251
|
Motomura H, Seki S, Shiozawa S, Aikawa Y, Nogami M, Kimura T. A selective c-Fos/AP-1 inhibitor prevents cartilage destruction and subsequent osteophyte formation. Biochem Biophys Res Commun 2018; 497:756-761. [DOI: 10.1016/j.bbrc.2018.02.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/17/2018] [Indexed: 10/18/2022]
|
252
|
Kim JR, Yoo JJ, Kim HA. Therapeutics in Osteoarthritis Based on an Understanding of Its Molecular Pathogenesis. Int J Mol Sci 2018; 19:ijms19030674. [PMID: 29495538 PMCID: PMC5877535 DOI: 10.3390/ijms19030674] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/14/2018] [Accepted: 02/21/2018] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease in older people and is characterized by the progressive destruction of articular cartilage, synovial inflammation, changes in subchondral bone and peri-articular muscle, and pain. Because our understanding of the aetiopathogenesis of OA remains incomplete, we haven’t discovered a cure for OA yet. This review appraises novel therapeutics based on recent progress in our understanding of the molecular pathogenesis of OA, including pro-inflammatory and pro-catabolic mediators and the relevant signalling mechanisms. The changes in subchondral bone and peri-articular muscle accompanying cartilage damage are also reviewed.
Collapse
Affiliation(s)
- Ju-Ryoung Kim
- Rheumatology Division, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyongchondong, Dongan-gu, Anyang, Kyunggi-do 431-070, Korea.
| | - Jong Jin Yoo
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Korea.
| | - Hyun Ah Kim
- Rheumatology Division, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyongchondong, Dongan-gu, Anyang, Kyunggi-do 431-070, Korea.
| |
Collapse
|
253
|
Sieker JT, Proffen BL, Waller KA, Chin KE, Karamchedu NP, Akelman MR, Perrone GS, Kiapour AM, Konrad J, Fleming BC, Murray MM. Transcriptional profiling of synovium in a porcine model of early post-traumatic osteoarthritis. J Orthop Res 2018; 36:10.1002/jor.23876. [PMID: 29460983 PMCID: PMC6102098 DOI: 10.1002/jor.23876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/15/2018] [Indexed: 02/04/2023]
Abstract
To determine the transcriptional profile of synovium during the molecular phase of post-traumatic osteoarthritis, anterior cruciate ligament transections (ACL) were performed in 36 Yucatan minipigs. Equal numbers were randomly assigned to no further treatment, ACL reconstruction or repair. Perimeniscal synovium for histopathology and RNA-sequencing was harvested at 1 and 4 weeks post-operatively and from six healthy control animals. Microscopic synovitis scores significantly worsened at 1 (p < 0.001) and 4 weeks (p = 0.003) post-surgery relative to controls, and were driven by intimal hyperplasia and increased stromal cellularity without inflammatory infiltrates. Synovitis scores were similar between no treatment, reconstruction, and repair groups (p ≥ 0.668). Relative to no treatment at 1 week, 88 and 367 genes were differentially expressed in the reconstruction and repair groups, respectively (227 and 277 at 4 weeks). Relative to controls and with the treatment groups pooled, 1,683 transcripts were concordantly differentially expressed throughout the post-surgery time-course. Affected pathways included, proteolysis_connective tissue degradation (including upregulations of protease-encoding MMP1, MMP13, and ADAMTS4), and development_cartilage development (including upregulations of ACAN, SOX9, and RUNX2), among others. Using linear regression, significant associations of post-surgery synovial expression levels of 20 genes with the articular cartilage glycosaminoglycan loss were identified. These genes were predominantly related to embryonic skeletal system development and included RUNX2. In conclusion, this study confirmed an increased synovial expression of genes that may serve as targets to prevent cartilage degradation, including MMP1, MMP13, and ADAMTS4, in knees with microscopic synovitis and cartilage proteoglycan loss. Attractive novel targets include regulators of embryonic developmental processes in synovium. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Jakob T. Sieker
- Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Kimberly A. Waller
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Kaitlyn E. Chin
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | | | - Matthew R. Akelman
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | | | - Ata M. Kiapour
- Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Johannes Konrad
- Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Braden C. Fleming
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | | |
Collapse
|
254
|
Abstract
Despite an increased understanding of the pathogenesis of osteoarthritis (OA) and the availability of a number of drugs designed to ameliorate its symptoms, a successful disease-modifying therapy remains elusive. Recent lines of evidence suggest that dehydroepiandrosterone (DHEA), a 19-carbon steroid hormone classified as an adrenal androgen, exerts a chondroprotective effect in OA patients, and it has been proven to be an effective DMOAD candidate that slows OA progression. However, the exact mechanisms underlying its anti-OA effect is largely unknown. This review summarizes emerging observations from studies of cell biology, preclinical animal studies, and preliminary clinical trials and describes the findings of investigations on this topic to develop an initial blueprint of the mechanisms by which DHEA slows OA progression. Presently, studies on DMOADs are increasing in importance but have met limited success. Encouragingly, the current data on DHEA are promising and may prove that DHEA-based treatment is efficacious for preventing and slowing human OA progression.
