251
|
Wildner D, Schlitt HJ, Bäuerle T, Haibach M. Kontrastmittelsonografie eines fibrolamellären hepatozellulären Karzinoms. TUMORDIAGNOSTIK & THERAPIE 2024; 45:120-124. [DOI: 10.1055/a-2248-0609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
ZusammenfassungWir berichten über einen 24-jährigen Patienten, der sich mit anhaltenden Oberbauchschmerzen, Übelkeit und Völlegefühl ohne Erbrechen seit 5 Monaten zur ambulanten endoskopischen Diagnostik vorstellte. Bei der körperlichen Untersuchung fiel eine Verhärtung im Epigastrium ohne Druckschmerzhaftigkeit auf. Endoskopisch zeigte sich lediglich eine Impression des Bulbus duodeni bei intakter Duodenalschleimhaut. Darüber hinaus lagen unauffällige Befunde in Gastroskopie und Ileokoloskopie vor. Abdomensonografisch zeigte sich im linken Leberlappen eine große inhomogene Raumforderung mit scharfer, unregelmäßiger Begrenzung. Der rechte Leberlappen wies eine komplett unauffällige Sonomorphologie auf, insbesondere keine Zeichen des Parenchymschadens oder einer Leberzirrhose. Entlang der oberen mesenterialen Gefäße stellten sich mehrere vergrößerte Lymphknoten mit Kontakt zum Bulbus duodeni dar. In der Kontrastmittelsonografie (CE-US) zeigte die Leberläsion das typische Perfusionsmuster eines hepatozellulären Karzinoms. Zur Klärung des malignitätsverdächtigen Befunds wurde eine sonografisch gesteuerte Stanzbiopsie durchgeführt. Die histopathologische Aufarbeitung ergab den Befund eines hepatozellulären Karzinoms vom fibrolamellären Subtyp.Mit diesem Fallbericht möchten wir zeigen, dass das HCC vom fibrolamellären Subtyp, trotz einer starken kollagenreichen bindegewebigen Stromakomponente in der Histopathologie, ein HCC-typisches Perfusionsmuster in der KM-Sonografie aufweist.
Collapse
Affiliation(s)
- Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land, Standort Lauf, Lauf an der Pegnitz, Germany
| | - Hans Jürgen Schlitt
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Tobias Bäuerle
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martina Haibach
- Onkologie und Hämatologie, Internistische Schwerpunktpraxis Erlangen, Erlangen, Germany
| |
Collapse
|
252
|
Song YG, Yoo JJ, Kim SG, Kim YS. Complications of immunotherapy in advanced hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2024; 24:9-16. [PMID: 38018074 PMCID: PMC10990673 DOI: 10.17998/jlc.2023.11.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are highly effective in cancer treatment. However, the risks associated with the treatment must be carefully balanced against the therapeutic benefits. Immune-related adverse events (irAEs) are generally unpredictable and may persist over an extended period. In this review, we analyzed common irAEs reported in highly cited original articles and systematic reviews. The prevalent adverse reactions include fatigue, pyrexia, rash, pruritus, diarrhea, decreased appetite, nausea, abdominal pain, constipation, hepatitis, and hypothyroidism. Therefore, it is crucial to conduct evaluations not only of gastrointestinal organs but also of cardiac, neurologic, endocrine (including the frequently affected thyroid), and ophthalmic systems before commencing ICIs. This review further explores commonly reported types of irAEs, specific irAEs associated with each ICI agent, rare yet potentially fatal irAEs, and available treatment options for managing them.
Collapse
Affiliation(s)
- Young-Gi Song
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Hospital Bucheon, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jeong-Ju Yoo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Hospital Bucheon, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Sang Gyune Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Hospital Bucheon, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Young Seok Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Hospital Bucheon, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
253
|
Li M, Wang L, Cong L, Wong CC, Zhang X, Chen H, Zeng T, Li B, Jia X, Huo J, Huang Y, Ren X, Peng S, Fu G, Xu L, Sung JJ, Kuang M, Li X, Yu J. Spatial proteomics of immune microenvironment in nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Hepatology 2024; 79:560-574. [PMID: 37733002 PMCID: PMC10871559 DOI: 10.1097/hep.0000000000000591] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/13/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND AND AIMS NASH-HCC is inherently resistant to immune checkpoint blockade, but its tumor immune microenvironment is largely unknown. APPROACH AND RESULTS We applied the imaging mass cytometry to construct a spatially resolved single-cell atlas from the formalin-fixed and paraffin-embedded tissue sections from patients with NASH-HCC, virus-HCC (HBV-HCC and HCV-HCC), and healthy donors. Based on 35 biomarkers, over 750,000 individual cells were categorized into 13 distinct cell types, together with the expression of key immune functional markers. Higher infiltration of T cells, myeloid-derived suppressor cell (MDSCs), and tumor-associated macrophages (TAMs) in HCC compared to controls. The distribution of immune cells in NASH-HCC is spatially heterogeneous, enriched at adjacent normal tissues and declined toward tumors. Cell-cell connections analysis revealed the interplay of MDSCs and TAMs with CD8 + T cells in NASH-HCC. In particular, exhausted programmed cell death 1 (PD-1 + )CD8 + T cells connected with programmed cell death-ligand 1 (PD-L1 + )/inducible T cell costimulator (ICOS + ) MDSCs and TAMs in NASH-HCC, but not in viral HCC. In contrast, CD4 + /CD8 + T cells with granzyme B positivity were reduced in NASH-HCC. Tumor cells expressed low PD-L1 and showed few connections with immune cells. CONCLUSIONS Our work provides the first detailed spatial map of single-cell phenotypes and multicellular connections in NASH-HCC. We demonstrate that interactions between MDSCs and TAMs with effector T cells underlie immunosuppression in NASH-HCC and are an actionable target.
Collapse
Affiliation(s)
- Meiyi Li
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lina Wang
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Cong
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chi Chun Wong
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Zhang
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarong Chen
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tao Zeng
- Guangzhou Laboratory, Guangzhou, China
| | - Bin Li
- Clinical Trial Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xian Jia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Jihui Huo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Department of Pathology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaoxue Ren
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sui Peng
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Clinical Trial Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Lixia Xu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Joseph J.Y. Sung
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Li
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
254
|
Ritaccio G, Barritt Iv AS, Conklin JL, Richardson DR, Evon DM, Sanoff HK, Basch E, Wheeler SB, Moon AM. Scoping review of values elicitation tools for treatment decisions in hepatocellular carcinoma. BMC Gastroenterol 2024; 24:90. [PMID: 38418997 PMCID: PMC10900684 DOI: 10.1186/s12876-024-03167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Treatment choices in hepatocellular carcinoma (HCC) involve consideration of tradeoffs between the benefits, toxicities, inconvenience, and costs. Stated preference elicitation methods have been used in the medical field to help evaluate complex treatment decision-making. The aim of this study was to conduct a scoping review to assess the evidence base for the use of preference elicitation tools or willingness to pay/willingness to accept methods for HCC treatment decision-making from both the patient and provider perspective. METHODS We performed a scoping review to identify abstracts or manuscripts focused on the role preference elicitation tools or willingness to pay/willingness to accept methods for HCC treatment options among patients, caregivers, and/or providers. Two researchers independently screened full-text references and resolved conflicts through discussion. We summarized key findings, including the type and setting of preference-elicitation tools used for HCC treatment decisions. RESULTS Ten published abstracts or manuscripts evaluated the role of preference elicitation tools for HCC treatments. The studies revealed several attributes that are considered by patients and providers making HCC treatment decisions. Many of the studies reviewed suggested that while patients place the most value on extending their overall survival, they are willing to forgo overall survival to avoid risks of treatments and maintain quality of life. Studies of physicians and surgeons found that provider preferences are dependent on patient characteristics, provider specialty, and surgeon or hospital-related factors. CONCLUSION This scoping review explored both patient and physician preferences towards treatment modalities in all stages of HCC. The studies revealed a large scope of potential attributes that may be important to patients and that many patients are willing to forgo survival to maintain quality of life. Further research should explore both preference elicitation of currently available and emerging therapies for HCC as well as the use of this data to develop patient-facing tools to assist in navigating treatment options.
Collapse
Affiliation(s)
- Gabrielle Ritaccio
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill School of Medicine, 8009 Burnett Womack Bldg, CB#7584, Chapel Hill, NC, 27599-7584, USA
| | - A Sidney Barritt Iv
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill School of Medicine, 8009 Burnett Womack Bldg, CB#7584, Chapel Hill, NC, 27599-7584, USA
- UNC Liver Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jamie L Conklin
- Health Sciences Library, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel R Richardson
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Donna M Evon
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill School of Medicine, 8009 Burnett Womack Bldg, CB#7584, Chapel Hill, NC, 27599-7584, USA
- UNC Liver Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Hanna K Sanoff
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ethan Basch
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephanie B Wheeler
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Health Promotion and Disease Prevention, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew M Moon
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill School of Medicine, 8009 Burnett Womack Bldg, CB#7584, Chapel Hill, NC, 27599-7584, USA.
- UNC Liver Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
255
|
He M, Liu Y, Chen S, Deng H, Feng C, Qiao S, Chen Q, Hu Y, Chen H, Wang X, Jiang X, Xia X, Zhao M, Lyu N. Serum amyloid A promotes glycolysis of neutrophils during PD-1 blockade resistance in hepatocellular carcinoma. Nat Commun 2024; 15:1754. [PMID: 38409200 PMCID: PMC10897330 DOI: 10.1038/s41467-024-46118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
The response to programmed death-1 (PD-1) blockade varies in hepatocellular carcinoma (HCC). We utilize a panel of 16 serum factors to show that a circulating level of serum amyloid A (SAA) > 20.0 mg/L has the highest accuracy in predicting anti-PD-1 resistance in HCC. Further experiments show a correlation between peritumoral SAA expression and circulating SAA levels in patients with progressive disease after PD-1 inhibition. In vitro experiments demonstrate that SAA induces neutrophils to express PD-L1 through glycolytic activation via an LDHA/STAT3 pathway and to release oncostatin M, thereby attenuating cytotoxic T cell function. In vivo, genetic or pharmacological inhibition of STAT3 or SAA eliminates neutrophil-mediated immunosuppression and enhances antitumor efficacy of anti-PD-1 treatment. This study indicates that SAA may be a critical inflammatory cytokine implicated in anti-PD-1 resistance in HCC. Targeting SAA-induced PD-L1+ neutrophils through STAT3 or SAA inhibition may present a potential approach for overcoming anti-PD1 resistance.
