251
|
Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics 2018; 8:1824-1849. [PMID: 29556359 PMCID: PMC5858503 DOI: 10.7150/thno.22172] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is one of the major therapeutic strategies for cancer treatment. In the past decade, there has been growing interest in using high Z (atomic number) elements (materials) as radiosensitizers. New strategies in nanomedicine could help to improve cancer diagnosis and therapy at cellular and molecular levels. Metal-based nanoparticles usually exhibit chemical inertness in cellular and subcellular systems and may play a role in radiosensitization and synergistic cell-killing effects for radiation therapy. This review summarizes the efficacy of metal-based NanoEnhancers against cancers in both in vitro and in vivo systems for a range of ionizing radiations including gamma-rays, X-rays, and charged particles. The potential of translating preclinical studies on metal-based nanoparticles-enhanced radiation therapy into clinical practice is also discussed using examples of several metal-based NanoEnhancers (such as CYT-6091, AGuIX, and NBTXR3). Also, a few general examples of theranostic multimetallic nanocomposites are presented, and the related biological mechanisms are discussed.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Jin Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| |
Collapse
|
252
|
Jin Q, Liu J, Zhu W, Dong Z, Liu Z, Cheng L. Albumin-Assisted Synthesis of Ultrasmall FeS 2 Nanodots for Imaging-Guided Photothermal Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:332-340. [PMID: 29220162 DOI: 10.1021/acsami.7b16890] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Current mainstream cancer treatment methods have their limitations. New approaches are thus desired to assist our battle against cancer. Herein, multifunctional ultrasmall FeS2 nanodots with the size of 7 nm are synthesized by biomineralization and used for imaging-guided combined tumor therapy. Bovine serum albumin (BSA), which acts as the reaction template to induce the mineralization of FeS2 nanomaterials under alkaline conditions, could also be used as a drug delivery system for coupling photosensitive molecule such as Chlorin e6 (Ce6). Taking advantage of the near-infrared (NIR) absorbance and the high r2 relaxivity of the synthesized ultrasmall FeS2 nanodots, as well as the Ce6 fluorescence, in vivo trimodal imaging of optical/magnetic resonance/photoacoustics was carried out, showing efficient tumor accumulation of FeS2@BSA-Ce6 after intravenous injection. In vitro and in vivo photothermal and photodynamic therapy were then conducted for synergistic tumor therapy and did not cause any apparent toxicity to the treated animals. Our work thus provides a new kind of ultrasmall FeS2 multifunctional nanodot modified by albumin via a simple method, promising for combination phototherapy as well as cancer theranostics.
Collapse
Affiliation(s)
- Qiutong Jin
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou, Jiangsu 215123, China
| | - Jingjing Liu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou, Jiangsu 215123, China
| | - Wenjun Zhu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou, Jiangsu 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou, Jiangsu 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou, Jiangsu 215123, China
| |
Collapse
|
253
|
Gui L, Zhou J, Zhou L, Wei S. A smart copper-phthalocyanine framework nanoparticle for enhancing photodynamic therapy in hypoxic conditions by weakening cells through ATP depletion. J Mater Chem B 2018; 6:2078-2088. [DOI: 10.1039/c8tb00334c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypoxic tumor treatment by synergistic of photodynamic therapy and ATP deprivation.
Collapse
Affiliation(s)
- Li Gui
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry, Nanjing Normal University
- Nanjing 210023
| | - Jiahong Zhou
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry, Nanjing Normal University
- Nanjing 210023
| | - Lin Zhou
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry, Nanjing Normal University
- Nanjing 210023
| | - Shaohua Wei
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry, Nanjing Normal University
- Nanjing 210023
| |
Collapse
|
254
|
Yang G, Zhang R, Liang C, Zhao H, Yi X, Shen S, Yang K, Cheng L, Liu Z. Manganese Dioxide Coated WS 2 @Fe 3 O 4 /sSiO 2 Nanocomposites for pH-Responsive MR Imaging and Oxygen-Elevated Synergetic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702664. [PMID: 29165872 DOI: 10.1002/smll.201702664] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Recently, the development of multifunctional theranostic nanoplatforms to realize tumor-specific imaging and enhanced cancer therapy via responding or modulating the tumor microenvironment (TME) has attracted tremendous interests in the field of nanomedicine. Herein, tungsten disulfide (WS2 ) nanoflakes with their surface adsorbed with iron oxide nanoparticles (IONPs) via self-assembly are coated with silica and then subsequently with manganese dioxide (MnO2 ), on to which polyethylene glycol (PEG) is attached. The obtained WS2 -IO/S@MO-PEG appears to be highly sensitive to pH, enabling tumor pH-responsive magnetic resonance imaging with IONPs as the pH-inert T2 contrast probe and MnO2 as the pH-sensitive T1 contrast probe. Meanwhile, synergistic combination tumor therapy is realized with such WS2 -IO/S@MO-PEG, by utilizing the strong near-infrared light and X-ray absorbance of WS2 for photothermal therapy (PTT) and enhanced cancer radiotherapy (RT), respectively, as well as the ability of MnO2 to decompose tumor endogenous H2 O2 and relieve tumor hypoxia to further overcome hypoxia-associated radiotherapy resistance. The combination of PTT and RT with WS2 -IO/S@MO-PEG results in a remarkable synergistic effect to destruct tumors. This work highlights the promise of developing multifunction nanocomposites for TME-specific imaging and TME modulation, aiming at precision cancer synergistic treatment.
Collapse
Affiliation(s)
- Guangbao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Rui Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Chao Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - He Zhao
- Department of Radiology, Children's Hospital of Soochow University, Suzhou, 215003, Jiangsu, P. R. China
| | - Xuan Yi
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Sida Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Kai Yang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
255
|
Deng J, Xun X, Zheng W, Su Y, Zheng L, Wang C, Su M. Sequential delivery of bismuth nanoparticles and doxorubicin by injectable macroporous hydrogels for combined anticancer kilovoltage X-ray radio- and chemo-therapy. J Mater Chem B 2018; 6:7966-7973. [PMID: 32255041 DOI: 10.1039/c8tb02284d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential delivery systems are required to maximize synergistic anticancer therapeutic effects in combined X-ray radio- and chemo-therapy.