Collapse
|
255
|
Holyoak DT, Otero M, Armar NS, Ziemian SN, Otto A, Cullinane D, Wright TM, Goldring SR, Goldring MB, van der Meulen MC. Collagen XI mutation lowers susceptibility to load-induced cartilage damage in mice. J Orthop Res 2018; 36:711-720. [PMID: 28898438 PMCID: PMC8813548 DOI: 10.1002/jor.23731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/31/2017] [Indexed: 02/04/2023]
Abstract
Interactions among risk factors for osteoarthritis (OA) are not well understood. We investigated the combined impact of two prevalent risk factors: mechanical loading and genetically abnormal cartilage tissue properties. We used cyclic tibial compression to simulate mechanical loading in the cho/+ (Col11a1 haploinsufficient) mouse, which has abnormal collagen fibrils in cartilage due to a point mutation in the Col11a1 gene. We hypothesized that the mutant collagen would not alter phenotypic bone properties and that cho/+ mice, which develop early onset OA, would develop enhanced load-induced cartilage damage compared to their littermates. To test our hypotheses, we applied cyclic compression to the left tibiae of 6-month-old cho/+ male mice and wild-type (WT) littermates for 1, 2, and 6 weeks at moderate (4.5 N) and high (9.0 N) peak load magnitudes. We then characterized load-induced cartilage and bone changes by histology, microcomputed tomography, and immunohistochemistry. Prior to loading, cho/+ mice had less dense, thinner cortical bone compared to WT littermates. In addition, in loaded and non-loaded limbs, cho/+ mice had thicker cartilage. With high loads, cho/+ mice experienced less load-induced cartilage damage at all time points and displayed decreased matrix metalloproteinase (MMP)-13 levels compared to WT littermates. The thinner, less dense cortical bone and thicker cartilage were unexpected and may have contributed to the reduced severity of load-induced cartilage damage in cho/+ mice. Furthermore, the spontaneous proteoglycan loss resulting from the mutant collagen XI was not additive to cartilage damage from mechanical loading, suggesting that these risk factors act through independent pathways. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:711-720, 2018.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Timothy M. Wright
- Cornell University, Ithaca, NY,Hospital for Special Surgery, New York, NY,Weill Cornell Medical College, New York, NY
| | - Steven R. Goldring
- Hospital for Special Surgery, New York, NY,Weill Cornell Medical College, New York, NY
| | - Mary B. Goldring
- Hospital for Special Surgery, New York, NY,Weill Cornell Medical College, New York, NY
| | | |
Collapse
|
256
|
Calcium-phosphate complex increased during subchondral bone remodeling affects earlystage osteoarthritis. Sci Rep 2018; 8:487. [PMID: 29323204 PMCID: PMC5765022 DOI: 10.1038/s41598-017-18946-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/19/2017] [Indexed: 12/27/2022] Open
Abstract
An activation of osteoclasts and subchondral bone remodeling is a major histologic feature of early-stage osteoarthritis (OA), which can be accompanied by an increase of calcium (Ca) and phosphate (Pi) level in the subchondral milieu. Considering articular cartilage gets most of nutrition from subchondral bone by diffusion, these micro-environmental changes in subchondral bone can affect the physiology of articular chondrocytes. Here, we have shown that Ca is increased and co-localized with Pi in articular cartilage of early-stage OA. The Ca-Pi complex increased the production of MMP-3 and MMP-13 in the hypertrophic chondrocytes, which was dependent on nuclear factor-kappa B (NF-kB), p38 and extracellular signal-regulated kinase (Erk) 1/2 mitogen-activated protein (MAP) kinase and Signal transducer and activator of transcription 3 (STAT3) signaling. The Ca-Pi complexes increased the expression of endocytosis markers, and the inhibition of the formation of the Ca-Pi complex ameliorated the Ca-Pi complex-mediated increases of MMPs expression in hypertrophic chondrocytes. Our data provide insight regarding the Ca-Pi complex as a potential catabolic mediator in the subchondral milieu and support the pathogenic role of subchondral bone in the early stages of cartilage degeneration.
Collapse
|
257
|
Sieker JT, Proffen BL, Waller KA, Chin K, Karamchedu NP, Akelman MR, Perrone GS, Kiapour AM, Konrad J, Murray MM, Fleming BC. Transcriptional profiling of articular cartilage in a porcine model of early post-traumatic osteoarthritis. J Orthop Res 2018; 36:318-329. [PMID: 28671352 PMCID: PMC5752630 DOI: 10.1002/jor.23644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/25/2017] [Indexed: 02/04/2023]
Abstract
To identify the molecular pathophysiology present in early post-traumatic osteoarthritis (PTOA), the transcriptional profile of articular cartilage and its response to surgical PTOA induction were determined. Thirty six Yucatan minipigs underwent anterior cruciate ligament (ACL) transection and were randomly assigned in equal numbers to no further treatment, reconstruction or ligament repair. Cartilage was harvested at 1 and 4 weeks post-operatively and histology and RNA-sequencing were performed and compared to controls. Microscopic cartilage scores significantly worsened at 1 (p = 0.028) and 4 weeks (p = 0.001) post-surgery relative to controls, but did not differ between untreated, reconstruction or repair groups. Gene expression after ACL reconstruction and ACL transection were similar, with only 0.03% (including SERPINB7 and CR2) and 0.2% of transcripts (including INHBA) differentially expressed at 1 and 4 weeks respectively. COL2A1, COMP, SPARC, CHAD, and EF1ALPHA were the most highly expressed non ribosomal, non mitochondrial genes in the controls and remained abundant after surgery. A total of 1,275 genes were differentially expressed between 1 and 4 weeks post-surgery. With the treatment groups pooled, 682 genes were differentially expressed at both time-points, with the most significant changes observed in MMP1, COCH, POSTN, CYTL1, and PTGFR. This study confirmed the development of a microscopic PTOA stage after ACL surgery in the porcine model. Upregulation of multiple proteases (including MMP1 and ADAMTS4) were found; however, the level of expression remained orders of magnitude below that of extracellular matrix protein-coding genes (including COL2A1 and ACAN). In summary, genes with established roles in PTOA as well as novel targets for specific intervention were identified. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:318-329, 2018.