Collapse
Affiliation(s)
- Meng He
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Song Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Haijing Deng
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Cheng Feng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shuang Qiao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qifeng Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yue Hu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huiming Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xun Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiongying Jiang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ming Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Ning Lyu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
256
|
Zhang J, Wang L, Zhang S, Cao R, Zhao Y, Zhao Y, Song Y, Guo Z. Alpha-fetoprotein predicts the treatment efficacy of immune checkpoint inhibitors for gastric cancer patients. BMC Cancer 2024; 24:266. [PMID: 38408930 PMCID: PMC10895833 DOI: 10.1186/s12885-024-11999-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are commonly used in conjunction with chemotherapy to improve treatment outcomes for patients with gastric cancer. Since AFP could influence immunity by both inhibiting natural killer (NK) cells and regulating negatively the function of dendritic cells, we evaluated the influence of baseline serum alpha-fetoprotein (AFP) levels on the curative effect of ICIs in advanced gastric cancer (AGC) patients. METHODS A retrospective analysis was conducted on 158 AGC patients who underwent ICI treatment. The patients were divided into high and low groups based on the AFP threshold of 20 ng/ml. The efficacy of ICI treatment was assessed using objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). RESULTS The higher levels of baseline AFP were found to be associated with a decrease in the effectiveness of ICIs, as evidenced by a DCR of 50.0% in the group with high AFP levels compared to 87.7% in the group with low AFP levels (P < 0.001). Further analysis using Kaplan-Meier survival techniques indicated that a high AFP level was linked to shorter progression-free survival (PFS) (P < 0.001) and overall survival (OS) (P = 0.001) in AGC individuals receiving ICIs. After propensity score matching, a log rank test revealed that the high AFP group had a decrease in median PFS (P = 0.011) and median OS (P = 0.036) compared to the low AFP group. The high AFP levels also showed its association with shorter PFS and OS in the subgroup analysis of ICI plus chemotherapy patients. CONCLUSIONS Baseline AFP levels may predict immune checkpoint inhibitor treatment efficacy in AGC patients.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Lei Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, 050011, Shijiazhuang, Hebei, P.R. China
| | - Shasha Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Ruijie Cao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Yufei Zhao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Yue Zhao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Yanrong Song
- Department of Medical Technology, Xingtai Medical College, 054000, Xingtai, Hebei, P.R. China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China.
| |
Collapse
|
257
|
Yang C, Guo L, Du J, Zhang Q, Zhang L. SPINK1 Overexpression Correlates with Hepatocellular Carcinoma Treatment Resistance Revealed by Single Cell RNA-Sequencing and Spatial Transcriptomics. Biomolecules 2024; 14:265. [PMID: 38540686 PMCID: PMC10968071 DOI: 10.3390/biom14030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 01/04/2025] Open
Abstract
Low efficacy of treatments and chemoresistance are challenges in addressing refractory hepatocellular carcinoma (HCC). SPINK1, an oncogenic protein, is frequently overexpressed in many HCC cases. However, the impact of SPINK1 on HCC treatment resistance remains poorly understood. Here, we elucidate the functions of SPINK1 on HCC therapy resistance. Analysis of SPINK1 protein level reveals a correlation between elevated SPINK1 expression and unfavorable prognosis. Furthermore, intercellular variations in SPINK1 expression levels are observed. Subsequent examination of single cell RNA-sequencing data from two HCC cohorts further suggest that SPINK1-high cells exhibit heightened activity in drug metabolic pathways compared to SPINK1-low HCC cells. High SPINK1 expression is associated with reduced sensitivities to both chemotherapy drugs and targeted therapies. Moreover, spatial transcriptomics data indicate that elevated SPINK1 expression correlates with non-responsive phenotype during treatment with targeted therapy and immune checkpoint inhibitors. This is attributed to increased levels of drug metabolic regulators, especially CES2 and CYP3A5, in SPINK1-high cells. Experimental evidence further demonstrates that SPINK1 overexpression induces the expression of CES2 and CYP3A5, consequently promoting chemoresistance to sorafenib and oxaliplatin. In summary, our study unveils the predictive role of SPINK1 on HCC treatment resistance, identifying it as a potential therapeutic target for refractory HCC.
Collapse
Affiliation(s)
- Chunyuan Yang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China; (C.Y.); (J.D.); (Q.Z.)
| | - Limei Guo
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China; (C.Y.); (J.D.); (Q.Z.)
| | - Juan Du
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China; (C.Y.); (J.D.); (Q.Z.)
| | - Qiulu Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China; (C.Y.); (J.D.); (Q.Z.)
| | - Lingfu Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China;
| |
Collapse
|
258
|
Huang L, Kang D, Zhao C, Liu X. Correlation between surrogate endpoints and overall survival in unresectable hepatocellular carcinoma patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Sci Rep 2024; 14:4327. [PMID: 38383730 PMCID: PMC10881995 DOI: 10.1038/s41598-024-54945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
This study aimed to assess the therapeutic effect of immune checkpoint inhibitors (ICIs) in patients with unresectable hepatocellular carcinoma (uHCC) and investigate the correlation between surrogate endpoints and overall survival (OS). A systematic literature search included phase I, II, and III clinical trials comparing ICIs to placebo or other therapies for uHCC treatment. Correlations between OS and surrogate endpoints were evaluated using meta-regression analyses and calculating the surrogate threshold effect (STE). The correlation analysis showed a weak association between OS and progression-free survival (PFS), with an R2 value of 0.352 (95% CI: 0.000-0.967). However, complete response (CR) exhibited a strong correlation with OS (R2 = 0.905, 95% CI: 0.728-1.000). Subgroup analyses revealed high correlations between OS and PFS, CR, stable disease (SD), and DC in phase III trials (R2: 0.827-0.922). For the ICI + IA group, significant correlations were observed between OS and SD, progressive disease (PD), and grade 3-5 immune-related adverse events (irAEs) (R2: 0.713-0.969). Analyses of the correlation between survival benefit and risk of mortality across various time points showed a strong association within the first year (R2: 0.724-0.868) but a weak association beyond one year (R2: 0.406-0.499). In ICI trials for uHCC, PFS has limited utility as a surrogate endpoint for OS, while CR exhibits a strong correlation with OS. Subgroup analyses highlight high correlations between OS and PFS, SD, and DC in phase III trials. Notably, the ICI + IA group shows significant associations between OS and SD, PD, and grade 3-5 irAEs. These findings offer valuable insights for interpreting trial outcomes and selecting appropriate endpoints in future clinical studies involving ICIs for uHCC patients.
Collapse
Affiliation(s)
- Litao Huang
- Chinese Evidence-Based Medicine Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Deying Kang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Evidence-Based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongyang Zhao
- Department of Evidence-Based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueting Liu
- Discipline Construction Department, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
259
|
Revsine M, Wang L, Forgues M, Behrens S, Craig AJ, Liu M, Tran B, Kelly M, Budhu A, Monge C, Xie C, Hernandez JM, Greten TF, Wang XW, Ma L. Lineage and ecology define liver tumor evolution in response to treatment. Cell Rep Med 2024; 5:101394. [PMID: 38280378 PMCID: PMC10897542 DOI: 10.1016/j.xcrm.2024.101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024]
Abstract
A tumor ecosystem constantly evolves over time in the face of immune predation or therapeutic intervention, resulting in treatment failure and tumor progression. Here, we present a single-cell transcriptome-based strategy to determine the evolution of longitudinal tumor biopsies from liver cancer patients by measuring cellular lineage and ecology. We construct a lineage and ecological score as joint dynamics of tumor cells and their microenvironments. Tumors may be classified into four main states in the lineage-ecological space, which are associated with clinical outcomes. Analysis of longitudinal samples reveals the evolutionary trajectory of tumors in response to treatment. We validate the lineage-ecology-based scoring system in predicting clinical outcomes using bulk transcriptomic data of additional cohorts of 716 liver cancer patients. Our study provides a framework for monitoring tumor evolution in response to therapeutic intervention.
Collapse
Affiliation(s)
- Mahler Revsine
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Limin Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shay Behrens
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Amanda J Craig
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Meng Liu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Bao Tran
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 20701, USA
| | - Michael Kelly
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 20701, USA
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Cecilia Monge
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jonathan M Hernandez
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tim F Greten
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
260
|
Nojima H, Shimizu H, Murakami T, Shuto K, Koda K. Critical Roles of the Sphingolipid Metabolic Pathway in Liver Regeneration, Hepatocellular Carcinoma Progression and Therapy. Cancers (Basel) 2024; 16:850. [PMID: 38473211 DOI: 10.3390/cancers16050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The sphingolipid metabolic pathway, an important signaling pathway, plays a crucial role in various physiological processes including cell proliferation, survival, apoptosis, and immune regulation. The liver has the unique ability to regenerate using bioactive lipid mediators involving multiple sphingolipids, including ceramide and sphingosine 1-phosphate (S1P). Dysregulation of the balance between sphingomyelin, ceramide, and S1P has been implicated in the regulation of liver regeneration and diseases, including liver fibrosis and hepatocellular carcinoma (HCC). Understanding and modulating this balance may have therapeutic implications for tumor proliferation, progression, and metastasis in HCC. For cancer therapy, several inhibitors and activators of sphingolipid signaling, including ABC294640, SKI-II, and FTY720, have been discussed. Here, we elucidate the critical roles of the sphingolipid pathway in the regulation of liver regeneration, fibrosis, and HCC. Regulation of sphingolipids and their corresponding enzymes may considerably influence new insights into therapies for various liver disorders and diseases.
Collapse
Affiliation(s)
- Hiroyuki Nojima
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Hiroaki Shimizu
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Takashi Murakami
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Kiyohiko Shuto
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Keiji Koda
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| |
Collapse
|
261
|
Himmelsbach V, Koch C, Trojan J, Finkelmeier F. Systemic Drugs for Hepatocellular Carcinoma: What Do Recent Clinical Trials Reveal About Sequencing and the Emerging Complexities of Clinical Decisions? J Hepatocell Carcinoma 2024; 11:363-372. [PMID: 38405324 PMCID: PMC10886804 DOI: 10.2147/jhc.s443218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Liver cancer was the fourth leading cause of cancer death in 2015 with increasing incidence between 1990 and 2015. Orthotopic liver transplantation, surgical resection and ablation comprise the only curative therapy options. However, due to the late manifestation of clinical symptoms, many patients present with intermediate or advanced disease, resulting in no curative treatment option being available. Whereas intermediate-stage hepatocellular carcinoma (HCC) is usually still addressable by transarterial chemoembolization (TACE), advanced-stage HCC is amenable only to pharmacological treatments. Conventional cytotoxic agents failed demonstrating relevant effect on survival also because their use was severely limited by the mostly underlying insufficient liver function. For a decade, tyrosine kinase inhibitor (TKI) sorafenib was the only systemic therapy that proved to have a clinically relevant effect in the treatment of advanced HCC. In recent years, the number of substances for systemic treatment of advanced HCC has increased enormously. In addition to tyrosine kinase inhibitors, immune checkpoint inhibitors (ICI) and antiangiogenic drugs are increasingly being applied. The combination of anti-programmed death ligand 1 (PD-L1) antibody atezolizumab and anti-vascular endothelial growth factor (VEGF) antibody bevacizumab has become the new standard of care for advanced HCC due to its remarkable response rates. This requires more and more complex clinical decisions regarding tumor therapy. This review aims at summarizing recent developments in systemic therapy, considering data on first- and second-line treatment, use in the neoadjuvant and adjuvant setting and combination with locoregional procedures.