Collapse
Affiliation(s)
- Junjie Deng
- School of Biomedical Engineering
- School of Ophthalmology and Optometry and Eye Hospital
- Wenzhou Medical University
- Wenzhou
- China
| | - Xiaojie Xun
- School of Biomedical Engineering
- School of Ophthalmology and Optometry and Eye Hospital
- Wenzhou Medical University
- Wenzhou
- China
| | - Wenjun Zheng
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
| | - Yunfei Su
- School of Biomedical Engineering
- School of Ophthalmology and Optometry and Eye Hospital
- Wenzhou Medical University
- Wenzhou
- China
| | - Liyuan Zheng
- School of Biomedical Engineering
- School of Ophthalmology and Optometry and Eye Hospital
- Wenzhou Medical University
- Wenzhou
- China
| | - Chenfei Wang
- School of Biomedical Engineering
- School of Ophthalmology and Optometry and Eye Hospital
- Wenzhou Medical University
- Wenzhou
- China
| | - Ming Su
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute of Biomaterials and Engineering
- Chinese Academy of Sciences
- Wenzhou 325000
- China
| |
Collapse
|
256
|
Li J, Zu X, Liang G, Zhang K, Liu Y, Li K, Luo Z, Cai K. Octopod PtCu Nanoframe for Dual-Modal Imaging-Guided Synergistic Photothermal Radiotherapy. Theranostics 2018; 8:1042-1058. [PMID: 29463998 PMCID: PMC5817109 DOI: 10.7150/thno.22557] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/02/2017] [Indexed: 01/05/2023] Open
Abstract
Heavy atom nanoparticles have high X-ray absorption capacity and near infrared (NIR) photothermal conversion efficiency, which could be used as radio-sensitizers. We hypothesized that concave PtCu octopod nanoframes (OPCNs) would be an efficient nanoplatform for synergistic radio-photothermal tumor ablation. Methods: In this study, we newly exploited a folic acid-receptor (FR) mediated photothermal radiotherapy nanoagent base on OPCNs. OPCNs were synthesized with a hydrothermal method and then modified with polyethylene glycol (PEG) and folic acid (FA). A series of physical and chemical characterizations, cytotoxicity, targeting potential, endocytosis mechanism, biodistribution, systematic toxicological evaluation, pharmacokinetics, applications of OPCNs-PEG-FA for in vitro and in vivo infrared thermal imaging (ITI)/photoacoustic imaging (PAI) dual-modal imaging and synergistic photothermal radiotherapy against tumor were carried out. Results: The OPCNs-PEG-FA demonstrated good biocompatibility, strong NIR absorption and X-ray radio-sensitization, which enabling it to track and visualize tumor in vivo via ITI/PAI dual-modal imaging. Moreover, the as-synthesized OPCNs-PEG-FA exhibited remarkable photothermal therapy (PTT) and radiotherapy (RT) synergistic tumor inhibition when treated with NIR laser and X-ray. Conclusion: A novel multifunctional theranostic nanoplatform based on OPCNs was designed and developed for dual-modal image-guided synergistic tumor photothermal radiotherapy.
Collapse
|
257
|
Lin H, Chen Y, Shi J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem Soc Rev 2018; 47:1938-1958. [DOI: 10.1039/c7cs00471k] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This tutorial review highlights the progress and future development of nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy.
Collapse
Affiliation(s)
- Han Lin
- State Key Lab of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Yu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Jianlin Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
258
|
Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol Sci 2017; 39:24-48. [PMID: 29224916 DOI: 10.1016/j.tips.2017.11.003] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Radiotherapy (RT) is a mainstay treatment for many types of cancer, although it is still a large challenge to enhance radiation damage to tumor tissue and reduce side effects to healthy tissue. Radiosensitizers are promising agents that enhance injury to tumor tissue by accelerating DNA damage and producing free radicals. Several strategies have been exploited to develop highly effective and low-toxicity radiosensitizers. In this review, we highlight recent progress on radiosensitizers, including small molecules, macromolecules, and nanomaterials. First, small molecules are reviewed based on free radicals, pseudosubstrates, and other mechanisms. Second, nanomaterials, such as nanometallic materials, especially gold-based materials that have flexible surface engineering and favorable kinetic properties, have emerged as promising radiosensitizers. Finally, emerging macromolecules have shown significant advantages in RT because these molecules can be combined with biological therapy as well as drug delivery. Further research on the mechanisms of radioresistance and multidisciplinary approaches will accelerate the development of radiosensitizers.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Number 238, Baidi Road, Tianjin 300192, China; These authors have contributed equally
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; These authors have contributed equally
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
259
|
Ni D, Bu W, Ehlerding EB, Cai W, Shi J. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev 2017; 46:7438-7468. [PMID: 29071327 PMCID: PMC5705441 DOI: 10.1039/c7cs00316a] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetic resonance imaging (MRI) is a highly valuable non-invasive imaging tool owing to its exquisite soft tissue contrast, high spatial resolution, lack of ionizing radiation, and wide clinical applicability. Contrast agents (CAs) can be used to further enhance the sensitivity of MRI to obtain information-rich images. Recently, extensive research efforts have been focused on the design and synthesis of high-performance inorganic nanoparticle-based CAs to improve the quality and specificity of MRI. Herein, the basic rules, including the choice of metal ions, effect of electron motion on water relaxation, and involved mechanisms, of CAs for MRI have been elucidated in detail. In particular, various design principles, including size control, surface modification (e.g. organic ligand, silica shell, and inorganic nanolayers), and shape regulation, to impact relaxation of water molecules have been discussed in detail. Comprehensive understanding of how these factors work can guide the engineering of future inorganic nanoparticles with high relaxivity. Finally, we have summarized the currently available strategies and their mechanism for obtaining high-performance CAs and discussed the challenges and future developments of nanoparticulate CAs for clinical translation in MRI.
Collapse
Affiliation(s)
- Dalong Ni
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | | | | | | | | |
Collapse
|
260
|
Liang H, Wu Y, Ou XY, Li JY, Li J. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity. NANOTECHNOLOGY 2017; 28:465702. [PMID: 28925921 DOI: 10.1088/1361-6528/aa8d9c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.
Collapse
Affiliation(s)
- Hong Liang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, People's Republic of China
| | | | | | | | | |
Collapse
|
261
|
Davidi ES, Dreifuss T, Motiei M, Shai E, Bragilovski D, Lubimov L, Kindler MJJ, Popovtzer A, Don J, Popovtzer R. Cisplatin-conjugated gold nanoparticles as a theranostic agent for head and neck cancer. Head Neck 2017; 40:70-78. [PMID: 29130566 DOI: 10.1002/hed.24935] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/21/2017] [Accepted: 07/27/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The purpose of this study was to develop a nanoplatform, which simultaneously acts as radiosensitizer, drug carrier, and tumor imaging agent for head and neck cancer. METHODS We synthesized 20 nm gold nanoparticles, coated with glucose and cisplatin (CG-GNPs). Their penetration into tumor cells and their cellular toxicity were evaluated in vitro. In vivo experiments were conducted to evaluate their impact on tumor growth and their imaging capabilities. RESULTS The CG-GNPs showed efficient penetration into tumor cells and similar cellular toxicity as cisplatin alone. Combined with radiation, CG-GNPs led to greater tumor reduction than that of radiation alone and radiation with free cisplatin. The CG-GNPs also demonstrated efficient tumor imaging capabilities. CONCLUSION Our CG-GNPs have a great potential to increase antitumor effect, overcome resistance to chemotherapeutics and radiation, and allow imaging-guided therapy.
