251
|
Paban V, Fauvelle F, Alescio-Lautier B. Age-related changes in metabolic profiles of rat hippocampus and cortices. Eur J Neurosci 2010; 31:1063-73. [DOI: 10.1111/j.1460-9568.2010.07126.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
252
|
Iorio E, Ricci A, Bagnoli M, Pisanu ME, Castellano G, Di Vito M, Venturini E, Glunde K, Bhujwalla ZM, Mezzanzanica D, Canevari S, Podo F. Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells. Cancer Res 2010; 70:2126-35. [PMID: 20179205 DOI: 10.1158/0008-5472.can-09-3833] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered phosphatidylcholine (PC) metabolism in epithelial ovarian cancer (EOC) could provide choline-based imaging approaches as powerful tools to improve diagnosis and identify new therapeutic targets. The increase in the major choline-containing metabolite phosphocholine (PCho) in EOC compared with normal and nontumoral immortalized counterparts (EONT) may derive from (a) enhanced choline transport and choline kinase (ChoK)-mediated phosphorylation, (b) increased PC-specific phospholipase C (PC-plc) activity, and (c) increased intracellular choline production by PC deacylation plus glycerophosphocholine-phosphodiesterase (GPC-pd) or by phospholipase D (pld)-mediated PC catabolism followed by choline phosphorylation. Biochemical, protein, and mRNA expression analyses showed that the most relevant changes in EOC cells were (a) 12-fold to 25-fold ChoK activation, consistent with higher protein content and increased ChoKalpha (but not ChoKbeta) mRNA expression levels; and (b) 5-fold to 17-fold PC-plc activation, consistent with higher, previously reported, protein expression. PC-plc inhibition by tricyclodecan-9-yl-potassium xanthate (D609) in OVCAR3 and SKOV3 cancer cells induced a 30% to 40% reduction of PCho content and blocked cell proliferation. More limited and variable sources of PCho could derive, in some EOC cells, from 2-fold to 4-fold activation of pld or GPC-pd. Phospholipase A2 activity and isoform expression levels were lower or unchanged in EOC compared with EONT cells. Increased ChoKalpha mRNA, as well as ChoK and PC-plc protein expression, were also detected in surgical specimens isolated from patients with EOC. Overall, we showed that the elevated PCho pool detected in EOC cells primarily resulted from upregulation/activation of ChoK and PC-plc involved in PC biosynthesis and degradation, respectively.
Collapse
Affiliation(s)
- Egidio Iorio
- Department of Cell Biology and Neurosciences, Section of Molecular and Cellular Imaging, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Abstract
Magnetic resonance (MR) spectroscopy allows the demonstration of relative tissue metabolite concentrations along a two- or three-dimensional spectrum based on the chemical shift phenomenon. An MR spectrum is a plot of the signal intensity and frequency of a chemical or metabolite within a given voxel. At proton MR spectroscopy, the frequency at which a chemical or compound occurs depends on the configuration of the protons within the structure of that chemical. At in vivo proton MR spectroscopy, the frequency location of water is used as the standard of reference to identify a chemical. The frequency shift or location of chemicals relative to that of water allows generation of qualitative and quantitative information about the chemicals that occur within tissues, forming the basis of tissue characterization by MR spectroscopy. MR spectroscopy also may be used to quantify liver fat by measuring lipid peaks and to diagnose malignancy, usually by measuring the choline peak. Interpretation of MR spectroscopic data requires specialized postprocessing software and is subject to technical limitations including low signal-to-noise ratio, masking of metabolite peaks by dominant water and lipid peaks, partial-volume averaging from other tissue within the voxel, and phase and frequency shifts from motion. MR spectroscopy of the liver is an evolving technology with potential for improving the diagnostic accuracy of tissue characterization when spectra are interpreted in conjunction with MR images.
Collapse
Affiliation(s)
- Aliya Qayyum
- Department of Radiology, University of California San Francisco, Box 0628, L-307, 505 Parnassus Ave, San Francisco, CA 94143-0628, USA.
| |
Collapse
|
254
|
Srivastava NK, Pradhan S, Gowda GAN, Kumar R. In vitro, high-resolution 1H and 31P NMR based analysis of the lipid components in the tissue, serum, and CSF of the patients with primary brain tumors: one possible diagnostic view. NMR IN BIOMEDICINE 2010; 23:113-122. [PMID: 19774696 DOI: 10.1002/nbm.1427] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In vitro, high-resolution (1)H and (31)P NMR based qualitative and quantitative analyses of the lipid components of the tissue, serum, and CSF of patients with primary brain tumors were performed. Proton NMR spectra of the lipid extract of serum (blood specimen collected before the surgical procedure) and surgically discarded tissue showed that the total cholesterol (T.CHOL) and choline containing phospholipids (PL) were significantly higher in quantity in medulloblastoma and glioblastoma multiforme as compared to normal subjects. Serum lipid extracts of grade II/ III gliomas showed a higher quantity of PL than normal subjects. Cholesterol esters (CHOLest) were detectable in the tissue lipid extract of the patients with tumors and absent in normal tissue. There was a reduction in the quantity of CHOLest in the serum lipid extract of the tumor patients as compared to normal subjects. Ratio of PL to T.CHOL in serum lipid extract showed a significant difference between different grades of tumors versus normal subjects, while, a significant difference was observed only in medulloblastoma versus normal subjects in tissue lipid extract. Ratio of CHOL to CHOLest distinguishes the different grades of tumors versus normal subjects as well as between different grades of tumors (except medulloblastoma versus glioblastoma). The ratio of the Ph (total phospholipids except phosphatidylcholine) to PC (phosphatidylcholine) in (31)P NMR based study showed a significant difference in all grades of tumors (except medulloblastoma) in normal subjects in tissue lipid extract as well as between different grades of tumors. Medulloblastoma could be differentiated from glioblastoma as well as from normal subjects in serum lipid extract by the ratio of the Ph to PC. Proton NMR spectra of the lipid extract of CSF showed that the CHOL, CHOLest, and PL were present in the patients with tumors, although these were absent in the patients with meningitis, motor neuron disease, and mitochondrial myopathies as well as in normal subjects. PL and T.CHOL provided discrimination between different grades of tumors (except glioblastoma versus medulloblastoma) in the lipid extract of the CSF. This study suggests the role of lipid estimation in CSF and serum as a complementary diagnostic tool for the evaluation of brain tumors preoperatively. NMR-based lipid estimation of post-surgical tumor tissue may also contribute to differentiating the tumor types.
Collapse
Affiliation(s)
- Niraj Kumar Srivastava
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, India
| | | | | | | |
Collapse
|
255
|
Rodent rhabdomyosarcoma: comparison between total choline concentration at H-MRS and [18F]-fluoromethylcholine uptake at PET using accurate methods for collecting data. Mol Imaging Biol 2009; 12:415-23. [PMID: 19937391 DOI: 10.1007/s11307-009-0283-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/18/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE To compare choline concentration/amount at proton magnetic resonance spectroscopy (H-MRS) and [18F]-fluoromethylcholine (FCH) uptake at positron emission tomography (PET) in a tumour animal model. PROCEDURES Twenty-two rats bearing grafted syngenic rhabdomyosarcoma in both thighs were examined on a 3T MR system and on a small animal PET system. Total choline concentration was measured on proton MR spectra using a so-called 'best internal fitting' volume of interest. Choline uptake was expressed as mean and maximum standardized uptake value (SUV and SUVmax, respectively) and as the percent of injected dose (%ID) after tumour delineation on fused PET-MR images. Data sets were displayed on standard scatter plots. RESULTS Thirty-six tumours were available for analysis. The area under the curve of the 3.2 ppm choline peak ranged from 69 to 476 (mean, 192) in arbitrary units. Mean SUV values ranged from 0.05 to 0.49 (mean, 0.19) and the %ID from 0.05 to 2.28 (mean, 0.54). Scatter plots failed to reveal quantitative relationship between choline concentration and uptake. Empirically data-driven cut-off lines applied to choline amount (choline concentration x tumour volume) versus choline uptake suggested a paradoxically negative relationship. CONCLUSION Total choline concentration did not correlate with FCH uptake in a tumour experimental model. A negative feedback of high values of total choline amount on cellular FCH uptake seemed to be present.
Collapse
|
256
|
Metabolic assessment of the action of targeted cancer therapeutics using magnetic resonance spectroscopy. Br J Cancer 2009; 102:1-7. [PMID: 19935796 PMCID: PMC2813738 DOI: 10.1038/sj.bjc.6605457] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Developing rational targeted cancer drugs requires the implementation of pharmacodynamic (PD), preferably non-invasive, biomarkers to aid response assessment and patient follow-up. Magnetic resonance spectroscopy (MRS) allows the non-invasive study of tumour metabolism. We describe the MRS-detectable PD biomarkers resulting from the action of targeted therapeutics, and discuss their biological significance and future translation into clinical use.
