29 Cancer Cell Line. ScientificWorldJournal 2019; 2019:5632859. [PMID: 31097925 PMCID: PMC6487099 DOI: 10.1155/2019/5632859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/13/2018] [Accepted: 02/07/2019] [Indexed: 01/28/2023] Open
Abstract
Coelomic fluid of Lumbricus rubellus (CFL) has attracted interest due to its pharmacological properties, including antitumor effect. Furthermore, it is necessary to evaluate the response to treatment with new cancer therapeutic agents. This study aims to investigate whether the combination of CFL and 5-fluorouracil could reduce FAK protein level and iCa2+ and enhance p21 level. Furthermore, it is necessary to evaluate the response to treatment with new cancer therapeutic agents. After 24 hours of treatment, it was necessary to assess the percentage of apoptosis, FAK, and p21 protein expression by flow cytometry. iCa2+ concentration was measured using immunofluorescence. The combination therapy of CFL with 5-fluorouracil potently suppressed six treatment groups were included in this study. HT-29 cell lines were cultured and divided into six groups: group 1 was treated with vehicle (negative control), groups 2-5 were treated with 5-fluorouracil, groups 3-5 were treated with either CFL 5, 10, or 20 µg/ml immediately after 5-fluorouracil, and group 6 was treated with CFL 20 µg/ml, the progression of colorectal cancer. Combination of CFL and 5-fluorouracil significantly decreased FAK expression (p<0.05), iCa2+ (p<0.05), and increased p21 expression (p<0.05) in HT-29 cells. Our results suggest that CFL has an anticancer potential in colorectal cancer when combined with 5-fluorouracil.
Collapse
|
255
|
Zheng T, Feng H, Liu L, Peng J, Xiao H, Yu T, Zhou Z, Li Y, Zhang Y, Bai X, Zhao S, Shi Y, Chen Y. Enhanced antiproliferative effect of resveratrol in head and neck squamous cell carcinoma using GE11 peptide conjugated liposome. Int J Mol Med 2019; 43:1635-1642. [PMID: 30816515 PMCID: PMC6414163 DOI: 10.3892/ijmm.2019.4096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/22/2019] [Indexed: 01/01/2023] Open
Abstract
The present study describes the preparation of a dodecapeptide YHWYGYTPQNVI (GE11)‑conjugated liposome bound with polyethylene glycol to enhance the therapeutic effect of resveratrol (RSV) in head and neck cancer cells. The results indicated that (RSV)‑loaded GE11‑conjugated liposomes (RSV‑GL) exhibited a high entrapment efficiency of >95%, with an active drug loading level of 19.5% w/w. Release kinetics revealed that RSV was released in a slow and sustained manner from the RSV‑GL and RSV‑loaded liposome (RSV‑L) nanoparticulate systems. The epidermal growth factor receptor (EGFR)‑overexpressing squamous cell carcinoma HN cells specifically internalized GE11 surface‑conjugated liposome in a manner that was markedly increased compared with that of the non‑targeted carrier. Consistently, RSV‑GL exhibited a significantly increased cytotoxic effect compared with that of the non‑targeted nanoparticles. Notably, RSV‑GL induced significantly increased proportions of early (~60%) and late (~10%) apoptotic cells in head and neck cancer cell populations. To the best of our knowledge, the application and development of EGFR‑targeted peptide‑conjugated liposome system for RSV delivery has not been studied previously in the treatment of head and neck cancer. In addition, RSV‑GL exhibited the greatest antitumor efficacy compared with any other group. RSV‑GL exhibited a 2‑fold decrease in tumor volume compared with the free RSV and a 3‑fold decrease in volume compared with the control. Overall, the nanomedicine strategy described in the present study may potentially advance the chemotherapy‑based treatment of head and neck cancer, with promising applications in other EGFR‑overexpressing tumors.
Collapse
Affiliation(s)
- Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 510852
- Department of Ultrasound
- Sanming Project of Medicine in Shenzhen, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036
| | - Huanhuan Feng
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 510852
| | - Li Liu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 510852
- Department of Ultrasound
| | - Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036
| | - Haitao Xiao
- Department of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060
| | - Tao Yu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 510852, P.R. China
| | - Ziqian Zhou
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 510852
- Department of Ultrasound
| | - Ying Li
- Department of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060
| | - Yuseng Zhang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 510852
- Department of Ultrasound
| | - Xiaohe Bai
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 510852
- Department of Ultrasound
| | - Simeng Zhao
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 510852
- Department of Ultrasound
| | - Yu Shi
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 510852
- Department of Ultrasound
- Sanming Project of Medicine in Shenzhen, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 510852
- Department of Ultrasound
- Sanming Project of Medicine in Shenzhen, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036
| |
Collapse
|
256
|
Dong P, Rakesh K, Manukumar H, Mohammed YHE, Karthik C, Sumathi S, Mallu P, Qin HL. Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorg Chem 2019; 85:325-336. [PMID: 30658232 DOI: 10.1016/j.bioorg.2019.01.019] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
|
257
|
|
258
|
Xie B, Li X. Inflammatory mediators causing cutaneous chronic itch in some diseases via transient receptor potential channel subfamily V member 1 and subfamily A member 1. J Dermatol 2019; 46:177-185. [PMID: 30588658 PMCID: PMC6590237 DOI: 10.1111/1346-8138.14749] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022]
Abstract
Chronic itch with an itch-scratch vicious circle is a significant problem in a large amount of diseases. Some of these diseases, such as psoriasis, atopic dermatitis, prurigo nodularis, Sézary syndrome, uremic pruritus, diabetes and jaundice, are common. For a very long time, chronic itch has been a thorny problem with few effective treatments. Because of this, itch researchers and dermatologists seek to find the mechanisms among chronic itch, inflammatory cytokines and neurons. As an immediate area of research focus, we are going to find the peripheral cross-talk between neurons and skin cells. Two receptors, named transient receptor potential channel vanilloid 1 and transient receptor potential channel ankyrin transmembrane protein 1, have been shown to play important roles in chronic itch. Many advances have been made so far this decade. This review talks about the updated mechanism of itch-related inflammatory cytokines via transient receptor potential channels in cutaneous chronic itch and corresponding diseases. The search for itch-related inflammatory mediators and the structure of transient receptor potential channels this decade could deepen our understanding of the mechanism of itch and help us find more treatments of chronic itch in the future.
Collapse
Affiliation(s)
- Bo Xie
- Department of PharmacologyInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Xin‐Yu Li
- Department of PharmacologyInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| |
Collapse
|
259
|
Activation of GPR120 promotes the metastasis of breast cancer through the PI3K/Akt/NF-κB signaling pathway. Anticancer Drugs 2019; 30:260-270. [PMID: 30520776 DOI: 10.1097/cad.0000000000000716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
260
|
Kumar S, Sharma B, Thakur K, Bhardwaj TR, Prasad DN, Singh RK. Recent Advances in the Development of Polymeric Nanocarrier Formulations for the Treatment of Colon Cancer. DRUG DELIVERY LETTERS 2019; 9:2-14. [DOI: 10.2174/2210303108666181109120710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/04/2025]
Abstract
Background:
Many efforts have been explored in the last decade to treat colon cancer but
nanoparticulate drug delivery systems are making a vital contribution in the improvement of drug delivery
to colon cancer cells.
Objective:
In this review, we attempt to highlight recent advancements in the development of novel
drug delivery systems of nanoparticles for the targeted drug delivery to colon. Polymers like Epithelial
Cell Adhesion Molecule (EpCAM) aptamer chitosan, Hyaluronic Acid (HA), Chitosan (CS)–
Carboxymethyl Starch (CMS), silsesquioxane capped mesoporous silica, Near IR (NIR) fluorescent
Human Serum Albumin (HAS), poly(ethylene glycol)-conjugated hyaluronic acid etc. have been discussed
by employing various anticancer drugs like doxorubicin, oxaliplatin, paclitaxel, 5-fluorouracil
etc.
Conclusion:
These novel drug delivery systems have been determined to be more efficacious in terms
of stability, sustained and targeted drug delivery, therapeutic efficacy, improved bioavailability and enhanced
anticancer activity.
Collapse
Affiliation(s)
- Sahil Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Sohna, Dist. Gurugram- 122103, Haryana, India
| | - Bandna Sharma
- School of Pharmacy & Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi-173205, India
| | - Kiran Thakur
- School of Pharmacy & Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi-173205, India
| | - Tilak R. Bhardwaj
- School of Pharmacy & Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi-173205, India
| | - Deo N. Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Distt. Rupnagar, Punjab, 140126, India
| | - Rajesh K. Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Distt. Rupnagar, Punjab, 140126, India
| |
Collapse
|
261
|
Jeong JH, Back SK, An JH, Lee NS, Kim DK, Na CS, Jeong YG, Han SY. Topical film prepared with Rhus verniciflua extract-loaded pullulan hydrogel for atopic dermatitis treatment. J Biomed Mater Res B Appl Biomater 2019; 107:2325-2334. [PMID: 30697924 DOI: 10.1002/jbm.b.34325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/26/2018] [Accepted: 12/23/2018] [Indexed: 12/22/2022]
Abstract
Atopic dermatitis (AD) is characterized by relapsing pruritus and skin dryness. Due to the pathogenic multiplicity and the adverse effects associated with the current therapeutics, development of transdermal drug delivery system is becoming an area of interest. Here, a novel topical film prepared with Rhus verniciflua extract (RVE)-loaded pullulan hydrogel (RVE@PH) was synthesized and tested its therapeutic efficacy on the AD rats modeled by neonatal capsaicin injection method. The RVE@PH was characterized by a Fourier-transform infrared spectroscopy and an in vitro release assay. Rat pups were randomly divided into two groups: vehicle-treated (VEH; n = 5) and capsaicin-treated (n = 15). The latter were given capsaicin subcutaneously at 24 h after birth for AD induction and further divided into three groups (n = 5 per each): not treated (CAP), pullulan hydrogel-applied (PH), and RVE@PH-applied (RVE-PH). The pullulan hydrogel and RVE@PH were topically applied on shoulder lesions for 14 days (from 42 to 56 days after birth). Their phenotypes were compared based on the dermatitis score, epidermal thickness, mast cell infiltration, and serum myeloperoxidase (MPO) activities. The PH group showed significant attenuation in all the aforementioned values compared to the CAP group, suggesting that pullulan hydrogel itself has therapeutic activity against AD. Notably, the attenuations were more potent in the RVE-PH group than the PH group, indicating that the therapeutic efficacy against AD is augmented by the presence of RVE, a loaded pharmaceutic. Collectively, these results indicate that RVE@PH inhibits AD through exerting the dual roles, that is, the pullulan hydrogel-mediated physical and RVE-mediated pharmaceutical actions. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2325-2334, 2019.