Collapse
Affiliation(s)
- Erez Shmuel Davidi
- Department of Otolaryngology Head and Neck Surgery, Kaplan Medical Center, Rehovot, Israel
| | - Tamar Dreifuss
- Faculty of Engineering and the Institutes of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Menachem Motiei
- Faculty of Engineering and the Institutes of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Eliezer Shai
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Dimitri Bragilovski
- Head and Neck Cancer Radiation Clinic, Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tiqwa, Israel
| | - Leon Lubimov
- Head and Neck Cancer Radiation Clinic, Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tiqwa, Israel
| | - Marc Jose Jonathan Kindler
- Head and Neck Cancer Radiation Clinic, Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tiqwa, Israel
| | - Aron Popovtzer
- Head and Neck Cancer Radiation Clinic, Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petah Tiqwa, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Jeremy Don
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institutes of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
262
|
Guo Z, Zhu S, Yong Y, Zhang X, Dong X, Du J, Xie J, Wang Q, Gu Z, Zhao Y. Synthesis of BSA-Coated BiOI@Bi 2 S 3 Semiconductor Heterojunction Nanoparticles and Their Applications for Radio/Photodynamic/Photothermal Synergistic Therapy of Tumor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1704136. [PMID: 29035426 DOI: 10.1002/adma.201704136] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Developing an effective theranostic nanoplatform remains a great challenge for cancer diagnosis and treatment. Here, BiOI@Bi2 S3 @BSA (bovine serum albumin) semiconductor heterojunction nanoparticles (SHNPs) for triple-combination radio/photodynamic/photothermal cancer therapy and multimodal computed tomography/photoacoustic (CT/PA) bioimaging are reported. On the one hand, SHNPs possess strong X-ray attenuation capability since they contain high-Z elements, and thus they are anticipated to be a very competent candidate as radio-sensitizing materials for radiotherapy enhancement. On the other hand, as a semiconductor, the as-prepared SHNPs offer an extra approach for reactive oxygen species generation based on electron-hole pair under the irradiation of X-ray through the photodynamic therapy process. This X-ray excited photodynamic therapy obviously has better penetration depth in bio-tissue. What's more, the SHNPs also possess well photothermal conversion efficiency for photothermal therapy, because Bi2 S3 is a thin band semiconductor with strong near-infrared absorption that can cause local overheat. In vivo tumor ablation studies show that synergistic radio/photodynamic/photothermal therapy achieves more significant therapeutic effect than any single treatment. In addition, with the strong X-ray attenuation and high near-infrared absorption, the as-obtained SHNPs can also be applied as a multimodal contrast agent in CT/PA imaging.
Collapse
Affiliation(s)
- Zhao Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Yong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinghua Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangfeng Du
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jiani Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Wang
- School of Material Science and Engineering, Institute of Nano Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
263
|
Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017; 117:13566-13638. [DOI: 10.1021/acs.chemrev.7b00258] [Citation(s) in RCA: 1059] [Impact Index Per Article: 151.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenpei Fan
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peng Huang
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
264
|
Liu Y, Ji X, Liu J, Tong WWL, Askhatova D, Shi J. Tantalum Sulfide Nanosheets as a Theranostic Nanoplatform for Computed Tomography Imaging-Guided Combinatorial Chemo-Photothermal Therapy. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1703261. [PMID: 29290753 PMCID: PMC5743210 DOI: 10.1002/adfm.201703261] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Near-infrared (NIR)-absorbing metal-based nanomaterials have shown tremendous potential for cancer therapy, given their facile and controllable synthesis, efficient photothermal conversion, capability of spatiotemporal-controlled drug delivery, and intrinsic imaging function. Tantalum (Ta) is among the most biocompatible metals and arouses negligible adverse biological responses in either oxidized or reduced forms, and thus Ta-derived nanomaterials represent promising candidates for biomedical applications. However, Ta-based nanomaterials by themselves have not been explored for NIR-mediated photothermal ablation therapy. In this work, we report an innovative Ta-based multifunctional nanoplatform composed of biocompatible tantalum sulfide (TaS2) nanosheets (NSs) for simultaneous NIR hyperthermia, drug delivery, and computed tomography (CT) imaging. The TaS2 NSs exhibit multiple unique features including (i) efficient NIR light-to-heat conversion with a high photothermal conversion efficiency of 39%. (ii) high drug loading (177% by weight), (iii) controlled drug release triggered by NIR light and moderate acidic pH, (iv) high tumor accumulation via heat-enhanced tumor vascular permeability, (v) complete tumor ablation and negligible side effects, and (vi) comparable CT imaging contrast efficiency to the widely clinically used agent iobitridol. We expect that this multifunctional NS platform can serve as a promising candidate for imaging-guided cancer therapy and selection of cancer patients with high tumor accumulation.
Collapse
Affiliation(s)
- Yanlan Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoyuan Ji
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Liu
- Department of Radiology, the Second Hospital of Jilin University Norman Bethune, Changchun, 130022, China
| | - Winnie W L Tong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Askhatova
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
265
|
Liu F, Lou J, Hristov D. X-Ray responsive nanoparticles with triggered release of nitrite, a precursor of reactive nitrogen species, for enhanced cancer radiosensitization. NANOSCALE 2017; 9:14627-14634. [PMID: 28936509 DOI: 10.1039/c7nr04684g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Remotely and locally triggered release of therapeutic species by X-ray irradiation is highly desired to enhance the efficacy of radiotherapy. However, the development of such X-ray responsive nanosystems remains a challenge, especially in response to high energy clinically relevant X-ray radiation. Herein, we report novel nitroimidazole ligated gold nanoparticles (AuNPs) that synergistically function to release nitrite, an important precursor for nitric oxide and reactive nitrogen species that sensitize cancer cells, upon radiation with clinically used 6 MeV X-rays, while no release was detected without radiation. These functional AuNPs were prepared with surface-grafted nitroimidazole as the nitrite-releasing agent, cell-penetrating peptide (CPP) to induce nucleus localization, and poly(ethylene glycol) for water solubility. In vitro radiotherapy using such nanoparticles showed enhanced sensitivity of hypoxic cancer cells to X-ray radiation, presumably due to the generation of both reactive oxygen and nitrogen species. The dose modifying factor (DMF) was found to be 0.71 for the dual-functionalized nanoparticle, which indicates that significant lower X-ray doses are required to achieve the same therapeutic effects. Thus, X-ray triggered nitrite release from gold-nitroimidazole nanosystems offers a novel strategy to sensitize cancer cells for improved radiotherapy.