Collapse
Affiliation(s)
- Jakob T. Sieker
- Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | | | - Kimberly A. Waller
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Kaitlyn Chin
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Naga P. Karamchedu
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Matthew R. Akelman
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | | | - Ata M. Kiapour
- Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Johannes Konrad
- Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | | | - Braden C. Fleming
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
258
|
Kung LHW, Ravi V, Rowley L, Bell KM, Little CB, Bateman JF. Comprehensive Expression Analysis of microRNAs and mRNAs in Synovial Tissue from a Mouse Model of Early Post-Traumatic Osteoarthritis. Sci Rep 2017; 7:17701. [PMID: 29255152 PMCID: PMC5735155 DOI: 10.1038/s41598-017-17545-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/19/2017] [Indexed: 01/15/2023] Open
Abstract
To better understand the molecular processes involved in driving osteoarthritis disease progression we characterized expression profiles of microRNAs (miRNA) and mRNAs in synovial tissue from a post-traumatic OA mouse model. OA was induced in 10–12 week old male C57BL6 mice by bilateral surgical destabilization of the medial meniscus (DMM). RNA isolated from the anterior synovium of mice at 1 and 6 weeks post-surgery was subject to expression profiling using Agilent microarrays and qPCR. OA severity was determined histologically. Anterior and posterior synovitis decreased with post-operative time after sham and DMM. No differences in synovitis parameters were evident between sham and DMM in the anterior synovium at either time. While expression profiling revealed 394 miRNAs were dysregulated between 1 and 6 week time-points in the anterior synovium, there were no significant changes in miRNA or mRNA expression between DMM and sham mice at both time-points. Bioinformatic analysis of the miRNAs and mRNAs differentially expressed in tandem with the resolution of anterior synovial inflammation revealed similar biological processes and functions, including organismal injury, connective tissue disorder and inflammatory responses. Our data demonstrates that early OA-specific patterns of synovial miRNAs or mRNAs dysregulation could not be identified in this model of post-traumatic OA.
Collapse
Affiliation(s)
- Louise H W Kung
- Murdoch Childrens Research Institute, Parkville, Victoria, 3052, Australia
| | - Varshini Ravi
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, University of Sydney, St Leonards, New South Wales, 2065, Australia
| | - Lynn Rowley
- Murdoch Childrens Research Institute, Parkville, Victoria, 3052, Australia
| | - Katrina M Bell
- Murdoch Childrens Research Institute, Parkville, Victoria, 3052, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, University of Sydney, St Leonards, New South Wales, 2065, Australia.
| | - John F Bateman
- Murdoch Childrens Research Institute, Parkville, Victoria, 3052, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| |
Collapse
|
259
|
Son YO, Park S, Kwak JS, Won Y, Choi WS, Rhee J, Chun CH, Ryu JH, Kim DK, Choi HS, Chun JS. Estrogen-related receptor γ causes osteoarthritis by upregulating extracellular matrix-degrading enzymes. Nat Commun 2017; 8:2133. [PMID: 29247173 PMCID: PMC5732273 DOI: 10.1038/s41467-017-01868-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/20/2017] [Indexed: 01/23/2023] Open
Abstract
The estrogen-related receptor (ERR) family of orphan nuclear receptor is composed of ERRα, ERRβ, and ERRγ, which are known to regulate various isoform-specific functions under normal and pathophysiological conditions. Here, we investigate the involvement of ERRs in the pathogenesis of osteoarthritis (OA) in mice. Among ERR family members, ERRγ is markedly upregulated in cartilage from human OA patients and various mouse models of OA. Adenovirus-mediated overexpression of ERRγ in mouse knee joint or transgenic expression of ERRγ in cartilage leads to OA. ERRγ overexpression in chondrocytes directly upregulates matrix metalloproteinase (MMP)-3 and MMP13, which are known to play crucial roles in cartilage destruction in OA. In contrast, genetic ablation of Esrrg or shRNA-mediated downregulation of Esrrg in joint tissues abrogates experimental OA in mice. Our results collectively indicate that ERRγ is a novel catabolic regulator of OA pathogenesis. The pathogenesis of osteoarthritis is unclear. The authors show that estrogen-related receptor gamma is upregulated in cartilage from patients and mouse models, where it drives production of matrix-degrading MMPs in chondrocytes, and that its downregulation ameliorates pathology in mice.
Collapse
Affiliation(s)
- Young-Ok Son
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seulki Park
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ji-Sun Kwak
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yoonkyung Won
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Wan-Su Choi
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jinseol Rhee
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Churl-Hong Chun
- Department of Orthopedic Surgery, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Je-Hwang Ryu
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jang-Soo Chun
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
260
|
Role of subchondral bone properties and changes in development of load-induced osteoarthritis in mice. Osteoarthritis Cartilage 2017; 25:2108-2118. [PMID: 28919430 PMCID: PMC5688000 DOI: 10.1016/j.joca.2017.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Animal models recapitulating post-traumatic osteoarthritis (OA) suggest that subchondral bone (SCB) properties and remodeling may play major roles in disease initiation and progression. Thus, we investigated the role of SCB properties and its effects on load-induced OA progression by applying a tibial loading model on two distinct mouse strains treated with alendronate (ALN). DESIGN Cyclic compression was applied to the left tibia of 26-week-old male C57Bl/6 (B6, low bone mass) and FVB (high bone mass) mice. Mice were treated with ALN (26 μg/kg/day) or vehicle (VEH) for loading durations of 1, 2, or 6 weeks. Changes in articular cartilage and subchondral and epiphyseal cancellous bone were analyzed using histology and microcomputed tomography. RESULTS FVB mice exhibited thicker cartilage, a thicker SCB plate, and higher epiphyseal cancellous bone mass and tissue mineral density than B6 mice. Loading induced cartilage pathology, osteophyte formation, and SCB changes; however, lower initial SCB mass and stiffness in B6 mice did not attenuate load-induced OA severity compared to FVB mice. By contrast, FVB mice exhibited less cartilage damage, and slower-growing and less mature osteophytes. In B6 mice, inhibiting bone remodeling via ALN treatment exacerbated cartilage pathology after 6 weeks of loading, while in FVB mice, inhibiting bone remodeling protected limbs from load-induced cartilage loss. CONCLUSIONS Intrinsically lower SCB properties were not associated with attenuated load-induced cartilage loss. However, inhibiting bone remodeling produced differential patterns of OA pathology in animals with low compared to high SCB properties, indicating that these factors do influence load-induced OA progression.