Collapse
Affiliation(s)
- Vera Himmelsbach
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christine Koch
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt, Germany
| | - Jörg Trojan
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt, Germany
| | - Fabian Finkelmeier
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
262
|
Xiao H, Wu GL, Tan S, Tan X, Yang Q. Recent Progress on Tumor Microenvironment-Activated NIR-II Phototheranostic Agents with Simultaneous Activation for Diagnosis and Treatment. Chem Asian J 2024; 19:e202301036. [PMID: 38230541 DOI: 10.1002/asia.202301036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Malignant tumors seriously threaten human life and well-being. Emerging Near-infrared II (NIR-II, 1000-1700 nm) phototheranostic nanotechnology integrates diagnostic and treatment modalities, offering merits including improved tissue penetration and enhanced spatiotemporal resolution. This remarkable progress has opened promising avenues for advancing tumor theranostic research. The tumor microenvironment (TME) differs from normal tissues, exhibiting distinct attributes such as hypoxia, acidosis, overexpressed hydrogen peroxide, excess glutathione, and other factors. Capitalizing on these attributes, researchers have developed TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic attributes concurrently. Therefore, developing TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic activation holds significant research importance. Currently, research on TME-activatable NIR-II phototheranostic agents is still in its preliminary stages. This review examines the recent advances in developing dual-functional NIR-II activatable phototheranostic agents over the past years. It systematically presents NIR-II phototheranostic agents activated by various TME factors such as acidity (pH), hydrogen peroxide (H2 O2 ), glutathione (GSH), hydrogen sulfide (H2 S), enzymes, and their hybrid. This encompasses NIR-II fluorescence and photoacoustic imaging diagnostics, along with therapeutic modalities, including photothermal, photodynamic, chemodynamic, and gas therapies triggered by these TME factors. Lastly, the difficulties and opportunities confronting NIR-II activatable phototheranostic agents in the simultaneous diagnosis and treatment field are highlighted.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Gui-Long Wu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Senyou Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Xiaofeng Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| | - Qinglai Yang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| |
Collapse
|
263
|
Pan D, Liu HN, Qu PF, Ma X, Ma LY, Chen XX, Wang YQ, Qin XB, Han ZX. Progress in the treatment of advanced hepatocellular carcinoma with immune combination therapy. World J Gastrointest Oncol 2024; 16:273-286. [PMID: 38425407 PMCID: PMC10900147 DOI: 10.4251/wjgo.v16.i2.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is a severe malignancy that poses a serious threat to human health. Owing to challenges in early diagnosis, most patients lose the opportunity for radical treatment when diagnosed. Nonetheless, recent advancements in cancer immunotherapy provide new directions for the treatment of HCC. For instance, monoclonal antibodies against immune checkpoint inhibitors (ICIs) such as programmed cell death protein 1/death ligand-1 inhibitors and cytotoxic t-lymphocyte associated antigen-4 significantly improved the prognosis of patients with HCC. However, tumor cells can evade the immune system through various mechanisms. With the rapid development of genetic engineering and molecular biology, various new immunotherapies have been used to treat HCC, including ICIs, chimeric antigen receptor T cells, engineered cytokines, and certain cancer vaccines. This review summarizes the current status, research progress, and future directions of different immunotherapy strategies in the treatment of HCC.
Collapse
Affiliation(s)
- Di Pan
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Hao-Nan Liu
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Peng-Fei Qu
- Department of Gastroenterology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Xiao Ma
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Lu-Yao Ma
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Xiao-Xiao Chen
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Yu-Qin Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Xiao-Bing Qin
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Zheng-Xiang Han
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
264
|
Cao H, Huang P, Qiu J, Gong X, Cao H. Immune landscape of hepatocellular carcinoma tumor microenvironment identifies a prognostic relevant model. Heliyon 2024; 10:e24861. [PMID: 38317886 PMCID: PMC10839619 DOI: 10.1016/j.heliyon.2024.e24861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Background Various studies highlighted that immune cell-mediated inflammatory processes play crucial roles in the progression and treatment of hepatocellular carcinoma (HCC). However, the immune microenvironment of HCC is still poorly characterized. Exploring the role of immune-related genes (IRGs) and describing the immune landscape in HCC would provide insights into tumor-immune co-evolution along HCC progression. Methods We integrated the datasets with complete prognostic information from the Cancer Genome Atlas (TCGA) database and GEO DataSets (GSE14520, GSE76427, and GSE54236) to construct a novel immune landscape based on the Cibersort algorithm and reveal the prognostic signature in HCC patients. Results To describe the tumor microenvironment (TME) in HCC, immune infiltration patterns were defined using the CIBERSORT method, and a prognostic signature contains 5 types of immune cells, including 3 high-risk immune cells (T.cells. CD4. memory. resting, Macrophages.M0, Macrophages.M2) and 2 low-risk immune cells (Plasma. cells, T.cells.CD8), were finally constructed. A novel prognostic index, based on prognostic immune risk score (pIRG), was developed using the univariate Cox regression analyses and LASSO Cox regression algorithm. Furthermore, the ROC curve and KM curve showed that the TME signatures had a stable value in predicting the prognosis of HCC patients in the internal training cohort, internal validation, and external validation cohort. Differential genes analysis and qPCR experiment showed that the expression levels of AKR1B10, LAPTM4B, MMP9, and SPP1 were significantly increased in high-risk patients, while the expression of CD5L was lower. Further analysis found that AKR1B10 and MMP9 were associated with higher M0 macrophage infiltration, while CD5L was associated with higher plasma cell infiltration. Conclusions Taken together, we performed a comprehensive evaluation of the immune landscape of HCC and constructed a novel and robust prognostic prediction model. AKR1B10, LAPTM4B, MMP9, SPP1, and CD5L were involved in important processes in the HCC tumor microenvironment and were expected to become HCC prediction markers and potential targets of treatment.
Collapse
Affiliation(s)
- Hongru Cao
- Department of Nephrology, Affiliated Hospital of Chifeng University, Chifeng City, Inner Mongolia, 024000, PR China
| | - Ping Huang
- Infectious Disease Prevention and Control Hospital of Chifeng City, Chifeng City, Inner Mongolia, 024000, PR China
| | - Jiawei Qiu
- Institute of Cardiovascular Disease of Chifeng University, Chifeng City, Inner Mongolia, 024000, PR China
| | - Xiaohui Gong
- Department of Emergency Medicine, Affiliated Hospital of Chifeng University, Chifeng City, Inner Mongolia, 024000, PR China
- Institute of Cardiovascular Disease of Chifeng University, Chifeng City, Inner Mongolia, 024000, PR China
| | - Hongfei Cao
- Department of Gastroenterology, Affiliated Hospital of Chifeng University, Chifeng City, Inner Mongolia, 024000, PR China
| |
Collapse
|
265
|
Lin S, Wang Y, Cai X, Ye Y, Chen Y. Predictive indicators of immune therapy efficacy in hepatocellular carcinoma based on neutrophil-to-lymphocyte ratio. Int Immunopharmacol 2024; 128:111477. [PMID: 38183910 DOI: 10.1016/j.intimp.2023.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Hepatocellular carcinoma (HCC) exhibits high incidence and mortality rates in China. Most cases are often diagnosed at late stages and require multi-strategy therapies. In recent years, immune checkpoint inhibitors (ICIs), particularly programmed cell death protein 1 (PD-1) antibodies, have demonstrated effectiveness in comprehensive HCC treatment. However, the efficacy and prognosis vary greatly among patients. Screening suitable patients and predicting outcomes are crucial for improving the efficacy of ICIs. Although PD-L1 expression levels in tumor cells have been used as predictors of PD-1/PD-L1 antibody therapy, they may not consistently correlate with clinical response in some studies; thus, exploring new biomarkers is necessary. The neutrophil-to-lymphocyte ratio (NLR) emerged as a new predictor of ICI immunotherapy efficacy, and its application in HCC is worth exploring. This study utilizes the Cancer Genome Atlas Liver Hepatocellular Carcinoma Collection (TCGA-LIHC) project in the Genomic Data Commons (GDC) database for methylation and transcriptome data analysis. The correlation between NLR and ICI immunotherapy efficacy for HCC was evaluated, identifying differentially expressed genes. Analysis revealed 74 up-regulated and 445 down-regulated genes in the high-NLR group compared to the low-NLR group. NLR-related differential methylation analysis identified 68 hypermethylated and 65 hypomethylated probes in the NLR high group. Furthermore, a machine learning model using 27 intersecting genes predicted PD-1 antibody therapy efficacy, achieving an AUC value of 0.813. In summary, we established a predictive model for HCC immunotherapy based on 27 genes related to differential expressions and NLR-associated methylation, showing significant potential for clinical research potential in this field.
Collapse
Affiliation(s)
- Shengzhe Lin
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Yang Wang
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Xinran Cai
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
266
|
Zhang N, Yang X, Piao M, Xun Z, Wang Y, Ning C, Zhang X, Zhang L, Wang Y, Wang S, Chao J, Lu Z, Yang X, Wang H, Zhao H. Biomarkers and prognostic factors of PD-1/PD-L1 inhibitor-based therapy in patients with advanced hepatocellular carcinoma. Biomark Res 2024; 12:26. [PMID: 38355603 PMCID: PMC10865587 DOI: 10.1186/s40364-023-00535-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024] Open
Abstract
Systemic therapies using programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors have demonstrated commendable efficacy in some patients with advanced hepatocellular carcinoma (HCC); however, other individuals do not respond favorably. Hence, identifying the biomarkers, the prognostic factors, and their underlying mechanisms is crucial. In this review, we summarized the latest advancements in this field. Within the tumor microenvironment, PD-L1 expression is commonly utilized to predict response. Moreover, the characteristics of tumor-infiltrating lymphocytes are associated with the effectiveness of immunotherapy. Preclinical studies have identified stimulatory dendritic cells, conventional dendritic cells, and macrophages as potential biomarkers. The emergence of single-cell sequencing and spatial transcriptomics has provided invaluable insights into tumor heterogeneity through the lens of single-cell profiling and spatial distribution. With the widespread adoption of next-generation sequencing, certain genomic characteristics, including tumor mutational burden, copy number alterations, specific genes (TP53, CTNNB1, and GZMB), and signaling pathways (WNT/β-catenin) have been found to correlate with prognosis. Furthermore, clinical features such as tumor size, number, and metastasis status have demonstrated prognostic value. Notably, common indicators such as the Child-Pugh score and Eastern Cooperative Oncology Group score, which are used in patients with liver diseases, have shown potential. Similarly, commonly employed laboratory parameters such as baseline transforming growth factor beta, lactate dehydrogenase, dynamic changes in alpha-fetoprotein (AFP) and abnormal prothrombin, CRAFITY score (composed of C-reactive protein and AFP), and immune adverse events have been identified as predictive biomarkers. Novel imaging techniques such as EOB-MRI and PET/CT employing innovative tracers also have potential. Moreover, liquid biopsy has gained widespread use in biomarker studies owing to its non-invasive, convenient, and highly reproducible nature, as well as its dynamic monitoring capabilities. Research on the gut microbiome, including its composition, dynamic changes, and metabolomic analysis, has gained considerable attention. Efficient biomarker discovery relies on continuous updating of treatment strategies. Next, we summarized recent advancements in clinical research on HCC immunotherapy and provided an overview of ongoing clinical trials for contributing to the understanding and improvement of HCC immunotherapy.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Xu Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
| | - Mingjian Piao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Yunchao Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Cong Ning
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Xinmu Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Longhao Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Yanyu Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Shanshan Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Jiashuo Chao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Zhenhui Lu
- Hepatobiliary and Pancreatic Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, No.36 Industrial 8 Road, Nanshan District, Shenzhen City, Guangdong province, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| | - Hanping Wang
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| |
Collapse
|
267
|
Yang X, Yang C, Zhang S, Geng H, Zhu AX, Bernards R, Qin W, Fan J, Wang C, Gao Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024; 42:180-197. [PMID: 38350421 DOI: 10.1016/j.ccell.2024.01.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
The past decade has witnessed significant advances in the systemic treatment of advanced hepatocellular carcinoma (HCC). Nevertheless, the newly developed treatment strategies have not achieved universal success and HCC patients frequently exhibit therapeutic resistance to these therapies. Precision treatment represents a paradigm shift in cancer treatment in recent years. This approach utilizes the unique molecular characteristics of individual patient to personalize treatment modalities, aiming to maximize therapeutic efficacy while minimizing side effects. Although precision treatment has shown significant success in multiple cancer types, its application in HCC remains in its infancy. In this review, we discuss key aspects of precision treatment in HCC, including therapeutic biomarkers, molecular classifications, and the heterogeneity of the tumor microenvironment. We also propose future directions, ranging from revolutionizing current treatment methodologies to personalizing therapy through functional assays, which will accelerate the next phase of advancements in this area.
