251
|
Yang Y, Zhang J, Liu Z, Lin Q, Liu X, Bao C, Wang Y, Zhu L. Tissue-Integratable and Biocompatible Photogelation by the Imine Crosslinking Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2724-2730. [PMID: 26840751 DOI: 10.1002/adma.201505336] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/14/2015] [Indexed: 06/05/2023]
Abstract
A novel photogelling mechanism by the phototriggered-imine-crosslinking (PIC) reaction is demonstrated. Hyaluronic acid grafted with o-nitrobenzene, a photogenerated aldehyde group, can quickly photo-crosslink with amino-bearing polymers or proteins. Once the in situ photogelling on a wound occurs, the PIC gelling process can well integrate a hydrogel with surrounding tissue by covalent bonding, thus making it a powerful tool for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yunlong Yang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, China
| | - Jieyuan Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, 600# Yishan Road, Shanghai, 200233, China
| | - Zhenzhen Liu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, China
| | - Qiuning Lin
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, China
| | - Xiaolin Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, 600# Yishan Road, Shanghai, 200233, China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, China
| | - Yang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, 600# Yishan Road, Shanghai, 200233, China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, China
| |
Collapse
|
252
|
Huang H, Xu J, Wei K, Xu YJ, Choi CKK, Zhu M, Bian L. Bioactive Nanocomposite Poly (Ethylene Glycol) Hydrogels Crosslinked by Multifunctional Layered Double Hydroxides Nanocrosslinkers. Macromol Biosci 2016; 16:1019-26. [DOI: 10.1002/mabi.201600054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Heqin Huang
- Division of Biomedical Engineering; Department of Mechanical and Automation Engineering; The Chinese University of Hong Kong Shatin; New Territories 999077 Hong Kong P. R. China
| | - Jianbin Xu
- Division of Biomedical Engineering; Department of Mechanical and Automation Engineering; The Chinese University of Hong Kong Shatin; New Territories 999077 Hong Kong P. R. China
| | - Kongchang Wei
- Division of Biomedical Engineering; Department of Mechanical and Automation Engineering; The Chinese University of Hong Kong Shatin; New Territories 999077 Hong Kong P. R. China
- Shun Hing Institute of Advanced Engineering; The Chinese University of Hong Kong; 999077 Hong Kong P. R. China
| | - Yang J. Xu
- Division of Biomedical Engineering; Department of Mechanical and Automation Engineering; The Chinese University of Hong Kong Shatin; New Territories 999077 Hong Kong P. R. China
| | - Chun Kit K. Choi
- Division of Biomedical Engineering; Department of Mechanical and Automation Engineering; The Chinese University of Hong Kong Shatin; New Territories 999077 Hong Kong P. R. China
| | - Meiling Zhu
- Division of Biomedical Engineering; Department of Mechanical and Automation Engineering; The Chinese University of Hong Kong Shatin; New Territories 999077 Hong Kong P. R. China
| | - Liming Bian
- Division of Biomedical Engineering; Department of Mechanical and Automation Engineering; The Chinese University of Hong Kong Shatin; New Territories 999077 Hong Kong P. R. China
- Shun Hing Institute of Advanced Engineering; The Chinese University of Hong Kong; 999077 Hong Kong P. R. China
- Shenzhen Research Institute; The Chinese University of Hong Kong; 999077 Hong Kong P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed); 999077 Hong Kong P. R. China
- Centre of Novel Biomaterials The Chinese University of Hong Kong; 999077 Hong Kong P. R. China
| |
Collapse
|
253
|
Yanagawa F, Sugiura S, Kanamori T. Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen Ther 2016; 3:45-57. [PMID: 31245472 PMCID: PMC6581842 DOI: 10.1016/j.reth.2016.02.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 02/07/2023] Open
Abstract
The development of biologically relevant three-dimensional (3D) tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.
Collapse
Affiliation(s)
- Fumiki Yanagawa
- Drug Assay Device Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shinji Sugiura
- Drug Assay Device Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Toshiyuki Kanamori
- Drug Assay Device Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
254
|
Xu LQ, Pranantyo D, Neoh KG, Kang ET, Teo SLM, Fu GD. Antifouling coatings based on covalently cross-linked agarose film via thermal azide-alkyne cycloaddition. Colloids Surf B Biointerfaces 2016; 141:65-73. [PMID: 26836479 DOI: 10.1016/j.colsurfb.2016.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/06/2015] [Accepted: 01/14/2016] [Indexed: 11/16/2022]
Abstract
Coatings based on thin films of agarose-poly(ethylene glycol) (Agr-PEG) cross-linked systems are developed as environmentally-friendly and fouling-resistant marine coatings. The Agr-PEG cross-linked systems were prepared via thermal azide-alkyne cycloaddition (AAC) using azido-functionalized Agr (AgrAz) and activated alkynyl-containing poly(2-propiolamidoethyl methacrylate-co-poly(ethylene glycol)methyl ether methacrylate) P(PEMA-co-PEGMEMA) random copolymers as the precursors. The Agr-PEG cross-linked systems were further deposited onto a SS surface, pre-functionalized with an alkynyl-containing biomimetic anchor, dopamine propiolamide, to form a thin film after thermal treatment. The thin film-coated SS surfaces can effectively reduce the adhesion of marine algae and the settlement of barnacle cyprids. Upon covalent cross-linking, the covalently cross-linked Agr-PEG films coated SS surfaces exhibit good stability in flowing artificial seawater, and enhanced resistance to the settlement of barnacle cyprids, in comparison to that of the surfaces coated with physically cross-linked AgrAz films.