Collapse
Affiliation(s)
- Ji Heun Jeong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Seung Keun Back
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, 35365, South Korea
| | - Jong Hun An
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Nam-Seob Lee
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Do-Kyung Kim
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Chun Soo Na
- Lifetree Co., Ltd., Suwon, 63421, South Korea
| | - Young-Gil Jeong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Seung Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, 35365, South Korea.,Myunggok Research Institute, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| |
Collapse
|
262
|
Vijayakumar A, Baskaran R, Baek JH, Sundaramoorthy P, Yoo BK. In Vitro Cytotoxicity and Bioavailability of Ginsenoside-Modified Nanostructured Lipid Carrier Containing Curcumin. AAPS PharmSciTech 2019; 20:88. [PMID: 30675630 DOI: 10.1208/s12249-019-1295-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
Our aim was to investigate the cellular uptake, in vitro cytotoxicity and bioavailability of ginsenoside-modified nanostructured lipid carrier loaded with curcumin (G-NLC). The formulation was prepared by melt emulsification technique, in which water was added to the melted lipids and homogenized to give a uniform suspension of NLC (without ginsenoside) and G-NLC. Cellular uptake of curcumin in two colon cancer cell lines (HCT116 and HT29) was increased when administered using both NLC and G-NLC compared to control (curcumin dissolved into DMSO) as measured by fluorescence microscopy. Ginsenoside modification resulted in 2.0-fold and 1.4-fold increases in fluorescence intensity in HCT116 and HT29 cell lines, respectively, compared to plain NLC. In vitro cytotoxicity (assessed by MTT assay) had a dose-dependent relationship with curcumin concentration for both NLC and G-NLC. Although G-NLC was taken up more readily in HCT116 cells, ginsenoside modification did not produce a significant increase in cytotoxic effect; a significant increase was observed in HT29 cells. Oral administration of G-NLC in ten colon cancer patients produced an appreciable plasma level of unbound curcumin (2.9 ng/mL). In conclusion, introduction of ginsenoside into NLC enhanced the cellular uptake and cytotoxicity of curcumin as well as its oral bioavailability, and this strategy can be used to improve clinical outcomes in the treatment of colon cancer with similar genotype to HT29.
Collapse
|
263
|
Gao ZR, Chen WZ, Liu MZ, Chen XJ, Wan L, Zhang XY, Yuan L, Lin JK, Wang M, Zhou L, Xu XH, Sun YG. Tac1-Expressing Neurons in the Periaqueductal Gray Facilitate the Itch-Scratching Cycle via Descending Regulation. Neuron 2019; 101:45-59.e9. [PMID: 30554781 DOI: 10.1016/j.neuron.2018.11.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/07/2018] [Accepted: 11/05/2018] [Indexed: 02/02/2023]
|
264
|
Gargalionis AN, Basdra EK, Papavassiliou AG. Polycystins in Colorectal Cancer. Int J Mol Sci 2018; 20:104. [PMID: 30597875 PMCID: PMC6337659 DOI: 10.3390/ijms20010104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022] Open
Abstract
Cell and extracellular matrix (ECM) biomechanics emerge as a distinct feature during the development and progression of colorectal cancer (CRC). Polycystins are core mechanosensitive protein molecules that mediate mechanotransduction in a variety of epithelial cells. Polycystin-1 (PC1) and polycystin-2 (PC2) are engaged in signal transduction mechanisms and during alterations in calcium influx, which regulate cellular functions such as proliferation, differentiation, orientation, and migration in cancer cells. Recent findings implicate polycystins in the deregulation of such functions and the formation of CRC invasive phenotypes. Polycystins participate in all aspects of the cell's biomechanical network, from the perception of extracellular mechanical cues to focal adhesion protein and nuclear transcriptional complexes. Therefore, polycystins could be employed as novel biomarkers and putative targets of selective treatment in CRC.
Collapse
Affiliation(s)
- Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
265
|
Cloyd RA, Koren SA, Abisambra JF. Manganese-Enhanced Magnetic Resonance Imaging: Overview and Central Nervous System Applications With a Focus on Neurodegeneration. Front Aging Neurosci 2018; 10:403. [PMID: 30618710 PMCID: PMC6300587 DOI: 10.3389/fnagi.2018.00403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) rose to prominence in the 1990s as a sensitive approach to high contrast imaging. Following the discovery of manganese conductance through calcium-permeable channels, MEMRI applications expanded to include functional imaging in the central nervous system (CNS) and other body systems. MEMRI has since been employed in the investigation of physiology in many animal models and in humans. Here, we review historical perspectives that follow the evolution of applied MRI research into MEMRI with particular focus on its potential toxicity. Furthermore, we discuss the more current in vivo investigative uses of MEMRI in CNS investigations and the brief but decorated clinical usage of chelated manganese compound mangafodipir in humans.
Collapse
Affiliation(s)
- Ryan A Cloyd
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,College of Medicine, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Shon A Koren
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Jose F Abisambra
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
266
|
Hao Y, Gao Y, Wu Y, An C. The AIB1siRNA-loaded hyaluronic acid-assembled PEI/heparin/Ca2+ nanocomplex as a novel therapeutic strategy in lung cancer treatment. Int J Mol Med 2018; 43:861-867. [PMID: 30535446 PMCID: PMC6317651 DOI: 10.3892/ijmm.2018.4014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022] Open
Abstract
In the present study, AIB1siRNA‑loaded polyethyleneimine (PEI)/heparin/Ca2+ nanoparticles (NPs) were successfully prepared and evaluated for their efficacy in lung cancer cells. The results demonstrated that the PEI and heparin complex reduced the toxic effect in cancer cells while maintaining its transfection efficiency. A nanosized particle of ~25 nm was formulated and siRNA was demonstrated to possess excellent binding efficiency in the particles. Confocal microscopy revealed that fluorescein‑labeled (FAM)‑small interfering (si)RNA dissociated from the HA‑PEI/heparin/Ca2+/siRNA (CPH‑siH) NPs and exhibited maximum fluorescence in the cytoplasm, which was important in elucidating its post‑transcriptional activity. CPH‑siH NPs exhibited a typical concentration‑dependent toxicity in cancer cells. Blank PEI/heparin/Ca2+ did not induce any toxicity in cancer cells, indicating its safety and lack of side effects. CPH‑siH (100 nm) induced the maximum apoptosis of cancer cells with nearly ~35% of cells in the early and late apoptosis stages. The expression of the nuclear receptor coactivator 3 (NCOA3, also known as AIB1) protein was knocked down in a concentration‑dependent manner, demonstrating the potent activity of AIB1siRNA in cancer cells. Together, these results indicated that HA‑PEI/heparin/Ca2+ NPs may be a promising carrier for the anticancer activity of AIB1siRNA in lung cancer cells.
Collapse
Affiliation(s)
- Ying Hao
- Department of Pathology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang 832003, P.R. China
| | - Yongsheng Gao
- Department of Pathology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, P.R. China
| | - Yedan Wu
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Changshan An
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| |
Collapse
|
267
|
Marko M, Pawliczak R. Obesity and asthma: risk, control and treatment. Postepy Dermatol Alergol 2018; 35:563-571. [PMID: 30618522 PMCID: PMC6320490 DOI: 10.5114/ada.2018.77607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
Asthma and obesity are currently one of the most common diseases. Observing an increase in morbidity of obesity and asthma, it can be concluded that there is a link between these diseases. But the mechanism of this relation is not well known. Due to reduced movement in patients and treatment, asthma is conducive to obesity, and obesity can exacerbate the symptoms associated with asthma. Obesity can affect bronchial hyperresponsiveness. Increasing body fat in obese people leads to systemic inflammation and elevated serum levels of many proinflammatory cytokines (e.g. leptin) and anti-inflammatory ones (e.g. adiponectin) that can have a causal relationship to bronchial asthma, but human studies are ambiguous. Obese asthmatics are characterized by a phenotype: heavier asthma, worse response to treatment and control of asthma. It has been found that in obese people, weight loss reduces the severity of asthma symptoms, so in these patients, treatment should include weight control.
Collapse
Affiliation(s)
- Monika Marko
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
268
|
Ma Y, Liu X, Ma Q, Liu Y. Near-infrared nanoparticles based on indocyanine green-conjugated albumin: a versatile platform for imaging-guided synergistic tumor chemo-phototherapy with temperature-responsive drug release. Onco Targets Ther 2018; 11:8517-8528. [PMID: 30555242 PMCID: PMC6278719 DOI: 10.2147/ott.s183887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of this study was to develop a multifunctional theranostic agent based on BSA nanoparticles (NPs), which loaded artemisinin (ART) and co-conjugated with indocyanine green (ICG) and arginine-glycine-aspartic acid (RGD) peptide (RGD-indocyanine green-Bovine Serum Albumin-artemisinin [IBA] NPs). MATERIALS AND METHODS The physicochemical parameters of RGD-IBA NPs were character-ized in terms of the particle size, zeta potential, morphology, entrapment efficiency, drug loading, in vitro release behavior, photothermal and photodynamic effect, and in vitro anticancer ability. In vivo fluorescence and thermal imaging as well as antitumor studies were also evaluated. RESULTS The tumor chemotherapeutic effects of ART and the ability of fluorescence imaging, hyperthermia generation and reactive oxygen species production of ICG and tumor-targeting RGD were integrated to achieve RGD-IBA NPs for imaging-guided tumor-targeted chemotherapy/photothermal/photodynamic therapy (chemo-phototherapy). The RGD-IBA NPs showed enhanced physiological stability and photo-stability compared with free ART and ICG. In addition, they were temperature-responsive; their sizes increased with increasing temperature between 25°C and 55°C, thereby leading to drug release upon the irradiation with near infrared (NIR) laser. In vivo fluorescence images of tumor-bearing mice showed that the RGD-IBA NPs could highly and passively reach the targeted tumor region with maximum accumulation at 24 hours post-intravenous injection. The in vitro and in vivo results demonstrated that the RGD-IBA NPs not only have good biocompatibility, but also are highly efficient tumor synergistic chemo-phototherapeutic agents. CONCLUSION Through this study, it was found that RGD-IBA NPs could potentially be a very promising tumor theranostic agent.