Collapse
Affiliation(s)
- Xupeng Yang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Haigang Geng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andrew X Zhu
- I-Mab Biopharma, Shanghai, China; Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
268
|
Zhang H, Houadj L, Wu KY, Tran SD. Diagnosing and Managing Uveitis Associated with Immune Checkpoint Inhibitors: A Review. Diagnostics (Basel) 2024; 14:336. [PMID: 38337852 PMCID: PMC10855398 DOI: 10.3390/diagnostics14030336] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
This review aims to provide an understanding of the diagnostic and therapeutic challenges of uveitis associated with immune checkpoint inhibitors (ICI). In the wake of these molecules being increasingly employed as a treatment against different cancers, cases of uveitis post-ICI therapy have also been increasingly reported in the literature, warranting an extensive exploration of the clinical presentations, risk factors, and pathophysiological mechanisms of ICI-induced uveitis. This review further provides an understanding of the association between ICIs and uveitis, and assesses the efficacy of current diagnostic tools, underscoring the need for advanced techniques to enable early detection and accurate assessment. Further, it investigates the therapeutic strategies for ICI-related uveitis, weighing the benefits and limitations of existing treatment regimens, and discussing current challenges and emerging therapies in the context of their potential efficacy and side effects. Through an overview of the short-term and long-term outcomes, this article suggests recommendations and emphasizes the importance of multidisciplinary collaboration between ophthalmologists and oncologists. Finally, the review highlights promising avenues for future research and development in the field, potentially informing transformative approaches in the ocular assessment of patients under immunotherapy and the management of uveitis following ICI therapy.
Collapse
Affiliation(s)
- Huixin Zhang
- Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada;
| | - Lysa Houadj
- Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | - Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
269
|
Riveiro-Barciela M, Carballal S, Díaz-González Á, Mañosa M, Gallgo-Plazas J, Cubiella J, Jiménez-Fonseca P, Varela M, Menchén L, Sangro B, Fernández-Montes A, Mesonero F, Rodríguez-Gandía MÁ, Rivera F, Londoño MC. Management of liver and gastrointestinal toxicity induced by immune checkpoint inhibitors: Position statement of the AEEH-AEG-SEPD-SEOM-GETECCU. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2024; 116:83-113. [PMID: 38226597 DOI: 10.17235/reed.2024.10250/2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The development of the immune checkpoint inhibitors (ICI) is one of the most remarkable achievements in cancer therapy in recent years. However, their exponential use has led to an increase in immune-related adverse events (irAEs). Gastrointestinal and liver events encompass hepatitis, colitis and upper digestive tract symptoms accounting for the most common irAEs, with incidence rates varying from 2 % to 40 %, the latter in patients undergoing combined ICIs therapy. Based on the current scientific evidence derived from both randomized clinical trials and real-world studies, this statement document provides recommendations on the diagnosis, treatment and prognosis of the gastrointestinal and hepatic ICI-induced adverse events.
Collapse
Affiliation(s)
| | | | | | - Miriam Mañosa
- Gastroenterology, Hospital Universitari Germans Trias i Pujol
| | | | | | | | - María Varela
- Gastroenterology, Hospital Universitario Central de Asturias
| | - Luis Menchén
- Digestive Diseases, Instituto de Investigación Sanitaria Gregorio Marañón
| | | | | | | | | | - Fernando Rivera
- Hospital Universitario Marqués de Valdecilla, Medical Oncology
| | | |
Collapse
|
270
|
Gramantieri L, Suzzi F, Bassi C, D'Abundo L, Tovoli F, Bruccoleri M, Marseglia M, Alimenti E, Fornari F, Negrini M, Iavarone M, Piscaglia F, Giovannini C. Circulating CD8 lymphocytes predict response to atezolizumab-bevacizumab in hepatocellular carcinoma. Eur J Immunol 2024; 54:e2350637. [PMID: 37990855 DOI: 10.1002/eji.202350637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Due to the lack of biomarkers predictive of response to atezolizumab-bevacizumab, the standard of care for advanced HCC, we analyzed baseline and early on-treatment variation of peripheral lymphocyte populations of 37 prospective patients treated by atezolizumab-bevacizumab and in 15 prospective patients treated by sorafenib or lenvatinib (TKIs). RNAseq analysis followed by RT-PCR validation on patients-derived PBMC was also performed. At first imaging, re-evaluation 13 patients receiving atezolizumab-bevacizumab, showed an objective response, 17 stable disease, while 7 were nonresponders. Baseline CD8+ and CD8+PD-L1+ peripheral lymphocytes were lower in responders versus nonresponders (T-test, p = 0.012 and 0.004, respectively). At 3 weeks, 28 of 30 responders displayed a rise of CD8+PD1+ lymphocytes with a positive mean fold change of 4.35 (±5.6 SD), whereas 6 of 7 nonresponders displayed a negative fold change of 0.89 (±0.84 SD). These changes were not observed in patients treated by TKIs. TRIM56, TRIM16, TRIM64, and Ki67 mRNAs were validated as upregulated in responders versus nonresponders after 3 weeks after treatment start, providing possible evidence of immune activation. Baseline CD8+ and CD8+PD-L1+ peripheral lymphocytes and early changes in CD8+PD1+ lymphocytes predict response to atezolizumab-bevacizumab providing noninvasive markers to complement clinical practice in the very early phases of treatment of HCC patients.
Collapse
Affiliation(s)
- Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
- Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Fabrizia Suzzi
- Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - Cristian Bassi
- Department of Translational Medicine and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Lucilla D'Abundo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - Mariangela Bruccoleri
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Division of Gastroenterology and Hepatology Milan, Italy
| | - Mariarosaria Marseglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Eleonora Alimenti
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Division of Gastroenterology and Hepatology Milan, Italy
| | - Francesca Fornari
- Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Massimo Negrini
- Department of Translational Medicine and Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Massimo Iavarone
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Division of Gastroenterology and Hepatology Milan, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - Catia Giovannini
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| |
Collapse
|
271
|
Liu H, Sethi V, Li X, Xiao Y, Humar A. Liver Transplantation for Hepatocellular Carcinoma: A Narrative Review and A Glimpse into The Future. Semin Liver Dis 2024; 44:79-98. [PMID: 38211621 DOI: 10.1055/a-2242-7543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Liver transplantation (LT) is a highly effective treatment for carefully selected patients with hepatocellular carcinoma (HCC). In this review, we explored the development of LT selection criteria and organ allocation policies, comparing original data to underscore their historical progression into the intricate task of quantitatively estimating pre- and post-LT survivals. We emphasized the role of biomarkers such as serum alpha-fetoprotein, Des-gamma-carboxy-prothrombin, circulating tumor cells, and circulating tumor DNA in predicting patient outcomes. Additionally, we examined the transplant-associated survival benefits and the difficulties in accurately calculating these benefits. We also reviewed recent advancements in targeted therapy and checkpoint inhibitors for advanced, inoperable HCC and projected their integration into LT for HCC. We further discussed the growing use of living donor liver transplants in the United States and compared its outcomes with those of deceased donor liver transplants. Furthermore, we examined the progress in machine perfusion techniques, which have shown potential in improving patient outcomes and enlarging the donor pool. These advancements present opportunities to enhance LT patient survivals, refine selection criteria, establish new priority metrics, develop innovative bridging and downstaging strategies, and formulate redesigned LT strategies for HCC treatments.
Collapse
Affiliation(s)
- Hao Liu
- Department of Surgery, Starzl Transplant Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Vrishketan Sethi
- Department of Surgery, Starzl Transplant Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Xingjie Li
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| | - Yao Xiao
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Abhinav Humar
- Department of Surgery, Starzl Transplant Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
272
|
Groß S, Bitzer M, Albert J, Blödt S, Boda-Heggemann J, Brunner T, Caspari R, De Toni E, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, La Fougère C, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ritterbusch U, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Tholen R, Trojan J, van Thiel I, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wildner D, Wörns MA, Galle P, Malek N. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:e213-e282. [PMID: 38364849 DOI: 10.1055/a-2189-8567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Affiliation(s)
- Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein, Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Klinik für Innere Medizin, Gesundheit Nord, Klinikverbund Bremen
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | | | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | - Hans J Schlitt
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg
| | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Reina Tholen
- Deutscher Bundesverband für Physiotherapie (ZVK) e. V
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
273
|
Selene II, Ozen M, Patel RA. Hepatocellular Carcinoma: Advances in Systemic Therapy. Semin Intervent Radiol 2024; 41:56-62. [PMID: 38495258 PMCID: PMC10940040 DOI: 10.1055/s-0044-1779713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer, representing over 90% of cases globally and ranking as the third leading cause of cancer-related death. This article reviews the evolving landscape of systemic therapies for advanced HCC, emphasizing recent advancements and their impact on patient outcomes. The advent of molecular targeted therapies has transformed HCC management, with sorafenib being the first FDA-approved molecular targeted therapy, setting a standard for a decade. However, recent breakthroughs involve the combination of atezolizumab and bevacizumab, demonstrating superior outcomes over sorafenib, leading to FDA approval in 2020. Another notable combination is tremelimumab and durvalumab, showing efficacy in a multinational phase III trial. Beyond these combinations, this article explores the role of other first-line treatments and subsequent therapies after progression. The evolving landscape of systemic therapies for HCC reflects a paradigm shift, with immunotherapy combinations emerging as key players alongside targeted therapies. This article highlights the complexity of treatment decisions, considering individual patient characteristics and disease etiology, and underscores the ongoing quest to optimize both systemic and local-regional therapies for improved long-term outcomes in HCC patients.