Collapse
Affiliation(s)
- Fang Liu
- Department of Radiation Oncology-Radiation Physics, Stanford University, Stanford, California, USA 94305.
| | | | | |
Collapse
|
266
|
Li Y, Zhou Y, Han W, Shi M, Zhao H, Liu Y, Zhang F, Zhang J. Novel lipidic and bienzymatic nanosomes for efficient delivery and enhanced bioactivity of catalase. Int J Pharm 2017; 532:157-165. [DOI: 10.1016/j.ijpharm.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/08/2017] [Accepted: 09/03/2017] [Indexed: 01/19/2023]
|
267
|
Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy. J Control Release 2017; 263:79-89. [DOI: 10.1016/j.jconrel.2016.11.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/25/2016] [Accepted: 11/09/2016] [Indexed: 11/19/2022]
|
268
|
Liu T, Zhang N, Wang Z, Wu M, Chen Y, Ma M, Chen H, Shi J. Endogenous Catalytic Generation of O 2 Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation. ACS NANO 2017; 11:9093-9102. [PMID: 28796487 DOI: 10.1021/acsnano.7b03772] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High intensity focused ultrasound (HIFU) surgery generally suffers from poor precision and low efficiency in clinical application, especially for cancer therapy. Herein, a multiscale hybrid catalytic nanoreactor (catalase@MONs, abbreviated as C@M) has been developed as a tumor-sensitive contrast and synergistic agent (C&SA) for ultrasound-guided HIFU cancer surgery, by integrating dendritic-structured mesoporous organosilica nanoparticles (MONs) and catalase immobilized in the large open pore channels of MONs. Such a hybrid nanoreactor exhibited sensitive catalytic activity toward H2O2, facilitating the continuous O2 gas generation in a relatively mild manner even if incubated with 10 μM H2O2, which finally led to enhanced ablation in the tissue-mimicking PAA gel model after HIFU exposure mainly resulting from intensified cavitation effect. The C@M nanoparticles could be accumulated within the H2O2-enriched tumor region through enhanced permeability and retention effect, enabling durable contrast enhancement of ultrasound imaging, and highly efficient tumor ablation under relatively low power of HIFU exposure in vivo. Very different from the traditional perfluorocarbon-based C&SA, such an on-demand catalytic nanoreactor could realize the accurate positioning of tumor without HIFU prestimulation and efficient HIFU ablation with a much safer power output, which is highly desired in clinical HIFU application.
Collapse
Affiliation(s)
- Tianzhi Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Nan Zhang
- Second Affiliated Hospital of Chongqing Medical University , Chongqing 400016, People's Republic of China
| | - Zhigang Wang
- Second Affiliated Hospital of Chongqing Medical University , Chongqing 400016, People's Republic of China
| | - Meiying Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
| |
Collapse
|
269
|
Cheng X, Yong Y, Dai Y, Song X, Yang G, Pan Y, Ge C. Enhanced Radiotherapy using Bismuth Sulfide Nanoagents Combined with Photo-thermal Treatment. Theranostics 2017; 7:4087-4098. [PMID: 29158812 PMCID: PMC5694999 DOI: 10.7150/thno.20548] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Nanotechniques that can improve the effectiveness of radiotherapy (RT) by integrating it with multimodal imaging are highly desirable. Results In this study, we fabricated Bi2S3 nanorods that have attractive features such as their ability to function as contrast agents for X-ray computed tomography (CT) and photoacoustic (PA) imaging as well as good biocompatibility. Both in vitro and in vivo studies confirmed that the Bi2S3 nanoagents could potentiate the lethal effects of radiation via amplifying the local radiation dose and enhancing the anti-tumor efficacy of RT by augmenting the photo-thermal effect. Furthermore, the nanoagent-mediated hyperthermia could effectively increase the oxygen concentration in hypoxic regions thereby inhibiting the expression of hypoxia-inducible factor (HIF-1α). This, in turn, interfered with DNA repair via decreasing the expression of DNA repair-related proteins to overcome radio-resistance. Also, RT combined with nanoagent-mediated hyperthermia could substantially suppress tumor metastasis via down-regulating angiogenic factors. Conclusion In summary, we constructed a single-component powerful nanoagent for CT/PA imaging-guided tumor radiotherapy and, most importantly, explored the potential mechanisms of nanoagent-mediated photo-thermal treatment for enhancing the efficacy of RT in a synergistic manner.
Collapse
Affiliation(s)
- Xiaju Cheng
- School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuan Yong
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yiheng Dai
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xin Song
- School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Gang Yang
- School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yue Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Cuicui Ge
- School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
270
|
Itel F, Schattling PS, Zhang Y, Städler B. Enzymes as key features in therapeutic cell mimicry. Adv Drug Deliv Rev 2017; 118:94-108. [PMID: 28916495 DOI: 10.1016/j.addr.2017.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 11/19/2022]
Abstract
Cell mimicry is a nature inspired concept that aims to substitute for missing or lost (sub)cellular function. This review focuses on the latest advancements in the use of enzymes in cell mimicry for encapsulated catalysis and artificial motility in synthetic bottom-up assemblies with emphasis on the biological response in cell culture or more rarely in animal models. Entities across the length scale from nano-sized enzyme mimics, sub-micron sized artificial organelles and self-propelled particles (swimmers) to micron-sized artificial cells are discussed. Although the field remains in its infancy, the primary aim of this review is to illustrate the advent of nature-mimicking artificial molecules and assemblies on their way to become a complementary alternative to their role models for diverse biomedical purposes.
Collapse
Affiliation(s)
- Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Philipp S Schattling
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark.
| |
Collapse
|
271
|
|
272
|
Gao M, Liang C, Song X, Chen Q, Jin Q, Wang C, Liu Z. Erythrocyte-Membrane-Enveloped Perfluorocarbon as Nanoscale Artificial Red Blood Cells to Relieve Tumor Hypoxia and Enhance Cancer Radiotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701429. [PMID: 28722140 DOI: 10.1002/adma.201701429] [Citation(s) in RCA: 409] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/07/2017] [Indexed: 05/19/2023]
Abstract
Hypoxia, a common feature within many types of solid tumors, is known to be closely associated with limited efficacy for cancer therapies, including radiotherapy (RT) in which oxygen is essential to promote radiation-induced cell damage. Here, an artificial nanoscale red-blood-cell system is designed by encapsulating perfluorocarbon (PFC), a commonly used artificial blood substitute, within biocompatible poly(d,l-lactide-co-glycolide) (PLGA), obtaining PFC@PLGA nanoparticles, which are further coated with a red-blood-cell membrane (RBCM). The developed PFC@PLGA-RBCM nanoparticles with the PFC core show rather efficient loading of oxygen, as well as greatly prolonged blood circulation time owing to the coating of RBCM. With significantly improved extravascular diffusion within the tumor mass, owing to their much smaller nanoscale sizes compared to native RBCs with micrometer sizes, PFC@PLGA-RBCM nanoparticles are able to effectively deliver oxygen into tumors after intravenous injection, leading to greatly relieved tumor hypoxia and thus remarkably enhanced treatment efficacy during RT. This work thus presents a unique type of nanoscale RBC mimic for efficient oxygen delivery into solid tumors, favorable for cancer treatment by RT, and potentially other types of therapy as well.