Collapse
|
257
|
Proton and phosphorous MR spectroscopy in squamous cell carcinomas of the head and neck. Acad Radiol 2009; 16:1366-72. [PMID: 19608433 DOI: 10.1016/j.acra.2009.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/29/2009] [Accepted: 06/01/2009] [Indexed: 11/21/2022]
Abstract
RATIONALE AND OBJECTIVES Phosphorous magnetic resonance spectroscopy ((31)P MRS) has been used to evaluate and predict treatment response in squamous cell carcinoma of the head and neck (HNSCC). Several studies have also shown the potential of proton MRS ((1)H MRS) in assessing response in HNSCC. In view of the inherent limitations associated with performing (31)P MRS in clinical settings, the current study was performed to explore whether (1)H MRS could provide similar or complementary metabolic information in HNSCC. MATERIALS AND METHODS Fifteen patients with HNSCC underwent pretreatment magnetic resonance imaging. Both (1)H MRS and (31)P MRS were performed on viable solid parts of the metastatic lymph nodes of these patients. Peak areas of total choline (tCho) and unsuppressed water as observed on (1)H MRS and phosphomonoester (PME) and beta-nucleotide triphosphate (beta-NTP) on (31)P MRS were computed. Pearson's correlation coefficient was used to correlate the tCho/water and PME/beta-NTP ratios. RESULTS In all patients, the metastatic nodes appeared hyperintense on T2-weighted images and hypointense on T1-weighted images with variable signal intensity. A prominent resonance of tCho on (1)H MRS and a resonance of PME on (31)P MRS from the metastatic nodes of all patients were observed. A moderate correlation of 0.31 was observed between tCho/water and PME/beta-NTP (P > .05). CONCLUSIONS The biochemical pathways involved in (1)H MRS of tCho may be different from the phospholipid metabolites seen on (31)P MRS of head and neck cancers, and thus the two MRS techniques may be complementary to each other.
Collapse
|
258
|
Piert M, Park H, Khan A, Siddiqui J, Hussain H, Chenevert T, Wood D, Johnson T, Shah RB, Meyer C. Detection of aggressive primary prostate cancer with 11C-choline PET/CT using multimodality fusion techniques. J Nucl Med 2009; 50:1585-93. [PMID: 19759109 DOI: 10.2967/jnumed.109.063396] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The aim of the study was to assess whether (11)C-choline PET/CT could identify high-risk primary adenocarcinoma of the prostate. METHODS (11)C-choline PET/CT and transpelvic MRI were performed in 14 patients with untreated localized primary adenocarcinoma of the prostate, followed by radical prostatectomy as a form of primary monotherapy within 14 d of in vivo imaging. To allow accurate coregistration of whole-mount histology with in vivo imaging, additional ex vivo MR images of the prostatectomy specimen were obtained. Nonlinear 3-dimensional image deformations were used for registrations of PET/CT, MRI, and histology. Volumes of interest from tumor and benign tissue were defined on the basis of histology and were transferred into coregistered (11)C-choline PET/CT volumes to calculate the mean (T((mean))/B) and maximum (T((max))/B) ratio of tumor to benign prostate background. On the basis of MIB-1/Ki-67 expression in tumor tissues represented on a tissue microarray, we assessed whether (11)C-choline uptake correlated with local Gleason score and tumor proliferation. RESULTS Histology confirmed 42 tumor nodules with Gleason scores between 3 + 2 and 4 + 4, with volumes ranging from 0.03 to 12.6 cm(3). T((mean))/B (P < 0.01) and T((max))/B (P < 0.001) ratios were significantly increased in high-Gleason score (>or=4 + 3) lesions versus 3 + 4 and lower disease but failed to distinguish between 3 + 4 disease versus 3 + 3 and lower. T((mean))/B and T((max))/B ratios were significantly increased in tumors with an MIB-1/Ki-67 labeling index greater than or equal to 5% (P < 0.01). CONCLUSION On the basis of our preliminary data using ratios of tumor to benign prostate background, (11)C-choline preferentially identified aggressive primary prostate cancer.
Collapse
Affiliation(s)
- Morand Piert
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109-0028, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Diffusion-weighted imaging with apparent diffusion coefficient mapping and spectroscopy in prostate cancer. Top Magn Reson Imaging 2009; 19:261-72. [PMID: 19512848 DOI: 10.1097/rmr.0b013e3181aa6b50] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prostate cancer is a major health problem, and the exploration of noninvasive imaging methods that have the potential to improve specificity while maintaining high sensitivity is still critically needed. Tissue changes induced by tumor growth can be visualized by magnetic resonance imaging (MRI) methods. Current MRI methods include conventional T2-weighted imaging, diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping and magnetic resonance spectroscopy (MRS). Techniques such as DWI/ADC provide functional information about the behavior of water molecules in tissue; MRS can provide biochemical information about the presence or absence of certain metabolites, such as choline, creatine, and citrate. Finally, vascular parameters can be investigated using dynamic contrast-enhanced MRI. Moreover, with whole-body MRI and DWI, metastatic disease can be evaluated in 1 session and may provide a way to monitor treatment. Therefore, when combining these various methods, a multiparametric data set can be built to assist in the detection, localization, assessment of prostate cancer aggressiveness, and tumor staging. Such a comprehensive approach offers more power to evaluate prostate disease than any single measure alone. In this article, we focus on the role of DWI/ADC and MRS in the detection and characterization using both in vivo and ex vivo imaging of prostate pathology.
Collapse
|
260
|
Backshall A, Alferez D, Teichert F, Wilson ID, Wilkinson RW, Goodlad RA, Keun HC. Detection of metabolic alterations in non-tumor gastrointestinal tissue of the Apc(Min/+) mouse by (1)H MAS NMR spectroscopy. J Proteome Res 2009; 8:1423-30. [PMID: 19159281 DOI: 10.1021/pr800793w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we have used metabolic profiling (metabolomics/metabonomics) via high resolution magic angle spinning (HRMAS) and solution state (1)H NMR spectroscopy to characterize small bowel and colon tissue from the Apc(Min/+) mouse model of early gastrointestinal (GI) tumorigenesis. Multivariate analysis indicated the presence of metabolic differences between the morphologically normal/non-tumor tissue from approximately 10 week-old Apc(Min/+) mice and their wild-type litter mates. The metabolic profile of isolated lamina propria and epithelial cells from the same groups could also be discriminated on the basis of genotype. Accounting for systematic variation in individual metabolite levels across different anatomical regions of the lower GI tract, the metabolic phenotype of Apc(Min/+) lamina propria tissue was defined by significant increases in the phosphocholine/glycerophosphocholine ratio (PC/GPC, +21%) and decreases in GPC (-25%) and the gut-microbial cometabolite dimethylamine (DMA, -40%) relative to wild type. In the whole tissue, elevated lactate (+15%) and myo-inositol (+19%) levels were detected. As the metabolic changes occurred in non-tumor tissue from animals of very low tumor burden (<2 polyps/animal), they are likely to represent the specific consequence of reduced Apc function and very early events in tumorigenesis. The observed increase in PC/GPC ratio has been previously reported with immortalisation and malignant transformation of cells and is consistent with the role of Apc as a tumor suppressor. Phospholipase A2, which hydrolyses phosphatidylcholine to Acyl-GPC, is a known modifier gene of the model phenotype (Mom1), and altered expression of choline phospholipid enzymes has been reported in gut tissue from Apc(Min/+) mice. These results indicate the presence of a metabolic phenotype associated with "field cancerization", highlighting potential biomarkers for monitoring disease progression, for early evaluation of response to chemoprevention, and for predicting the severity of the polyposis phenotype in the Apc(Min/+) model.
Collapse
Affiliation(s)
- Alexandra Backshall
- Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
261
|
Wang L, Ponde DE. Radiosynthesis of [ 11C] N-Methyl and N,N′-Dimethyl Ethanolamine for Measuring Phospholipid Metabolism Using PET Imaging. SYNTHETIC COMMUN 2009. [DOI: 10.1080/00397910902796086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
262
|
Abstract
In 2007, an Italian cancer research group proposed a specific concerted action aimed at the “analytical and clinical validation of new biomarkers for early diagnosis: Network, resources, methodology, quality control, and data analysis.” The proposal united 37 national operative units involved in different biomarker studies and it created a strong coordinative body with the necessary expertise in methodologies, statistical analysis, quality control, and biological resources to perform ad hoc validation studies for new biomarkers of early cancer diagnosis. The action, financed by the Italian Ministry of Health within the Integrated Oncology Program (PIO) coordinated by NCI-Istituto Tumori Bari, started in 2007 and activated 7 projects, each of which focused on disease-specific biomarker studies. Overall, the 37 participating units proposed studies on 50 biomarkers, including analytical and clinical validation procedures. Clusters of units were specifically involved in research of early-detection biomarkers for cancers of the lung, digestive tract, prostate/bladder, and nervous system, as well as female cancers. Furthermore, a cluster involved in biomarkers for bioimaging and infection-related cancers was created. The first investigators' meeting, “Analytical and clinical validation of new biomarkers for early diagnosis,” was held on 9 September 2008 in Bari. During this meeting, methodological aspects, scientific programs and preliminary results were presented and discussed.
Collapse
|
263
|
Solivera J, Cerdán S, Pascual JM, Barrios L, Roda JM. Assessment of 31P-NMR analysis of phospholipid profiles for potential differential diagnosis of human cerebral tumors. NMR IN BIOMEDICINE 2009; 22:663-674. [PMID: 19378301 DOI: 10.1002/nbm.1387] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We describe a novel protocol for the non-histological diagnosis of human brain tumors in vitro combining high-resolution (31)P magnetic resonance spectroscopy ((31)P-MRS) of their phospholipid profile and statistical multivariate analysis. Chloroform/methanol extracts from 40 biopsies of human intracranial tumors obtained during neurosurgical procedures were prepared and analyzed by high-resolution (31)P-MRS. The samples were grouped in the following seven major classes: normal brain (n = 3), low-grade astrocytomas (n = 4), high-grade astrocytomas (n = 7), meningiomas (n = 9), schwannomas (n = 3), pituitary adenomas (n = 4), and metastatic tumors (n = 4). The phospholipid profile of every biopsy was determined by (31)P-NMR analysis of its chloroform/methanol extract and characterized by 19 variables including 10 individual phospholipid contributions and 9 phospholipid ratios. Most tumors depicted a decrease in phosphatidylethanolamine (PtdEtn) and phosphatidylserine (PtdSer), the former mainly in neuroepithelial neoplasms and the latter in metastases. An increase in phosphatidylcholine (PtdCho) and phosphatidylinositol (PtdIns) appeared predominantly in primary non-neuroepithelial tumors. Linear discriminant analysis (LDA) revealed the optimal combination of variables that could classify each biopsy between every pair of classes. The resultant discriminant functions were used to calculate the probability of correct classifications for each individual biopsy within the seven classes considered. Multilateral analysis classified correctly 100% of the normal brain samples, 89% of the meningiomas, 75% of the metastases, and 57% of the high-grade astrocytomas. The use of phospholipid profiles may complement appropriately previously proposed methods of intelligent diagnosis of human cerebral tumors.