Collapse
Affiliation(s)
- Insija Ilyas Selene
- Department of Medical Oncology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Merve Ozen
- Department of Radiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Reema A. Patel
- Department of Radiology, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
274
|
Matevish L, Patel MS, Vagefi PA. Downstaging Techniques for Hepatocellular Carcinoma in Candidates Awaiting Liver Transplantation. Surg Clin North Am 2024; 104:145-162. [PMID: 37953033 DOI: 10.1016/j.suc.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
During the last decade, downstaging for hepatocellular carcinoma has expanded the pool of patients eligible for liver transplantation. The literature is rife with attempts to elucidate best treatment strategies with novel locoregional and systemic therapies continuing to emerge. Several trials have confirmed the large-scale success of downstaging protocols, with equitable long-term survival and recurrence rates after liver transplant. We review the currently available techniques used for downstaging, including their indications, complications, and efficacies. New frontiers have focused on the potential role of immunotherapy in the neoadjuvant setting, although more research is needed to delineate its role in current treatment paradigms.
Collapse
Affiliation(s)
- Lauren Matevish
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Madhukar S Patel
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Parsia A Vagefi
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
275
|
Wang J, Liu C, Hu R, Wu L, Li C. Statin therapy: a potential adjuvant to immunotherapies in hepatocellular carcinoma. Front Pharmacol 2024; 15:1324140. [PMID: 38362156 PMCID: PMC10867224 DOI: 10.3389/fphar.2024.1324140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide and accounts for more than 90% of primary liver cancer. The advent of immune checkpoint inhibitor (ICI)-related therapies combined with angiogenesis inhibition has revolutionized the treatment of HCC in late-stage and unresectable HCC, as ICIs alone were disappointing in treating HCC. In addition to the altered immune microenvironment, abnormal lipid metabolism in the liver has been extensively characterized in various types of HCC. Stains are known for their cholesterol-lowering properties and their long history of treating hypercholesterolemia and reducing cardiovascular disease risk. Apart from ICI and other conventional therapies, statins are frequently used by advanced HCC patients with dyslipidemia, which is often marked by the abnormal accumulation of cholesterol and fatty acids in the liver. Supported by a body of preclinical and clinical studies, statins may unexpectedly enhance the efficacy of ICI therapy in HCC patients through the regulation of inflammatory responses and the immune microenvironment. This review discusses the abnormal changes in lipid metabolism in HCC, summarizes the clinical evidence and benefits of stain use in HCC, and prospects the possible mechanistic actions of statins in transforming the immune microenvironment in HCC when combined with immunotherapies. Consequently, the use of statin therapy may emerge as a novel and valuable adjuvant for immunotherapies in HCC.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Laboratory Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ronghua Hu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Licheng Wu
- School of Clinical Medicine, Nanchang Medical College, Nanchang, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
276
|
Bitzer M, Groß S, Albert J, Blödt S, Boda-Heggemann J, Brunner T, Caspari R, De Toni E, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, Fougère CL, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ritterbusch U, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Tholen R, Trojan J, van Thiel I, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wildner D, Wörns MA, Galle P, Malek N. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:231-260. [PMID: 38364850 DOI: 10.1055/a-2189-8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Affiliation(s)
- Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.(AWMF), Berlin
| | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.(AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Klinik für Innere Medizin, Gesundheit Nord, Klinikverbund Bremen
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | | | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | | | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Reina Tholen
- Deutscher Bundesverband für Physiotherapie (ZVK) e. V
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
277
|
Cheung TT, Wai-Hung Ho D, Lyu SX, Zhang Q, Tsui YM, Ching-Yun Yu T, Man-Fong Sze K, Man-Fong Lee J, Lau VWH, Yin-Lun Chu E, Hing-Yin Tsang S, She WH, Ching-Yu Leung R, Chung-Cheung Yau T, Ng IOL. Multimodal Integrative Genomics and Pathology Analyses in Neoadjuvant Nivolumab Treatment for Intermediate and Locally Advanced Hepatocellular Carcinoma. Liver Cancer 2024; 13:70-88. [PMID: 38344450 PMCID: PMC10857832 DOI: 10.1159/000531176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/18/2023] [Indexed: 10/17/2024] Open
Abstract
Introduction Immunotherapy has resulted in pathologic responses in hepatocellular carcinoma (HCC), but the benefits and molecular mechanisms of neoadjuvant immune checkpoint blockade are largely unknown. Methods In this study, we evaluated the efficacy and safety of preoperative nivolumab (anti-PD-1) in patients with intermediate and locally advanced HCC and determined the molecular markers for predicting treatment response. Results Between July 2020 and November 2021, 20 treatment-naive HCC patients with intermediate and locally advanced tumors received preoperative nivolumab at 3 mg/kg for 3 cycles prior to surgical resection. Nineteen patients underwent surgical resection on trial. Seven (36.8%) of the 19 patients had major pathologic tumor necrosis (≥60%) in the post-nivolumab resection specimens, with 3 having almost complete (>90%) tumor necrosis. The tumor necrosis was hemorrhagic and often accompanied by increased or dense immune cell infiltrate at the border of the tumors. None of the patients developed major adverse reactions contradicting hepatectomy. RNA-sequencing analysis on both pre-nivolumab tumor biopsies and post-nivolumab resected specimens showed that, in cases with major pathologic necrosis, the proportion of CD8 T cells in the HCC tissues predominantly increased after treatment. Moreover, to investigate noninvasive biomarker for nivolumab response, we evaluated the copy number variation (CNV) using target-panel sequencing on plasma cell-free DNA of the patients and derived a CNV-based anti-PD-1 score. The score correlated with the extent of tumor necrosis and was validated in a Korean patient cohort with anti-PD-1 treatment. Conclusion Neoadjuvant nivolumab demonstrated promising clinical activity in intermediate and locally advanced HCC patients. We also identified useful noninvasive biomarker predicting responsiveness.
Collapse
Affiliation(s)
- Tan-To Cheung
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Daniel Wai-Hung Ho
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Shirley Xueying Lyu
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Qingyang Zhang
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yu-Man Tsui
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Tiffany Ching-Yun Yu
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Karen Man-Fong Sze
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Joyce Man-Fong Lee
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Vince Wing-hang Lau
- Department of Diagnostic Radiology, Queen Mary Hospital, Hong Kong, Hong Kong SAR
| | - Edward Yin-Lun Chu
- Department of Diagnostic Radiology, Queen Mary Hospital, Hong Kong, Hong Kong SAR
| | - Simon Hing-Yin Tsang
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wong-Hoi She
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Roland Ching-Yu Leung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Thomas Chung-Cheung Yau
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
278
|
Zhou Z, Wu B, Chen J, Shen Y, Wang J, Chen X, Fei F, Zhu M. A Lactic Acid Metabolism-Related Gene Signature for Predicting Clinical Outcome and Tumor Microenvironmental Status in Patients with Hepatocellular Carcinoma. Nutr Cancer 2024; 76:279-295. [PMID: 38226887 DOI: 10.1080/01635581.2024.2302202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/17/2024]
Abstract
This study aims to build a prognostic model based on lactic acid metabolism-related genes (LMRGs) to predict survival outcomes and tumor microenvironment status of Hepatocellular carcinoma (HCC) patients. The model was used to calculate riskscores of clinical samples. Survival analysis and Cox regression analysis were conducted to verify the independence and reliability of the riskscore to determine its clinical significance in prognosis evaluation of HCC. Additionally, we conducted a comprehensive analysis of tumor mutation burden (TMB), immune cell infiltration, and gene set molecular function in the high- and low-risk groups. We obtained 134 LMRGs mainly involved in cellular calcium homeostasis and calcium signaling pathways. The LMRGs in the risk assessment model included PFKFB4, SLC16A3, ADRA2B, SLC22A1, QRFPR, and PROK1. This study discovered much shorter overall survival and median survival time of patients with higher riskscores when compared to those with lower riskscores. It was indicated that for independent prediction of patients' prognosis, the riskscore had a significant clinical value. A remarkable difference was also found regarding TMB between the two groups. Finally, cell experiments demonstrated that the knockout of PFKFB4 and SLC16A3 genes suppressed lactate. Our research demonstrated that the riskscore, established based on LMRGs, is a promising biomarker.
Collapse
Affiliation(s)
- Zhongcheng Zhou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jing Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Xujian Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Faming Fei
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Mingyuan Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| |
Collapse
|
279
|
Emiloju OE, Yin J, Koubek E, Reid JM, Borad MJ, Lou Y, Seetharam M, Edelman MJ, Sausville EA, Jiang Y, Kaseb AO, Posey JA, Davis SL, Gores GJ, Roberts LR, Takebe N, Schwartz GK, Hendrickson AEW, Kaufmann SH, Adjei AA, Hubbard JM, Costello BA. Phase 1 trial of navitoclax and sorafenib in patients with relapsed or refractory solid tumors with hepatocellular carcinoma expansion cohort. Invest New Drugs 2024; 42:127-135. [PMID: 38270822 DOI: 10.1007/s10637-024-01420-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Navitoclax (ABT-263) is an oral BCL2 homology-3 mimetic that binds with high affinity to pro-survival BCL2 proteins, resulting in apoptosis. Sorafenib, an oral multi kinase inhibitor also promotes apoptosis and inhibits tumor angiogenesis. The efficacy of either agent alone is limited; however, preclinical studies demonstrate synergy with the combination of navitoclax and sorafenib. In this phase 1 study, we evaluated the combination of navitoclax and sorafenib in a dose escalation cohort of patients with refractory solid tumors, with an expansion cohort in hepatocellular carcinoma (HCC). Maximum tolerated dose (MTD) was determined using the continual reassessment method. Navitoclax and sorafenib were administered continuously on days 1 through 21 of 21-day cycles. Ten patients were enrolled in the dose escalation cohort and 15 HCC patients were enrolled in the expansion cohort. Two dose levels were tested, and the MTD was navitoclax 150 mg daily plus sorafenib 400 mg twice daily. Among all patients, the most common grade 3 toxicity was thrombocytopenia (5 patients, 20%): there were no grade 4 or 5 toxicities. Patients received a median of 2 cycles (range 1-36 cycles) and all patients were off study treatment at data cut off. Six patients in the expansion cohort had stable disease, and there were no partial or complete responses. Drug-drug interaction between navitoclax and sorafenib was not observed. The combination of navitoclax and sorafenib did not increase induction of apoptosis compared with navitoclax alone. Navitoclax plus sorafenib is tolerable but showed limited efficacy in the HCC expansion cohort. These findings do not support further development of this combination for the treatment of advanced HCC. This phase I trial was conducted under ClinicalTrials.gov registry number NCT01364051.