Collapse
|
261
|
Abstract
Chronic pain conditions are often comorbid with alcohol abuse. "Self-medication" with alcohol introduces a host of problems associated with the abuse of alcohol which over time has the potential of exacerbating the painful condition. Despite the prevalence of chronic pain being associated with alcohol abuse, rodent models which mimic the comorbid conditions are lacking. In this study, we model osteoarthritis (OA) in C57BL/6J mice by surgically destabilizing the medial meniscus (DMM). Sham-operated mice served as controls. Thirteen weeks after surgery, DMM but not sham-operated mice exhibited pronounced incapacitance of the surgically manipulated hind limb compared with the nonsurgically manipulated hind limb. At this time, the mice were exposed to the 2-bottle ethanol choice, beginning with 2.5% with a gradual increasing to 20%. Compared with sham controls, DMM mice consumed more EtOH and preferred EtOH over water at the 20% EtOH concentration. Histological analysis verified that the DMM mice exhibited significant damage to the articular cartilage and osteophyte growth compared with sham controls and these measures of the severity of OA correlated with the amount of ethanol intake. Thus, the combination of the DMM model of OA with the enhanced two-bottle ethanol choice is a potential preclinical approach in mice by which the basis of the comorbid association of alcohol abuse and chronic pain conditions can be explored.
Collapse
|
262
|
Li H, Wang D, Yuan Y, Min J. New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis. Arthritis Res Ther 2017; 19:248. [PMID: 29126436 PMCID: PMC5681770 DOI: 10.1186/s13075-017-1454-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 10/12/2017] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disorder and affects approximately half of the aged population. Current treatments for OA are largely palliative until the articular cartilage has been deeply damaged and irreversible morphological changes appear. Thus, effective methods are needed for diagnosing and monitoring the progression of OA during its early stages when therapeutic drugs or biological agents are most likely to be effective. Various proteinases involved in articular cartilage degeneration in pre-OA conditions, which may represent the earliest reversible measurable changes, are considered diagnostic and therapeutic targets for early OA. Of these proteinases, matrix metalloproteinase 13 (MMP-13) has received the most attention, because it is a central node in the cartilage degradation network. In this review, we highlight the main MMP-13-related changes in OA chondrocytes, including alterations in the activity and expression level of MMP-13 by upstream regulatory factors, DNA methylation, various non-coding RNAs (ncRNAs), and autophagy. Because MMP-13 and its regulatory networks are suitable targets for the development of effective early treatment strategies for OA, we discuss the specific targets of MMP-13, including upstream regulatory proteins, DNA methylation, non-coding RNAs, and autophagy-related proteins of MMP-13, and their therapeutic potential to inhibit the development of OA. Moreover, the various entities mentioned in this review might be useful as early biomarkers and for personalized approaches to disease prevention and treatment by improving the phenotyping of early OA patients.
Collapse
Affiliation(s)
- Heng Li
- The First Affiliated Hospital of Huzhou Teachers College, Zhejiang Province, 313000, China
| | - Dan Wang
- The First Affiliated Hospital of Huzhou Teachers College, Zhejiang Province, 313000, China
| | - Yongjian Yuan
- The First Affiliated Hospital of Huzhou Teachers College, Zhejiang Province, 313000, China
| | - Jikang Min
- The First Affiliated Hospital of Huzhou Teachers College, Zhejiang Province, 313000, China. .,Department of Orthopaedics, The First Affiliated Hospital of Huzhou Teachers College, The First People's Hospital of Huzhou, Zhejiang Province, 313000, China.
| |
Collapse
|
263
|
An approach towards accountability: suggestions for increased reproducibility in surgical destabilization of medial meniscus (DMM) models. Osteoarthritis Cartilage 2017; 25:1747-1750. [PMID: 28760350 DOI: 10.1016/j.joca.2017.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 02/02/2023]
|
264
|
Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis. Stem Cells Int 2017; 2017:5979741. [PMID: 29123550 PMCID: PMC5662817 DOI: 10.1155/2017/5979741] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative disease, characterized by progressive cartilage degradation, subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage, traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards tissue repair and regeneration. Mesenchymal stem cells (MSCs), derived from the bone marrow, synovium, and even umbilical cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential, including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and tissue engineering.
Collapse
|
265
|
Habouri L, El Mansouri FE, Ouhaddi Y, Lussier B, Pelletier JP, Martel-Pelletier J, Benderdour M, Fahmi H. Deletion of 12/15-lipoxygenase accelerates the development of aging-associated and instability-induced osteoarthritis. Osteoarthritis Cartilage 2017; 25:1719-1728. [PMID: 28694081 DOI: 10.1016/j.joca.2017.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/23/2017] [Accepted: 07/01/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE 12/15-Lipoxygenase (12/15-LOX) catalyzes the generation of various anti-inflammatory lipid mediators, and has been implicated in several inflammatory and degenerative diseases. However, there is currently no evidence that 12/15-LOX has a role in osteoarthritis (OA). The aim of this study was to investigate the role of 12/15-LOX in the pathogenesis of OA. METHODS The development of aging-associated and destabilization of the medial meniscus (DMM)-induced OA were compared in 12/15-LOX-deficient (12/15-LOX-/-) and wild-type (WT) mice. The extent of cartilage damage was evaluated by histology. The expression of OA markers was evaluated by immunohistochemistry and RT-PCR. Cartilage explants were stimulated with IL-1α in the absence or presence of the 12/15-LOX metabolites, 15-hydroxyeicosatetraenoic acids (15-HETE), 13-hydroxyoctadecadienoic acid (13-HODE) or lipoxin A4 (LXA4), and the levels of matrix metalloproteinases-13 (MMP-13), Nitric oxide (NO) and prostaglandin E2 (PGE2) were determined. The effect of LXA4 on the progression of OA was evaluated in wild type (WT) mice. RESULTS The expression of 12/15-LOX in cartilage increased during the progression of DMM-induced OA and with aging in WT mice. Cartilage degeneration was more severe in 12/15-LOX-/- mice compared to WT mice in both models of OA, and this was associated with increased expression of MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs, aggrecanases (ADAMTS5), inducible NO synthases (iNOS), and mPGES-1. Treatment of cartilage explants with 12/15-LOX metabolites, suppressed IL-1α-induced production of MMP-13, NO and PGE2, with LXA4 being the most potent. Intra-peritoneal injection of LXA4 reduced the severity of DMM-induced cartilage degradation. CONCLUSIONS These data suggest an important role of 12/15-LOX in the pathogenesis of OA. They also suggest that activation of this pathway may provide a novel strategy for prevention and treatment of OA.