Collapse
Affiliation(s)
- Yuxin Ma
- Jinan Stomatologic Hospital, Jinan 250001, Shandong, China,
| | - Xiaohua Liu
- Jinan Stomatologic Hospital, Jinan 250001, Shandong, China,
| | - Qianli Ma
- School and Hospital of Stomatology, Shandong University, Jinan 250001, Shandong, China
| | - Yizhi Liu
- Binzhou Medical School, Binzhou 256603, Shandong, China
| |
Collapse
|
269
|
Prospective multicenter real-world RAS mutation comparison between OncoBEAM-based liquid biopsy and tissue analysis in metastatic colorectal cancer. Br J Cancer 2018; 119:1464-1470. [PMID: 30467411 PMCID: PMC6288144 DOI: 10.1038/s41416-018-0293-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background Liquid biopsy offers a minimally invasive alternative to tissue-based evaluation of mutational status in cancer. The goal of the present study was to evaluate the aggregate performance of OncoBEAM RAS mutation analysis in plasma of colorectal cancer (CRC) patients at 10 hospital laboratories in Spain where this technology is routinely implemented. Methods Circulating cell-free DNA from plasma was examined for RAS mutations using the OncoBEAM platform at each hospital laboratory. Results were then compared to those obtained from DNA extracted from tumour tissue from the same patient. Results The overall percentage agreement between plasma-based and tissue-based RAS mutation testing of the 236 participants was 89% (210/236; kappa, 0.770 (95% CI: 0.689–0.852)). Re-analysis of tissue from all discordant cases by BEAMing revealed two false negative and five false positive tumour tissue RAS results, with a final concordance of 92%. Plasma false negative results were found more frequently in patients with exclusive lung metastatic disease. Conclusions In this first prospective real-world RAS mutation performance comparison study, a high overall agreement was observed between results obtained from plasma and tissue samples. Overall, these findings indicate that the plasma-based BEAMing assay is a viable solution for rapid delivery of RAS mutation status to determine mCRC patient eligibility for anti-EGFR therapy.
Collapse
|
270
|
Feng Y, Gao Y, Wang D, Xu Z, Sun W, Ren P. Autophagy Inhibitor (LY294002) and 5-fluorouracil (5-FU) Combination-Based Nanoliposome for Enhanced Efficacy Against Esophageal Squamous Cell Carcinoma. NANOSCALE RESEARCH LETTERS 2018; 13:325. [PMID: 30328537 PMCID: PMC6192941 DOI: 10.1186/s11671-018-2716-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/11/2018] [Indexed: 05/25/2023]
Abstract
In this study, 5-fluorouracil (5-FU) and LY294002 (LY)-loaded PEGylated nanoliposome was prepared to target esophageal squamous cell carcinoma (ESCC). The particles were characterized in terms of physicochemical and biological parameters. The co-delivery of autophagy inhibitor and chemotherapeutic drug in a single carrier was successfully accomplished. The two components from 5-FU and LY-loaded PEGylated nanoliposome (FLNP) released in a controlled manner with LY relatively released faster compared to that of 5-FU. FLNP showed a receptor-mediated cellular uptake that will allow the gradual release of drug in the acidic environment. The cellular uptake of nanoparticles (NP) was further confirmed by FACS analysis. The combination of 5-FU and LY resulted in higher cytotoxic effect compared to that of individual drugs. Most importantly, FLNP exhibited a significantly higher anticancer effect in cancer cells compared to that of free cocktail combinations. The faster release of LY from FLNP leads to autophagy inhibition that improves the sensitivity of cancer cells towards 5-FU, resulting in more cell death. Consistently, FLNP induced a greater apoptosis (~ 48%) of cancer cells compared to that of any other groups. Western blot analysis clearly showed that 5-FU and LY individually increased the expression of caspase-3 and PARP, while as expected FLNP induced a remarkable expression of these protein markers indicating the superior anticancer effect. We believe that the programmed release of autophagy inhibitor and chemotherapeutic drug from a single nanocarrier will increase the prospect of anticancer therapy in ESCC.
Collapse
Affiliation(s)
- Ye Feng
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, 130033 China
| | - Yongjian Gao
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, 130033 China
| | - Dayu Wang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, 130033 China
| | - Zhonghang Xu
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, 130033 China
| | - Weixuan Sun
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, 130033 China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130033 China
| |
Collapse
|
271
|
Ehling S, Butler A, Thi S, Ghashghaei HT, Bäumer W. To scratch an itch: Establishing a mouse model to determine active brain areas involved in acute histaminergic itch. IBRO Rep 2018; 5:67-73. [PMID: 30364768 PMCID: PMC6197726 DOI: 10.1016/j.ibror.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/13/2018] [Indexed: 12/30/2022] Open
Abstract
The specific histamine H4 receptor agonist ST-1006 induces acute itch in mice. Histaminergic itch increases neuronal activity in the medial habenula. Selective H4R activation in the skin increases neuronal activity in the medial habenula.
Background Strategies to efficiently control itch require a deep understanding of the underlying mechanisms. Several areas in the brain involved in itch and scratching responses have been postulated, but the central mechanisms that drive pruritic responses are still unknown. Histamine is recognized as a major mediator of itch in humans, and has been the most frequently used stimulus as an experimental pruritogen for brain imaging of itch. Objective Histaminergic itch via histamine and the selective histamine H4 receptor (H4R) agonist, ST-1006, recruit brain nuclei through c-fos activation and activate specific areas in the brain. Methods An acute itch model was established in c-fos-EGFP transgenic mice using ST-1006 and histamine. Coronal brain sections were stained for c-fos immunoreactivity and the forebrain was mapped for density of c-fos + nuclei. Results Histamine and ST-1006 significantly increased scratching response in c-fos-EGFP mice compared to vehicle controls. Mapping c-fos immunostained brain sections revealed neuronal activity in the cortex, striatum, hypothalamus, thalamus, amygdala, and the midbrain. Conclusions Histaminergic itch and selective H4R activation significantly increased the density of c-fos + nuclei in the medial habenula (MHb). Thus, the MHb may be a new target to investigate and subsequently develop novel mechanism-based strategies to treat itch and possibly provide a locus for pharmacological control of pruritus.
Collapse
Affiliation(s)
- Sarah Ehling
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA.,Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ashley Butler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA
| | - Stephanie Thi
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA
| | - H Troy Ghashghaei
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA
| | - Wolfgang Bäumer
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA.,Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
272
|
Chao THH, Chen JH, Yen CT. Plasticity changes in forebrain activity and functional connectivity during neuropathic pain development in rats with sciatic spared nerve injury. Mol Brain 2018; 11:55. [PMID: 30285801 PMCID: PMC6167811 DOI: 10.1186/s13041-018-0398-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023] Open
Abstract
Neuropathic pain is a major worldwide health problem. Although central sensitization has been reported in well-established neuropathic conditions, information on the acute brain activation patterns in response to peripheral nerve injury is lacking. This study first mapped the brain activity in rats immediately following spared nerve injury (SNI) of the sciatic nerve. Using blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD-fMRI), we observed sustained activation in the bilateral insular cortices (ICs), primary somatosensory cortex (S1), and cingulate cortex. Second, this study sought to link this sustained activation pattern with brain sensitization. Using manganese-enhanced magnetic resonance imaging (MEMRI), we observed enhanced activity in the ipsilateral anterior IC (AIC) in free-moving SNI rats on Days 1 and 8 post-SNI. Furthermore, enhanced functional connectivity between the ipsilateral AIC, bilateral rostral AIC, and S1 was observed on Day 8 post-SNI. Chronic electrophysiological recording experiments were conducted to confirm the tonic neuronal activation in selected brain regions. Our data provide evidence of tonic activation-dependent brain sensitization during neuropathic pain development and offer evidence that the plasticity changes in the IC and S1 may contribute to neuropathic pain development.
Collapse
Affiliation(s)
- Tzu-Hao Harry Chao
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Jyh-Horng Chen
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan.
| |
Collapse
|
273
|
Cai B, Kasikara C, Doran AC, Ramakrishnan R, Birge RB, Tabas I. MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity. Sci Signal 2018; 11:eaar3721. [PMID: 30254055 PMCID: PMC6171110 DOI: 10.1126/scisignal.aar3721] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation resolution counterbalances excessive inflammation and restores tissue homeostasis after injury. Failure of resolution contributes to the pathology of numerous chronic inflammatory diseases. Resolution is mediated by endogenous specialized proresolving mediators (SPMs), which are derived from long-chain fatty acids by lipoxygenase (LOX) enzymes. 5-LOX plays a critical role in the biosynthesis of two classes of SPMs: lipoxins and resolvins. Cytoplasmic localization of the nonphosphorylated form of 5-LOX is essential for SPM biosynthesis, whereas nuclear localization of phosphorylated 5-LOX promotes proinflammatory leukotriene production. We previously showed that MerTK, an efferocytosis receptor on macrophages, promotes SPM biosynthesis by increasing the abundance of nonphosphorylated, cytoplasmic 5-LOX. We now show that activation of MerTK in human macrophages led to ERK-mediated expression of the gene encoding sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), which decreased the cytosolic Ca2+ concentration and suppressed the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). This, in turn, reduced the activities of the mitogen-activated protein kinase (MAPK) p38 and the kinase MK2, resulting in the increased abundance of the nonphosphorylated, cytoplasmic form of 5-LOX and enhanced SPM biosynthesis. In a zymosan-induced peritonitis model, an inflammatory setting in which macrophage MerTK activation promotes resolution, inhibition of ERK activation delayed resolution, which was characterized by an increased number of neutrophils and decreased amounts of SPMs in tissue exudates. These findings contribute to our understanding of how MerTK signaling induces 5-LOX-derived SPM biosynthesis and suggest a therapeutic strategy to boost inflammation resolution in settings where defective resolution promotes disease progression.