Collapse
Affiliation(s)
- Juan Solivera
- Department of Neurosurgery, Hospital Universitario Reina Sofía, Córdoba, Spain.
| | | | | | | | | |
Collapse
|
264
|
In vivo proton MR spectroscopy of the breast using the total choline peak integral as a marker of malignancy. AJR Am J Roentgenol 2009; 192:1608-17. [PMID: 19457825 DOI: 10.2214/ajr.07.3521] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The purpose of our study was to use the total choline-containing compound (tCho) peak integral as a marker of malignancy in breast MR spectroscopy (MRS). SUBJECTS AND METHODS Forty-eight single-voxel water- and fat-suppressed 1.5-T MRS measurements were performed in 42 patients, obtaining both absolute tCho peak integral and tCho peak integral normalized for the volume of interest (VOI). Our reference standard was histology for lesions with BI-RADS category 4 and 5 and histology or at least a 2-year follow-up for findings with BI-RADS 2 and 3 and normal glands. Receiver operating characteristic (ROC) analysis, Mann-Whitney U test, and Spearman's rank correlation were used. RESULTS Three of 48 measurements (6%) failed. Of the remaining 45 spectra, 18 nonmalignant tissues showed no tCho peak, eight nonmalignant tissues showed a tCho peak integral from 0.99 to 9.03 arbitrary units (AU), and 19 malignant lesions showed a tCho peak integral from 1.26 to 19.80 AU. The diameter of nonmalignant tissues was 16.9 +/- 7.4 mm; that of malignant lesions was 15.3 +/- 6.9 mm (p = 0.308). At ROC analysis, the optimal threshold was 1.90 AU for absolute tCho peak, with 0.895 (17/19) sensitivity, 0.923 (24/26) specificity, and an AUC (area under the curve) of 0.917 (95% CI, 0.822-1.000); the optimal threshold was 0.85 AU/mL for the normalized tCho peak integral with 0.842 (16/19) sensitivity, 0.885 (23/26) specificity, and an AUC of 0.941 (0.879-1.000) (p = 0.470). A negative correlation (p = 0.011) was found between the VOI and the normalized tCho peak integral of malignant tissues. CONCLUSION Breast MRS using tCho peak integral reaches a high level of diagnostic performance.
Collapse
|
265
|
Silberhumer GR, Zakian K, Malhotra S, Brader P, Gönen M, Koutcher J, Fong Y. Relationship between 31P metabolites and oncolytic viral therapy sensitivity in human colorectal cancer xenografts. Br J Surg 2009; 96:809-16. [DOI: 10.1002/bjs.6604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Background
Studies using phosphorus magnetic resonance spectroscopy (MRS) have pointed to the significance of phospholipid metabolite alterations as biochemical markers for tumour progression or therapy response.
Methods
Spectroscopic imaging was performed in colorectal flank tumours in nude mice. In vivo tumour doubling times for each cell line were measured. In vivo sensitivity of each tumour line to treatment with G207 and NV1020 oncolytic viruses was assessed. Correlations between viral sensitivity and tumour doubling time and phosphorus MRS were estimated.
Results
For G207 virus, in vitro cytotoxicity tests showed cell viability at multiplicities of infection (ratio of viral particles per tumour cell) of 0·1 on day 6 as follows: C85, less than 1 per cent; HCT8, 1 per cent; LS174T, 9 per cent; HT29, 18 per cent; and C18, 92 per cent. Respective values for NV1020 were 1, 18, 4, 18 and 86 per cent. The phosphoethanolamine to phosphocholine ratio was significantly lower in virus-sensitive than -insensitive cells, and was dependent on tumour doubling time.
Conclusion
Alterations in membrane phospholipid metabolites that relate to proliferation of cancer cells affect the efficacy of oncolytic viral therapy. MRS proved a highly sensitive non-invasive tool for predicting the efficacy of viruses.
Collapse
Affiliation(s)
- G R Silberhumer
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - K Zakian
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - S Malhotra
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - P Brader
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - M Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - J Koutcher
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Y Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
266
|
Southam AD, Easton JM, Stentiford GD, Ludwig C, Arvanitis TN, Viant MR. Metabolic changes in flatfish hepatic tumours revealed by NMR-based metabolomics and metabolic correlation networks. J Proteome Res 2009; 7:5277-85. [PMID: 19367724 DOI: 10.1021/pr800353t] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Histopathologically well-characterized fish liver was analyzed by 800 MHz 1H NMR metabolomics to identify metabolic changes between healthy and tumor tissue. Data were analyzed by multivariate statistics and metabolic correlation networks, and results revealed elevated anaerobic metabolism and reduced choline metabolism in tumor tissue. Significant negative correlations were observed between alanine-acetate (p = 3.0 x 10(-5)) and between proline-acetate (p = 0.003) in tumors only, suggesting alanine and proline are utilized as alternative energy sources in flatfish liver tumors.
Collapse
Affiliation(s)
- Andrew D Southam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | |
Collapse
|
267
|
Beloueche-Babari M, Peak JC, Jackson LE, Tiet MY, Leach MO, Eccles SA. Changes in choline metabolism as potential biomarkers of phospholipase C{gamma}1 inhibition in human prostate cancer cells. Mol Cancer Ther 2009; 8:1305-11. [PMID: 19417158 DOI: 10.1158/1535-7163.mct-09-0039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphoinositide-specific phospholipase Cγ1 (PLCγ1) is activated downstream of many receptor tyrosine kinases to promote cell motility. Inhibition of this protein is being explored as a therapeutic strategy for blocking cancer cell invasion and metastasis. The clinical development of such cytostatic therapies requires the implementation of pharmacodynamic biomarkers of target modulation. In this study, we use magnetic resonance spectroscopy to explore metabolic biomarkers of PLCγ1 down-regulation in PC3LN3 prostate cancer cells. We show that inhibition of PLCγ1 via an inducible short hairpin RNA system causes a reduction in phosphocholine levels by up to 50% relative to the control as detected by (1)H and (31)P magnetic resonance spectroscopy analyses. This correlated with a rounded-up morphology and reduced cell migration. Interestingly, the fall in phosphocholine levels was not recorded in cells with constitutive PLCγ1 knockdown where the rounded-up phenotype was no longer apparent. This study reveals alterations in metabolism that accompany the cellular effects of PLCγ1 knockdown and highlights phosphocholine as a potential pharmacodynamic biomarker for monitoring the action of inhibitors targeting PLCγ1 signaling.
Collapse
Affiliation(s)
- Mounia Beloueche-Babari
- Cancer Research UK Clinical Magnetic Resonance Research Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom.
| | | | | | | | | | | |
Collapse
|
268
|
Bauer A, Schumann A, Gilbert M, Wilhelm C, Hengstler JG, Schiller J, Fuchs B. Evaluation of carbon tetrachloride-induced stress on rat hepatocytes by 31P NMR and MALDI-TOF mass spectrometry: lysophosphatidylcholine generation from unsaturated phosphatidylcholines. Chem Phys Lipids 2009; 159:21-9. [DOI: 10.1016/j.chemphyslip.2009.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/09/2009] [Accepted: 02/13/2009] [Indexed: 01/11/2023]
|
269
|
Gabellieri C, Beloueche-Babari M, Jamin Y, Payne GS, Leach MO, Eykyn TR. Modulation of choline kinase activity in human cancer cells observed by dynamic 31P NMR. NMR IN BIOMEDICINE 2009; 22:456-461. [PMID: 19156696 DOI: 10.1002/nbm.1361] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Choline metabolites are widely studied in cancer research as biomarkers of malignancy and as indicators of therapeutic response. However, endogenous phosphocholine levels are determined by a number of processes that confound the interpretation of these measurements, including membrane transport rates and a series of enzyme catalysed reactions in the Kennedy pathway. Employing a dynamic (31)P NMR assay that is specific to choline kinase (ChoK) we have measured the rates of this enzyme reaction in cell lysates of MDA-MB-231 breast, PC-3 prostate and HeLa cervical cancer cells and in solutions of purified human ChoK. The rates are sensitive to inhibition by hemicholinium-3 (HC-3), a competitive ChoK inhibitor, and to N-[2-bromocinnamyl(amino)ethyl]-5-isoquinolinesulphonamide (H-89), an agent commercialized as a specific cyclic-AMP-dependent protein kinase A (PKA) inhibitor.
Collapse
Affiliation(s)
- Cristina Gabellieri
- Cancer Research UK Clinical Magnetic Resonance Research Group, The Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | | | | | | | | | | |
Collapse
|
270
|
Ravizzini G, Turkbey B, Kurdziel K, Choyke PL. New horizons in prostate cancer imaging. Eur J Radiol 2009; 70:212-26. [PMID: 18993004 PMCID: PMC2702141 DOI: 10.1016/j.ejrad.2008.09.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 01/08/2023]
Abstract
Prostate cancer is the most common non-cutaneous malignancy among American men. Imaging has recently become more important in detection of prostate cancer since screening techniques such as digital rectal examination (DRE), prostate specific and transrectal ultrasound guided biopsy have considerable limitations in diagnosis and localization of prostate cancer. In this manuscript, we reviewed conventional, functional and targeted imaging modalities used in diagnosis and local staging of prostate cancer with exquisite images.