Collapse
Affiliation(s)
- Oluwadunni E Emiloju
- Division of Medical Oncology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Jun Yin
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Emily Koubek
- Department of Molecular Pharmacology and Experimental Therapeutics (MPET), Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Joel M Reid
- Department of Molecular Pharmacology and Experimental Therapeutics (MPET), Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Mitesh J Borad
- Department of Hematology and Oncology, Mayo Clinic, 5881 E. Mayo Blvd., Phoenix, AZ, 85054, USA
| | - Yanyan Lou
- Department of Hematology & Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Mahesh Seetharam
- Department of Hematology and Oncology, Mayo Clinic, 5881 E. Mayo Blvd., Phoenix, AZ, 85054, USA
| | - Martin J Edelman
- Department of Hematology/Oncology, Fox Chase Cancer Center, Lewis Katz School of Medicine, Philadelphia, PA, 19111, USA
| | - Edward A Sausville
- Division of Hematology/Oncology, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA
| | - Yixing Jiang
- Division of Hematology/Oncology, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James A Posey
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Sarah L Davis
- University of Colorado Cancer Center - Anschutz Medical Campus, 1665 Aurora Ct, Aurora, CO, 80045, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Naoko Takebe
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis (DCTD), National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gary K Schwartz
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - Scott H Kaufmann
- Division of Medical Oncology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics (MPET), Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Alex A Adjei
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Joleen M Hubbard
- Division of Medical Oncology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Brian A Costello
- Division of Medical Oncology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
280
|
Wang J, Li X, Xiao G, Desai J, Frentzas S, Wang ZM, Xia Y, Li B. CD74 is associated with inflamed tumor immune microenvironment and predicts responsiveness to PD-1/CTLA-4 bispecific antibody in patients with solid tumors. Cancer Immunol Immunother 2024; 73:36. [PMID: 38280003 PMCID: PMC10822011 DOI: 10.1007/s00262-023-03604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/03/2023] [Indexed: 01/29/2024]
Abstract
INTRODUCTION Cadonilimab (AK104) is a first-in-class tetravalent bispecific antibody that targets both PD-1 and CTLA-4, showing a manageable safety profile and favorable clinical benefits. This study aimed to identify the biomarkers of clinical response and explore the immune response within the tumor microenvironment upon the AK104 therapy in advanced solid tumors. MATERIAL AND METHODS Gene expression profiles of paired pre- and post-treatment tumor tissues from twenty-one patients were analyzed. The association of gene expression levels with either clinical efficacy or prognosis was evaluated and subsequently validated with published datasets using log-rank for Kaplan-Meier estimates. Comparative immune profile analyses of tumor microenvironment before and after AK104 treatment were conducted. The visualization of tumor-infiltrating lymphocytes was performed using multiplex immunohistochemistry. The predictive value of CD74 was further validated with protein expression by immunohistochemistry. RESULTS Baseline CD74 gene expression was associated with favorable patient outcomes (overall survival [OS], HR = 0.33, 95% CI 0.11-1.03, p = 0.0463), which was further confirmed with the published datasets. Tumors with high CD74 gene expression at baseline were more likely to exhibit an immune-inflamed microenvironment. AK104 efficiently enhanced the infiltration of immune cells in the tumor microenvironment. Additionally, high CD74 protein expression (≥ 10% of the tumor area occupied by CD74 stained immune cells) at baseline was associated with better progressive-free survival (HR = 0.21, 95% CI 0.06-0.68, p = 0.0065) and OS (HR = 0.35, 95% CI 0.12-1.08, p = 0.0615). CONCLUSIONS Our findings demonstrate that CD74 is a promising predictive biomarker for AK104 therapeutic response in advanced solid tumors. Trial registration number NCT03261011.
Collapse
Affiliation(s)
- Jianghua Wang
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Xiaoting Li
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Guanxi Xiao
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Jayesh Desai
- Department of Oncology, Sir Peter MacCallum, The University of Melbourne, Parkville, VIC, Australia
| | - Sophia Frentzas
- Department of Medical Oncology, Monash Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Zhongmin Maxwell Wang
- Procurement and Sourcing Department and Clinical Operation Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Yu Xia
- President Office, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Baiyong Li
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China.
| |
Collapse
|
281
|
Becht R, Kiełbowski K, Wasilewicz MP. New Opportunities in the Systemic Treatment of Hepatocellular Carcinoma-Today and Tomorrow. Int J Mol Sci 2024; 25:1456. [PMID: 38338736 PMCID: PMC10855889 DOI: 10.3390/ijms25031456] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Liver cirrhosis, hepatitis B, hepatitis C, and non-alcoholic fatty liver disease represent major risk factors of HCC. Multiple different treatment options are available, depending on the Barcelona Clinic Liver Cancer (BCLC) algorithm. Systemic treatment is reserved for certain patients in stages B and C, who will not benefit from regional treatment methods. In the last fifteen years, the arsenal of available therapeutics has largely expanded, which improved treatment outcomes. Nevertheless, not all patients respond to these agents and novel combinations and drugs are needed. In this review, we aim to summarize the pathway of trials investigating the safety and efficacy of targeted therapeutics and immunotherapies since the introduction of sorafenib. Furthermore, we discuss the current evidence regarding resistance mechanisms and potential novel targets in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (R.B.); (K.K.)
| | - Kajetan Kiełbowski
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (R.B.); (K.K.)
| | - Michał P. Wasilewicz
- Liver Unit, Department of Gastroenterology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| |
Collapse
|
282
|
Cai Q, Wu W, Li R, Li X, Xu Q, Zhao L, Lv Q. Clinical characteristics and outcomes of patients with primary liver cancer and immune checkpoint inhibitor-associated adrenal insufficiency: A retrospective cohort study. Int Immunopharmacol 2024; 127:111337. [PMID: 38064811 DOI: 10.1016/j.intimp.2023.111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Adrenal insufficiency (AI) is a rare, but potentially serious adverse event associated with immune checkpoint inhibitors (ICIs). This study aims to examine the incidence, clinical features and the clinical correlation between occurrence of AI and efficacy in primary liver cancer (PLC) patients treated with ICIs; and to evaluate the significance of the continuation of ICIs treatment in PLC patients who developed AI. METHODS Between January 2020 and March 2022, 47 PLC patients with ICIs-associated AI (AI cohort) were screened from Zhongshan Hospital, Fudan university, a general hospital in China. Between December 2019 and August 2021, 419 PLC patients who were treated with ICIs were reviewed to identify those without immune- associated adverse events (irAEs) (control cohort). Clinical features and outcomes of the PLC patients from the two cohorts were compared. RESULTS Totally, 47 PLC patients with AI (AI cohort) and 63 PLC patients without irAEs (control cohort) were included. The incidence of grades 3-4 of AI and all irAEs were 40.4 % and 48.9 %, respectively. The median three-year survival was significantly longer in the AI cohort than that in the control cohort (26.3 months (95 % CI: 18.9--33.5) vs.16.1 months (95 % CI:10.4--21.7); p = 0.021). Multivariable cox proportional hazards regression model showed that the development of AI remained significantly associated with improved overall survival (HR = 0.561; p = 0.033) in the adjusted regression analysis. CONCLUSION The current study demonstrated that PLC patients undergoing ICIs therapy and developing AI after ICIs treatment had favorable survival outcomes compared to those without irAEs.
Collapse
Affiliation(s)
- Qingqing Cai
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Wei Wu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Ranyi Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Qing Xu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Lin Zhao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Qianzhou Lv
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
283
|
Sobhani N, Tardiel-Cyril DR, Chai D, Generali D, Li JR, Vazquez-Perez J, Lim JM, Morris R, Bullock ZN, Davtyan A, Cheng C, Decker WK, Li Y. Artificial intelligence-powered discovery of small molecules inhibiting CTLA-4 in cancer. BJC REPORTS 2024; 2:4. [PMID: 38312352 PMCID: PMC10838660 DOI: 10.1038/s44276-023-00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND/OBJECTIVES Checkpoint inhibitors, which generate durable responses in many cancer patients, have revolutionized cancer immunotherapy. However, their therapeutic efficacy is limited, and immune-related adverse events are severe, especially for monoclonal antibody treatment directed against cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), which plays a pivotal role in preventing autoimmunity and fostering anticancer immunity by interacting with the B7 proteins CD80 and CD86. Small molecules impairing the CTLA-4/CD80 interaction have been developed; however, they directly target CD80, not CTLA-4. SUBJECTS/METHODS In this study, we performed artificial intelligence (AI)-powered virtual screening of approximately ten million compounds to identify those targeting CTLA-4. We validated the hits molecules with biochemical, biophysical, immunological, and experimental animal assays. RESULTS The primary hits obtained from the virtual screening were successfully validated in vitro and in vivo. We then optimized lead compounds and obtained inhibitors (inhibitory concentration, 1 micromole) that disrupted the CTLA-4/CD80 interaction without degrading CTLA-4. CONCLUSIONS Several compounds inhibited tumor development prophylactically and therapeutically in syngeneic and CTLA-4-humanized mice. Our findings support using AI-based frameworks to design small molecules targeting immune checkpoints for cancer therapy.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | | | - Dafei Chai
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan Vazquez-Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jing Ming Lim
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rachel Morris
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Zaniqua N. Bullock
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aram Davtyan
- Atomwise Inc., 717 Market St, Suite 800, San Francisco, CA 94103, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - William K. Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
284
|
Gu XY, Huo JL, Yu ZY, Jiang JC, Xu YX, Zhao LJ. Immunotherapy in hepatocellular carcinoma: an overview of immune checkpoint inhibitors, drug resistance, and adverse effects. ONCOLOGIE 2024; 26:9-25. [DOI: 10.1515/oncologie-2023-0412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Hepatocellular carcinoma (HCC) is a concerning liver cancer with rising incidence and mortality rates worldwide. The effectiveness of traditional therapies in managing advanced HCC is limited, necessitating the development of new therapeutic strategies. Immune checkpoint inhibitors (ICIs) have emerged as a promising strategy for HCC management. By preventing tumor cells from evading immune surveillance through immunological checkpoints, ICIs can restore the immune system’s ability to target and eliminate tumors. While ICIs show promise in enhancing the immune response against malignancies, challenges such as drug resistance and adverse reactions hinder their efficacy. To address these challenges, developing individualized ICI treatment strategies is critical. Combining targeted therapy and immunotherapy holds the potential for comprehensive therapeutic effects. Additionally, biomarker-based individualized ICI treatment strategies offer promise in predicting treatment response and guiding personalized patient care. Future research should explore emerging ICI treatment methods to optimize HCC immunotherapy. This review provides an overview of ICIs as a new treatment for HCC, demonstrating some success in promoting the tumor immune response. However, drug resistance and adverse reactions remain important considerations that must be addressed. As tailored treatment plans evolve, the prospect of immunotherapy for HCC is expected to grow, offering new opportunities for improved patient outcomes.