Collapse
Affiliation(s)
- Li Qun Xu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - Dicky Pranantyo
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - Koon-Gee Neoh
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore.
| | - Serena Lay-Ming Teo
- Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119223, Singapore.
| | - Guo Dong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| |
Collapse
|
255
|
Seda Kehr N, Riehemann K. Controlled Cell Growth and Cell Migration in Periodic Mesoporous Organosilica/Alginate Nanocomposite Hydrogels. Adv Healthc Mater 2016; 5:193-7. [PMID: 26648333 DOI: 10.1002/adhm.201500638] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 12/11/2022]
Abstract
Nanocomposite (NC) hydrogels with different periodic mesoporous organosilica (PMO) concentrations and a NC hydrogel bilayer with various PMO concentrations inside the layers of the hydrogel matrix are prepared. The effect of the PMO concentration on cell growth and migration of cells is reported. The cells migrate in the bilayer NC hydrogel towards higher PMO concentrations and from cell culture plates to NC hydrogel scaffolds.
Collapse
Affiliation(s)
- Nermin Seda Kehr
- Physikalisches Institut and CeNTech; Westfälische Wilhelms-Universität Münster; Heisenbergstraße 11 D-48149 Münster Germany
| | - Kristina Riehemann
- Physikalisches Institut and CeNTech; Westfälische Wilhelms-Universität Münster; Heisenbergstraße 11 D-48149 Münster Germany
| |
Collapse
|
256
|
Gatti T, Vicentini N, Mba M, Menna E. Organic Functionalized Carbon Nanostructures for Functional Polymer-Based Nanocomposites. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501411] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
257
|
Cheng X, Liu J, Wang L, Wang R, Liu Z, Zhuo R. An enzyme-mediated in situ hydrogel based on polyaspartamide derivatives for localized drug delivery and 3D scaffolds. RSC Adv 2016. [DOI: 10.1039/c6ra18479k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An enzyme-mediated in situ hydrogel based on polyaspartamide derivatives is prepared for localized drug delivery and 3D scaffolds.
Collapse
Affiliation(s)
- Xu Cheng
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Jia Liu
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Lei Wang
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Ruoli Wang
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Zhilan Liu
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| |
Collapse
|
258
|
Liu Z, Takeuchi M, Nakajima M, Fukuda T, Hasegawa Y, Huang Q. Batch Fabrication of Microscale Gear-Like Tissue by Alginate-Poly-L-lysine (PLL) Microcapsules System. IEEE Robot Autom Lett 2016. [DOI: 10.1109/lra.2016.2514500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
259
|
Schneider-Barthold C, Baganz S, Wilhelmi M, Scheper T, Pepelanova I. Hydrogels based on collagen and fibrin – frontiers and applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bnm-2015-0025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractHydrogels are a versatile tool for a multitude of applications in biomedical research and clinical practice. Especially collagen and fibrin hydrogels are distinguished by their excellent biocompatibility, natural capacity for cell adhesion and low immunogenicity. In many ways, collagen and fibrin represent an ideal biomaterial, as they can serve as a scaffold for tissue regeneration and promote the migration of cells, as well as the ingrowth of tissues. On the other hand, pure collagen and fibrin materials are marked by poor mechanical properties and rapid degradation, which limits their use in practice. This paper will review methods of modification of natural collagen and fibrin materials to next-generation materials with enhanced stability. A special focus is placed on biomedical products from fibrin and collagen already on the market. In addition, recent research on the in vivo applications of collagen and fibrin-based materials will be showcased.
Collapse
|
260
|
Criado M, Rey JM, Mijangos C, Hernández R. Double-membrane thermoresponsive hydrogels from gelatin and chondroitin sulphate with enhanced mechanical properties. RSC Adv 2016. [DOI: 10.1039/c6ra25053j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel methodology to obtain thermoresponsive mechanically strong hydrogels of gelatin and chondroitin sulphate organized in layers.