Collapse
Affiliation(s)
- Gregory Ravizzini
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD 20892-1088, USA
| | | | | | | |
Collapse
|
271
|
Vanpouille C, Le Jeune N, Kryza D, Clotagatide A, Janier M, Dubois F, Perek N. Influence of multidrug resistance on (18)F-FCH cellular uptake in a glioblastoma model. Eur J Nucl Med Mol Imaging 2009; 36:1256-64. [PMID: 19300998 DOI: 10.1007/s00259-009-1101-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
PURPOSE Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like (18)F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and (18)F-FCH tracer uptake. METHODS We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. RESULTS As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89 +/- 0.14; U87MG-CIS: 1.27 +/- 0.18; U87MG-DOX: 1.33 +/- 0.13) in line with accelerated choline metabolism and aggressive phenotype. CONCLUSIONS FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance.
Collapse
Affiliation(s)
- Claire Vanpouille
- Université de Lyon, Université Jean Monnet-Cancer Research Group IFRESIS 143, 42023, Saint-Etienne, France
| | | | | | | | | | | | | |
Collapse
|
272
|
Righi V, Durante C, Cocchi M, Calabrese C, Di Febo G, Lecce F, Pisi A, Tugnoli V, Mucci A, Schenetti L. Discrimination of Healthy and Neoplastic Human Colon Tissues by ex Vivo HR-MAS NMR Spectroscopy and Chemometric Analyses. J Proteome Res 2009; 8:1859-69. [DOI: 10.1021/pr801094b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Valeria Righi
- Dipartimento di Biochimica “G. Moruzzi”, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy, Dipartimento di Chimica, Università di Modena e Reggio Emilia, Via G. Campi 183, 41100 Modena, Italy, Dipartimento di Medicina Interna e Gastroenterologia, Università di Bologna, Via G. Massarenti 9, 40138, Bologna, Italy, Dipartimento Emergenza/Urgenza, Chirurgia Generale e dei Trapianti, Università di Bologna, Via G. Massarenti 9, 40138 Bologna, Italy, and DiSTA, Università di Bologna, Viale Fanin
| | - Caterina Durante
- Dipartimento di Biochimica “G. Moruzzi”, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy, Dipartimento di Chimica, Università di Modena e Reggio Emilia, Via G. Campi 183, 41100 Modena, Italy, Dipartimento di Medicina Interna e Gastroenterologia, Università di Bologna, Via G. Massarenti 9, 40138, Bologna, Italy, Dipartimento Emergenza/Urgenza, Chirurgia Generale e dei Trapianti, Università di Bologna, Via G. Massarenti 9, 40138 Bologna, Italy, and DiSTA, Università di Bologna, Viale Fanin
| | - Marina Cocchi
- Dipartimento di Biochimica “G. Moruzzi”, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy, Dipartimento di Chimica, Università di Modena e Reggio Emilia, Via G. Campi 183, 41100 Modena, Italy, Dipartimento di Medicina Interna e Gastroenterologia, Università di Bologna, Via G. Massarenti 9, 40138, Bologna, Italy, Dipartimento Emergenza/Urgenza, Chirurgia Generale e dei Trapianti, Università di Bologna, Via G. Massarenti 9, 40138 Bologna, Italy, and DiSTA, Università di Bologna, Viale Fanin
| | - Carlo Calabrese
- Dipartimento di Biochimica “G. Moruzzi”, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy, Dipartimento di Chimica, Università di Modena e Reggio Emilia, Via G. Campi 183, 41100 Modena, Italy, Dipartimento di Medicina Interna e Gastroenterologia, Università di Bologna, Via G. Massarenti 9, 40138, Bologna, Italy, Dipartimento Emergenza/Urgenza, Chirurgia Generale e dei Trapianti, Università di Bologna, Via G. Massarenti 9, 40138 Bologna, Italy, and DiSTA, Università di Bologna, Viale Fanin
| | - Giulio Di Febo
- Dipartimento di Biochimica “G. Moruzzi”, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy, Dipartimento di Chimica, Università di Modena e Reggio Emilia, Via G. Campi 183, 41100 Modena, Italy, Dipartimento di Medicina Interna e Gastroenterologia, Università di Bologna, Via G. Massarenti 9, 40138, Bologna, Italy, Dipartimento Emergenza/Urgenza, Chirurgia Generale e dei Trapianti, Università di Bologna, Via G. Massarenti 9, 40138 Bologna, Italy, and DiSTA, Università di Bologna, Viale Fanin
| | - Ferdinando Lecce
- Dipartimento di Biochimica “G. Moruzzi”, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy, Dipartimento di Chimica, Università di Modena e Reggio Emilia, Via G. Campi 183, 41100 Modena, Italy, Dipartimento di Medicina Interna e Gastroenterologia, Università di Bologna, Via G. Massarenti 9, 40138, Bologna, Italy, Dipartimento Emergenza/Urgenza, Chirurgia Generale e dei Trapianti, Università di Bologna, Via G. Massarenti 9, 40138 Bologna, Italy, and DiSTA, Università di Bologna, Viale Fanin
| | - Annamaria Pisi
- Dipartimento di Biochimica “G. Moruzzi”, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy, Dipartimento di Chimica, Università di Modena e Reggio Emilia, Via G. Campi 183, 41100 Modena, Italy, Dipartimento di Medicina Interna e Gastroenterologia, Università di Bologna, Via G. Massarenti 9, 40138, Bologna, Italy, Dipartimento Emergenza/Urgenza, Chirurgia Generale e dei Trapianti, Università di Bologna, Via G. Massarenti 9, 40138 Bologna, Italy, and DiSTA, Università di Bologna, Viale Fanin
| | - Vitaliano Tugnoli
- Dipartimento di Biochimica “G. Moruzzi”, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy, Dipartimento di Chimica, Università di Modena e Reggio Emilia, Via G. Campi 183, 41100 Modena, Italy, Dipartimento di Medicina Interna e Gastroenterologia, Università di Bologna, Via G. Massarenti 9, 40138, Bologna, Italy, Dipartimento Emergenza/Urgenza, Chirurgia Generale e dei Trapianti, Università di Bologna, Via G. Massarenti 9, 40138 Bologna, Italy, and DiSTA, Università di Bologna, Viale Fanin
| | - Adele Mucci
- Dipartimento di Biochimica “G. Moruzzi”, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy, Dipartimento di Chimica, Università di Modena e Reggio Emilia, Via G. Campi 183, 41100 Modena, Italy, Dipartimento di Medicina Interna e Gastroenterologia, Università di Bologna, Via G. Massarenti 9, 40138, Bologna, Italy, Dipartimento Emergenza/Urgenza, Chirurgia Generale e dei Trapianti, Università di Bologna, Via G. Massarenti 9, 40138 Bologna, Italy, and DiSTA, Università di Bologna, Viale Fanin
| | - Luisa Schenetti
- Dipartimento di Biochimica “G. Moruzzi”, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy, Dipartimento di Chimica, Università di Modena e Reggio Emilia, Via G. Campi 183, 41100 Modena, Italy, Dipartimento di Medicina Interna e Gastroenterologia, Università di Bologna, Via G. Massarenti 9, 40138, Bologna, Italy, Dipartimento Emergenza/Urgenza, Chirurgia Generale e dei Trapianti, Università di Bologna, Via G. Massarenti 9, 40138 Bologna, Italy, and DiSTA, Università di Bologna, Viale Fanin
| |
Collapse
|
273
|
Jordan KW, Nordenstam J, Lauwers GY, Rothenberger DA, Alavi K, Garwood M, Cheng LL. Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis Colon Rectum 2009; 52:520-5. [PMID: 19333056 PMCID: PMC2720561 DOI: 10.1007/dcr.0b013e31819c9a2c] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE This study was designed to test whether metabolic characterization of intact, unaltered human rectal adenocarcinoma specimens is possible using the high-resolution magic angle spinning proton (1H) magnetic resonance spectroscopy technique. METHODS The study included 23 specimens from five patients referred for ultrasonographic staging of suspected rectal cancer. Multiple biopsies of macroscopically malignant rectal tumors and benign rectal mucosa were obtained from each patient for a total of 14 malignant and 9 benign samples. Unaltered tissue samples were spectroscopically analyzed. Metabolic profiles were established from the spectroscopy data and correlated with histopathologic findings. RESULTS Metabolomic profiles represented by principle components of metabolites measured from spectra differentiated between malignant and benign samples and correlated with the volume percent of cancer (P = 0.0065 and P = 0.02, respectively) and benign epithelium (P = 0.0051 and P = 0.0255, respectively), and with volume percent of stroma, and inflammation. CONCLUSIONS Magnetic resonance spectroscopy of rectal biopsies has the ability to metabolically characterize samples and differentiate between pathological features of interest. Future studies should determine its utility in in vivo applications for non-invasive pathologic evaluations of suspicious rectal lesions.