Collapse
Affiliation(s)
- Bishuang Cai
- Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA.
| | - Canan Kasikara
- Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA
| | - Amanda C Doran
- Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA
| | | | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Ira Tabas
- Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
274
|
Fang Y, Wang H, Dou HJ, Fan X, Fei XC, Wang L, Cheng S, Janin A, Wang L, Zhao WL. Doxorubicin-loaded dextran-based nano-carriers for highly efficient inhibition of lymphoma cell growth and synchronous reduction of cardiac toxicity. Int J Nanomedicine 2018; 13:5673-5683. [PMID: 30288040 PMCID: PMC6161723 DOI: 10.2147/ijn.s161203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Cardiac side effects of doxorubicin (Dox) have limited its clinical application. The aim of this study was to explore new Dox-loaded dextran-based nano-carriers (NCs) in efficiently targeting tumor growth with less cardiac toxicity. Methods Inspired by recent reports that polymeric NCs could function as sustained, controlled and targeted drug delivery systems, we developed Dox-loaded NCs which displayed a 2-fold release ratio of Dox in the mimic tumor site condition (pH 5.0 with 10 mM glutathione, GSH) as much as that in systemic circulation condition (pH 7.4). Results Lymphoma cells treated with Dox-NCs had significantly higher intracellular Dox concentrations and more apoptotic induction, with lower P-gp expression, when compared with those treated with Dox alone. The identified mechanism of action, apoptosis, was triggered through survivin reduction and caspase-3 activation. Even in the Dox-resistant cells, Dox-NCs could significantly inhibit cell growth and induce apoptosis. In murine lymphoma xenograft models, Dox-NCs also remarkably significantly retarded tumor growth, assessed by murine weight, and demonstrated less cytotoxicity. Noticeably, apoptotic myocardial cells were decreased in the Dox-NCs-treated group, when compared with the control group, which was consistent with low intracellular Dox concentration in the cardiac cell line H9C2. Conclusion Dox-NCs showed an anti-lymphoma effect with reduced cardiac toxicity in both in vivo and in vitro models and, therefore, could be a potential therapeutic agent in the treatment of lymphoma.
Collapse
Affiliation(s)
- Ying Fang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ;
| | - Hao Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Jing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Fan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ;
| | - Xiao-Chun Fei
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ;
| | - Anne Janin
- Sino-French Research Center of Life Science and Genomics, Laboratory of Molecular Pathology, Shanghai, China, ; .,Joint Research Unit 1165, Inserm, University Paris VII, Saint-Louis Hospital, Paris, France
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ; .,Sino-French Research Center of Life Science and Genomics, Laboratory of Molecular Pathology, Shanghai, China, ;
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ; .,Sino-French Research Center of Life Science and Genomics, Laboratory of Molecular Pathology, Shanghai, China, ;
| |
Collapse
|
275
|
Dai Y, Huang J, Xiang B, Zhu H, He C. Antiproliferative and Apoptosis Triggering Potential of Paclitaxel-Based Targeted-Lipid Nanoparticles with Enhanced Cellular Internalization by Transferrin Receptors-a Study in Leukemia Cells. NANOSCALE RESEARCH LETTERS 2018; 13:271. [PMID: 30191515 PMCID: PMC6127072 DOI: 10.1186/s11671-018-2688-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/24/2018] [Indexed: 02/05/2023]
Abstract
Leukemia is a typical blood cancer that is characterized by the numerous duplication and proliferation of white blood cells. The main aim of this study was to develop PTX-loaded multifunctional nanoparticles and target to leukemia cells. In this study, transferrin-decorated paclitaxel-loaded lipid nanoparticle (TPLN) was prepared with an aim to increase the chemotherapeutic efficacy in the leukemia cells. Results clearly showed the superior targeting potential of TPLN to the HL-60 cancer cells compared to that of the paclitaxel-loaded nanoparticles (PLN). To be specific, TPLN showed a significantly higher cytotoxic effect in the cancer cells compared to that of the PLN indicating the superior targeting efficiency of the Tf-decorated nanoparticle system. The IC50 value of TPLN was 0.45 μg/ml compared to 2.8 μg/ml for PLN. TPLN induced a most remarkable apoptosis of the cancer cells and much of the cells were distorted with huge presence of the apoptotic body formation. Importantly, TPLN showed a remarkable reduction in the viable cells proportion to ~ 65% with around ~ 30% apoptosis cells (early and late apoptosis). Overall, results clearly showed the targeting potential of ligand-conjugated lipid nanoparticle system to the leukemia cells that might pave the way for the successful cancer treatment.
Collapse
Affiliation(s)
- Yang Dai
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jingcao Huang
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| | - Bing Xiang
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| | - Huanling Zhu
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| | - Chuan He
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
276
|
Fang J, Zhang S, Xue X, Zhu X, Song S, Wang B, Jiang L, Qin M, Liang H, Gao L. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int J Nanomedicine 2018; 13:5113-5126. [PMID: 30233175 PMCID: PMC6135215 DOI: 10.2147/ijn.s170862] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Effective gastric carcinoma (GC) chemotherapy is subject to many in vitro and in vivo barriers, such as tumor microenvironment and multidrug resistance. MATERIALS AND METHODS Herein, we developed a hyaluronic acid (HA)-modified silica nanoparticle (HA-SiLN/QD) co-delivering quercetin and doxorubicin (DOX) to enhance the efficacy of GC therapy (HA-SiLN/QD). The HA modification was done to recognize overexpressed CD44 receptors on GC cells and mediate selective tumor targeting. In parallel, quercetin delivery decreased the expression of Wnt16 and P-glycoprotein, thus remodeling the tumor microenvironment and reversed multidrug resistance to facilitate DOX activity. RESULTS Experimental results demonstrated that HA-SiLN/QD was nanoscaled particles with preferable stability and sustained release property. In vitro cell experiments on SGC7901/ADR cells showed selective uptake and increased DOX retention as compared to the DOX mono-delivery system (HA-SiLN/D). CONCLUSION In vivo anticancer assays on the SGC7901/ADR tumor-bearing mice model also revealed significantly enhanced efficacy of HA-SiLN/QD than mono-delivery systems (HA-SiLN/Q and HA-SiLN/D).
Collapse
Affiliation(s)
- Jian Fang
- Department of General Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Shangwu Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Xiaofeng Xue
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China,
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China,
| | - Shiduo Song
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China,
| | - Bin Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China,
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China,
| | - Mingde Qin
- Department of General Surgery, The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Hansi Liang
- Department of General Surgery, The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China,
| |
Collapse
|
277
|
Ghoreishi-Haack N, Priebe JM, Aguado JD, Colechio EM, Burgdorf JS, Bowers MS, Cearley CN, Khan MA, Moskal JR. NYX-2925 Is a Novel N-Methyl-d-Aspartate Receptor Modulator that Induces Rapid and Long-Lasting Analgesia in Rat Models of Neuropathic Pain. J Pharmacol Exp Ther 2018; 366:485-497. [PMID: 29986951 DOI: 10.1124/jpet.118.249409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/03/2018] [Indexed: 01/04/2025] Open
Abstract
NYX-2925 [(2S,3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3.4]octan-2-yl)butanamide] is a novel N-methyl-d-aspartate (NMDA) receptor modulator that is currently being investigated in phase 2 clinical studies for the treatment of painful diabetic peripheral neuropathy and fibromyalgia. Previous studies demonstrated that NYX-2925 is a member of a novel class of NMDA receptor-specific modulators that affect synaptic plasticity processes associated with learning and memory. Studies here examined NYX-2925 administration in rat peripheral chronic constriction nerve injury (CCI) and streptozotocin-induced diabetic mechanical hypersensitivity. Additionally, NYX-2925 was examined in formalin-induced persistent pain model and the tail flick test of acute nociception. Oral administration of NYX-2925 resulted in rapid and long-lasting analgesia in both of the neuropathic pain models and formalin-induced persistent pain, but was ineffective in the tail flick model. The analgesic effects of NYX-2925 were blocked by the systemic administration of NMDA receptor antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid. Microinjection of NYX-2925 into the medial prefrontal cortex of CCI rats resulted in analgesic effects similar to those observed following systemic administration, whereas intrathecal administration of NYX-2925 was ineffective. In CCI animals, NYX-2925 administration reversed deficits seen in a rat model of rough-and-tumble play. Thus, it appears that NYX-2925 may have therapeutic potential for the treatment of neuropathic pain, and the data presented here support the idea that NYX-2925 may act centrally to ameliorate pain and modulate negative affective states associated with chronic neuropathic pain.
Collapse
Affiliation(s)
- Nayereh Ghoreishi-Haack
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Jessica M Priebe
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Jacqueline D Aguado
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Elizabeth M Colechio
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Jeffrey S Burgdorf
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - M Scott Bowers
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Cassia N Cearley
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - M Amin Khan
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Joseph R Moskal
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| |
Collapse
|
278
|
Zhang D, Xu Q, Wang N, Yang Y, Liu J, Yu G, Yang X, Xu H, Wang H. A complex micellar system co-delivering curcumin with doxorubicin against cardiotoxicity and tumor growth. Int J Nanomedicine 2018; 13:4549-4561. [PMID: 30127606 PMCID: PMC6091483 DOI: 10.2147/ijn.s170067] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Dose-dependent irreversible cardiac toxicity of doxorubicin (DOX) becomes a major obstacle for the clinical use. Nowadays much attention is being paid to combination therapy with DOX and antioxidant agents, which would improve the clinical efficacy by protecting from cardiotoxicity along with the maintained performance as an antitumor drug. With the assistance of nanoscience and polymer engineering, herein a complex polymeric micellar system was developed for co-loading DOX and a premium natural antioxidant curcumin (CUR), and we investigated whether this new formulation for DOX delivery could achieve such a goal. Methods The dually loaded micelles co-encapsulating DOX and CUR (CPMDC) were prepared through thin-film rehydration by using the amphiphilic diblock copolymer monomethoxy poly(ethylene glycol) (mPEG)–poly(ε-caprolactone) (PCL)–N-t-butoxycarbonyl-phenylalanine (BP) synthesized by end-group modification of mPEG–PCL with BP. Quantitative analysis was conducted by HPLC methods for drugs in micelles or biosamples. Molecular dynamics simulation was performed using HyperChem software to illustrate interactions among copolymer and active pharmaceutical ingredients. The safety and antitumor efficacy were evaluated by in vitro viability of H9C2 cells, and tumor growth inhibition in tumor-bearing mice respectively. The protection effects against DOX-induced cardiotoxicity were investigated according to several physiological, histopathological and biochemical markers concerning systemic and cardiac toxicity. Results CPMDC were obtained with favorable physicochemical properties meeting the clinical demand, including uniform particle size, fairly high encapsulation efficiency and drug loadings, as well as good drug release profiles and colloidal stability. The result from molecular dynamics simulation indicated a great impact of the interactions among copolymer and small molecules on the ratiometrical co-encapsulation of both drugs. MTT assay of in vitro H9C2 cells viability demonstrated good safety of the CPMDC formulation, which also showed definite signs of decrease in xenograft tumor growth. The studies on pharmacokinetics and tissue distribution further revealed that DOX delivered by CPMDC could result in prolonged systemic circulation and increased DOX accumulation in tumor but decreased level of the toxic metabolite doxorubicinol in heart tissue compared to free DOX alone or the cocktail combination. Conclusion The findings from present study substantiated that such a complex micellar system codelivering DOX with CUR does produce the effect of killing two birds with one stone via distinctive nanocarrier-modified drug-drug interactions.