Collapse
Affiliation(s)
- M. Criado
- Instituto de Ciencia y Tecnología de Polímeros
- Consejo Superior de Investigaciones Científicas
- 28006 Madrid
- Spain
| | - J. M. Rey
- Instituto de Ciencia y Tecnología de Polímeros
- Consejo Superior de Investigaciones Científicas
- 28006 Madrid
- Spain
| | - C. Mijangos
- Instituto de Ciencia y Tecnología de Polímeros
- Consejo Superior de Investigaciones Científicas
- 28006 Madrid
- Spain
| | - R. Hernández
- Instituto de Ciencia y Tecnología de Polímeros
- Consejo Superior de Investigaciones Científicas
- 28006 Madrid
- Spain
| |
Collapse
|
261
|
Caron I, Rossi F, Papa S, Aloe R, Sculco M, Mauri E, Sacchetti A, Erba E, Panini N, Parazzi V, Barilani M, Forloni G, Perale G, Lazzari L, Veglianese P. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials 2016; 75:135-147. [DOI: 10.1016/j.biomaterials.2015.10.024] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 02/06/2023]
|
262
|
Enhanced Cellular Activity in Gelatin-Poly(Ethylene Glycol) Hydrogels without Compromising Gel Stiffness. Macromol Biosci 2015; 16:334-40. [DOI: 10.1002/mabi.201500327] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/08/2015] [Indexed: 12/17/2022]
|
263
|
Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015; 73:254-71. [PMID: 26414409 PMCID: PMC4610009 DOI: 10.1016/j.biomaterials.2015.08.045] [Citation(s) in RCA: 1588] [Impact Index Per Article: 176.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Abstract
Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching and matrix metalloproteinase responsive peptide motifs, which allow cells to proliferate and spread in GelMA-based scaffolds. GelMA is also versatile from a processing perspective. It crosslinks when exposed to light irradiation to form hydrogels with tunable mechanical properties. It can also be microfabricated using different methodologies including micromolding, photomasking, bioprinting, self-assembly, and microfluidic techniques to generate constructs with controlled architectures. Hybrid hydrogel systems can also be formed by mixing GelMA with nanoparticles such as carbon nanotubes and graphene oxide, and other polymers to form networks with desired combined properties and characteristics for specific biological applications. Recent research has demonstrated the proficiency of GelMA-based hydrogels in a wide range of tissue engineering applications including engineering of bone, cartilage, cardiac, and vascular tissues, among others. Other applications of GelMA hydrogels, besides tissue engineering, include fundamental cell research, cell signaling, drug and gene delivery, and bio-sensing.
Collapse
Affiliation(s)
- Kan Yue
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - Grissel Trujillo-de Santiago
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849 Monterrey, Nuevo León, Mexico
| | - Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849 Monterrey, Nuevo León, Mexico
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115-5000, USA.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
264
|
Kawamoto K, Zhong M, Wang R, Olsen BD, Johnson JA. Loops versus Branch Functionality in Model Click Hydrogels. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02243] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ken Kawamoto
- Department of Chemistry and ‡Department of
Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Mingjiang Zhong
- Department of Chemistry and ‡Department of
Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Rui Wang
- Department of Chemistry and ‡Department of
Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department of Chemistry and ‡Department of
Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A. Johnson
- Department of Chemistry and ‡Department of
Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
265
|
Grindy SC, Learsch R, Mozhdehi D, Cheng J, Barrett DG, Guan Z, Messersmith PB, Holten-Andersen N. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. NATURE MATERIALS 2015; 14:1210-6. [PMID: 26322715 PMCID: PMC4654658 DOI: 10.1038/nmat4401] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/28/2015] [Indexed: 05/06/2023]
Abstract
In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material's mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure is general and may inform the design of soft materials for use in complex mechanical environments. Three examples that demonstrate this are provided.
Collapse
Affiliation(s)
- Scott C. Grindy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robert Learsch
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Davoud Mozhdehi
- Department of Chemistry, University of California, Irvine, California 92697
| | - Jing Cheng
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| | - Devin G. Barrett
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| | - Zhibin Guan
- Department of Chemistry, University of California, Irvine, California 92697
| | | | - Niels Holten-Andersen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Corresponding author:
| |
Collapse
|
266
|
Place LW, Sekyi M, Taussig J, Kipper MJ. Two-Phase Electrospinning to Incorporate Polyelectrolyte Complexes and Growth Factors into Electrospun Chitosan Nanofibers. Macromol Biosci 2015; 16:371-80. [DOI: 10.1002/mabi.201500288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Laura W. Place
- School of Biomedical Engineering; 1370 Campus Delivery Fort Collins CO 80523-1370 USA
| | - Maria Sekyi
- Department of Chemical and Biological Engineering; 1370 Campus Delivery Fort Collins CO 80523-1370 USA
| | - Julia Taussig
- Department of Chemical and Biological Engineering; 1370 Campus Delivery Fort Collins CO 80523-1370 USA
| | - Matt J. Kipper
- School of Biomedical Engineering; 1370 Campus Delivery Fort Collins CO 80523-1370 USA
| |
Collapse
|
267
|
Omer RA, Hama JR, Rashid RSM. The Effect of Dextran Molecular Weight on the Biodegradable Hydrogel with Oil, Synthesized by the Michael Addition Reaction. ADVANCES IN POLYMER TECHNOLOGY 2015. [DOI: 10.1002/adv.21629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rebaz Anwar Omer
- Chemistry Department; Faculty of Science and Health; Koya University; Koya Kurdistan Region F. R. Iraq
| | - Jawameer Rasool Hama
- Chemistry Department; Faculty of Science; University of Raparin; Kurdistan Region Iraq
| | - Rebwar Saeed M. Rashid
- Chemistry Department; School of Science Education; Faculty of Science and Science Education; University of Sulaimani; Kurdistan Region Iraq
| |
Collapse
|
268
|
Palma M, Hardy JG, Tadayyon G, Farsari M, Wind SJ, Biggs MJ. Advances in Functional Assemblies for Regenerative Medicine. Adv Healthc Mater 2015; 4:2500-19. [PMID: 26767738 DOI: 10.1002/adhm.201500412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/16/2015] [Indexed: 12/17/2022]
Abstract
The ability to synthesise bioresponsive systems and selectively active biochemistries using polymer-based materials with supramolecular features has led to a surge in research interest directed towards their development as next generation biomaterials for drug delivery, medical device design and tissue engineering.