Collapse
Affiliation(s)
- Min Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chao Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Xuejiao Song
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qiutong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
273
|
Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat Commun 2017; 8:357. [PMID: 28842577 PMCID: PMC5572465 DOI: 10.1038/s41467-017-00424-8] [Citation(s) in RCA: 862] [Impact Index Per Article: 123.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022] Open
Abstract
Tumor cells metabolize in distinct pathways compared with most normal tissue cells. The resulting tumor microenvironment would provide characteristic physiochemical conditions for selective tumor modalities. Here we introduce a concept of sequential catalytic nanomedicine for efficient tumor therapy by designing and delivering biocompatible nanocatalysts into tumor sites. Natural glucose oxidase (GOD, enzyme catalyst) and ultrasmall Fe3O4 nanoparticles (inorganic nanozyme, Fenton reaction catalyst) have been integrated into the large pore-sized and biodegradable dendritic silica nanoparticles to fabricate the sequential nanocatalyst. GOD in sequential nanocatalyst could effectively deplete glucose in tumor cells, and meanwhile produce a considerable amount of H2O2 for subsequent Fenton-like reaction catalyzed by Fe3O4 nanoparticles in response to mild acidic tumor microenvironment. Highly toxic hydroxyl radicals are generated through these sequential catalytic reactions to trigger the apoptosis and death of tumor cells. The current work manifests a proof of concept of catalytic nanomedicine by approaching selectivity and efficiency concurrently for tumor therapeutics.The specific metabolism of cancer cells may allow for selective tumor therapeutics. Here, the authors show that a suitable combination of an enzyme and iron nanoparticles loaded on dendritic silica induces apoptosis of cancer cells in response to the glucose-reliant and mild acidic microenvironment.
Collapse
|
274
|
Song G, Cheng L, Chao Y, Yang K, Liu Z. Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700996. [PMID: 28643452 DOI: 10.1002/adma.201700996] [Citation(s) in RCA: 449] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/11/2017] [Indexed: 05/22/2023]
Abstract
Radiation therapy (RT) including external beam radiotherapy (EBRT) and internal radioisotope therapy (RIT) has been widely used for clinical cancer treatment. However, owing to the low radiation absorption of tumors, high doses of ionizing radiations are often needed during RT, leading to severe damages to normal tissues adjacent to tumors. Meanwhile, the RT efficacies are limited by different mechanisms, among which the tumor hypoxia-associated radiation resistance is a well-known one, as there exists hypoxia inside most solid tumors while oxygen is essential to enhance radiation-induced DNA damages. With the development in nanotechnology, there have been great interests in using nanomedicine strategies to enhance radiation responses of tumors. Nanomaterials containing high-Z elements to absorb radiation rays (e.g. X-ray) can act as radio-sensitizers to deposit radiation energy within tumors and promote treatment efficacy. Nanoscale carriers are able to deliver therapeutic radioisotopes into tumors for internal RIT, or chemotherapeutic drugs for synergistically combined chemo-radiotherapy. As uncovered in recent studies, the tumor microenvironment could be modulated by various nanomedicine approaches to overcome hypoxia-associated radiation resistance. Herein, the authors will summarize the applications of nanomedicine for RT cancer treatment, and pay particular attention to the latest development of 'advanced materials' for enhanced cancer RT.
Collapse
Affiliation(s)
- Guosheng Song
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California, 94305-5484, USA
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Chao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Yang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
275
|
Tian Z, Li X, Ma Y, Chen T, Xu D, Wang B, Qu Y, Gao Y. Quantitatively Intrinsic Biomimetic Catalytic Activity of Nanocerias as Radical Scavengers and Their Ability against H 2O 2 and Doxorubicin-Induced Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23342-23352. [PMID: 28643512 DOI: 10.1021/acsami.7b04761] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Artificial enzymes as radical scavengers show great potentials in treatments of various diseases induced by oxidative stress. Herein, the quantitative analysis indicates that the intrinsic activity of nanocerias for the degradation of radicals is determined by the concentration of surface defects as well as their morphological features. The surface Ce3+ fraction of the CeO2 nanozymes with a similar morphology can be used as a descriptor to index their catalytic activity as radical scavengers. Defect-abundant porous nanorods of ceria (PN-CeO2) with a large surface area (141 m2/g) and high surface Ce3+ fraction (32.8%) deliver an excellent catalytic capability for the degradation of radicals, which is 15.5 times higher than that of Trolox. Results indicate that PN-CeO2 not only provides more surface catalytic centers but also supplies the active site with higher activity. Oxidative stress induced by doxorubicin (Dox), an essential medicine for a wide range of tumors, was used as the model system to evaluate the radical degradation ability of PN-CeO2. Both in vitro cellar (H9c2 cells) and in vivo animal models revealed that PN-CeO2 did not affect the cell and rat growth and was able to alleviate the Dox-induced oxidative stress. Results suggest that the artificial PN-CeO2 nanozymes have potentials to function as an adjuvant medicine during tumor chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Tao Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Center, The Fourth Military Medical University , Xi'an 710032, China
| | - Dehui Xu
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Center, The Fourth Military Medical University , Xi'an 710032, China
| | | | | | | |
Collapse
|
276
|
Kim E, Zwi-Dantsis L, Reznikov N, Hansel CS, Agarwal S, Stevens MM. One-Pot Synthesis of Multiple Protein-Encapsulated DNA Flowers and Their Application in Intracellular Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201701086. [PMID: 28474844 PMCID: PMC5516917 DOI: 10.1002/adma.201701086] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/30/2017] [Indexed: 05/19/2023]
Abstract
Inspired by biological systems, many biomimetic methods suggest fabrication of functional materials with unique physicochemical properties. Such methods frequently generate organic-inorganic composites that feature highly ordered hierarchical structures with intriguing properties, distinct from their individual components. A striking example is that of DNA-inorganic hybrid micro/nanostructures, fabricated by the rolling circle technique. Here, a novel concept for the encapsulation of bioactive proteins in DNA flowers (DNF) while maintaining the activity of protein payloads is reported. A wide range of proteins, including enzymes, can be simultaneously associated with the growing DNA strands and Mg2 PPi crystals during the rolling circle process, ultimately leading to the direct immobilization of proteins into DNF. The unique porous structure of this construct, along with the abundance of Mg ions and DNA molecules present, provides many interaction sites for proteins, enabling high loading efficiency and enhanced stability. Further, as a proof of concept, it is demonstrated that the DNF can deliver payloads of cytotoxic protein (i.e., RNase A) to the cells without a loss in its biological function and structural integrity, resulting in highly increased cell death compared to the free protein.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Materials, Department of Bioengineering and Institute for
Biomedical Engineering, Imperial College London, London, SW7 2AZ, United
Kingdom
| | - Limor Zwi-Dantsis
- Department of Materials, Department of Bioengineering and Institute for
Biomedical Engineering, Imperial College London, London, SW7 2AZ, United
Kingdom
| | - Natalie Reznikov
- Department of Materials, Department of Bioengineering and Institute for
Biomedical Engineering, Imperial College London, London, SW7 2AZ, United
Kingdom
| | - Catherine S. Hansel
- Department of Materials, Department of Bioengineering and Institute for
Biomedical Engineering, Imperial College London, London, SW7 2AZ, United
Kingdom
| | - Shweta Agarwal
- Department of Materials, Department of Bioengineering and Institute for
Biomedical Engineering, Imperial College London, London, SW7 2AZ, United
Kingdom
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute for
Biomedical Engineering, Imperial College London, London, SW7 2AZ, United
Kingdom
| |
Collapse
|
277
|
Goel S, Ni D, Cai W. Harnessing the Power of Nanotechnology for Enhanced Radiation Therapy. ACS NANO 2017; 11:5233-5237. [PMID: 28621524 PMCID: PMC5552968 DOI: 10.1021/acsnano.7b03675] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Radiotherapy has emerged as one of the first lines of treatment in oncology. The past few decades have seen dramatic changes in the delivery of radiation therapy, with dose fractionation and treatment planning being the major focuses of research. Although effective, such empirical approaches are hardly optimal, and instances of patient mortality and tumor relapse are not rare. In this Perspective, we review the emerging technologies for optimization of radiosensitization, hypoxia modulation, and combinatorial therapeutic regimes for improved treatment outcomes in preclinical tumor models, with a focus on nanotechnology-mediated approaches. Such an approach is expected to open more productive avenues in the advancement of radiation therapy compared to simply modulating the radiation dose delivered to the tumor.