Collapse
Affiliation(s)
- Di Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Qian Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Ning Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Yanting Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Guohua Yu
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai, People's Republic of China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, People's Republic of China
| | - Hui Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| |
Collapse
|
279
|
Chitosan hydrochloride/hyaluronic acid nanoparticles coated by mPEG as long-circulating nanocarriers for systemic delivery of mitoxantrone. Int J Biol Macromol 2018; 113:345-353. [PMID: 29486258 DOI: 10.1016/j.ijbiomac.2018.02.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
|
280
|
Wang X, Wu F, Li G, Zhang N, Song X, Zheng Y, Gong C, Han B, He G. Lipid-modified cell-penetrating peptide-based self-assembly micelles for co-delivery of narciclasine and siULK1 in hepatocellular carcinoma therapy. Acta Biomater 2018; 74:414-429. [PMID: 29787814 DOI: 10.1016/j.actbio.2018.05.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/05/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, and one therapeutic approach is to target both the AMPK and autophagy pathways in order to synergistically promote programmed cell death. Here, a series of amphiphilic, lipid-modified cell-penetrating peptides were synthesized and allowed to self-assemble into micelles loaded with the AMPK activator narciclasine (Narc) and short interfering RNA targeting the unc-51-like kinase 1 (siULK1). The size of these micelles, their efficiency of transfection into cells, and their ability to release drug or siRNA cargo in vitro were pH-sensitive, such that drug release was facilitated in the acidic microenvironment of the tumor. Transfecting the micelles into HCC cells significantly inhibited protective autophagy within tumor cells, and delivering the micelles into mice carrying HCC xenografts induced apoptosis, slowed tumor growth, and inhibited autophagy. Our results indicate that co-delivering Narc and siULK1 in biocompatible micelles can safely inhibit tumor growth and protective autophagy, justifying further studies into this promising therapeutic approach against HCC. STATEMENT OF SIGNIFICANCE We have focused on the targeted therapy of HCC via synergistically inhibiting the autophagy and inducing apoptosis. The lipid-modified cell-penetrating peptide can not only aggregate into micelles to load natural product narciclasine and ULK1 siRNA simultaneously, but also facilitate uptake and endosome escape with a pH-sensitive manner in HepG2 cells. HepG2 cell treated with siULK1-M-Narc has increased apoptotic levels and declined autophagy via the targeted regulation of AMPK-ULK1 signaling axis. The in vivo studies have confirmed that siULK1-M-Narc efficiently reduce the growth of tumor on HCC xenograft models with good safety. Thus, we suppose the lipid-modified cell-penetrating peptide has good application prospects in the targeted combinational therapy of HCC.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Fengbo Wu
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Guoyou Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610065, China.
| | - Nan Zhang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiangrong Song
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yu Zheng
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Changyang Gong
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bo Han
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gu He
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
281
|
Glyoxal-induced exacerbation of pruritus and dermatitis is associated with staphylococcus aureus colonization in the skin of a rat model of atopic dermatitis. J Dermatol Sci 2018; 90:276-283. [PMID: 29496360 DOI: 10.1016/j.jdermsci.2018.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 11/24/2022]
|
282
|
Courtier N, Gambling T, Barrett-Lee P, Mason MD. Soluble interleukin-6 receptor mediated fatigue highlights immunological heterogeneity of patients with early breast cancer who undergo radiation therapy. Adv Radiat Oncol 2018; 3:552-558. [PMID: 30370355 PMCID: PMC6200875 DOI: 10.1016/j.adro.2018.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/24/2018] [Accepted: 05/21/2018] [Indexed: 10/26/2022] Open
Abstract
Purpose This study aimed to explore the associations between dose-volume parameters of localized breast irradiation, longitudinal interleukin-6 soluble receptor (sIL-6R), and leukocyte counts as markers of an immune-mediated response and fatigue as a centrally-driven behavior. Methods and Materials This prospective cohort study recruited 100 women who were diagnosed with stage 0-IIIa breast cancer, prescribed 40 Gy in 15 fractions over 3 weeks adjuvant radiation therapy, and had no prior or concurrent chemotherapy. Dose-volume parameters were derived from treatment plans and related to serum sIL-6R concentrations, leukocyte counts, and a validated measure of self-reported fatigue at baseline, after 10 and 15 fractions, and 4 weeks after radiation therapy. Results sIL-6R concertation was significantly higher in patients with a total volume of tissue irradiated within the 50% isodose >2040 cm3 (P = .003). When controlling for body mass index, this result only remained significant after treatment. The volume of liver irradiated within the 10% isodose correlated with the sIL-6R concentration during and after radiation therapy (ρ = .3-.4; P = .03-.007). The 38% of the cohort that was classified as fatigued had a higher mean sIL-6sR concentration at all observation points, but the differences were only statistically significant during radiation therapy: Mean (standard deviation [SD]) after 15 fractions for fatigued patients was 47.6 ng/dL (11.2 SD) versus 41.6 ng/dL (11.4 SD) for nonfatigued patients (P = .01). Cohort leukocyte counts and leukocyte subsets decreased consistently from baseline and the values for the fatigued group were 4% lower at baseline and between 7% and 9% lower during and after treatment compared with those of the nonfatigued group but the differences were not statistically significant. Conclusions This is the first study to show that localized irradiation induces increased systemic sIL-6R during treatment in participants who reported elevated levels of fatigue before, during, and after treatment. This behavioral response appears to reflect a variation in innate host immunity, which then mediates the cellular and/or psychological stress of radiation therapy.
Collapse
Affiliation(s)
- Nicholas Courtier
- Cardiff University School of Healthcare Sciences, Cardiff, United Kingdom
| | - Tina Gambling
- Cardiff University School of Healthcare Sciences, Cardiff, United Kingdom
| | | | - Malcolm D Mason
- Velindre Cancer Centre, Cardiff, United Kingdom.,Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
283
|
Sundaramoorthy P, Gasparetto C, Kang Y. The combination of a sphingosine kinase 2 inhibitor (ABC294640) and a Bcl-2 inhibitor (ABT-199) displays synergistic anti-myeloma effects in myeloma cells without a t(11;14) translocation. Cancer Med 2018; 7:3257-3268. [PMID: 29761903 PMCID: PMC6051232 DOI: 10.1002/cam4.1543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable disease in need of the development of novel therapeutic agents and drug combinations. ABT‐199 is a specific Bcl‐2 inhibitor in clinical trials for MM; however, its activity as a single agent was limited to myeloma patients with the t(11;14) translocation who acquire resistance due to co‐expression of Mcl‐1 and Bcl‐xL. These limitations preclude its use in a broader patient population. We have recently found that a sphingosine kinase 2‐specific inhibitor (ABC294640) induces apoptosis in primary human CD138+ cells and MM cell lines. ABC294640 is currently in phase I/II clinical trials for myeloma (clinicaltrials.gov: #NCT01410981). Interestingly, ABC294640 down‐regulates c‐Myc and Mcl‐1, but does not have any effects on Bcl‐2. We first evaluated the combinatorial anti‐myeloma effect of ABC294640 and ABT‐199 in vitro in 7 MM cell lines, all of which harbor no t(11;14) translocation. Combination index calculation demonstrated a synergistic anti‐myeloma effect of the combination of ABC294640 and ABT‐199. This synergistic anti‐myeloma effect was maintained even in the presence of bone marrow (BM) stromal cells. The combination of ABC294640 and ABT‐199 led to enhanced cleavage of PARP and caspase‐3/9 and increased Annexin‐V expression, consistent with the induction of apoptosis by the combination treatment. In addition, the combination of ABC294640 and ABT‐199 resulted in the down‐regulation of the anti‐apoptotic proteins Mcl‐1, Bcl‐2, and Bcl‐xL and the cleavage of Bax and Bid. The combination induced both the mitochondrial mediated‐ and caspase‐mediated apoptosis pathways. Finally, the combination of ABC294640 and ABT‐199 resulted in augmented anti‐myeloma effect in vivo in a mouse xenograft model. These findings demonstrate that the co‐administration of ABC294640 and ABT‐199 exhibits synergistic anti‐myeloma activity in vitro and in vivo, providing justification for a clinical study of this novel combination in patients with relapsed/refractory multiple myeloma.