Collapse
Affiliation(s)
- L Habouri
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada; Department of Medicine, University of Montreal, Montreal, QC, Canada.
| | - F E El Mansouri
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada; Department of Medicine, University of Montreal, Montreal, QC, Canada.
| | - Y Ouhaddi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada; Department of Medicine, University of Montreal, Montreal, QC, Canada.
| | - B Lussier
- Faculty of Veterinary Medicine, Clinical Science, University of Montreal, Saint-Hyacinthe, QC, Canada.
| | - J-P Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada; Department of Medicine, University of Montreal, Montreal, QC, Canada.
| | - J Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada; Department of Medicine, University of Montreal, Montreal, QC, Canada.
| | - M Benderdour
- Orthopedic Research Laboratory, Sacré-Coeur Hospital, University of Montreal, Montreal, QC, Canada.
| | - H Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada; Department of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
266
|
Javaheri B, Poulet B, Aljazzar A, de Souza R, Piles M, Hopkinson M, Shervill E, Pollard A, Chan B, Chang YM, Orriss IR, Lee PD, Pitsillides AA. Stable sulforaphane protects against gait anomalies and modifies bone microarchitecture in the spontaneous STR/Ort model of osteoarthritis. Bone 2017; 103:308-317. [PMID: 28778596 PMCID: PMC5571892 DOI: 10.1016/j.bone.2017.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022]
Abstract
Osteoarthritis (OA), affecting joints and bone, causes physical gait disability with huge socio-economic burden; treatment remains palliative. Roles for antioxidants in protecting against such chronic disorders have been examined previously. Sulforaphane is a naturally occurring antioxidant. Herein, we explore whether SFX-01®, a stable synthetic form of sulforaphane, modifies gait, bone architecture and slows/reverses articular cartilage destruction in a spontaneous OA model in STR/Ort mice. Sixteen mice (n=8/group) were orally treated for 3months with either 100mg/kg SFX-01® or vehicle. Gait was recorded, tibiae were microCT scanned and analysed. OA lesion severity was graded histologically. The effect of SFX-01® on bone turnover markers in vivo was complemented by in vitro bone formation and resorption assays. Analysis revealed development of OA-related gait asymmetry in vehicle-treated STR/Ort mice, which did not emerge in SFX-01®-treated mice. We found significant improvements in trabecular and cortical bone. Despite these marked improvements, we found that histologically-graded OA severity in articular cartilage was unmodified in treated mice. These changes are also reflected in anabolic and anti-catabolic actions of SFX-01® treatment as reflected by alteration in serum markers as well as changes in primary osteoblast and osteoclast-like cells in vitro. We report that SFX-01® improves bone microarchitecture in vivo, produces corresponding changes in bone cell behaviour in vitro and leads to greater symmetry in gait, without marked effects on cartilage lesion severity in STR/Ort osteoarthritic mice. Our findings support both osteotrophic roles and novel beneficial gait effects for SFX-01® in this model of spontaneous OA.
Collapse
Affiliation(s)
- Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| | - Blandine Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, West Derby Street, Liverpool L7 8TX, UK
| | - Ahmed Aljazzar
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Roberto de Souza
- Universidade Federal de Mato Grosso (UFMT), Departamento de Clínica, Cuiabá, Brazil
| | - Miriam Piles
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Mark Hopkinson
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Elaine Shervill
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Andrea Pollard
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Boris Chan
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yu-Mei Chang
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Isabel R Orriss
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Peter D Lee
- Manchester X-Ray Imaging Facility, University of Manchester, Manchester, UK
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| |
Collapse
|
267
|
Zhang L, Wang PE, Ying J, Jin X, Luo C, Xu T, Xu S, Dong R, Xiao L, Tong P, Jin H. Yougui Pills Attenuate Cartilage Degeneration via Activation of TGF-β/Smad Signaling in Chondrocyte of Osteoarthritic Mouse Model. Front Pharmacol 2017; 8:611. [PMID: 28928664 PMCID: PMC5591843 DOI: 10.3389/fphar.2017.00611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/23/2017] [Indexed: 01/15/2023] Open
Abstract
Yougui pills (YGPs) have been used for centuries in the treatment of Chinese patients with Kidney-Yang Deficiency Syndrome. Despite the fact that the efficiency of YGPs on treating osteoarthritis has been verified in clinic, the underlying mechanisms are not totally understood. The present study observes the therapeutic role of YGPs and mechanisms underlying its chondroprotective action in osteoarthritic cartilage. To evaluate the chondroprotective effects of YGPs, we examined the impact of orally administered YGPs in a model of destabilization of the medial meniscus (DMM). Male C57BL/6J mice were provided a daily treatment of YGPs and a DMM surgery was performed on the right knee. At 12 weeks post-surgery, the joints were harvested for tissue analyses, including histomorphometry, OARSI scoring, micro-CT and immunohistochemistry for COL-2, MMP-13 and pSMAD-2. We also performed the relative experiments mentioned above in mice with Tgfbr2 conditional knockout (TGF-βRIICol2ER mice) in articular cartilage. To evaluate the safety of YGPs, hematology was determined in each group. Amelioration of cartilage degradation was observed in the YGPs group, with increases in cartilage area and thickness, proteoglycan matrix, and decreases in OARSI score at 12 weeks post surgery. In addition, reduced BV/TV and Tb. Th, and elevated Tb. Sp were observed in DMM-induced mice followed by YGPs treatment. Moreover, the preservation of cartilage correlated with reduced MMP-13, and elevated COL-2 and pSMAD-2 protein expressional levels were also revealed in DMM-induced mice treated with YGPs. Similarly, TGF-βRIICol2ER mice exhibited significant OA-like phenotype. However, no significant difference in cartilage structure was observed in TGF-βRIICol2ER mice after YGPs treatment. Interestingly, no obvious adverse effects were observed in mice from each group based on the hematologic analyses. These findings suggested that YGPs could inhibit cartilage degradation through enhancing TGF-β/Smad signaling activation, and be considered a good option for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Ping-Er Wang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China