Collapse
Affiliation(s)
- Shreya Goel
- Department of Materials Science & Engineering, University of Wisconsin, Madison, Wisconsin 53705, United States
- Corresponding Authors:.
| | - Dalong Ni
- Department of Radiology, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Department of Materials Science & Engineering, University of Wisconsin, Madison, Wisconsin 53705, United States
- Department of Radiology, University of Wisconsin, Madison, Wisconsin 53705, United States
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
- Corresponding Authors:.
| |
Collapse
|
278
|
Du J, Zheng X, Yong Y, Yu J, Dong X, Zhang C, Zhou R, Li B, Yan L, Chen C, Gu Z, Zhao Y. Design of TPGS-functionalized Cu 3BiS 3 nanocrystals with strong absorption in the second near-infrared window for radiation therapy enhancement. NANOSCALE 2017; 9:8229-8239. [PMID: 28580979 DOI: 10.1039/c7nr02213a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Integrating radiation therapy with high-depth photothermal therapy in the second near-infrared (NIR) window is highly required for efficient treatment of deep-seated tumor cells. Here, we constructed a multifunctional nano-theranostic with bimetallic chalcogenide nanocrystals (NCs) functionalized with amphiphilic d-α-tocopherol polyethylene glycol 1000 succinate (TPGS-Cu3BiS3). Benefiting from the strong absorbance of both X-ray and NIR light in the second NIR window, TPGS-Cu3BiS3 CNs can not only deposit more radiation dose to trigger enhanced radiation damage in vivo, but also conduct photo-induced hyperthermia for thermal ablation in the second NIR window and effective improvement of tumor oxygenation to overcome the hypoxia-associated radio-resistance of tumors. Moreover, copper ions on the surface of TPGS-Cu3BiS3 NCs are capable of catalyzing the Fenton-like and Haber-Weiss reactions to produce highly reactive hydroxyl radicals, leading to the increase in the level of oxygen radicals and further enhance cancer cell destruction. Apart from their therapeutic application, by means of X-ray computer tomography imaging as well as multispectral optoacoustic tomography imaging, TPGS-Cu3BiS3 NCs also have the potential as a nano-theranostic to offer remarkable therapeutic outcome for deep-seated tumor cells in imaging-guided synergistically enhanced radiation therapy.
Collapse
Affiliation(s)
- Jiangfeng Du
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev 2017; 46:3830-3852. [PMID: 28516983 PMCID: PMC5521825 DOI: 10.1039/c6cs00592f] [Citation(s) in RCA: 616] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanovehicles can efficiently carry and deliver anticancer agents to tumour sites. Compared with normal tissue, the tumour microenvironment has some unique properties, such as vascular abnormalities, hypoxia and acidic pH. There are many types of cells, including tumour cells, macrophages, immune and fibroblast cells, fed by defective blood vessels in the solid tumour. Exploiting the tumour microenvironment can benefit the design of nanoparticles for enhanced therapeutic effectiveness. In this review article, we summarized the recent progress in various nanoformulations for cancer therapy, with a special emphasis on tumour microenvironment stimuli-responsive ones. Numerous tumour microenvironment modulation strategies with promising cancer therapeutic efficacy have also been highlighted. Future challenges and opportunities of design consideration are also discussed in detail. We believe that these tumour microenvironment modulation strategies offer a good chance for the practical translation of nanoparticle formulas into clinic.
Collapse
Affiliation(s)
- Yunlu Dai
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen 361102, China. and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | - Can Xu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | - Xiaolian Sun
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen 361102, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
280
|
Chang Y, He L, Li Z, Zeng L, Song Z, Li P, Chan L, You Y, Yu XF, Chu PK, Chen T. Designing Core-Shell Gold and Selenium Nanocomposites for Cancer Radiochemotherapy. ACS NANO 2017; 11:4848-4858. [PMID: 28460158 DOI: 10.1021/acsnano.7b01346] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Radiotherapy is an important regime for treating malignant tumors. There is interest in the development of radiosensitizers to increase the local treatment efficacy under a relatively low and safe radiation dose. In this study, we designed Au@Se-R/A nanocomposites (Au@Se-R/A NCs) as nano-radiosensitizer to realize synergistic radiochemotherapy based on the radiotherapy sensitization property of Au nanorods (NRs) and antitumor activity of Se NPs. In vitro studies show that the combined treatment of A375 melanoma cells in culture with NCs and X-ray induces cell apoptosis through alteration in expression of p53 and DNA-damaging genes and triggers intracellular ROS overproduction, leading to greatly enhanced anticancer efficacy. Further studies using clinically used radiotherapy equipment demonstrate that the combined treatment of NCs and X-ray significantly inhibits the tumor growth in vivo and shows negligible acute toxicity to the major organs. Taken together, this study provides a strategy for clinical translation application of nanomedicne in cancer radiochemotherapy.