Collapse
Affiliation(s)
- Pasupathi Sundaramoorthy
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Cristina Gasparetto
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Yubin Kang
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
284
|
Walana W, Ye Y, Li M, Wang J, Wang B, Cheng JW, Gordon JR, Li F. IL-8 antagonist, CXCL8(3-72)K11R/G31P coupled with probiotic exhibit variably enhanced therapeutic potential in ameliorating ulcerative colitis. Biomed Pharmacother 2018; 103:253-261. [PMID: 29655167 DOI: 10.1016/j.biopha.2018.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) remains a major health challenge due in part to unsafe and limited treatment options, hence there is the need for alternatives. CXCL8/interleukin 8 (IL-8) is elevated in inflammation, and binds preferentially to G protein-couple receptors (GPCRs) CXCR1/2 of the CXC chemokine family to initiate cascades of downstream inflammatory signals. A mutant CXCL8 protein, CXCL8(3-72)K11R/G31P (G31P), competitively and selectively binds to CXCR1/2, making CXCL8 redundant. We explore the therapeutic potential of G31P in dextran sulfate sodium (DSS) induced ulcerative colitis (UC), and the corresponding effect if G31P treatment is augmented with Lactobacillus acidophilus (LACT). The treatment options administered significantly reduced TNF-α, IFN-γ, IL-1β, IL-6, and IL-8, but maintained elevated levels of IL-10. CD68 and F4/80 expressions were down-regulated and showed restricted infiltration to inflamed colon, while IL-17F levels were insignificantly different from the DSS treated mice. Also, we observed up-regulation of IL-17A in G31P + LACT but not G31P treated mice if compared with Control group. The treatments ameliorated colonic fibrosis by reducing VEGF, TGF-β, MMP-2 and MMP-9. In addition, we observed elevated levels of E-cadherin, and marginal up-regulation of occludin, suggesting the role of the treatments in regulating tight intestinal junction and adherence proteins. Mechanism-wise, G31P interferes with AKT and ERK signaling pathways. Our study suggests that G31P confers protection in IBD, particularly UC, and when G31P treatment is augmented with Lactobacillus acidophilus, the protection is variably enhanced.
Collapse
Affiliation(s)
- Williams Walana
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China.
| | - Ying Ye
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China.
| | - Ming Li
- Department of Microecology, Dalian Medical University, Dalian, Liaoning, China.
| | - Jingjing Wang
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China.
| | - Bing Wang
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China.
| | - Jya-Wei Cheng
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - John R Gordon
- The Division of Respirology, Critical Care and Sleep Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada.
| | - Fang Li
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
285
|
Antitumor Effect of Calcium-Mediated Destabilization of Epithelial Growth Factor Receptor on Non-Small Cell Lung Carcinoma. Int J Mol Sci 2018. [PMID: 29641465 DOI: 10.3390/ijms19041158.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite the development of numerous therapeutics targeting the epithelial growth factor receptor (EGFR) for non-small cell lung carcinoma (NSCLC), the application of these drugs is limited because of drug resistance. Here, we investigated the antitumor effect of calcium-mediated degradation of EGFR pathway-associated proteins on NSCLC. First, lactate calcium salt (LCS) was utilized for calcium supplementation. Src, α-tubulin and EGFR levels were measured after LSC treatment, and the proteins were visualized by immunocytochemistry. Calpeptin was used to confirm the calcium-mediated effect of LCS on NSCLC. Nuclear expression of c-Myc and cyclin D1 was determined to understand the underlying mechanism of signal inhibition following EGFR and Src destabilization. The colony formation assay and a xenograft animal model were used to confirm the in vitro and in vivo antitumor effects, respectively. LCS supplementation reduced Src and α-tubulin expression in NSCLC cells. EGFR was destabilized because of proteolysis of Src and α-tubulin. c-Myc and cyclin D1 expression levels were also reduced following the decrease in the transcriptional co-activation of EGFR and Src. Clonogenic ability and tumor growth were significantly inhibited by LSC treatment-induced EGFR destabilization. These results suggest that other than specifically targeting EGFR, proteolysis of associated molecules such as Src or α-tubulin may effectively exert an antitumor effect on NSCLC via EGFR destabilization. Therefore, LCS is expected to be a good candidate for developing novel anti-NSCLC therapeutics overcoming chemoresistance.
Collapse
|
286
|
Yang W, Hu Q, Xu Y, Liu H, Zhong L. Antibody fragment-conjugated gemcitabine and paclitaxel-based liposome for effective therapeutic efficacy in pancreatic cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:328-335. [PMID: 29752104 DOI: 10.1016/j.msec.2018.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/27/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022]
Abstract
In this study, we have developed an antibody fragment (AF)-conjugated gemcitabine (GEM) and paclitaxel (PTX)-loaded liposome (AF-GPL) to enhance the therapeutic efficacy in pancreatic cancer treatment. The maleimide-thiol chemistry was utilized to conjugate AF on the liposome surface. The dual-drug loaded liposome was nanosized and exhibited a controlled release of both the drugs. Importantly, two drugs have different release pattern over a period of time. The AF-conjugated liposome showed enhanced cellular uptake in pancreatic cancer cells compared to that of non-targeted liposome. Two-fold higher internalization of particles might increase the intracellular concentration of anticancer drugs that might further increase the therapeutic efficacy in pancreatic cancer cells. AF-GPL showed significantly higher cytotoxic effect in pancreatic cancer cell compared to that of non-targeted GPL. The IC50 value of GEM, PTX, GPL and AF-GPL were 5.9 μg/ml, 4.2 μg/ml, 1.92 μg/ml, and 0.45 μg/ml, respectively. Consistently, AF-GPL (4.12) showed significantly higher ratio of Bax/Bcl-2 compared to that of non-targeted GPL (2.8). Importantly, AF-GPL induced a significant apoptosis of cancer cells with predominant amount of cells in late apoptosis cells. Overall, AF-conjugated nanosystem could potentially improve the therapeutic efficacy in pancreatic cancers.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, China
| | - Qian Hu
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, China
| | - Yanmei Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, China
| | - Hailang Liu
- Department of Organ Transplant, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, China
| | - Lin Zhong
- Department of Organ Transplant, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, China.
| |
Collapse
|
287
|
Kim IU, Sung IS, Sim JJ, Park M, Jeong KY, Kim HM. Antitumor Effect of Calcium-Mediated Destabilization of Epithelial Growth Factor Receptor on Non-Small Cell Lung Carcinoma. Int J Mol Sci 2018; 19:1158. [PMID: 29641465 PMCID: PMC5979318 DOI: 10.3390/ijms19041158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/30/2022] Open
Abstract
Despite the development of numerous therapeutics targeting the epithelial growth factor receptor (EGFR) for non-small cell lung carcinoma (NSCLC), the application of these drugs is limited because of drug resistance. Here, we investigated the antitumor effect of calcium-mediated degradation of EGFR pathway-associated proteins on NSCLC. First, lactate calcium salt (LCS) was utilized for calcium supplementation. Src, α-tubulin and EGFR levels were measured after LSC treatment, and the proteins were visualized by immunocytochemistry. Calpeptin was used to confirm the calcium-mediated effect of LCS on NSCLC. Nuclear expression of c-Myc and cyclin D1 was determined to understand the underlying mechanism of signal inhibition following EGFR and Src destabilization. The colony formation assay and a xenograft animal model were used to confirm the in vitro and in vivo antitumor effects, respectively. LCS supplementation reduced Src and α-tubulin expression in NSCLC cells. EGFR was destabilized because of proteolysis of Src and α-tubulin. c-Myc and cyclin D1 expression levels were also reduced following the decrease in the transcriptional co-activation of EGFR and Src. Clonogenic ability and tumor growth were significantly inhibited by LSC treatment-induced EGFR destabilization. These results suggest that other than specifically targeting EGFR, proteolysis of associated molecules such as Src or α-tubulin may effectively exert an antitumor effect on NSCLC via EGFR destabilization. Therefore, LCS is expected to be a good candidate for developing novel anti-NSCLC therapeutics overcoming chemoresistance.
Collapse
Affiliation(s)
- In Un Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - In Sung Sung
- Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Jae Jun Sim
- Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Minhee Park
- Metimedi Pharmaceuticals Co. R&D Division, 263, Central-ro, Yeonsu-Gu, Incheon 22006, Korea.
| | - Keun-Yeong Jeong
- Metimedi Pharmaceuticals Co. R&D Division, 263, Central-ro, Yeonsu-Gu, Incheon 22006, Korea.
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| |
Collapse
|
288
|
Breznik B, Motaln H, Vittori M, Rotter A, Lah Turnšek T. Mesenchymal stem cells differentially affect the invasion of distinct glioblastoma cell lines. Oncotarget 2018; 8:25482-25499. [PMID: 28424417 PMCID: PMC5421945 DOI: 10.18632/oncotarget.16041] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/07/2017] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma multiforme are an aggressive form of brain tumors that are characterized by distinct invasion of single glioblastoma cells, which infiltrate the brain parenchyma. This appears to be stimulated by the communication between cancer and stromal cells. Mesenchymal stem cells (MSCs) are part of the glioblastoma microenvironment, and their ‘cross-talk’ with glioblastoma cells is still poorly understood. Here, we examined the effects of bone marrow-derived MSCs on two different established glioblastoma cell lines U87 and U373. We focused on mutual effects of direct MSC/glioblastoma contact on cellular invasion in three-dimensional invasion assays in vitro and in a zebrafish embryo model in vivo. This is the first demonstration of glioblastoma cell-type-specific responses to MSCs in direct glioblastoma co-cultures, where MSCs inhibited the invasion of U87 cells and enhanced the invasion of U373. Inversely, direct cross-talk between MSCs and both of glioblastoma cell lines enhanced MSC motility. MSC-enhanced invasion of U373 cells was assisted by overexpression of proteases cathepsin B, calpain1, uPA/uPAR, MMP-2, -9 and -14, and increased activities of some of these proteases, as determined by the effects of their selective inhibitors on invasion. In contrast, these proteases had no effect on U87 cell invasion under MSC co-culturing. Finally, we identified differentially expressed genes, in U87 and U373 cells that could explain different response of these cell lines to MSCs. In conclusion, we demonstrated that MSC/glioblastoma cross-talk is different in the two glioblastoma cell phenotypes, which contributes to tumor heterogeneity.