| | - Jun Ying
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Xing Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China.,Department of Orthopaedics and Traumatology, Wangjiang Sub-District Community Health Service CenterHangzhou, China
| | - Cheng Luo
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Taotao Xu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Shibing Xu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Rui Dong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Luwei Xiao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China
| | - Peijian Tong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou, China
| |
Collapse
|
268
|
Ma CH, Wu CH, Jou IM, Tu YK, Hung CH, Hsieh PL, Tsai KL. PKR activation causes inflammation and MMP-13 secretion in human degenerated articular chondrocytes. Redox Biol 2017; 14:72-81. [PMID: 28869834 PMCID: PMC5582648 DOI: 10.1016/j.redox.2017.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 01/04/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease affecting a large population of people. Although the elevated expression of PKR (double stranded RNA-dependent protein kinase) and MMP-13 (collagenase-3) have been indicated to play pivotal roles in the pathogenesis of OA, the exact mechanism underlying the regulation of MMP-13 by PKR following inflammatory stimulation was relatively unknown. The purpose of this study was to determine the signaling pathway involved in the PKR-mediated induction of MMP-13 after TNF-α-stimulation. In this study, cartilages of knee joint were obtained from OA subjects who underwent arthroplastic knee surgery. Cartilages were used for tissue analysis or for chondrocytes isolation. In results, the upregulated expression of PKR was observed in damaged OA cartilages as well as in TNF-α-stimulated chondrocytes. Phosphorylation of PKC (protein kinase C) was found after TNF-α administration or PKR activation using poly(I:C), indicating PKC was regulated by PKR. The subsequent increased activity of NADPH oxidase led to oxidative stress accumulation and antioxidant capacity downregulation followed by an exaggerated inflammatory response with elevated levels of COX-2 and IL-8 via ERK/NF-κB pathway. Activated ERK pathway also impeded the inhibition of MMP-13 by PPAR-γ. These findings demonstrated that TNF-α-induced PKR activation triggered oxidative stress-mediated inflammation and MMP-13 in human chondrocytes. Unraveling these deregulated signaling cascades will deepen our knowledge of OA pathophysiology and provide aid in the development of novel therapies.
Collapse
Affiliation(s)
- Ching-Hou Ma
- Department of Orthopedics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Chin-Hsien Wu
- Department of Orthopedics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
269
|
Takahashi A, de Andrés MC, Hashimoto K, Itoi E, Otero M, Goldring MB, Oreffo ROC. DNA methylation of the RUNX2 P1 promoter mediates MMP13 transcription in chondrocytes. Sci Rep 2017; 7:7771. [PMID: 28798419 PMCID: PMC5552713 DOI: 10.1038/s41598-017-08418-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
The Runt-related transcription factor 2 (RUNX2) is critical for bone formation as well as chondrocyte maturation. Matrix metalloproteinase (MMP)-13 is a major contributor to cartilage degradation in osteoarthritis (OA). We and others have shown that the abnormal MMP13 gene expression in OA chondrocytes is controlled by changes in the DNA methylation status of specific CpG sites of the proximal promoter, as well as by the actions of different transactivators, including RUNX2. The present study aimed to determine the influence of the methylation status of specific CpG sites in the RUNX2 promoter on RUNX2-driven MMP13 gene expression in OA chondrocytes. We observed a significant correlation between MMP13 mRNA levels and RUNX2 gene expression in human OA chondrocytes. RUNX2 overexpression enhanced MMP13 promoter activity, independent of the MMP13 promoter methylation status. A significant negative correlation was observed between RUNX2 mRNA levels in OA chondrocytes and the percentage methylation of the CpG sites in the RUNX2 P1 promoter. Accordingly, the activity of the wild type RUNX2 promoter was decreased upon methylation treatment in vitro. We conclude that RUNX2 gene transcription is regulated by the methylation status of specific CpG sites in the promoter and may determine RUNX2 availability in OA cartilage for transactivation of genes such as MMP13.
Collapse
Affiliation(s)
- Atsushi Takahashi
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK.,Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - María C de Andrés
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK
| | - Ko Hashimoto
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan.,HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, New York, NY, USA
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, New York, NY, USA
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, New York, NY, USA
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK.
| |
Collapse
|
270
|
Chanalaris A, Doherty C, Marsden BD, Bambridge G, Wren SP, Nagase H, Troeberg L. Suramin Inhibits Osteoarthritic Cartilage Degradation by Increasing Extracellular Levels of Chondroprotective Tissue Inhibitor of Metalloproteinases 3. Mol Pharmacol 2017; 92:459-468. [PMID: 28798097 PMCID: PMC5588548 DOI: 10.1124/mol.117.109397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/01/2017] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis is a common degenerative joint disease for which no disease-modifying drugs are currently available. Attempts to treat the disease with small molecule inhibitors of the metalloproteinases that degrade the cartilage matrix have been hampered by a lack of specificity. We aimed to inhibit cartilage degradation by augmenting levels of the endogenous metalloproteinase inhibitor, tissue inhibitor of metalloproteinases (TIMP)-3, through blocking its interaction with the endocytic scavenger receptor, low-density lipoprotein receptor-related protein 1 (LRP1). We discovered that suramin (C51H40N6O23S6) bound to TIMP-3 with a KD value of 1.9 ± 0.2 nM and inhibited its endocytosis via LRP1, thus increasing extracellular levels of TIMP-3 and inhibiting cartilage degradation by the TIMP-3 target enzyme, adamalysin-like metalloproteinase with thrombospondin motifs 5. NF279 (8,8'-[carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)]bis-1,3,5-naphthalenetrisulfonic acid hexasodium salt), a structural analog of suramin, has an increased affinity for TIMP-3 and increased ability to inhibit TIMP-3 endocytosis and protect cartilage. Suramin is thus a promising scaffold for the development of novel therapeutics to increase TIMP-3 levels and inhibit cartilage degradation in osteoarthritis.