Collapse
Affiliation(s)
- Kate W. Jordan
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Johan Nordenstam
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Gregory Y. Lauwers
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Karim Alavi
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Leo L. Cheng
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
274
|
Klomp DWJ, Wijnen JP, Scheenen TWJ, Heerschap A. Efficient 1H to 31P polarization transfer on a clinical 3T MR system. Magn Reson Med 2009; 60:1298-305. [PMID: 19030163 DOI: 10.1002/mrm.21733] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
31P MR spectroscopy (MRS) in the detection of phosphocholine (PC), glycerolphosphocholine (GPC), phosphorylelthanolamine (PE), and glycerolphosphoethanolamine (GPE) compounds has shown clinical potential at 1.5T for several human diseases. The use of (1)H to (31)P polarization transfer can improve the sensitivity using a refocused INEPT method with a potential enhancement of 2.4 (gamma(1H)/gamma(31P)). However, in this method the (31)P signals of PE, PC, GPE, and GPC are strongly attenuated (50% or more) due to J-coupling between (31)P and (1)H that have similar magnitudes for homonuclear J-coupling constants in those metabolites. A method to cancel the homonuclear J-coupling effects in polarization transfer experiments is to apply frequency-selective refocusing pulses, which becomes feasible at 3T due to the increased chemical shift dispersion as compared to 1.5T. In this study, full (1)H to (31)P polarization transfer was realized using chemical shift selective refocusing pulses at 3T. T(1) and T(2) values for (1)H and (31)P spins of PE, PC, GPE, and GPC were measured in the human brain. A more than 2-fold signal-to-noise ratio (SNR) improvement was obtained compared to an optimized direct (31)P MRS method. As shifted RF pulses were used, this method can be applied on a broadband clinical MR system with a single RF system.
Collapse
Affiliation(s)
- D W J Klomp
- Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
| | | | | | | |
Collapse
|
275
|
Wilson M, Davies NP, Brundler MA, McConville C, Grundy RG, Peet AC. High resolution magic angle spinning 1H NMR of childhood brain and nervous system tumours. Mol Cancer 2009; 8:6. [PMID: 19208232 PMCID: PMC2651110 DOI: 10.1186/1476-4598-8-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/10/2009] [Indexed: 11/10/2022] Open
Abstract
Background Brain and nervous system tumours are the most common solid cancers in children. Molecular characterisation of these tumours is important for providing novel biomarkers of disease and identifying molecular pathways which may provide putative targets for new therapies. 1H magic angle spinning NMR spectroscopy (1H HR-MAS) is a powerful tool for determining metabolite profiles from small pieces of intact tissue and could potentially provide important molecular information. Methods Forty tissue samples from 29 children with glial and primitive neuro-ectodermal tumours were analysed using HR-MAS (600 MHz Varian gHX nanoprobe). Tumour spectra were fitted to a library of individual metabolite spectra to provide metabolite values. These values were then used in a two tailed t-test and multi-variate analysis employing a principal component analysis and a linear discriminant analysis. Classification accuracy was estimated using a leave-one-out analysis and B632+ bootstrapping. Results Glial tumours had significantly (two tailed t-test p < 0.05) higher creatine and glutamine and lower taurine, phosphoethanolamine, phosphorylcholine and choline compared with primitive neuro-ectodermal tumours. Classification accuracy was 90%. Medulloblastomas (n = 9) had significantly (two tailed t-test p < 0.05) higher creatine, glutamine, phosphorylcholine, glycine and scyllo-inositol than neuroblastomas (n = 7), classification accuracy was 94%. Supratentorial primitive neuro-ectodermal tumours had metabolite profiles in keeping with other primitive neuro-ectodermal tumours whilst ependymomas (n = 2) had metabolite profiles intermediate between pilocytic astrocytomas (n = 10) and primitive neuro-ectodermal tumours. Conclusion HR-MAS identified key differences in the metabolite profiles of childhood brain and nervous system improving the molecular characterisation of these tumours. Further investigation of the underlying molecular pathways is required to assess their potential as targets for new agents.
Collapse
Affiliation(s)
- Martin Wilson
- Cancer Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
276
|
|
277
|
Haddadin IS, McIntosh A, Meisamy S, Corum C, Styczynski Snyder AL, Powell NJ, Nelson MT, Yee D, Garwood M, Bolan PJ. Metabolite quantification and high-field MRS in breast cancer. NMR IN BIOMEDICINE 2009; 22:65-76. [PMID: 17957820 PMCID: PMC2628417 DOI: 10.1002/nbm.1217] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In vivo 1H MRS is rapidly developing as a clinical tool for diagnosing and characterizing breast cancers. Many in vivo and in vitro experiments have demonstrated that alterations in concentrations of choline-containing metabolites are associated with malignant transformation. In recent years, considerable efforts have been made to evaluate the role of 1H MRS measurements of total choline-containing compounds in the management of patients with breast cancer. Current technological developments, including the use of high-field MR scanners and quantitative spectroscopic analysis methods, promise to increase the sensitivity and accuracy of breast MRS. This article reviews the literature describing in vivo MRS in breast cancer, with an emphasis on the development of high-field MR scanning and quantitative methods. Potential applications of these technologies for diagnosing suspicious lesions and monitoring response to chemotherapy are discussed.
Collapse
Affiliation(s)
- Ihab S. Haddadin
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Adeka McIntosh
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sina Meisamy
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Curt Corum
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Angela L. Styczynski Snyder
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Nathaniel J. Powell
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael T. Nelson
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Douglas Yee
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Patrick J. Bolan
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
278
|
Mountford C, Ramadan S, Stanwell P, Malycha P. Proton MRS of the breast in the clinical setting. NMR IN BIOMEDICINE 2009; 22:54-64. [PMID: 19086012 DOI: 10.1002/nbm.1301] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Information for determining whether a primary breast lesion is invasive and its receptor status and grade can be obtained before surgery by performing proton MRS on a fine-needle aspiration biopsy (FNAB) specimen and analyzing the MRS information by a pattern recognition method. Two-dimensional MRS, on either specimens or cells, allows the unambiguous assignment of most resonances. When correlated with the spectral regions selected by the pattern recognition method, there are strong indications for the biochemical markers responsible for prognostic information of invasive capacity and metastatic spread. Spectral assignments and biological correlations can be made using cell models. In vivo MRS can distinguish invasive from benign lesions. This pathological distinction can be made from the presence of resonances at discrete frequencies. To achieve this level of spectral resolution and signal-to-noise ratio, there are stringent requirements when acquiring and processing the data. The challenge now is to implement two-dimensional MRS in vivo. Until this is realized, the combination of in vivo MR, for diagnosis and spatial location, and MRS, for image-guided biopsy to provide information on tumor spread, promises to provide a higher level of preoperative diagnosis than previously achieved.
Collapse
Affiliation(s)
- Carolyn Mountford
- Centre for Clinical Spectroscopy, Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
279
|
Glunde K, Jacobs MA, Pathak AP, Artemov D, Bhujwalla ZM. Molecular and functional imaging of breast cancer. NMR IN BIOMEDICINE 2009; 22:92-103. [PMID: 18792419 DOI: 10.1002/nbm.1269] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Despite several major advances in breast cancer diagnosis and treatment, the American Cancer Society has estimated that in the US alone 43300 women and 400 men will die from breast cancer in 2007. Breast cancer typically is a multi-focal, multi-faceted disease, with the major cause of mortality being complications due to metastasis. Whereas a decade ago genetic alterations were the primary focus in cancer research, it is now apparent that the physiological tumor microenvironment, interactions between cancer cells and stromal cells such as endothelial cells, fibroblasts and macrophages, the extracellular matrix, and a multitude of secreted factors and cytokines influence progression, aggressiveness, and response of the disease to treatment. Prevention, early diagnosis, and treatment are the three broad challenges for MR molecular and functional imaging in reducing mortality from this disease. Multi-parametric molecular and functional MRI provides unprecedented opportunities for identifying novel targets for imaging and therapy at the bench, as well as for accurate diagnosis and monitoring response to therapy at the bedside. Here we provide an overview of the current status of molecular and functional MRI of breast cancer, outlining some key developments, as well as identifying some of the important challenges facing this field in the future.
Collapse
Affiliation(s)
- K Glunde
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
280
|
Zhu XH, Du F, Zhang N, Zhang Y, Lei H, Zhang X, Qiao H, Ugurbil K, Chen W. Advanced In Vivo Heteronuclear MRS Approaches for Studying Brain Bioenergetics Driven by Mitochondria. Methods Mol Biol 2009; 489:317-57. [PMID: 18839099 PMCID: PMC5348251 DOI: 10.1007/978-1-59745-543-5_15] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The greatest merit of in vivo magnetic resonance spectroscopy (MRS) methodology used in biomedical research is its ability for noninvasively measuring a variety of metabolites inside a living organ. It, therefore, provides an invaluable tool for determining metabolites, chemical reaction rates and bioenergetics, as well as their dynamic changes in the human and animal. The capability of in vivo MRS is further enhanced at higher magnetic fields because of significant gain in detection sensitivity and improvement in the spectral resolution. Recent progress of in vivo MRS technology has further demonstrated its great potential in many biomedical research areas, particularly in brain research. Here, we provide a review of new developments for in vivo heteronuclear 31P and 17O MRS approaches and their applications in determining the cerebral metabolic rates of oxygen and ATP inside the mitochondria, in both animal and human brains.
Collapse
Affiliation(s)
- Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, School of Medicine, Minneapolis, MN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Baykal AT, Jain MR, Li H. Aberrant regulation of choline metabolism by mitochondrial electron transport system inhibition in neuroblastoma cells. Metabolomics 2008; 4:347-356. [PMID: 19774105 PMCID: PMC2747765 DOI: 10.1007/s11306-008-0125-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anomalous choline metabolic patterns have been consistently observed in vivo using Magnetic Resonance Spectroscopy (MRS) analysis of patients with neurodegenerative diseases and tissues from cancer patient. It remains unclear; however, what signaling events may have triggered these choline metabolic aberrancies. This study investigates how changes in choline and phospholipid metabolism are regulated by distinct changes in the mitochondrial electron transport system (ETS). We used specific inhibitors to down regulate the function of individual protein complexes in the ETS of SH-SY5Y neuroblastoma cells. Interestingly, we found that dramatic elevation in the levels of phosphatidylcholine metabolites could be induced by the inhibition of individual ETS complexes, similar to in vivo observations. Such interferences produced divergent metabolic patterns, which were distinguishable via principal component analysis of the cellular metabolomes. Functional impairments in ETS components have been reported in several central nervous system (CNS) diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD); however, it remains largely unknown how the suppression of individual ETS complex function could lead to specific dysfunction in different cell types, resulting in distinct disease phenotypes. Our results suggest that the inhibition of each of the five ETS complexes might differentially regulate phospholipase activities within choline metabolic pathways in neuronal cells, which could contribute to the overall understanding of mitochondrial diseases.