Collapse
Affiliation(s)
- Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia.,International Postgraduate School Jozef Stefan, 1000 Ljubljana, Slovenia
| | - Helena Motaln
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Miloš Vittori
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Ana Rotter
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia.,International Postgraduate School Jozef Stefan, 1000 Ljubljana, Slovenia.,Department of Biochemistry, Faculty of Chemistry and Chemical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
289
|
Zhang L, Chang J, Zhao Y, Xu H, Wang T, Li Q, Xing L, Huang J, Wang Y, Liang Q. Fabrication of a triptolide-loaded and poly-γ-glutamic acid-based amphiphilic nanoparticle for the treatment of rheumatoid arthritis. Int J Nanomedicine 2018; 13:2051-2064. [PMID: 29670349 PMCID: PMC5894725 DOI: 10.2147/ijn.s151233] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Triptolide (TP) exhibits immunosuppressive, cartilage-protective and anti-inflammatory effects in rheumatoid arthritis. However, the toxicity of TP limits its widespread use. To decrease the toxic effects, we developed a novel nano-drug carrier system containing TP using poly-γ-glutamic acid-grafted di-tert-butyl L-aspartate hydrochloride (PAT). PAT had an average diameter of 79±18 nm, a narrow polydispersity index (0.18), a strong zeta potential (−32 mV) and a high drug encapsulation efficiency (EE1=48.6%) and loading capacity (EE2=19.2%), and exhibited controlled release (t1/2=29 h). The MTT assay and flow cytometry results indicated that PAT could decrease toxicity and apoptosis induced by free TP on RAW264.7 cells. PAT decreased lipopolysaccharides/interferon γ-induced cytokines expression of macrophage (P<0.05). In vivo, PAT accumulated at inflammatory joints, improved the survival rate and had fewer side effects on tumor necrosis factor α transgenic mice, compared to TP. The blood biochemical indexes revealed that PAT did not cause much damage to the kidney (urea nitrogen and creatinine) and liver (alanine aminotransferase and aspartate aminotransferase). In addition, PAT reduced inflammatory synovial tissue area (P<0.05), cartilage loss (P<0.05), tartrate-resistant acid phosphatase-positive osteoclast area (P<0.05) and bone erosion (P<0.05) in both knee and ankle joints, and showed similar beneficial effect as free TP. In summary, our newly formed nanoparticle, PAT, can reduce the toxicity and guarantee the efficacy of TP, which represents an effective drug candidate for RA with low adverse side effect.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Junli Chang
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yongjian Zhao
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hao Xu
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Tengteng Wang
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qiang Li
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jing Huang
- School of Life Science, East China Normal University
| | - Yongjun Wang
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qianqian Liang
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
290
|
Chishti AA, Baumstark-Khan C, Koch K, Kolanus W, Feles S, Konda B, Azhar A, Spitta LF, Henschenmacher B, Diegeler S, Schmitz C, Hellweg CE. Linear Energy Transfer Modulates Radiation-Induced NF-kappa B Activation and Expression of its Downstream Target Genes. Radiat Res 2018; 189:354-370. [PMID: 29369006 DOI: 10.1667/rr14905.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Nuclear factor kappaB (NF-κB) is a central transcription factor in the immune system and modulates cell survival in response to radiotherapy. Activation of NF-κB was shown to be an early step in the cellular response to ultraviolet A (UVA) and ionizing radiation exposure in human cells. NF-κB activation by the genotoxic stress-dependent sub-pathway after exposure to different radiation qualities had been evaluated to a very limited extent. In addition, the resulting gene expression profile, which shapes the cellular and tissue response, is unknown. Therefore, in this study the activation of NF-κB after exposure to low- and high-linear energy transfer (LET) radiation and the expression of its target genes were analyzed in human embryonic kidney (HEK) cells. The activation of NF-κB via canonical and genotoxic stress-induced pathways was visualized by the cell line HEK-pNF-κB-d2EGFP/Neo L2 carrying the destabilized enhanced green fluorescent protein (d2EGFP) as reporter. The NF-κB-dependent d2EGFP expression after irradiation with X rays and heavy ions was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after irradiation with X rays (significant NF-κB activation for doses >4 Gy) and heavy ions (significant NF-κB activation at doses as low as 1 Gy), it was expected that radiation quality (LET) played an important role in the cellular radiation response. In addition, the relative biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival were compared for heavy ions having a broad LET range (∼0.3-9,674 keV/μm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real-time reverse transcriptase quantitative PCR (RT-qPCR). The maximal RBE for NF-κB activation and cell killing occurred at an LET value of 80 and 175 keV/μm, respectively. There was a dose-dependent increase in expression of NF-κB target genes NF-κB1A and CXCL8. A qPCR array of 84 NF-κB target genes revealed that TNF and a set of CXCL genes (CXCL1, CXCL2, CXCL8, CXCL10), CCL2, VCAM1, CD83, NF-κB1, NF-κB2 and NF-κBIA were strongly upregulated after exposure to X rays and neon ions (LET 92 keV/μm). After heavy-ion irradiations, it was noted that the expression of NF-κB target genes such as chemokines and CD83 was highest at an LET value that coincided with the LET resulting in maximal NF-κB activation, whereas expression of the NF-κB inhibitory gene NFKBIA was induced transiently by all radiation qualities investigated. Taken together, these findings clearly demonstrate that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ∼50-200 keV/μm. The upregulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, CXCL8/IL-8 and TNF) could be important for cell-cell communication among hit as well as nonhit cells (bystander effect).
Collapse
Affiliation(s)
- Arif Ali Chishti
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Christa Baumstark-Khan
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Kristina Koch
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Waldemar Kolanus
- b Life and Medical Sciences (LIMES) Institute, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| | - Sebastian Feles
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Bikash Konda
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Abid Azhar
- c The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi-75270, Pakistan
| | - Luis F Spitta
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Bernd Henschenmacher
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Sebastian Diegeler
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Claudia Schmitz
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Christine E Hellweg
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| |
Collapse
|
291
|
Ramasamy T, Ruttala HB, Sundaramoorthy P, Poudel BK, Youn YS, Ku SK, Choi HG, Yong CS, Kim JO. Multimodal selenium nanoshell-capped Au@mSiO2 nanoplatform for NIR-responsive chemo-photothermal therapy against metastatic breast cancer. NPG ASIA MATERIALS 2018; 10:197-216. [DOI: 10.1038/s41427-018-0034-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/27/2017] [Accepted: 12/03/2017] [Indexed: 01/04/2025]
|
292
|
Shen Y, Bu L, Li R, Chen Z, Tian F, Lu N, Ge Q, Bai Y, Lu Z. Screening effective differential expression genes for hepatic carcinoma with metastasis in the peripheral blood mononuclear cells by RNA-seq. Oncotarget 2018; 8:27976-27989. [PMID: 28427195 PMCID: PMC5438623 DOI: 10.18632/oncotarget.15855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a multistep process involving a number of genetic alterations so that the genetic diagnosis is got increasingly attentions today. The aim of this study was to use RNA-seq to screen the effective differential expression genes in the peripheral blood mononuclear cells for the hepatic carcinoma with metastasis. The results showed that hepatic carcinoma samples gathered according to different metastasis. CCL3, CCL3L1, JUN, IL8, and IL1B were identified in inflammation mediated by chemokine and cytokine signaling pathway (P00031) in the hepatic carcinoma samples with metastasis, and subsequently confirmed by quantitative real-time polymerase chain reaction. In conclusions, CCL3, CCL3L1, JUN, IL8, and IL1B have the potential to be considered as candidates for future molecular diagnosis of the hepatic carcinoma with metastasis. This work may provide us with new visions into the metastasis process and potential efficient clinical diagnosis in the future.
Collapse
Affiliation(s)
- Yanting Shen
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China.,State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Lu Bu
- Department of Interventional Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province, 210009, PR China
| | - Rui Li
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Zhenzhu Chen
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Fei Tian
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Na Lu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Zuhong Lu
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China.,State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| |
Collapse
|
293
|
Park GT, Choi KC. Advanced new strategies for metastatic cancer treatment by therapeutic stem cells and oncolytic virotherapy. Oncotarget 2018; 7:58684-58695. [PMID: 27494901 PMCID: PMC5295462 DOI: 10.18632/oncotarget.11017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/29/2016] [Indexed: 01/14/2023] Open
Abstract
The field of therapeutic stem cell and oncolytic virotherapy for cancer treatment has rapidly expanded over the past decade. Oncolytic viruses constitute a promising new class of anticancer agent because of their ability to selectively infect and destroy tumor cells. Engineering of viruses to express anticancer genes and specific cancer targeting molecules has led to the use of these systems as a novel platform of metastatic cancer therapy. In addition, stem cells have a cancer specific migratory capacity, which is available for metastatic cancer targeting. Prodrug activating enzyme or anticancer cytokine expressing stem cells successfully inhibited the proliferation of cancer cells. Preclinical models have clearly demonstrated anticancer activity of these two platforms against a number of different cancer types and metastatic cancer. Several systems using therapeutic stem cells or oncolytic virus have entered clinical trials, and promising results have led to late stage clinical development. Consequently, metastatic cancer therapies using stem cells and oncolytic viruses are extremely promising. The following review will focus on the metastatic cancer targeting mechanism of therapeutic stem cells and oncolytic viruses, and potential challenges ahead for advancing the field.