Collapse
Affiliation(s)
- Yanzhou Chang
- Department of Chemistry, Jinan University , Guangzhou 510632, P.R. China
| | - Lizhen He
- Department of Chemistry, Jinan University , Guangzhou 510632, P.R. China
| | - Zhibin Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| | - Lilan Zeng
- Department of Chemistry, Jinan University , Guangzhou 510632, P.R. China
| | - Zhenhuan Song
- Department of Chemistry, Jinan University , Guangzhou 510632, P.R. China
| | - Penghui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| | - Leung Chan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| | - Yuanyuan You
- Department of Chemistry, Jinan University , Guangzhou 510632, P.R. China
| | - Xue-Feng Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University , Guangzhou 510632, P.R. China
| |
Collapse
|
281
|
Zhang R, Song X, Liang C, Yi X, Song G, Chao Y, Yang Y, Yang K, Feng L, Liu Z. Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials 2017; 138:13-21. [PMID: 28550753 DOI: 10.1016/j.biomaterials.2017.05.025] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/08/2017] [Accepted: 05/17/2017] [Indexed: 12/15/2022]
Abstract
Aiming at improved therapeutic efficacies, the combination of chemotherapy and radiotherapy (chemo-radiotherapy) has been widely studied and applied in clinic. However, the hostile characteristics of tumor microenvironment such as hypoxia often limit the efficacies in both types of cancer therapies. Herein, catalase (CAT), an antioxidant enzyme, is encapsulated inside liposomes constituted by cisplatin (IV)-prodrug-conjugated phospholipid, forming CAT@Pt (IV)-liposome for enhanced chemo-radiotherapy of cancer. After being loaded inside liposomes, CAT within CAT@Pt (IV)-liposome shows retained and well-protected enzyme activity, and is able to trigger decomposition of H2O2 produced by tumor cells, so as to produce additional oxygen for hypoxia relief. As the result, treatment of CAT@Pt (IV)-liposome induces the highest level of DNA damage in cancer cells after X-ray radiation compared to the control groups. In vivo tumor treatment further demonstrates a remarkably improved therapeutic outcome in chemo-radiotherapy with such CAT@Pt (IV)-liposome nanoparticles. Hence, an exquisite type of liposome-based nanoparticles is developed in this work by integrating cisplatin-based chemotherapy and catalase-induced tumor hypoxia relief together for combined chemo-radiotherapy with great synergistic efficacy, promising for clinical translation in cancer treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xuejiao Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chao Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xuan Yi
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guosheng Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yu Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Kai Yang
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
282
|
Shen S, Zhu C, Huo D, Yang M, Xue J, Xia Y. A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative Destruction of Hypoxic Cancer Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Song Shen
- The Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology and Emory University; Atlanta GA 30332 USA
- College of Pharmaceutical Sciences; Jiangsu University; Zhenjiang Jiangsu 212013 China
| | - Chunlei Zhu
- The Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology and Emory University; Atlanta GA 30332 USA
| | - Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology and Emory University; Atlanta GA 30332 USA
| | - Miaoxin Yang
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology and Emory University; Atlanta GA 30332 USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology and Emory University; Atlanta GA 30332 USA
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332 USA
| |
Collapse
|
283
|
Shen S, Zhu C, Huo D, Yang M, Xue J, Xia Y. A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative Destruction of Hypoxic Cancer Cells. Angew Chem Int Ed Engl 2017; 56:8801-8804. [PMID: 28464414 DOI: 10.1002/anie.201702898] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 01/16/2023]
Abstract
Anticancer modalities based on oxygen free radicals, including photodynamic therapy and radiotherapy, have emerged as promising treatments in the clinic. However, the hypoxic environment in tumor tissue prevents the formation of oxygen free radicals. Here we introduce a novel strategy that employs oxygen-independent free radicals generated from a polymerization initiator for eradicating cancer cells. The initiator is mixed with a phase-change material and loaded into the cavities of gold nanocages. Upon irradiation by a near-infrared laser, the phase-change material is melted due to the photothermal effect of gold nanocages, leading to the release and decomposition of the loaded initiator to generate free radicals. The free radicals produced in this way are highly effective in inducing apoptosis in hypoxic cancer cells.
Collapse
Affiliation(s)
- Song Shen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chunlei Zhu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Miaoxin Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
284
|
Yu X, Li A, Zhao C, Yang K, Chen X, Li W. Ultrasmall Semimetal Nanoparticles of Bismuth for Dual-Modal Computed Tomography/Photoacoustic Imaging and Synergistic Thermoradiotherapy. ACS NANO 2017; 11:3990-4001. [PMID: 28395135 DOI: 10.1021/acsnano.7b00476] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multifunctional nanomaterials with integrated diagnostic and therapeutic functions, combination therapy to enhance treatment efficacy, as well as low toxicity have drawn tremendous attentions. Herein, we report a multifunctional theranostic agent based on peptide (LyP-1)-labeled ultrasmall semimetal nanoparticles of bismuth (Bi-LyP-1 NPs). Ultrasmall Bi NPs (3.6 nm) were facilely synthesized using oleylamine as the reducing agent and exhibited a higher tumor accumulation after being conjugated with the tumor-homing peptide LyP-1. The abilities to absorb both ionizing radiation and the second near-infrared (NIR-II) window laser radiation ensured that Bi-LyP-1 NPs are capable of dual-modal computed tomography/photoacoustic imaging and efficient synergistic NIR-II photothermal/radiotherapy of tumors. Moreover, Bi-LyP-1 NPs could be rapidly cleared from mice through both renal and fecal clearance and almost completely cleared after 30 days. Such multifunctional nanoparticles as efficient cancer theranostic agents, coupled with fast clearance and low toxicity, shed light on the future use of semimetal nanoparticles for biomedicine.
Collapse
Affiliation(s)
- Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ang Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Chengzhi Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Kai Yang
- School of Radiation Medicine and Protection (SRMP) and School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou, Jiangsu 215123, People's Republic of China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
285
|
Yu CYY, Xu H, Ji S, Kwok RTK, Lam JWY, Li X, Krishnan S, Ding D, Tang BZ. Mitochondrion-Anchoring Photosensitizer with Aggregation-Induced Emission Characteristics Synergistically Boosts the Radiosensitivity of Cancer Cells to Ionizing Radiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28195448 DOI: 10.1002/adma.201606167] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/13/2017] [Indexed: 05/14/2023]
Abstract
The first mitochondrion-anchoring photosensitizer that specifically generates singlet oxygen (1 O2 ) in mitochondria under white light irradiation that can serve as a highly effective radiosensitizer is reported here, significantly sensitizing cancer cells to ionizing radiation. An aggregation-induced emission luminogen (AIEgen), namely DPA-SCP, is rationally designed with α-cyanostilbene as a simple building block to reveal AIE, diphenylamino (DPA) group as a strong electron donating group to benefit red emission and efficient light-controlled 1 O2 generation, as well as a pyridinium salt as the targeting moiety to ensure specific mitochondrial localization. The AIE signature endows DPA-SCP with the capacity to visualize mitochondria in a fluorescence turn-on mode. It is found that under optimized experimental condition, DPA-SCP with white light does not lead to apoptosis/death of cancer cells, whereas provides an elevated 1 O2 environment in the mitochondria. More importantly, increasing intracellular level of 1 O2 originated from mitochondria is demonstrated to be a generic method to enhance the radiosensitivity of cancer cells with a supra-additive synergistic effect of "0 + 1 > 1." Noteworthy is that "DPA-SCP + white light" achieves a high SER10 value of 1.62, which is much larger than that of the most popularly used radiosensitizers, gold nanoparticles (1.19), and paclitaxel (1.32).