Collapse
|
282
|
High resolution magic angle spinning NMR spectroscopy for metabolic assessment of cancer presence and Gleason score in human prostate needle biopsies. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2008; 21:435-42. [PMID: 19031091 DOI: 10.1007/s10334-008-0156-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 11/05/2008] [Accepted: 11/05/2008] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Histopathology of prostate needle biopsies (PNBs) is an important part in the diagnosis, prognosis and treatment evaluation of prostate cancer. The determination of metabolite levels in the same biopsies may have additional clinical value. Here, we demonstrate the use of non-destructive high resolution magic angle spinning (HRMAS) proton NMR Spectroscopy for the assessment of metabolic profiles of prostate tissue in PNBs as commonly obtained in standard clinical practice. MATERIALS AND METHODS PNBs that were taken routinely from 48 patients suspected of having prostate cancer were subjected to HRMAS proton NMR spectroscopy. Subsequent histopathology of the same biopsies classified the tissue either as cancer (n = 10) or benign (n = 30). RESULTS Some practical aspects of this assessment were evaluated, such as typical spectral contamination caused by the PNB procedure. Significant metabolic differences were found between malignant and benign tissue using a small set of ratio's involving signals of choline compounds, citrate and lactate. Moreover, significant correlations were observed between choline, total choline, and citrate over creatine signal ratios and the Gleason scores of tumor in PNBs and of tumor in the whole prostate. CONCLUSION This preliminary study indicates that HRMAS NMR of routinely obtained PNBs can provide detailed metabolic information of intact prostate tissue with clinical relevance.
Collapse
|
283
|
Apolo AB, Pandit-Taskar N, Morris MJ. Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med 2008; 49:2031-41. [PMID: 18997047 DOI: 10.2967/jnumed.108.050658] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are presently no accurate methods of imaging prostate cancer metastases to bone. An unprecedented number of novel imaging agents, based on the biology of the disease, are now available for testing. We reviewed contemporary molecular imaging modalities that have been tested in humans with metastatic prostate cancer, with consideration of the studies' adherence to current prostate cancer clinical trial designs. Articles from the years 2002 to 2008 on PET using (18)F-FDG, (11)C-choline, (18)F-choline, (18)F-flouride, (11)C-acetate, (11)C-methionine, and (18)F-fluoro-5alpha-dihydrotestosterone in patients with metastatic prostate cancer were reviewed. Although these studies are encouraging, most focus on the rising population with prostate-specific antigen, and many involve small numbers of patients and do not adhere to consensus criteria for clinical trial designs in prostate cancer. Hence, although many promising agents are available for testing, such studies would benefit from closer collaboration between those in the fields of medical oncology and nuclear medicine.
Collapse
Affiliation(s)
- Andrea B Apolo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | |
Collapse
|
284
|
Swanson MG, Keshari KR, Tabatabai ZL, Simko JP, Shinohara K, Carroll PR, Zektzer AS, Kurhanewicz J. Quantification of choline- and ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy. Magn Reson Med 2008; 60:33-40. [PMID: 18581409 DOI: 10.1002/mrm.21647] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A fast and quantitative 2D high-resolution magic angle spinning (HR-MAS) total correlation spectroscopy (TOCSY) experiment was developed to resolve and quantify the choline- and ethanolamine-containing metabolites in human prostate tissues in approximately 1 hr prior to pathologic analysis. At a 40-ms mixing time, magnetization transfer efficiency constants were empirically determined in solution and used to calculate metabolite concentrations in tissue. Phosphocholine (PC) was observed in 11/15 (73%) cancer tissues but only 6/32 (19%) benign tissues. PC was significantly higher (0.39 +/- 0.40 mmol/kg vs. 0.02 +/- 0.07 mmol/kg, z = 3.5), while ethanolamine (Eth) was significantly lower in cancer versus benign prostate tissues (1.0 +/- 0.8 mmol/kg vs. 2.3 +/- 1.9 mmol/kg, z = 3.3). Glycerophosphocholine (GPC) (0.57 +/- 0.87 mmol/kg vs. 0.29 +/- 0.26 mmol/kg, z = 1.2), phosphoethanolamine (PE) (4.4 +/- 2.2 mmol/kg vs. 3.4 +/- 2.6 mmol/kg, z = 1.4), and glycerophosphoethanolamine (GPE) (0.54 +/- 0.82 mmol/kg vs. 0.15 +/- 0.15 mmol/kg, z = 1.8) were higher in cancer versus benign prostate tissues. The ratios of PC/GPC (3.5 +/- 4.5 vs. 0.32 +/- 1.4, z = 2.6), PC/PE (0.08 +/- 0.08 vs. 0.01 +/- 0.03, z = 3.5), PE/Eth (16 +/- 22 vs. 2.2 +/- 2.0, z = 2.4), and GPE/Eth (0.41 +/- 0.51 vs. 0.06 +/- 0.06, z = 2.6) were also significantly higher in cancer versus benign tissues. All samples were pathologically interpretable following HR-MAS analysis; however, degradation experiments showed that PC, GPC, PE, and GPE decreased 7.7 +/- 2.2%, while Cho+mI and Eth increased 18% in 1 hr at 1 degrees C and a 2250 Hz spin rate.
Collapse
Affiliation(s)
- Mark G Swanson
- Department of Radiology, University of California-San Francisco, 1700 4th Street, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | |
Collapse
|
285
|
Ross J, Najjar AM, Sankaranarayanapillai M, Tong WP, Kaluarachchi K, Ronen SM. Fatty acid synthase inhibition results in a magnetic resonance-detectable drop in phosphocholine. Mol Cancer Ther 2008; 7:2556-65. [PMID: 18723500 DOI: 10.1158/1535-7163.mct-08-0015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expression of fatty acid synthase (FASN), the key enzyme in de novo synthesis of long-chain fatty acids, is normally low but increases in cancer. Consequently, FASN is a novel target for cancer therapy. However, because FASN inhibitors can lead to tumor stasis rather than shrinkage, noninvasive methods for assessing FASN inhibition are needed. To this end, we combined (1)H, (31)P, and (13)C magnetic resonance spectroscopy (MRS) (a) to monitor the metabolic consequences of FASN inhibition and (b) to identify MRS-detectable metabolic biomarkers of response. Treatment of PC-3 cells with the FASN inhibitor Orlistat for up to 48 h resulted in inhibition of FASN activity by 70%, correlating with 74% inhibition of fatty acid synthesis. Furthermore, we have determined that FASN inhibition results not only in lower phosphatidylcholine levels but also in a 59% drop in the phospholipid precursor phosphocholine (PCho). This drop resulted from inhibition in PCho synthesis as a result of a reduction in the cellular activity of its synthetic enzyme choline kinase. The drop in PCho levels following FASN inhibition was confirmed in SKOV-3 ovarian cancer cells treated with Orlistat and in MCF-7 breast cancer cells treated with Orlistat as well as cerulenin. Combining data from all treated cells, the drop in PCho significantly correlated with the drop in de novo synthesized fatty acid levels, identifying PCho as a potential noninvasive MRS-detectable biomarker of FASN inhibition in vivo.
Collapse
Affiliation(s)
- James Ross
- Department of Radiology, University of California-San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
286
|
Calabrese C, Pisi A, Di Febo G, Liguori G, Filippini G, Cervellera M, Righi V, Lucchi P, Mucci A, Schenetti L, Tonini V, Tosi MR, Tugnoli V. Biochemical alterations from normal mucosa to gastric cancer by ex vivo magnetic resonance spectroscopy. Cancer Epidemiol Biomarkers Prev 2008; 17:1386-95. [PMID: 18559553 DOI: 10.1158/1055-9965.epi-07-2676] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS The metabolic profile and morphologic aspects of normal and pathologic human gastric mucosa were studied. The aim of the present research was the application of ex vivo high-resolution magic angle spinning magnetic resonance spectroscopy (HR-MAS MRS) to the human gastric tissue to get information on the molecular steps involved in gastric carcinogenesis and the identification of biochemical markers useful for the development of in vivo MRS methodologies to diagnose gastric pathologies in clinical situations. METHODS Twelve normal subjects, five with autoimmune atrophic gastritis, five with Helicobacter pylori infection, and five with adenocarcinoma were examined. Ten biopsies were taken during endoscopy from each patient. Specimens from carcinoma were also obtained during gastrectomy. Of the 10 biopsies, 4 were used for histologic evaluation, 4 were fixed in glutaraldehyde and processed for transmission and scanning electron microscopy, and 2 were immersed in liquid nitrogen and stored at -85 degrees C for monodimensional and bidimensional ex vivo HR-MAS MRS analysis. RESULTS Ex vivo HR-MAS MRS identified glycine, alanine, free choline, and triglycerides as possible molecular markers related to the human gastric mucosa differentiation toward preneoplastic and neoplastic conditions. Ultrastructural studies of autoimmune atrophic gastritis and gastric adenocarcinoma revealed lipid accumulations intracellularly and extracellularly associated with a severe prenecrotic hypoxia and mitochondria degeneration. CONCLUSIONS This is the first report of synergic applications of ex vivo HR-MAS MRS and electron microscopy in studying the human gastric mucosa differentiation. This research provides useful information about some molecular steps involved in gastric carcinogenesis. The biochemical data obtained on gastric pathologic tissue could represent the basis for clinical applications of in vivo MRS.