Collapse
Affiliation(s)
- Geon-Tae Park
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.,TheraCell Bio & Science, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
294
|
Jeong KY, Kang JH. Investigation of spinal nerve ligation-mediated functional activation of the rat brain using manganese-enhanced MRI. Exp Anim 2018; 67:23-29. [PMID: 28747592 PMCID: PMC5814311 DOI: 10.1538/expanim.17-0033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/13/2017] [Indexed: 10/31/2022] Open
Abstract
To provide clear information on the cerebral regions according to peripheral neuropathy, the functional activation was investigated using manganese-enhanced magnetic resonance imaging (MEMRI). L5-spinal nerve ligation (SNL) was applied to the rats to induce neuropathic pain. Mechanical allodynia and thermal hyperalgesia were measured to confirm neuropathic pain induction following before and after gabapentin (GBP) treatment. The cerebral regions were investigated using a 4.7T MRI system in the sham, SNL, and GBP-treated SNL rats. Neuropathic pain was severely induced by SNL on the postoperative day 14, excepting the sham group. While MEMRI indicated many activation regions in the brain of SNL rats before GBP treatment, the activities were chronologically attenuated after GBP treatment. The brain regions relating SNL-induced neuropathic pain were as follows: the posterior association area of the parietal region, superior colliculus, inferior colliculus, primary somatosensory area, cingulate cortex, and cingulum bundle. SNL induced- neuropathic pain is transmitted to the primary somatosensory area and parietal region through the cingulum bundle and limbic system. These findings would be helpful for the understanding of neuropathic pain-associated process and be an accurate target for a relief of neuropathic pain.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- R&D division, Metimedi Pharmaceuticals, Suite 908, 263 Central-ro Yeonsu-gu, Incheon 22006, Republic of Korea
| | - Ji-Hyuk Kang
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 34520, Republic of Korea
| |
Collapse
|
295
|
Jeong KY, Kang JH. Investigation of spinal nerve ligation-mediated functional activation of the rat brain using manganese-enhanced MRI. Exp Anim 2018. [PMID: 28747592 DOI: 10.1538/expanim.17-0033.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2022] Open
Abstract
To provide clear information on the cerebral regions according to peripheral neuropathy, the functional activation was investigated using manganese-enhanced magnetic resonance imaging (MEMRI). L5-spinal nerve ligation (SNL) was applied to the rats to induce neuropathic pain. Mechanical allodynia and thermal hyperalgesia were measured to confirm neuropathic pain induction following before and after gabapentin (GBP) treatment. The cerebral regions were investigated using a 4.7T MRI system in the sham, SNL, and GBP-treated SNL rats. Neuropathic pain was severely induced by SNL on the postoperative day 14, excepting the sham group. While MEMRI indicated many activation regions in the brain of SNL rats before GBP treatment, the activities were chronologically attenuated after GBP treatment. The brain regions relating SNL-induced neuropathic pain were as follows: the posterior association area of the parietal region, superior colliculus, inferior colliculus, primary somatosensory area, cingulate cortex, and cingulum bundle. SNL induced- neuropathic pain is transmitted to the primary somatosensory area and parietal region through the cingulum bundle and limbic system. These findings would be helpful for the understanding of neuropathic pain-associated process and be an accurate target for a relief of neuropathic pain.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- R&D division, Metimedi Pharmaceuticals, Suite 908, 263 Central-ro Yeonsu-gu, Incheon 22006, Republic of Korea
| | - Ji-Hyuk Kang
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 34520, Republic of Korea
| |
Collapse
|
296
|
Lou J, Carr AJ, Watson AJ, Mattern-Schain SI, Best MD. Calcium-Responsive Liposomes via a Synthetic Lipid Switch. Chemistry 2018; 24:3599-3607. [PMID: 29323763 DOI: 10.1002/chem.201705810] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 12/31/2022]
Abstract
Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Adam J Carr
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Alexa J Watson
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Samuel I Mattern-Schain
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
297
|
Kim SW, Park JY, Lee S, Kim SH, Khang D. Destroying Deep Lung Tumor Tissue through Lung-Selective Accumulation and by Activation of Caveolin Uptake Channels Using a Specific Width of Carbon Nanodrug. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4419-4428. [PMID: 29309112 DOI: 10.1021/acsami.7b16153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The main difficulty with current anticancer nanotherapeutics comes from the low efficiency of tumor targeting. Although many strategies have been investigated, including cancer-specific antibody conjugation, lung tumors remain one of the invulnerable types of cancer that must be overcome in the near future. Meanwhile, despite their advantageous physiochemical properties, carbon nanotube structures are not considered safe medical drug delivery agents, but are considered a hazardous source that may cause pulmonary toxicity. However, high-aspect-ratio (width vs. length) nanostructures can be used as very efficient drug delivery agents due to their lung tissue accumulation property. Furthermore, selection of a specific width of the carbon nanostructures can activate additional caveolin uptake channels in cancer cells, thereby maximizing internalization of the nanodrug. The present study aimed to evaluate the therapeutic potential of carbon nanotube-based nanodrugs having various widths (10-30 nm, 60-100 nm, and 125-150 nm) as a delivery agent to treat lung tumors. The results of the present study provided evidence that both lung tissue accumulation (passive targeting) and caveolin-assisted uptake (active targeting) can simultaneously contribute to the destruction of lung tumor tissues of carbon nanotube.
Collapse
Affiliation(s)
- Sang-Woo Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University , Incheon 21999, South Korea
| | - Jun-Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University , Incheon 21999, South Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeonbuk 56212, South Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, Kyungpook National University , Daegu 41566, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University , Incheon 21999, South Korea
- Department of Physiology, Gachon University , Incheon 21999, South Korea
| |
Collapse
|
298
|
Feng H, Zhao JK, Schiergens TS, Wang PX, Ou BC, Al-Sayegh R, Li ML, Lu AG, Yin S, Thasler WE. Bone marrow-derived mesenchymal stromal cells promote colorectal cancer cell death under low-dose irradiation. Br J Cancer 2018; 118:353-365. [PMID: 29384527 PMCID: PMC5808030 DOI: 10.1038/bjc.2017.415] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Radiotherapy remains one of the cornerstones to improve the outcome of colorectal cancer (CRC) patients. Radiotherapy of the CRC not only help to destroy cancer cells but also remodel the tumour microenvironment by enhancing tumour-specific tropism of bone marrow-derived mesenchymal stromal cell (BM-MSC) from the peripheral circulation. However, the role of local MSCs and recruited BM-MSC under radiation were not well defined. Indeed, the functions of BM-MSC without irradiation intervention remained controversial in tumour progression: BM-MSC was previously shown to modulate the immune function of major immune cells, resulting in an impaired immunological sensitivity and to induce an increased risk of tumour recurrence. In contrast, it could also secrete various cytokines and possess anticancer effect. METHODS Three co-cultivation modules, 3D culture modules, and cancer organoids were established. The induction of cytokines secretion in hBM-MSCs after irradiation was analysed by ELISA array and flow cytometry. AutoMac separator was used to separate hBM-MSC and CRC automatically. Cells from the co-cultured group and the control group were then irradiated by UV-C lamp and X-ray. Proliferation assay and viability assay were performed. RESULTS In this study, we show that BM-MSCs can induce the EMT progression of CRC cells in vitro. When irradiated with low doses of ultraviolet radiation and X-rays, BM-MSCs show an anti-tumour effect by secreting certain cytokine (TNF-α, IFN-γ) that lead to the inhibition of proliferation and induction of apoptosis of CRC cells. This was further verified in a 3D culture model of a CRC cell in vitro. Furthermore, irradiation on the co-culture system induced the cleavage of caspase3, and attenuated the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase in cancer cells. The signal pathways above might contribute to the cancer cell death. CONCLUSIONS Taken together, we show that BM-MSC can potentially promote the effect of radiotherapy in CRC.
Collapse
Affiliation(s)
- Hao Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Jing-kun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Tobias S Schiergens
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Pu-xiongzhi Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bao-chi Ou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rami Al-Sayegh
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Ming-lun Li
- Department of Radiation Oncology, University Hospital of LMU Munich, Munich 81377, Germany
| | - Ai-guo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuai Yin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
- Department of General Surgery, State Hospital of Anhui Province, Hefei 230000, China
| | - Wolfgang E Thasler
- Department of General and Visceral Surgery, Red Cross Hospital, Munich 80634, Germany
| |
Collapse
|
299
|
Dian LH, Hu YJ, Lin JY, Zhang JY, Yan Y, Cui YN, Su ZB, Lu WL. Fabrication of paclitaxel hybrid nanomicelles to treat resistant breast cancer via oral administration. Int J Nanomedicine 2018; 13:719-731. [PMID: 29440897 PMCID: PMC5799853 DOI: 10.2147/ijn.s150140] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aim Oral chemotherapy using anticancer drugs would improve the clinical practice and the life quality of patients. The aim of the present study was to develop paclitaxel hybrid nanomicelles for oral administration to treat resistant breast cancer. Methods Evaluations were performed on human breast cancer MCF-7 cells, drug-resistant breast cancer MCF-7/Adr cells, and in MCF-7/Adr-xenografted BALB/c nude mice. The nanomicelles were composed of the polymer soluplus, d-α-tocopheryl polyethyleneglycol 1000 succinate (TPGS1000), and dequalinium (DQA). The constructed paclitaxel hybrid nanomicelles were ~65 nm in size. Results The nanomicelles improved cellular uptake and anticancer efficacy in the resistant breast cancer cells and induced mitochondria-mediated apoptosis. The mechanism of the apoptosis-inducing effect was related to the co-localization of the nanomicelles with mitochondria; the activation of pro-apoptotic protein Bax, cytochrome C, and apoptotic enzymes caspase 9 and 3; and the inhibition of anti-apoptotic proteins Bcl-2 and Mcl-1. Oral administration of paclitaxel hybrid nanomicelles had the same anticancer efficacy as the intravenous injection of taxol in resistant breast cancer-bearing mice. The oral suitability of this formulation was associated with the nanostructure and the actions of TPGS1000 and DQA. Conclusion The fabricated paclitaxel hybrid nanomicelles could provide a promising oral formulation to treat drug-resistant breast cancer.
Collapse
Affiliation(s)
- Ling-Hui Dian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing.,School of Pharmaceutical Sciences, Guangdong Medical University, Dongguan, China
| | - Ying-Jie Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Jia-Ye Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Jing-Ying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Yan Yan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Yi-Nuo Cui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Zhan-Bo Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Wan-Liang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| |
Collapse
|
300
|
The vicious cycle of itch and anxiety. Neurosci Biobehav Rev 2018; 87:17-26. [PMID: 29374516 DOI: 10.1016/j.neubiorev.2018.01.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/28/2017] [Accepted: 01/21/2018] [Indexed: 12/21/2022]
Abstract
Chronic itch is associated with increased stress, anxiety, and other mood disorders. In turn, stress and anxiety exacerbate itch, leading to a vicious cycle that affects patient behavior (scratching) and worsens disease prognosis and quality of life. This cycle persists across chronic itch conditions of different etiologies and even to some extent in healthy individuals, suggesting that the final common pathway for itch processing (the central nervous system) plays a major role in the relationship between itch and anxiety. Pharmacological and nonpharmacological treatments that reduce anxiety have shown promising anti-itch effects. Further research is needed to establish specific central mechanisms of the itch-anxiety cycle and provide new targets for treatment.
Collapse
|