Collapse
Affiliation(s)
- Chris Y Y Yu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Neuroscienceand Division of Biomedical Engineering, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| | - Huae Xu
- Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Shenglu Ji
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Neuroscienceand Division of Biomedical Engineering, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Neuroscienceand Division of Biomedical Engineering, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaolin Li
- Department of Geriatric Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sunil Krishnan
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Neuroscienceand Division of Biomedical Engineering, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
286
|
Chen Y, Song G, Dong Z, Yi X, Chao Y, Liang C, Yang K, Cheng L, Liu Z. Drug-Loaded Mesoporous Tantalum Oxide Nanoparticles for Enhanced Synergetic Chemoradiotherapy with Reduced Systemic Toxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602869. [PMID: 27957802 DOI: 10.1002/smll.201602869] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Combining chemotherapy and radiotherapy (chemoradiotherapy) has been widely applied in many clinical practices, showing promises in enhancing therapeutic outcomes. Nontoxic nanocarriers that not only are able to deliver chemotherapeutics into tumors, but could also act as radiosensitizers to enhance radiotherapy would thus be of great interest in the development of chemoradiotherapies. To achieve this aim, herein mesoporous tantalum oxide (mTa2 O5 ) nanoparticles with polyethylene glycol (PEG) modification are fabricated. Those mTa2 O5 -PEG nanoparticles could serve as a drug delivery vehicle to allow efficient loading of chemotherapeutics such as doxorubicin (DOX), whose release appears to be pH responsive. Meanwhile, owing to the interaction of Ta with X-ray, mTa2 O5 -PEG nanoparticles could offer an intrinsic radiosensitization effect to increase X-ray-induced DNA damages during radiotherapy. As a result, DOX-loaded mTa2 O5 -PEG (mTa2 O5 -PEG/DOX) nanoparticles can offer a strong synergistic therapeutic effect during the combined chemoradiotherapy. Furthermore, in chemoradiotherapy, such mTa2 O5 -PEG/DOX shows remarkably reduced side effects compared to free DOX, which at the same dose appears to be lethal to animals. This work thus presents a new type of mesoporous nanocarrier particularly useful for the delivery of safe and effective chemoradiotherapy.
Collapse
Affiliation(s)
- Yuyan Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, the Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guosheng Song
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, the Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ziliang Dong
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, the Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xuan Yi
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Chao
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, the Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chao Liang
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, the Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Yang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, the Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, the Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
287
|
Feng L, Cheng L, Dong Z, Tao D, Barnhart TE, Cai W, Chen M, Liu Z. Theranostic Liposomes with Hypoxia-Activated Prodrug to Effectively Destruct Hypoxic Tumors Post-Photodynamic Therapy. ACS NANO 2017; 11:927-937. [PMID: 28027442 PMCID: PMC5372701 DOI: 10.1021/acsnano.6b07525] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photodynamic therapy (PDT), a noninvasive cancer therapeutic method triggered by light, would lead to severe tumor hypoxia after treatment. Utilizing a hypoxia-activated prodrug, AQ4N, which only shows toxicity to cancer cells under hypoxic environment, herein, a multipurpose liposome is prepared by encapsulating hydrophilic AQ4N and hydrophobic hexadecylamine conjugated chlorin e6 (hCe6), a photosensitizer, into its aqueous cavity and hydrophobic bilayer, respectively. After chelating a 64Cu isotope with Ce6, the obtained AQ4N-64Cu-hCe6-liposome is demonstrated to be an effective imaging probe for in vivo positron emission tomography, which together with in vivo fluorescence and photoacoustic imaging uncovers efficient passive homing of those liposomes after intravenous injection. After being irradiated with the 660 nm light-emitting diode light, the tumor bearing mice with injection of AQ4N-hCe6-liposome show severe tumor hypoxia, which in turn would trigger activation of AQ4N, and finally contributes to remarkably improved cancer treatment outcomes via sequential PDT and hypoxia-activated chemotherapy. This work highlights a liposome-based theranostic nanomedicine that could utilize tumor hypoxia, a side effect of PDT, to trigger chemotherapy, resulting in greatly improved efficacy compared to conventional cancer PDT.
Collapse
Affiliation(s)
- Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Danlei Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Todd E. Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Corresponding Authors: . .
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Corresponding Authors: . .
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Corresponding Authors: . .
| |
Collapse
|
288
|
Song G, Ji C, Liang C, Song X, Yi X, Dong Z, Yang K, Liu Z. TaOx decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy. Biomaterials 2016; 112:257-263. [PMID: 27768978 DOI: 10.1016/j.biomaterials.2016.10.020] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
Cancer radiotherapy (RT) is a clinically used tumor treatment strategy applicable for a wide range of solid tumors. However, during RT treatment of tumors, only a small portion of applied ionizing irradiation energy is absorbed by the tumor, in which the largely hypoxic microenvironment also limits the anti-tumor efficacy of RT. In this work, we rationally fabricate polyethylene glycol (PEG) stabilized perfluorocarbon (PFC) nano-droplets decorated with TaOx nanoparticles (TaOx@PFC-PEG) as a multifunctional RT sensitizer. The obtained TaOx@PFC-PEG nanoparticles on one hand can absorb X-ray by TaOx to concentrate radiation energy within tumor cells, on the other hand after saturating PFC with oxygen will act as an oxygen reservoir to gradually release oxygen and improve tumor oxygenation. As the result, remarkably enhanced in vivo RT treatment is achieved with TaOx@PFC-PEG nanoparticles in our mouse tumor model experiments. Our work thus presents a new nanotechnology strategy to enhance RT-induced tumor treatment by simultaneously concentrating radiation energy within tumors and improving tumor oxygenation, using one multifunctional agent.
Collapse
Affiliation(s)
- Guosheng Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Suzhou, Jiangsu 215123, China
| | - Chenghong Ji
- Department of Respiratory Diseases, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chao Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Suzhou, Jiangsu 215123, China
| | - Xuejiao Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Suzhou, Jiangsu 215123, China
| | - Xuan Yi
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X) Medical College of Soochow University Suzhou, Jiangsu 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Suzhou, Jiangsu 215123, China
| | - Kai Yang
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X) Medical College of Soochow University Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Suzhou, Jiangsu 215123, China.
| |
Collapse
|