Collapse
Affiliation(s)
- Matteo Palma
- Department of Chemistry & Biochemistry School of Biological and Chemical Sciences; Queen Mary University of London; London E1 4NS UK
| | - John G. Hardy
- Department of Chemistry; Materials Science Institute; Lancaster University; Lancaster LA1 4YB UK
| | - Ghazal Tadayyon
- Centre for Research in Medical Devices (CURAM); National University of Ireland Galway; Newcastle Road Dangan Ireland
| | - Maria Farsari
- Institute of Electronic Structure and Laser; Crete Greece
| | | | - Manus J. Biggs
- Centre for Research in Medical Devices (CURAM); National University of Ireland Galway; Newcastle Road Dangan Ireland
| |
Collapse
|
269
|
Biocompatible Hydrogels for Microarray Cell Printing and Encapsulation. BIOSENSORS-BASEL 2015; 5:647-63. [PMID: 26516921 PMCID: PMC4697138 DOI: 10.3390/bios5040647] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022]
Abstract
Conventional drug screening processes are a time-consuming and expensive endeavor, but highly rewarding when they are successful. To identify promising lead compounds, millions of compounds are traditionally screened against therapeutic targets on human cells grown on the surface of 96-wells. These two-dimensional (2D) cell monolayers are physiologically irrelevant, thus, often providing false-positive or false-negative results, when compared to cells grown in three-dimensional (3D) structures such as hydrogel droplets. However, 3D cell culture systems are not easily amenable to high-throughput screening (HTS), thus inherently low throughput, and requiring relatively large volume for cell-based assays. In addition, it is difficult to control cellular microenvironments and hard to obtain reliable cell images due to focus position and transparency issues. To overcome these problems, miniaturized 3D cell cultures in hydrogels were developed via cell printing techniques where cell spots in hydrogels can be arrayed on the surface of glass slides or plastic chips by microarray spotters and cultured in growth media to form cells encapsulated 3D droplets for various cell-based assays. These approaches can dramatically reduce assay volume, provide accurate control over cellular microenvironments, and allow us to obtain clear 3D cell images for high-content imaging (HCI). In this review, several hydrogels that are compatible to microarray printing robots are discussed for miniaturized 3D cell cultures.
Collapse
|
270
|
Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chem Rev 2015; 116:1496-539. [PMID: 26492834 DOI: 10.1021/acs.chemrev.5b00303] [Citation(s) in RCA: 424] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tomasz Jungst
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Pleicherwall 2, 97070 Würzburg, Germany
| | - Willi Smolan
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Pleicherwall 2, 97070 Würzburg, Germany
| | - Kristin Schacht
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
271
|
Tao Y, Zhang R, Yang W, Liu H, Yang H, Zhao Q. Carboxymethylated hyperbranched polysaccharide: Synthesis, solution properties, and fabrication of hydrogel. Carbohydr Polym 2015; 128:179-87. [DOI: 10.1016/j.carbpol.2015.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 03/25/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
|
272
|
Homogeneous tosylation of agarose as an approach toward novel functional polysaccharide materials. Carbohydr Polym 2015; 127:236-45. [DOI: 10.1016/j.carbpol.2015.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 11/19/2022]
|
273
|
Haraguchi K, Ning J, Li G. Swelling/deswelling behavior of zwitterionic nanocomposite gels consisting of sulfobetaine polymer–clay networks. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.03.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
274
|
Zhang F, Li J, Zhu T, Zhang S, Kundu SC, Lu S. Potential of biocompatible regenerated silk fibroin/sodium N-lauroyl sarcosinate hydrogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:780-95. [DOI: 10.1080/09205063.2015.1058576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
275
|
Mazunin D, Broguiere N, Zenobi-Wong M, Bode JW. Synthesis of Biocompatible PEG Hydrogels by pH-Sensitive Potassium Acyltrifluoroborate (KAT) Amide Ligations. ACS Biomater Sci Eng 2015; 1:456-462. [DOI: 10.1021/acsbiomaterials.5b00145] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dmitry Mazunin
- Laboratorium
für Organische Chemie, Department of Chemistry and Applied
Biosciences, ETH−Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Nicolas Broguiere
- Cartilage
Engineering and Regeneration Laboratory, Department of Health Science
and Technology, ETH−Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Cartilage
Engineering and Regeneration Laboratory, Department of Health Science
and Technology, ETH−Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Jeffrey W. Bode
- Laboratorium
für Organische Chemie, Department of Chemistry and Applied
Biosciences, ETH−Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
276
|
He H, Averick S, Mandal P, Ding H, Li S, Gelb J, Kotwal N, Merkle A, Litster S, Matyjaszewski K. Multifunctional Hydrogels with Reversible 3D Ordered Macroporous Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1500069. [PMID: 27980945 PMCID: PMC5115371 DOI: 10.1002/advs.201500069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/01/2015] [Indexed: 05/21/2023]
Abstract
Three-dimensionally ordered macroporous (3DOM) hydrogels prepared by colloidal crystals templating display highly reversible shape memory properties, as confirmed by indirect electron microscopy imaging of their inverse replicas and direct nanoscale resolution X-ray microscopy imaging of the hydrated hydrogels. Modifications of functional groups in the 3DOM hydrogels result in various materials with programmed properties for a wide range of applications.