Collapse
Affiliation(s)
- Xuan-Yu Gu
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Jin-Long Huo
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Zhi-Yong Yu
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Ji-Chang Jiang
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Ya-Xuan Xu
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Li-Jin Zhao
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| |
Collapse
|
285
|
Sadagopan N, He AR. Recent Progress in Systemic Therapy for Advanced Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:1259. [PMID: 38279258 PMCID: PMC10816205 DOI: 10.3390/ijms25021259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Patients with advanced hepatocellular carcinoma (HCC) have several systemic treatment options. There are many known risk factors for HCC, and although some, such as hepatitis C, are now treatable, others are not. For example, metabolic dysfunction-related chronic liver disease is increasing in incidence and has no specific treatment. Underlying liver disease, drug resistance, and an increasing number of treatment options without specific biomarkers are all challenges in selecting the best treatment for each patient. Conventional chemotherapy is almost never used for advanced-stage disease, which instead is treated with immunotherapy, tyrosine kinase inhibitors, and VEGF inhibitors. Immune checkpoint inhibitors targeting various receptors have been or are currently undergoing clinical evaluation. Ongoing trials with three-drug regimens may be the future of advanced-stage HCC treatment. Other immune-modulatory approaches of chimeric antigen receptor-modified T cells, bispecific antibodies, cytokine-induced killer cells, natural killer cells, and vaccines are in early-stage clinical trials. Targeted therapies remain limited for HCC but represent an area of potential growth. As we shift away from first-line sorafenib for advanced HCC, clinical trial control arms should comprise a standard treatment other than sorafenib, one that is a better comparator for advancing therapies.
Collapse
Affiliation(s)
- Narayanan Sadagopan
- MedStar Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20007, USA;
| | | |
Collapse
|
286
|
Sergeeva AV, Manukyan MS, Polyakov AN, Bazin IS. Place of tyrosine kinase inhibitors in the first line of treatment of hepatocellular carcinoma. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2024:64-72. [DOI: 10.21518/ms2023-436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The incidence of hepatocellular carcinoma (HCC) in Russia and worldwide is steadily increasing over time. The majority of HCC patients are diagnosed at a late stage of the disease, which is not suitable for potentially curative treatment methods. Before the emergence of new treatment regimens, the median overall survival for this condition was just over one year. Studying combinations of immunotherapy and targeted therapy has improved clinical outcomes compared to monotherapy with tyrosine kinase inhibitors, but the new treatment regimens cannot be prescribed to all patients with advanced HCC. The combination of atezolizumab with bevacizumab may be prescribed to eligible patients with advanced hepatocellular carcinoma who do not have varicose veins and have no history of hypertensive crises. In real clinical practice, it is extremely difficult to select patients who meet the inclusion criteria for clinical trials. Monotherapy with tyrosine kinase inhibitors is also effective regardless of the etiology of HCC development and can be prescribed to patients with signs of liver insufficiency (Child-Pugh B) as opposed to combined therapy. Double immunotherapy has shown its efficacy in second-line treatment, and in the future, these combinations may also demonstrate their effectiveness in first-line treatment of hepatocellular carcinoma. There is insufficient evidence on the effectiveness of immunotherapy in patients awaiting liver transplantation. For this category of patients, the drugs of choice are lenvatinib and sorafenib. The article highlights the specific considerations in choosing the treatment regimen based on the etiology of the disease, treatment goals, concomitant patient conditions, and the presence/severity of liver insufficiency.
Collapse
Affiliation(s)
- A. V. Sergeeva
- Blokhin National Medical Research Center of Oncology; Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | - I. S. Bazin
- Blokhin National Medical Research Center of Oncology; Tver State Medical University
| |
Collapse
|
287
|
Sun SS, Guo XD, Li WD, Chen JL. Lenvatinib combined with sintilimab plus transarterial chemoembolization as first-line treatment for advanced hepatocellular carcinoma. World J Clin Cases 2024; 12:285-292. [PMID: 38313649 PMCID: PMC10835699 DOI: 10.12998/wjcc.v12.i2.285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Recently, combination therapy has shown a better trend towards improved tumour response and survival outcomes than monotherapy in patients with hepatocellular carcinoma (HCC). However, research on triple therapy [lenvatinib + sintilimab + transarterial chemoembolization (TACE)] as a first-line treatment for advanced HCC is limited. AIM To evaluate the safety and efficacy of triple therapy as a first-line treatment for advanced HCC. METHODS HCC patients with Barcelona Clinic Liver Cancer stage C treated with triple therapy were enrolled. All patients were treated with lenvatinib every day and sintilimab once every 3 wk. Moreover, TACE was performed every 4-6 wk if necessary. The primary outcome of the study was overall survival (OS). The secondary outcomes were the objective response rate (ORR), disease control rate (DCR), and incidence of adverse events. RESULTS Forty HCC patients who underwent triple therapy were retrospectively analysed from January 2019 to January 2022. With a median follow-up of 8.5 months, the 3-, 6-, and 12-mo OS rates were 100%, 88.5%, and 22.5%, respectively. The ORR and DCR were 45% and 90%, respectively. The median progressive free survival and median OS were not reached. Common complications were observed in 76% of the patients (grade 3, 15%; grade 4, 2.5%). CONCLUSION Combination therapy comprising lenvatinib, sintilimab and TACE achieved promising outcomes in advanced HCC patients and had manageable effects.
Collapse
Affiliation(s)
- Sha-Sha Sun
- Department of Oncology, Capital Medical University Affiliated Beijing Ditan Hospital, Beijing 100015, China
| | - Xiao-Di Guo
- Department of Oncology, Capital Medical University Affiliated Beijing Ditan Hospital, Beijing 100015, China
| | - Wen-Dong Li
- Department of Oncology, Capital Medical University Affiliated Beijing Ditan Hospital, Beijing 100015, China
| | - Jing-Long Chen
- Department of Oncology, Capital Medical University Affiliated Beijing Ditan Hospital, Beijing 100015, China
| |
Collapse
|
288
|
Losurdo A, Dipasquale A, Giordano L, Persico P, Lorenzi E, Di Muzio A, Barigazzi C, Korolewicz J, Mehan A, Mohammed O, Scheiner B, Pinato DJ, Santoro A, Simonelli M. Refining patient selection for next-generation immunotherapeutic early-phase clinical trials with a novel and externally validated prognostic nomogram. Front Immunol 2024; 15:1323151. [PMID: 38298193 PMCID: PMC10828843 DOI: 10.3389/fimmu.2024.1323151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Introduction Identifying which patient may benefit from immunotherapeutic early-phase clinical trials is an unmet need in drug development. Among several proposed prognostic scores, none has been validated in patients receiving immunomodulating agents (IMAs)-based combinations. Patients and methods We retrospectively collected data of 208 patients enrolled in early-phase clinical trials investigating IMAs at our Institution, correlating clinical and blood-based variables with overall survival (OS). A retrospective cohort of 50 patients treated with IMAs at Imperial College (Hammersmith Hospital, London, UK) was used for validation. Results A total of 173 subjects were selected for analyses. Most frequent cancers included non-small cell lung cancer (26%), hepatocellular carcinoma (21.5%) and glioblastoma (13%). Multivariate analysis (MVA) revealed 3 factors to be independently associated with OS: line of treatment (second and third vs subsequent, HR 0.61, 95% CI 0.40-0.93, p 0.02), serum albumin as continuous variable (HR 0.57, 95% CI 0.36-0.91, p 0.02) and number of metastatic sites (<3 vs ≥3, HR 0.68, 95% CI 0.48-0.98, p 0.04). After splitting albumin value at the median (3.84 g/dL), a score system was capable of stratifying patients in 3 groups with significantly different OS (p<0.0001). Relationship with OS reproduced in the external cohort (p=0.008). Then, from these factors we built a nomogram. Conclusions Prior treatment, serum albumin and number of metastatic sites are readily available prognostic traits in patients with advanced malignancies participating into immunotherapy early-phase trials. Combination of these factors can optimize patient selection at study enrollment, maximizing therapeutic intent.
Collapse
Affiliation(s)
- Agnese Losurdo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Angelo Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Laura Giordano
- Biostatistic Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Pasquale Persico
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Elena Lorenzi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Antonio Di Muzio
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Chiara Barigazzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - James Korolewicz
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Aman Mehan
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Oreoluwa Mohammed
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Benhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - David J. Pinato
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Division of Oncology, Department of Translational Medicine (DIMET), Università del Piemonte Orientale A. Avogadro, Novara, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Matteo Simonelli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| |
Collapse
|
289
|
Rose N, Furer V, Polachek A, Elkayam O, Gertel S. Immune Checkpoint Inhibitor-Induced Inflammatory Arthritis: Overview of Therapies and a Personalized Approach to Optimized Combined Therapy. Eur J Rheumatol 2024; 11. [PMID: 38477323 PMCID: PMC11365019 DOI: 10.5152/eurjrheum.2024.23091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 03/14/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-cytotoxic T lymphocyte antigen 4, anti-programmed cell death 1, and anti-programmed cell death ligand 1 (PD-L1) antibodies, are currently widely used in oncology clinical practice, achieving considerable success in improving disease outcomes. New checkpoint targets are being discovered and investigated through basic science research and clinical trials. ICI remove negative regulatory immune signals on T cells, leading to immune activation and induction of antitumor immunity. Patients who receive ICI, however, are at risk for developing immune-related adverse events (irAEs), which are attributed to increased T cell activity against antigens in both tumors and in healthy tissues, to increased inflammatory cytokine levels, to increased levels of preexisting autoantibodies, and to enhanced complement-mediated inflammation. Arthritis is one of the most common irAEs. ICI-induced rheumatic irAEs are categorized by levels of severity which guide the choice of treatment options. Management of ICI-induced rheumatic irAEs includes the use of glucocorticoids, disease-modifying antirheumatic drugs (mainly methotrexate), and biological agents (e.g., tumor necrosis factor, interleukin-6 receptor, and CD20 inhibitors). This review aims to summarize the current ICI subtypes, their role in rheumatic irAEs development, and therapies currently used in clinical practice to manage irAEs. In addition, we propose to use an ex vivo personalized diagnostic assay for the selection of the most effective ICI with antirheumatic drugs combinations that will inhibit the advancement of ICI-induced adverse events.