Collapse
Affiliation(s)
- Carlo Calabrese
- Dipartimento di Medicina Interna e Gastroenterologia, Università di Bologna, Via G. Massarenti 9, 40138 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Thorsen F, Jirak D, Wang J, Sykova E, Bjerkvig R, Enger PØ, van der Kogel A, Hajek M. Two distinct tumor phenotypes isolated from glioblastomas show different MRS characteristics. NMR IN BIOMEDICINE 2008; 21:830-838. [PMID: 18613001 DOI: 10.1002/nbm.1263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We have developed a human brain tumor model in immunodeficient rats that gradually changes its phenotype by serial passages in vivo, from a highly infiltrative, non-angiogenic one with numerous stem cell markers [low-generation (LG) tumor] to a more typical glioblastoma one with extensive angiogenesis and necrosis [high-generation (HG) tumor]. In this study we determined the metabolic properties of these two phenotypes, using (1)H MRS. The LG tumors showed an intact blood-brain barrier and normal vascular morphology, as shown by MRI and Hoechst staining. In contrast, the HG tumors exhibited vascular leakage and necrosis. The animals with HG tumor had raised concentrations of choline and myo-inositol, and decreased concentrations of glutamate and N-acetylaspartate. In the LG tumor group, similar changes in metabolic concentrations were detected, although the alterations were more pronounced. The LG tumors also had higher concentrations of choline, taurine, and lactate. Subdividing the LG and HG tumors into large and small tumors revealed a significant increase in choline and decrease in glutamate as the LG tumors increased in size. Our results show that metabolic profiles produced by (1)H MRS can be used to distinguish between two distinct glioblastoma phenotypes. More pronounced anaerobic metabolism was present in the LG stem-cell-like tumors, suggesting a more malignant phenotype.
Collapse
Affiliation(s)
- Frits Thorsen
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Spadaro F, Ramoni C, Mezzanzanica D, Miotti S, Alberti P, Cecchetti S, Iorio E, Dolo V, Canevari S, Podo F. Phosphatidylcholine-Specific Phospholipase C Activation in Epithelial Ovarian Cancer Cells. Cancer Res 2008; 68:6541-9. [DOI: 10.1158/0008-5472.can-07-6763] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
289
|
Lee SC, Huang MQ, Nelson DS, Pickup S, Wehrli S, Adegbola O, Poptani H, Delikatny EJ, Glickson JD. In vivo MRS markers of response to CHOP chemotherapy in the WSU-DLCL2 human diffuse large B-cell lymphoma xenograft. NMR IN BIOMEDICINE 2008; 21:723-733. [PMID: 18384181 DOI: 10.1002/nbm.1250] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To identify 1H-MRS molecular biomarkers of early clinical therapeutic response in non-Hodgkin's lymphoma, an in vivo longitudinal study was performed on human non-Hodgkin's diffuse large B-cell lymphoma xenografts (WSU-DLCL2) grown in the flanks of female SCID mice. 31P-MRS measurements, which have been demonstrated to be prognostic clinical indices of response (Arias-Mendoza et al. Acad. Radiol. 2004; 11: 368-376) but which provide lower spatial resolution, were included for comparison. The animals received CHOP (cyclophosphamide, hydroxydoxorubicin, oncovin and prednisone) chemotherapy for three 1-week cycles, resulting in stable disease based on tumor volume. Localization of total choline and phosphorus metabolites in vivo was achieved with stimulated echo acquisition mode and image selected in vivo spectroscopy sequences, respectively. Significant decreases in lactate were detected by the selective multiple quantum coherence spectral editing technique after the first cycle of CHOP, whereas total choline and the phosphomonoester/nucleoside triphosphate ratio did not change until the third cycle. Ex vivo extract MRS of tumors corroborated the in vivo results. Histological staining with antibodies to Ki67 revealed a decrease in proliferation rate in CHOP-treated tumors that coincided with the decrease in lactate. This study demonstrates the utility of lactate as an early proliferation-sensitive indicator of therapeutic response in a mouse model of non-Hodgkin's lymphoma and serves as a basis for future clinical implementation of these methods.
Collapse
Affiliation(s)
- Seung-Cheol Lee
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, and NMR Core Facility, Children's Hospital of Philadelphia, Philadelphia, PA 19104-4011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Hajek M, Dezortova M. Introduction to clinical in vivo MR spectroscopy. Eur J Radiol 2008; 67:185-193. [DOI: 10.1016/j.ejrad.2008.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 11/29/2022]
|
291
|
Schilling D, Schlemmer HP, Wagner PH, Böttcher P, Merseburger AS, Aschoff P, Bares R, Pfannenberg C, Ganswindt U, Corvin S, Stenzl A. Histological verification of11C-choline-positron emission/computed tomography-positive lymph nodes in patients with biochemical failure after treatment for localized prostate cancer. BJU Int 2008; 102:446-51. [PMID: 18410442 DOI: 10.1111/j.1464-410x.2008.07592.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David Schilling
- Department of Radiology, University Hospital Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Yamamoto Y, Nishiyama Y, Kameyama R, Okano K, Kashiwagi H, Deguchi A, Kaji M, Ohkawa M. Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18F-FDG PET. J Nucl Med 2008; 49:1245-8. [PMID: 18632827 DOI: 10.2967/jnumed.108.052639] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The purpose of this study was to retrospectively investigate the feasibility of 11C-choline PET, compared with 18F-FDG PET, for the detection of hepatocellular carcinoma (HCC). METHODS A total of 16 HCC lesions in 12 patients were examined with both 11C-choline PET and 18F-FDG PET. Tumor lesions were identified as areas of focally increased uptake, exceeding that of surrounding noncancerous liver tissue. For semiquantitative analysis, the tumor-to-liver (T/L) ratio was calculated by dividing the maximal standardized uptake value (SUV) in HCC lesions by the mean SUV in noncancerous liver tissue. RESULTS 11C-choline PET showed a slightly higher detection rate than did 18F-FDG PET for detection of HCC (63% vs. 50%, respectively), although this difference was not statistically significant. 11C-choline PET had a better detection rate for moderately differentiated HCC lesions but not for those poorly differentiated (75% vs. 25%, respectively). In contrast, 18F-FDG PET exhibited the opposite behavior, with corresponding detection rates of 42% and 75%, respectively. The mean 11C-choline SUV and T/L ratio in moderately differentiated HCC lesions were higher than those in poorly differentiated HCC lesions. In contrast, the mean 18F-FDG SUV and T/L ratio in poorly differentiated HCC were higher than those in moderately differentiated HCC. These differences, however, were also not statistically significant. CONCLUSION 11C-choline PET had a better detection rate for moderately differentiated HCC lesions but not for poorly differentiated HCC lesions, whereas 18F-FDG PET produced the opposite result. 11C-choline is a potential tracer to complement 18F-FDG in detection of HCC lesions.
Collapse
Affiliation(s)
- Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
293
|
Zhu L, Johnson C, Bakovic M. Stimulation of the human CTP:phosphoethanolamine cytidylyltransferase gene by early growth response protein 1. J Lipid Res 2008; 49:2197-211. [PMID: 18583706 DOI: 10.1194/jlr.m800259-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Change in phosphoethanolamine pool size in tumor tissues is an important indicator of tumor prognosis and drug therapy efficacy. Phosphoethanolamine is the substrate of the regulatory enzyme CTP:phosphoethanolamine cytidylyltransferase (ECT) in the de novo biosynthesis of phosphatidylethanolamine (PE). Metabolic labeling with [14C]ethanolamine revealed a reduced ECT activity in MCF-7 breast cancer cells, which led to an accumulation of phosphoethanolamine and a decrease in PE synthesis in comparison with MCF-10A mammary epithelial cells. The enhanced ECT activity in MCF-10A cells was due to significantly elevated CTP:phosphoethanolamine cytidylyltransferase gene (PCYT2) expression, at the level of promoter activity, mRNA, and protein content. The early growth response protein 1 (EGR1) could account for most of the elevated ECT activity in MCF-10A cells relative to MCF-7 cells, as evidenced by promoter-luciferase reporter assays, gel-shift analyses, and by alterations in the EGR1 gene expression. In MCF-7 cells, EGR1 is present at lower levels and the basal PCYT2 promoter activity is maintained by proximal CAAT and GC regions and by elevated nuclear NFkappaB activity. Together, these data demonstrate that EGR1 is an important transcriptional stimulator of the human PCYT2 and that conditions that modify EGR1 also affect the function of ECT and consequently PE synthesis.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
294
|
Szachowicz-Petelska B, Dobrzyńska I, Skrzydlewska E, Figaszewski ZA. Changes in Phospholipid Composition Studied by HPLC and Electric Properties of Liver Cell Membrane of Ethanol-Poisoned Rats. Toxicol Mech Methods 2008; 18:525-530. [PMID: 19696939 PMCID: PMC2728575 DOI: 10.1080/15376510701624035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 08/03/2007] [Indexed: 11/04/2022]
Abstract
Ethanol introduced into the organism undergoes rapid metabolism to acetaldehyde and then to acetic acid. The process is accompanied by formation of reactive oxygen species (ROS), which damage mainly lipids of membrane cells. The effects of ROS can be neutralized by administering preparations with antioxidant properties. The natural preparations of this kind are teas. This paper reports data on the effect of green and black tea on the surface charge density, content of phospholipids, and level of lipid peroxidation products of liver cell membrane of rats chronically intoxicated with ethanol. Surface charge density of liver cells was measured by the electrophoresis method, whereas qualitative phospholipid composition was determined by the HPLC method. Ethanol administration caused an increase in the amount of all phospholipids, in surface charge density as well as in lipid peroxidation products. Ingestion of green and black tea with ethanol partially prevented these ethanol-induced changes, and the action of green tea was stronger than that of black tea.