Collapse
Affiliation(s)
- Hongkun He
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Saadyah Averick
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Pratiti Mandal
- Department of Mechanical Engineering Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Hangjun Ding
- Carl Zeiss X-Ray Microscopy Pleasanton CA 94588 USA
| | - Sipei Li
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Jeff Gelb
- School of Materials Science and Engineering University of Science and Technology Beijing 30 Xueyuan Road Beijing 100083 P. R. China
| | - Naomi Kotwal
- School of Materials Science and Engineering University of Science and Technology Beijing 30 Xueyuan Road Beijing 100083 P. R. China
| | - Arno Merkle
- School of Materials Science and Engineering University of Science and Technology Beijing 30 Xueyuan Road Beijing 100083 P. R. China
| | - Shawn Litster
- Department of Mechanical Engineering Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| |
Collapse
|
277
|
Nagamine K, Hirata T, Okamoto K, Abe Y, Kaji H, Nishizawa M. Portable Micropatterns of Neuronal Cells Supported by Thin Hydrogel Films. ACS Biomater Sci Eng 2015; 1:329-334. [PMID: 33429573 DOI: 10.1021/acsbiomaterials.5b00020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A grid micropattern of neuronal cells was formed on a free-standing collagen film (35 μm thickness) by directing migration and extension of neurons along a Matrigel pattern previously prepared on the film by the microcontact printing method. The neurons migrated to reach the nodes on the grid pattern and extended neurites to bridge cell bodies at the nodes. The resulting neuronal micropattern on the collagen film containing culture medium can be handled and deformed with tweezers with maintenance of physiological activity of the neurons, as examined by response of cytosolic Ca2+ concentration to a dose of bradykinin. This portability is the unique advantage of the present system that will open novel possibility of cellular engineering including the on-demand combination with analytical devices. The repetitive lamination of the film on a microelectrode chip was demonstrated for local electrical stimulation of a specific part of the grid micropattern of neurons, showing Ca2+ wave propagation along the neurites. The molecular permeability is the further advantage of the free-standing hydrogel substrate, which allows external supply of nutrients and dosing with chemical stimulants through the film even under rolled and laminated conditions.
Collapse
Affiliation(s)
- Kuniaki Nagamine
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takuya Hirata
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Kohei Okamoto
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yuina Abe
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
278
|
Goktas M, Cinar G, Orujalipoor I, Ide S, Tekinay AB, Guler MO. Self-Assembled Peptide Amphiphile Nanofibers and PEG Composite Hydrogels as Tunable ECM Mimetic Microenvironment. Biomacromolecules 2015; 16:1247-58. [DOI: 10.1021/acs.biomac.5b00041] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Melis Goktas
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Goksu Cinar
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | | | | | - Ayse B. Tekinay
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Mustafa O. Guler
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
279
|
Supramolecular Hydrogels for Regenerative Medicine. ADVANCES IN POLYMER SCIENCE 2015. [DOI: 10.1007/978-3-319-15404-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
280
|
Nagamine K, Abe Y, Kai H, Kaji H, Nishizawa M. Highly stretchable cell-cultured hydrogel sheet. RSC Adv 2015. [DOI: 10.1039/c5ra11059a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A free-standing cell-cultured hydrogel sheet with stretchability was prepared for an in vitro cellular assay with mechanical stimulation.
Collapse
Affiliation(s)
- Kuniaki Nagamine
- Department of Bioengineering and Robotics
- Graduate School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Yuina Abe
- Department of Bioengineering and Robotics
- Graduate School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Hiroyuki Kai
- Department of Bioengineering and Robotics
- Graduate School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics
- Graduate School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Matsuhiko Nishizawa
- Department of Bioengineering and Robotics
- Graduate School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| |
Collapse
|
281
|
Cui Y, Tan M, Zhu A, Guo M. Non-covalent interaction cooperatively induced stretchy, tough and stimuli-responsive polyurethane–urea supramolecular (PUUS) hydrogels. J Mater Chem B 2015; 3:2834-2841. [DOI: 10.1039/c5tb00095e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen-bonding and hydrophobic effect cooperatively induced stretchy, tough and stimuli-responsive polyurethane–urea supramolecular hydrogels were easily prepared and studied in detail.