Collapse
Affiliation(s)
- Anastasios Chanalaris
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| | - Christine Doherty
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| | - Brian D Marsden
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| | - Gabriel Bambridge
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| | - Stephen P Wren
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| | - Hideaki Nagase
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| | - Linda Troeberg
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, (A.C., C.D., G.B., H.N., L.T.), Structural Genomics Consortium (B.D.M.), and Alzheimer's Research UK Oxford Drug Discovery Institute (S.P.W.), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
271
|
Ouhaddi Y, Nebbaki SS, Habouri L, Afif H, Lussier B, Kapoor M, Narumiya S, Pelletier JP, Martel-Pelletier J, Benderdour M, Fahmi H. Exacerbation of Aging-Associated and Instability-Induced Murine Osteoarthritis With Deletion of D Prostanoid Receptor 1, a Prostaglandin D 2 Receptor. Arthritis Rheumatol 2017; 69:1784-1795. [PMID: 28544596 DOI: 10.1002/art.40160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 05/18/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE D prostanoid receptor 1 (DP1), a receptor for prostaglandin D2 , plays important roles in inflammation and cartilage metabolism. However, its role in the pathogenesis of osteoarthritis (OA) remains unknown. This study was undertaken to explore the roles of DP1 in the development of OA in murine models and to evaluate the efficacy of a DP1 selective agonist in the treatment of OA. METHODS The development of aging-associated OA and destabilization of the medial meniscus (DMM)-induced OA was compared between DP1-deficient (DP1-/- ) and wild-type (WT) mice. The progression of OA was assessed by histology, immunohistochemistry, and micro-computed tomography. Cartilage explants from DP1-/- and WT mice were treated with interleukin-1α (IL-1α) ex vivo, to evaluate proteoglycan degradation. The effect of intraperitoneal administration of the DP1 selective agonist BW245C on OA progression was evaluated in WT mice. RESULTS Compared to WT mice, DP1-/- mice had exacerbated cartilage degradation in both models of OA, and this was associated with increased expression of matrix metalloproteinase 13 and ADAMTS-5. In addition, DP1-/- mice demonstrated enhanced subchondral bone changes. Cartilage explants from DP1-/- mice showed enhanced proteoglycan degradation following treatment with IL-1α. Intraperitoneal injection of BW245C attenuated the severity of DMM-induced cartilage degradation and bony changes in WT mice. CONCLUSION These findings indicate a critical role for DP1 signaling in OA pathogenesis. Modulation of the functions of DP1 may constitute a potential therapeutic target for the development of novel OA treatments.
Collapse
Affiliation(s)
- Yassine Ouhaddi
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | - Sarah-Salwa Nebbaki
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | - Lauris Habouri
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | - Hassan Afif
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | | | - Mohit Kapoor
- The Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Jean-Pierre Pelletier
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | - Johanne Martel-Pelletier
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | | | - Hassan Fahmi
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
272
|
Kuttapitiya A, Assi L, Laing K, Hing C, Mitchell P, Whitley G, Harrison A, Howe FA, Ejindu V, Heron C, Sofat N. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Ann Rheum Dis 2017; 76:1764-1773. [PMID: 28705915 PMCID: PMC5629942 DOI: 10.1136/annrheumdis-2017-211396] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Objective Bone marrow lesions (BMLs) are well described in osteoarthritis (OA) using MRI and are associated with pain, but little is known about their pathological characteristics and gene expression. We evaluated BMLs using novel tissue analysis tools to gain a deeper understanding of their cellular and molecular expression. Methods We recruited 98 participants, 72 with advanced OA requiring total knee replacement (TKR), 12 with mild OA and 14 non-OA controls. Participants were assessed for pain (using Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC)) and with a knee MRI (using MOAKS). Tissue was then harvested at TKR for BML analysis using histology and tissue microarray. Results The mean (SD) WOMAC pain scores were significantly increased in advanced OA 59.4 (21.3) and mild OA 30.9 (20.3) compared with controls 0.5 (1.28) (p<0.0001). MOAKS showed all TKR tissue analysed had BMLs, and within these lesions, bone marrow volume was starkly reduced being replaced by dense fibrous connective tissue, new blood vessels, hyaline cartilage and fibrocartilage. Microarray comparing OA BML and normal bone found a significant difference in expression of 218 genes (p<0.05). The most upregulated genes included stathmin 2, thrombospondin 4, matrix metalloproteinase 13 and Wnt/Notch/catenin/chemokine signalling molecules that are known to constitute neuronal, osteogenic and chondrogenic pathways. Conclusion Our study is the first to employ detailed histological analysis and microarray techniques to investigate knee OA BMLs. BMLs demonstrated areas of high metabolic activity expressing pain sensitisation, neuronal, extracellular matrix and proinflammatory signalling genes that may explain their strong association with pain.