Collapse
Affiliation(s)
- Noa Rose
- Department of Rheumatology, Tel Aviv Sourasky Medical Center affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Victoria Furer
- Department of Rheumatology, Tel Aviv Sourasky Medical Center affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ari Polachek
- Department of Rheumatology, Tel Aviv Sourasky Medical Center affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ori Elkayam
- Department of Rheumatology, Tel Aviv Sourasky Medical Center affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Smadar Gertel
- Department of Rheumatology, Tel Aviv Sourasky Medical Center affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
290
|
Xing T, Li L, Rao X, Zhao J, Chen Y, Ju G, Xu Y, Gao X, Dong G, Xia X, Guan Y, Zhang L, Wen Z, Liang J. ARID1A deficiency promotes progression and potentiates therapeutic antitumour immunity in hepatitis B virus-related hepatocellular carcinoma. BMC Gastroenterol 2024; 24:11. [PMID: 38166741 PMCID: PMC10759659 DOI: 10.1186/s12876-023-03059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Exploring predictive biomarkers and therapeutic strategies of ICBs has become an urgent need in clinical practice. Increasing evidence has shown that ARID1A deficiency might play a critical role in sculpting tumor environments in various tumors and might be used as pan-cancer biomarkers for immunotherapy outcomes. The current study aims to explored the immune-modulating role of ARID1A deficiency in Hepatitis B virus (HBV) related hepatocellular carcinoma (HBV-HCC) and its potential immunotherapeutic implications. METHODS In the current study, we performed a comprehensive analysis using bioinformatics approaches and pre-clinical experiments to evaluate the ARID1A regulatory role on the biological behavior, and immune landscape of Hepatitis B virus (HBV) related hepatocellular carcinoma (HBV-HCC). A total of 425 HBV-related hepatocellular carcinoma patients from TCGA-LIHC, AMC and CHCC-HBV cohort were enrolled in bioinformatics analysis. Immunohistochemical staining of HBV-HCC specimens and ARID1A deficiency cellular models were used to validate the results of the analysis. RESULTS Our results have shown that ARID1A deficiency promoted tumor proliferation and metastasis. More importantly, ARID1A deficiency in HBV-HCC was associated with the higher TMB, elevated immune activity, and up-regulated expression of immune checkpoint proteins, especially TIM-3 in HBV-HCC. Further, the expression of Galectin-9, which is the ligand of TIM-3, was elevated in the ARID1A knockout HBV positive cell line. CONCLUSION To conclude, we have shown that the ARID1A deficiency was correlated with more active immune signatures and higher expression of immune checkpoints in HBV-HCC. Additionally, the present study provides insights to explore the possibility of the predictive role of ARID1A in HBV-HCC patients responsive to immunotherapy.
Collapse
Affiliation(s)
- Tao Xing
- Departments of Oncology, Peking University International Hospital, 1 Life Park Road, Life Science Park of Zhongguancun, Changping, Beijing, 102206, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing, 100142, China
| | - Li Li
- Departments of Oncology, Peking University International Hospital, 1 Life Park Road, Life Science Park of Zhongguancun, Changping, Beijing, 102206, China
| | - Xiaosong Rao
- HAINAN YILING Medical Industry Development Co.,Ldt, Qionghai, Hainan, 571442, China
| | - Jing Zhao
- Department of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, 72074, Germany
| | - Yiran Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Gaoda Ju
- Departments of Oncology, Peking University International Hospital, 1 Life Park Road, Life Science Park of Zhongguancun, Changping, Beijing, 102206, China
| | - Yaping Xu
- Geneplus-Beijing Institute, Beijing, 102206, China
| | - Xuan Gao
- Geneplus-Beijing Institute, Beijing, 102206, China
| | - Guilan Dong
- Tangshan People's Hospital, Tangshan, Hebei, 063001, China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, Beijing, 102206, China
| | - Yanfang Guan
- Geneplus-Beijing Institute, Beijing, 102206, China
| | - Lingling Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Zhenping Wen
- Inner Mongolia Cancer Hospital, 42 Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia, 010020, P. R. China.
| | - Jun Liang
- Departments of Oncology, Peking University International Hospital, 1 Life Park Road, Life Science Park of Zhongguancun, Changping, Beijing, 102206, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
291
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
292
|
Ismael MN, Kiani C, Clark V. Patients treated with immune checkpoint inhibitors for HCC should be considered for liver transplantation. Clin Liver Dis (Hoboken) 2024; 23:e0107. [PMID: 38720791 PMCID: PMC11078524 DOI: 10.1097/cld.0000000000000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/03/2023] [Indexed: 05/12/2024] Open
|
293
|
Abstract
This review explores the dynamic landscape of hepatocellular carcinoma (HCC) treatment, emphasizing on recent developments across various stages and therapeutic approaches. Although curative strategies such as hepatectomy and thermal ablation are standard for early-stage cases, high relapse rates drive investigations into adjuvant and perioperative treatment. Adjuvant therapies face hurdles, but noteworthy advances include IMbrave050 setting a new standard with atezolizumab/bevacizumab. Locoregional treatments gain significance, especially for multifocal HCC, with the integration of innovative combinations with systemic therapies, showing improved outcomes. In the advanced setting, the evolution from sorafenib as the primary first-line option to new standards, such as atezolizumab/bevacizumab and tremelimumab/durvalumab, to other emerging therapies such as tislelizumab and pembrolizumab with lenvatinib, is explored. Additionally, second-line treatments and insights into the interplay between immunotherapies and antiangiogenic agents, as well as novel combination strategies that add complexity to treatment decisions, are discussed.
Collapse
Affiliation(s)
- Panagiotis Ntellas
- Department of Medicine, Royal Marsden Hospital, London and Surrey, United Kingdom
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London and Surrey, United Kingdom
| |
Collapse
|
294
|
Sankar K, Gong J, Osipov A, Miles SA, Kosari K, Nissen NN, Hendifar AE, Koltsova EK, Yang JD. Recent advances in the management of hepatocellular carcinoma. Clin Mol Hepatol 2024; 30:1-15. [PMID: 37482076 PMCID: PMC10776289 DOI: 10.3350/cmh.2023.0125] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
Liver cancer remains a challenge of global health, being the 4th leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, and is usually precipitated by chronic viral infections (hepatitis B and C), non-alcoholic steatohepatitis, heavy alcohol use, and other factors which may lead to chronic inflammation and cirrhosis of the liver. There have been significant advances in the systemic treatment options for HCC over the past decades, with several approvals of both immune checkpoint inhibitors and tyrosine kinase inhibitors in patients with preserved liver function. These advances have led to improvement in survival outcomes, with expected survival of greater than 18 months, in those with sensitive tumors, adequate liver function, and those functionally fit to receive sequential therapies. Several ongoing and promising trials are now evaluating combinational strategies with novel systemic agents and combinations of systemic therapy with locoregional therapy. In view of these trials, further advances in the treatment of HCC are foreseen in the near future.
Collapse
Affiliation(s)
- Kamya Sankar
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jun Gong
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Arsen Osipov
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven A. Miles
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kambiz Kosari
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nicholas N. Nissen
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew E. Hendifar
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ekaterina K. Koltsova
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ju Dong Yang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
295
|
Bejjani A, Finn RS. Evolution of Systemic Therapy in Advanced Hepatocellular Carcinoma. Surg Oncol Clin N Am 2024; 33:73-85. [PMID: 37945146 DOI: 10.1016/j.soc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The recognition that hepatocellular carcinoma (HCC) is a rising problem globally dates back decades; however, the development of effective medical treatment for the disease has only led to robust improvements in patient outcomes in the recent past. As knowledge evolves and regimens are proven to be more active, the importance of multidisciplinary management in patients with all stages of HCC will become more important to optimize patient outcomes. Key to optimizing patient outcomes is an understanding of the evolution and current role of these therapies in the HCC landscape.
Collapse
Affiliation(s)
- Anthony Bejjani
- Hematology/Oncology, VA Greater Los Angeles Health System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | - Richard S Finn
- Department of Medicine, Division of Hematology/ Oncology, Geffen School of Medicine at UCLA, 2825 Santa Monica Boulevard, Suite 200, Santa Monica, CA 90404, USA.
| |
Collapse
|
296
|
Bitzer M, Groß S, Albert J, Blödt S, Boda-Heggemann J, Brunner T, Caspari R, De Toni E, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, Fougère CL, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ritterbusch U, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Tholen R, Trojan J, van Thiel I, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wildner D, Wörns MA, Galle P, Malek N. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:e67-e161. [PMID: 38195102 DOI: 10.1055/a-2189-6353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Affiliation(s)
- Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.(AWMF), Berlin
| | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.(AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Klinik für Innere Medizin, Gesundheit Nord, Klinikverbund Bremen
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | | | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | | | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Reina Tholen
- Deutscher Bundesverband für Physiotherapie (ZVK) e. V
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
297
|
Li A, Fang J. Anti‐angiogenic therapy enhances cancer immunotherapy: Mechanism and clinical application. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20230025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/04/2025]
Abstract
AbstractImmunotherapy, specifically immune checkpoint inhibitors, is revolutionizing cancer treatment, achieving durable control of previously incurable or advanced tumors. However, only a certain group of patients exhibit effective responses to immunotherapy. Anti‐angiogenic therapy aims to block blood vessel growth in tumors by depriving them of essential nutrients and effectively impeding their growth. Emerging evidence shows that tumor vessels exhibit structural and functional abnormalities, resulting in an immunosuppressive microenvironment and poor response to immunotherapy. Both preclinical and clinical studies have used anti‐angiogenic agents to enhance the effectiveness of immunotherapy against cancer. In this review, we concentrate on the synergistic effect of anti‐angiogenic and immune therapies in cancer management, dissect the direct effects and underlying mechanisms of tumor vessels on recruiting and activating immune cells, and discuss the potential of anti‐angiogenic agents to improve the effectiveness of immunotherapy. Lastly, we outline challenges and opportunities for the anti‐angiogenic strategy to enhance immunotherapy. Considering the increasing approval of the combination of anti‐angiogenic and immune therapies in treating cancers, this comprehensive review would be timely and important.
Collapse
Affiliation(s)
- An‐Qi Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou China
| | - Jian‐Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou China
- Department of Hepatobiliary Surgery I General Surgery Center Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
298
|
Lindemann J, Yu J, Doyle MBM. Downstaging Hepatocellular Carcinoma before Transplantation: Role of Immunotherapy Versus Locoregional Approaches. Surg Oncol Clin N Am 2024; 33:143-158. [PMID: 37945140 DOI: 10.1016/j.soc.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Hepatocellular carcinoma (HCC) continues to be a leading cause of cancer-related death in the United States. With advances in locoregional therapy for unresectable HCC during the last 2 decades and the recent expansion of transplant criteria for HCC, as well as ongoing organ shortages, patients are spending more time on the waitlist, which has resulted in an increased usage of locoregional therapies. The plethora of molecularly targeted therapies and immune checkpoint inhibitors under investigation represent the new horizon of treatment of HCC not only in advanced stages but also potentially at every stage of diagnosis and management.
Collapse
Affiliation(s)
- Jessica Lindemann
- Department of Surgery, Division of Abdominal Organ Transplantation, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, MO 63110, USA
| | - Jennifer Yu
- Department of Surgery, Division of Abdominal Organ Transplantation, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, MO 63110, USA
| | - Maria Bernadette Majella Doyle
- Department of Surgery, Division of Abdominal Organ Transplantation, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, MO 63110, USA.
| |
Collapse
|
299
|
Ferrell LD, Kakar S, Terracciano LM, Wee A. Tumours and Tumour-Like Lesions. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:842-946. [DOI: 10.1016/b978-0-7020-8228-3.00013-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
300
|
Annamaraju SS, Mullaguri SC, Putta S, Vishnubhotla R, Kancha RK. Liver Cancer. BIOMEDICAL ASPECTS OF SOLID CANCERS 2024:61-71. [DOI: 10.1007/978-981-97-1802-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|