Collapse
Affiliation(s)
- Yulin Cui
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Mei Tan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Aidi Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Mingyu Guo
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
282
|
Chau M, Sriskandha SE, Thérien-Aubin H, Kumacheva E. Supramolecular Nanofibrillar Polymer Hydrogels. SUPRAMOLECULAR POLYMER NETWORKS AND GELS 2015. [DOI: 10.1007/978-3-319-15404-6_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
283
|
Jaspers M, Dennison M, Mabesoone MFJ, MacKintosh FC, Rowan AE, Kouwer PHJ. Ultra-responsive soft matter from strain-stiffening hydrogels. Nat Commun 2014; 5:5808. [PMID: 25510333 PMCID: PMC4275588 DOI: 10.1038/ncomms6808] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/07/2014] [Indexed: 12/26/2022] Open
Abstract
The stiffness of hydrogels is crucial for their application. Nature's hydrogels become stiffer as they are strained. This stiffness is not constant but increases when the gel is strained. This stiffening is used, for instance, by cells that actively strain their environment to modulate their function. When optimized, such strain-stiffening materials become extremely sensitive and very responsive to stress. Strain stiffening, however, is unexplored in synthetic gels since the structural design parameters are unknown. Here we uncover how readily tuneable parameters such as concentration, temperature and polymer length impact the stiffening behaviour. Our work also reveals the marginal point, a well-described but never observed, critical point in the gelation process. Around this point, we observe a transition from a low-viscous liquid to an elastic gel upon applying minute stresses. Our experimental work in combination with network theory yields universal design principles for future strain-stiffening materials.
Collapse
Affiliation(s)
- Maarten Jaspers
- Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 Nijmegen, The Netherlands
| | - Matthew Dennison
- Department of Physics and Astronomy VU University, De Boelelaan, 1081 Amsterdam, The Netherlands
| | - Mathijs F. J. Mabesoone
- Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 Nijmegen, The Netherlands
| | - Frederick C. MacKintosh
- Department of Physics and Astronomy VU University, De Boelelaan, 1081 Amsterdam, The Netherlands
| | - Alan E. Rowan
- Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 Nijmegen, The Netherlands
| | - Paul H. J. Kouwer
- Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 Nijmegen, The Netherlands
| |
Collapse
|
284
|
Kehr NS, Atay S, Ergün B. Self-assembled Monolayers and Nanocomposite Hydrogels of Functional Nanomaterials for Tissue Engineering Applications. Macromol Biosci 2014; 15:445-63. [DOI: 10.1002/mabi.201400363] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nermin Seda Kehr
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 D-48149 Münster Germany
| | - Seda Atay
- Department of Nanotechnology and Nanomedicine; Hacettepe University; 06800 Ankara Turkey
| | - Bahar Ergün
- Department of Chemistry; Biochemistry Division; Hacettepe University; 06800 Ankara Turkey
| |
Collapse
|
285
|
Antoine EE, Vlachos PP, Rylander MN. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. TISSUE ENGINEERING. PART B, REVIEWS 2014; 20:683-96. [PMID: 24923709 PMCID: PMC4241868 DOI: 10.1089/ten.teb.2014.0086] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/29/2014] [Indexed: 01/13/2023]
Abstract
Type I collagen hydrogels have been used successfully as three-dimensional substrates for cell culture and have shown promise as scaffolds for engineered tissues and tumors. A critical step in the development of collagen hydrogels as viable tissue mimics is quantitative characterization of hydrogel properties and their correlation with fabrication parameters, which enables hydrogels to be tuned to match specific tissues or fulfill engineering requirements. A significant body of work has been devoted to characterization of collagen I hydrogels; however, due to the breadth of materials and techniques used for characterization, published data are often disjoint and hence their utility to the community is reduced. This review aims to determine the parameter space covered by existing data and identify key gaps in the literature so that future characterization and use of collagen I hydrogels for research can be most efficiently conducted. This review is divided into three sections: (1) relevant fabrication parameters are introduced and several of the most popular methods of controlling and regulating them are described, (2) hydrogel properties most relevant for tissue engineering are presented and discussed along with their characterization techniques, (3) the state of collagen I hydrogel characterization is recapitulated and future directions are proposed. Ultimately, this review can serve as a resource for selection of fabrication parameters and material characterization methodologies in order to increase the usefulness of future collagen-hydrogel-based characterization studies and tissue engineering experiments.
Collapse
Affiliation(s)
| | - Pavlos P. Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Marissa Nichole Rylander
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
286
|
Ruedinger F, Lavrentieva A, Blume C, Pepelanova I, Scheper T. Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice. Appl Microbiol Biotechnol 2014; 99:623-36. [DOI: 10.1007/s00253-014-6253-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022]
|
287
|
An D, Ji Y, Chiu A, Lu YC, Song W, Zhai L, Qi L, Luo D, Ma M. Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies. Biomaterials 2014; 37:40-8. [PMID: 25453936 DOI: 10.1016/j.biomaterials.2014.10.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/02/2014] [Indexed: 12/28/2022]
Abstract
Cell encapsulation holds enormous potential to treat a number of hormone deficient diseases and endocrine disorders. We report a simple and universal approach to fabricate robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) with macroscopic dimensions. In this design, we take advantage of the well-known capillary action that holds wetting liquid in porous media. By impregnating the highly porous electrospun nanofiber membranes of pre-made tubular or planar devices with hydrogel precursor solutions and subsequent crosslinking, we obtained various nanofiber-enabled hydrogel devices. This approach is broadly applicable and does not alter the water content or the intrinsic chemistry of the hydrogels. The devices retained the properties of both the hydrogel (e.g. the biocompatibility) and the nanofibers (e.g. the mechanical robustness). The facile mass transfer was confirmed by encapsulation and culture of different types of cells. Additional compartmentalization of the devices enabled paracrine cell co-cultures in single implantable devices. Lastly, we provided a proof-of-concept study on potential therapeutic applications of the devices by encapsulating and delivering rat pancreatic islets into chemically-induced diabetic mice. The diabetes was corrected for the duration of the experiment (8 weeks) before the implants were retrieved. The retrieved devices showed minimal fibrosis and as expected, live and functional islets were observed within the devices. This study suggests that the design concept of NEEDs may potentially help to overcome some of the challenges in the cell encapsulation field and therefore contribute to the development of cell therapies in future.