Collapse
|
295
|
Nelson MT, Everson LI, Garwood M, Emory T, Bolan PJ. MR Spectroscopy in the diagnosis and treatment of breast cancer. SEMINARS IN BREAST DISEASE 2008; 11:100-105. [PMID: 21490877 PMCID: PMC3073311 DOI: 10.1053/j.sembd.2008.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In vivo proton magnetic resonance spectroscopy ((1)H MRS) is rapidly becoming useful as a clinical tool for diagnosing and characterizing breast cancers. Alterations of the levels of choline-containing metabolites are associated with malignancy. High-field MR scanners at 1.5 T, 3 T, 4 T, and 7 T have been used to evaluate the role of (1)H MRS measurements of total choline containing compounds in patients with breast cancer. This article will review clinical use of MRI/MRS in vivo. Newer developments in high field MR scanning and quantitative MRS may help breast imagers improve sensitivity and specificity in diagnosing and treating breast cancer.
Collapse
Affiliation(s)
- Michael T Nelson
- University of Minnesota Medical School, Department of Radiology, Center for Magnetic Resonance Imaging, Minneapolis, MN 55455
| | | | | | | | | |
Collapse
|
296
|
Fischbach F, Schirmer T, Thormann M, Freund T, Ricke J, Bruhn H. Quantitative proton magnetic resonance spectroscopy of the normal liver and malignant hepatic lesions at 3.0 Tesla. Eur Radiol 2008; 18:2549-58. [PMID: 18491103 DOI: 10.1007/s00330-008-1040-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 03/05/2008] [Accepted: 03/30/2008] [Indexed: 12/20/2022]
Abstract
This comparative study of tumour patients and volunteers aimed at differentiating liver parenchyma from neoplastic lesions by using localised (1)H MRS at 3.0 T as an adjunct to MRI. In total 186 single-voxel proton spectra of the liver were acquired at 3.0 T using the body transmit receive coil. Consecutive stacks of breath-hold spectra were acquired in the PRESS technique at a short echo time of 35 ms and a repetition time of 2,000 ms. Processing of the spectra included spectral alignment with the software package SAGE and quantitative processing with LCModel. The resulting metabolite concentrations were presented in arbitrary units relative to the internal water. In general, the spectra showed four main groups of resonances originating from the methyl protons (0.8-1.1 ppm) and methylene protons of the lipids (1.1-1.5 ppm; 2.0-2.2 ppm) as well as the methyl protons of choline-containing compounds (CCC) at 3.2 ppm. Overall, the CCC and lipid values in malignant liver tumours showed no significant differences to liver parenchyma. On average, total lipid measurements in normal liver parenchyma increased with age, while those of the CCC did not show pertinent changes. Significant differences between the contents of CCC in malignant liver tumours and normal liver parenchyma were not observed, because in patients and volunteers normal liver tissue showed a large variability in the content of CCC.
Collapse
Affiliation(s)
- F Fischbach
- Department of Radiology, Otto von Guericke University, Medical School, Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
297
|
Seierstad T, Røe K, Sitter B, Halgunset J, Flatmark K, Ree AH, Olsen DR, Gribbestad IS, Bathen TF. Principal component analysis for the comparison of metabolic profiles from human rectal cancer biopsies and colorectal xenografts using high-resolution magic angle spinning 1H magnetic resonance spectroscopy. Mol Cancer 2008; 7:33. [PMID: 18439252 PMCID: PMC2377266 DOI: 10.1186/1476-4598-7-33] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 04/25/2008] [Indexed: 11/21/2022] Open
Abstract
Background This study was conducted in order to elucidate metabolic differences between human rectal cancer biopsies and colorectal HT29, HCT116 and SW620 xenografts by using high-resolution magnetic angle spinning (MAS) magnetic resonance spectroscopy (MRS) and for determination of the most appropriate human rectal xenograft model for preclinical MR spectroscopy studies. A further aim was to investigate metabolic changes following irradiation of HT29 xenografts. Methods HR MAS MRS of tissue samples from xenografts and rectal biopsies were obtained with a Bruker Avance DRX600 spectrometer and analyzed using principal component analysis (PCA) and partial least square (PLS) regression analysis. Results and conclusion HR MAS MRS enabled assignment of 27 metabolites. Score plots from PCA of spin-echo and single-pulse spectra revealed separate clusters of the different xenografts and rectal biopsies, reflecting underlying differences in metabolite composition. The loading profile indicated that clustering was mainly based on differences in relative amounts of lipids, lactate and choline-containing compounds, with HT29 exhibiting the metabolic profile most similar to human rectal cancers tissue. Due to high necrotic fractions in the HT29 xenografts, radiation-induced changes were not detected when comparing spectra from untreated and irradiated HT29 xenografts. However, PLS calibration relating spectral data to the necrotic fraction revealed a significant correlation, indicating that necrotic fraction can be assessed from the MR spectra.
Collapse
Affiliation(s)
- Therese Seierstad
- Department of Medical Physics, Rikshospitalet-Radiumhospitalet Medical Center, 0310 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Rainaldi G, Romano R, Indovina P, Ferrante A, Motta A, Indovina PL, Santini MT. Metabolomics using 1H-NMR of apoptosis and Necrosis in HL60 leukemia cells: differences between the two types of cell death and independence from the stimulus of apoptosis used. Radiat Res 2008; 169:170-80. [PMID: 18220461 DOI: 10.1667/rr0958.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 08/02/2007] [Indexed: 11/03/2022]
Abstract
High-resolution proton nuclear magnetic resonance ((1)H-NMR) spectroscopy was used to examine and compare the metabolic variations that occur in cells of the HL60 promyelocytic leukemia cell line after induction of apoptosis by ionizing radiation and the antineoplastic drug doxorubicin as well as after induction of necrosis by heating. Apoptosis and necrosis were confirmed by fluorescence microscopy using the chromatin stain Hoechst 33258, agarose gel electrophoresis of DNA, and determination of caspase 3 enzymatic activity. The 1H-NMR experiments revealed that the spectra of both samples containing apoptotic cells were characterized by the same trend of several important metabolites. Specifically, an increase in CH2 and CH3 mobile lipids, principally of CH2, decreases in glutamine and glutamate, choline-containing metabolites, taurine and reduced glutathione were observed. By contrast, the sample containing necrotic cells presented a completely different profile of 1H-NMR metabolites since it was characterized by a significant increase in all the metabolites examined, with the exception of CH2 mobile lipids, which remain unchanged, and reduced glutathione, which decreased. The results suggest that variations in 1H-NMR metabolites are specific to apoptosis independent of the physical or chemical nature of the stimulus used to induce this mode of cell death, while cells dying from necrosis are characterized by a completely different behavior of the same metabolites.
Collapse
Affiliation(s)
- Gabriella Rainaldi
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Instituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
299
|
Gabellieri C, Reynolds S, Lavie A, Payne GS, Leach MO, Eykyn TR. Therapeutic target metabolism observed using hyperpolarized 15N choline. J Am Chem Soc 2008; 130:4598-9. [PMID: 18345678 DOI: 10.1021/ja8001293] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Choline is a precursor of cellular phospholipid metabolism that provides Magnetic Resonance (MR) and Positron Emission Tomography (PET) biomarkers for cancer detection and response assessment. Employing Dynamic Nuclear Polarization we show that the MR signal of 15N in choline can be enhanced by at least 4 orders of magnitude with a relaxation time of ca. 4 min, providing a method to observe the action of choline kinase, an important target for novel cancer therapeutics.
Collapse
Affiliation(s)
- Cristina Gabellieri
- Cancer Research UK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Road Sutton, Surrey, SM2 5PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
300
|
Schneider JF, Confort-Gouny S, Viola A, Le Fur Y, Viout P, Bennathan M, Chapon F, Figarella-Branger D, Cozzone P, Girard N. Multiparametric differentiation of posterior fossa tumors in children using diffusion-weighted imaging and short echo-time 1H-MR spectroscopy. J Magn Reson Imaging 2008; 26:1390-8. [PMID: 17968955 DOI: 10.1002/jmri.21185] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To assess the combined value of diffusion-weighted imaging (DWI) and proton magnetic resonance spectroscopy (1H-MRS) in differentiating medulloblastoma, ependymoma, pilocytic astrocytoma, and infiltrating glioma in a pediatric population. MATERIALS AND METHODS A total of 17 children with untreated posterior fossa tumors (seven medulloblastoma, four infiltrating glioma, two ependymoma, and four pilocytic astrocytoma), were investigated with conventional MRI, DWI, and MRS using a single-voxel technique. Within the nonnecrotic tumor core, apparent diffusion coefficient (ADC) values using a standardized region of interest (ROI) were retrieved. Quantification of water signal and analysis of metabolite signals from MRS measurements in the same tumorous area were reviewed using multivariant linear discriminant analysis. RESULTS Combination of ADC values and metabolites, which were normalized using water as an internal standard, allowed discrimination between the four tumor groups with a likelihood below 1 x 10(-9). Positive predictive value was 1 in all cases. Tumors could not be discriminated when using metabolite ratios or ADC values alone, nor could they be differentiated using creatine (Cr) as an internal reference even in combination with ADC values. CONCLUSION Linear discriminant analysis using DWI and MRS using water as internal reference, fully discriminates the four most frequent posterior fossa tumors in children.
Collapse
Affiliation(s)
- J F Schneider
- Department of Pediatric Radiology, University Children's Hospital Universitäts Kinderspital beider Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|