Collapse
Affiliation(s)
- Duo An
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY 14853, USA
| | - Yewei Ji
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Alan Chiu
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY 14853, USA
| | - Yen-Chun Lu
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY 14853, USA
| | - Lei Zhai
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | - Ling Qi
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY 14853, USA.
| |
Collapse
|
288
|
Occhetta P, Visone R, Russo L, Cipolla L, Moretti M, Rasponi M. VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding. J Biomed Mater Res A 2014; 103:2109-17. [PMID: 25294368 DOI: 10.1002/jbm.a.35346] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/12/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
Abstract
The ability to replicate in vitro the native extracellular matrix (ECM) features and to control the three-dimensional (3D) cell organization plays a fundamental role in obtaining functional engineered bioconstructs. In tissue engineering (TE) applications, hydrogels have been successfully implied as biomatrices for 3D cell embedding, exhibiting high similarities to the natural ECM and holding easily tunable mechanical properties. In the present study, we characterized a promising photocrosslinking process to generate cell-laden methacrylate gelatin (GelMA) hydrogels in the presence of VA-086 photoinitiator using a ultraviolet LED source. We investigated the influence of prepolymer concentration and light irradiance on mechanical and biomimetic properties of resulting hydrogels. In details, the increasing of gelatin concentration resulted in enhanced rheological properties and shorter polymerization time. We then defined and validated a reliable photopolymerization protocol for cell embedding (1.5% VA-086, LED 2 mW/cm2) within GelMA hydrogels, which demonstrated to support bone marrow stromal cells viability when cultured up to 7 days. Moreover, we showed how different mechanical properties, derived from different crosslinking parameters, strongly influence cell behavior. In conclusion, this protocol can be considered a versatile tool to obtain biocompatible cell-laden hydrogels with properties easily adaptable for different TE applications.
Collapse
Affiliation(s)
- Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | | | | | | | | | | |
Collapse
|
289
|
Park KM, Blatchley MR, Gerecht S. The design of dextran-based hypoxia-inducible hydrogels via in situ oxygen-consuming reaction. Macromol Rapid Commun 2014; 35:1968-75. [PMID: 25303104 DOI: 10.1002/marc.201400369] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/21/2014] [Indexed: 12/14/2022]
Abstract
Hypoxia plays a critical role in the development and wound healing process, as well as a number of pathological conditions. Here, dextran-based hypoxia-inducible (Dex-HI) hydrogels formed with in situ oxygen consumption via a laccase-medicated reaction are reported. Oxygen levels and gradients were accurately predicted by mathematical simulation. It is demonstrated that Dex-HI hydrogels provide prolonged hypoxic conditions up to 12 h. The Dex-HI hydrogel offers an innovative approach to delineate not only the mechanism by which hypoxia regulates cellular responses, but may facilitate the discovery of new pathways involved in the generation of hypoxic and oxygen gradient environments.
Collapse
Affiliation(s)
- Kyung Min Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | | |
Collapse
|
290
|
Omer RA, Hughes A, Hama JR, Wang W, Tai H. Hydrogels from dextran and soybean oil by UV photo-polymerization. J Appl Polym Sci 2014. [DOI: 10.1002/app.41446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rebaz A. Omer
- School of Chemistry; Bangor University; Bangor Gwynedd LL57 2UW United Kingdom
- Chemistry Department; Faculty of Science and Health; Koya University, University Park, Daniel Mitterrand Boulevard; Koya Kurdistan Region F.R. Iraq
| | - Alan Hughes
- School of Chemistry; Bangor University; Bangor Gwynedd LL57 2UW United Kingdom
| | - Jawameer Rasool Hama
- Chemistry Department; Faculty of Science and Health; Koya University, University Park, Daniel Mitterrand Boulevard; Koya Kurdistan Region F.R. Iraq
| | - Wenxin Wang
- The Charles Institute of Dermatology; School of Medicine and Medical Science, University College Dublin; Dublin Ireland
| | - Hongyun Tai
- School of Chemistry; Bangor University; Bangor Gwynedd LL57 2UW United Kingdom
| |
Collapse
|
291
|
Warren N, Armes SP. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J Am Chem Soc 2014; 136:10174-85. [PMID: 24968281 PMCID: PMC4111214 DOI: 10.1021/ja502843f] [Citation(s) in RCA: 790] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Indexed: 12/17/2022]
Abstract
In this Perspective, we discuss the recent development of polymerization-induced self-assembly mediated by reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization. This approach has quickly become a powerful and versatile technique for the synthesis of a wide range of bespoke organic diblock copolymer nano-objects of controllable size, morphology, and surface functionality. Given its potential scalability, such environmentally-friendly formulations are expected to offer many potential applications, such as novel Pickering emulsifiers, efficient microencapsulation vehicles, and sterilizable thermo-responsive hydrogels for the cost-effective long-term storage of mammalian cells.
Collapse
Affiliation(s)
- Nicholas
J. Warren
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3
7HF, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3
7HF, U.K.
| |
Collapse
|
292
|
Su T, Tang Z, He H, Li W, Wang X, Liao C, Sun Y, Wang Q. Glucose oxidase triggers gelation of N-hydroxyimide–heparin conjugates to form enzyme-responsive hydrogels for cell-specific drug delivery. Chem Sci 2014. [DOI: 10.1039/c4sc01603c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
293
|
Ma Y, Neubauer MP, Thiele J, Fery A, Huck WTS. Artificial microniches for probing mesenchymal stem cell fate in 3D. Biomater Sci 2014; 2:1661-1671. [PMID: 32481947 DOI: 10.1039/c4bm00104d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Droplet microfluidics is combined with bio-orthogonal thiol-ene click chemistry to fabricate micrometer-sized, monodisperse fibrinogen-containing hyaluronic acid hydrogel microbeads in a mild, radical-free procedure in the presence of human mesenchymal stem cells (hMSCs). The gel beads serve as microniches for the 3D culture of single hMSCs, containing hyaluronic acid and additional fibrinogen for cell surface binding, and they are porous and stable in tissue culture medium for up to 4 weeks with mechanical properties right in the range of soft solid tissues (0.9-9.2 kPa). The encapsulation procedure results in 70% viable hMSCs in the microbeads after 24 hours of culture and a very high degree of viability of the cells after long term culture of 2 weeks. hMSCs embedded in the microniches display an overall rounded morphology, consistent with those previously observed in 3D culture. Upon induction, the multipotency and differentiation potential of the hMSCs are characterized by staining of corresponding biomarkers, demonstrating a clear heterogeneity in the cell population. These hydrogel microbeads represent a versatile microstructured material platform with great potential for studying the differences of material cues and soluble factors in stem cell differentiation in a 3D tissue-like environment at the single cell level.
Collapse
Affiliation(s)
- Yujie Ma
- Department of Physical Organic Chemistry, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
294
|
Richtering W, Saunders BR. Gel architectures and their complexity. SOFT MATTER 2014; 10:3695-3702. [PMID: 24705716 DOI: 10.1039/c4sm00208c] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gels have made the transition from brittle materials with few potential applications to high performance systems with mechanical properties approaching that of rubber. They have a wide variety of structures and provide the opportunity to tailor these structures to achieve well-controlled properties over a range of length scales. In this review we consider and compare the structures and properties of a range of gels that have been studied in recent years. In comparing these gels we highlight the importance of key structural parameters in defining gel mechanical properties. It is hoped that this article will provide authors who discover new gels a resource that will easily enable them to determine the differences of their new gels to existing gels.
Collapse
Affiliation(s)
- Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany
| | | |
Collapse
|
295
|
Zhao T, Tan M, Cui Y, Deng C, Huang H, Guo M. Reactive macromolecular micelle crosslinked highly elastic hydrogel with water-triggered shape-memory behaviour. Polym Chem 2014. [DOI: 10.1039/c4py00554f] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
296
|
Cui Y, Tan M, Zhu A, Guo M. Strain hardening and highly resilient hydrogels crosslinked by chain-extended reactive pseudo-polyrotaxane. RSC Adv 2014. [DOI: 10.1039/c4ra10928g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrogels with obvious strain hardening and high resilience properties in both stretching and compressing processes are constructed by simple free-radical copolymerization of acrylamide and reactive pseudo-polyrotaxane.
Collapse
Affiliation(s)
- Yulin Cui
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Mei Tan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Aidi Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Mingyu Guo
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
297
|
Rubert Pérez CM, Rank LA, Chmielewski J. Tuning the thermosensitive properties of hybrid collagen peptide–polymer hydrogels. Chem Commun (Camb) 2014; 50:8174-6. [PMID: 24926620 DOI: 10.1039/c4cc03171g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Collagen peptide, PEG-based hydrogels with tuneable thermosensitive properties are validated as stimuli-responsive materials.
Collapse
Affiliation(s)
| | - Leslie A. Rank
- Department of Chemistry
- Purdue University
- West Lafayette, USA
| | | |
Collapse
|
298
|
Ren K, He C, Cheng Y, Li G, Chen X. Injectable enzymatically crosslinked hydrogels based on a poly(l-glutamic acid) graft copolymer. Polym Chem 2014. [DOI: 10.1039/c4py00420e] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enzyme-mediated injectable hydrogels based on a poly(l-glutamic acid) graft copolymer with tunable physicochemical properties, biodegradability and good biocompatibility were developed.
Collapse
Affiliation(s)
- Kaixuan Ren
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
- University of Chinese Academy of Sciences
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Yilong Cheng
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| |
Collapse
|