Collapse
Affiliation(s)
- Anasuya Kuttapitiya
- Institute for Infection & Immunity, St George's, University of London, London, UK
| | - Lena Assi
- Institute for Infection & Immunity, St George's, University of London, London, UK
| | - Ken Laing
- Institute for Infection & Immunity, St George's, University of London, London, UK
| | - Caroline Hing
- St George's University Hospitals NHS Foundation Trust, London, UK
| | - Philip Mitchell
- St George's University Hospitals NHS Foundation Trust, London, UK
| | - Guy Whitley
- Institute for Molecular and Clinical Sciences, St George's, University of London, London, UK
| | - Abiola Harrison
- Institute for Infection & Immunity, St George's, University of London, London, UK
| | - Franklyn A Howe
- Institute for Molecular and Clinical Sciences, St George's, University of London, London, UK
| | - Vivian Ejindu
- St George's University Hospitals NHS Foundation Trust, London, UK
| | - Christine Heron
- St George's University Hospitals NHS Foundation Trust, London, UK
| | - Nidhi Sofat
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
273
|
Wilkinson DJ, Wang H, Habgood A, Lamb HK, Thompson P, Hawkins AR, Désilets A, Leduc R, Steinmetzer T, Hammami M, Lee MS, Craik CS, Watson S, Lin H, Milner JM, Rowan AD. Matriptase Induction of Metalloproteinase-Dependent Aggrecanolysis In Vitro and In Vivo: Promotion of Osteoarthritic Cartilage Damage by Multiple Mechanisms. Arthritis Rheumatol 2017; 69:1601-1611. [PMID: 28464560 PMCID: PMC5599990 DOI: 10.1002/art.40133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/18/2017] [Indexed: 01/23/2023]
Abstract
Objective To assess the ability of matriptase, a type II transmembrane serine proteinase, to promote aggrecan loss from the cartilage of patients with osteoarthritis (OA) and to determine whether its inhibition can prevent aggrecan loss and cartilage damage in experimental OA. Methods Aggrecan release from human OA cartilage explants and human stem cell–derived cartilage discs was evaluated, and cartilage‐conditioned media were used for Western blotting. Gene expression was analyzed by real‐time polymerase chain reaction. Murine OA was induced by surgical destabilization of the medial meniscus, and matriptase inhibitors were administered via osmotic minipump or intraarticular injection. Cartilage damage was scored histologically and aggrecan cleavage was visualized immunohistochemically using specific neoepitope antibodies. Results The addition of soluble recombinant matriptase promoted a time‐dependent release of aggrecan (and collagen) from OA cartilage, which was sensitive to metalloproteinase inhibition and protease‐activated receptor 2 antagonism. Although engineered human (normal) cartilage discs failed to release aggrecan following matriptase addition, both matrix metalloproteinase– and aggrecanase‐mediated cleavages of aggrecan were detected in human OA cartilage. Additionally, while matriptase did not directly degrade aggrecan, it promoted the accumulation of low‐density lipoprotein receptor–related protein 1 (LRP‐1) in conditioned media of the OA cartilage explants. Matriptase inhibition via neutralizing antibody or small molecule inhibitor significantly reduced cartilage damage scores in murine OA, which was associated with reduced generation of metalloproteinase‐mediated aggrecan cleavage. Conclusion Matriptase potently induces the release of metalloproteinase‐generated aggrecan fragments as well as soluble LRP‐1 from OA cartilage. Therapeutic targeting of matriptase proteolytic activity reduces metalloproteinase activity, further suggesting that this serine proteinase may have potential as a disease‐modifying therapy in OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard Leduc
- Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | - Hua Lin
- Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
274
|
Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic Science of Articular Cartilage. Clin Sports Med 2017; 36:413-425. [DOI: 10.1016/j.csm.2017.02.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
275
|
Xu X, Lv H, Li X, Su H, Zhang X, Yang J. Danshen attenuates osteoarthritis-related cartilage degeneration through inhibition of NF-κB signaling pathway in vivo and in vitro. Biochem Cell Biol 2017; 95:644-651. [PMID: 28662337 DOI: 10.1139/bcb-2017-0025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Danshen (Salvia miltiorrhiza) is a traditional Chinese medicine herb that can alleviate the symptoms of osteoarthritis (OA) (Söder et al. 2006) in animals. However, the underlying mechanisms remain poorly understood and require further investigation. In this study, rabbits with experimentally induced OA were given an intra-articular injection of danshen (0.7 mL/day) for 5 weeks. In addition to attenuating the cartilage degeneration of OA in the rabbits, danshen decreased the expression and activity of matrix metalloproteinase 9 (MMP-9) and MMP-13, and increased the expression of their natural inhibitors: tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) and TIMP-2. Apoptosis in osteoarthritic cartilage tissues was attenuated by danshen, accompanied with increased expression of B cell lymphoma 2 (Bcl-2) and decreased levels of Bcl-2-associated X protein (Bax). Further, danshen inhibited the nuclear accumulation of nuclear factor kappa-B (NF-κB) p65 in osteoarthritic cartilage. The therapeutic effects of danshen in vivo were comparable to that of sodium hyaluronate, which is a drug used clinically for the treatment OA. In vitro, sodium nitroprusside (SNP) was used to stimulate apoptosis in primary rabbit chondrocytes. We found that the SNP-induced apoptosis was mitigated by danshen. BAY11-7028, an inhibitor of the NF-κB pathway, augmented danshen's anti-apoptotic effects in cells exposed to SNP. When these results are considered together, they indicate that danshen alleviates the cartilage injury in rabbit OA through inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xilin Xu
- a Third Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, P.R. China
| | - Hang Lv
- a Third Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, P.R. China
| | - Xiaodong Li
- a Third Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, P.R. China
| | - Hui Su
- a Third Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, P.R. China
| | - Xiaofeng Zhang
- b President Office, Heilongjiang University of Chinese Medicine, Harbin 150040, P.R. China
| | - Jun Yang
- c Department of Radiology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, P.R. China
| |
Collapse
|
276
|
Poulet B. Models to define the stages of articular cartilage degradation in osteoarthritis development. Int J Exp Pathol 2017; 98:120-126. [PMID: 28585282 PMCID: PMC5573775 DOI: 10.1111/iep.12230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic disorder that affects an increasing number of the ageing population. Despite the prevalence, there are currently no therapies. Defining new therapies that target specific pathogenic phases of disease development relies on the effective separation of the different stages of OA. This manuscript reviews the tissues and models that are being used to separate these stages of disease, in particular initiation and early and late progression. These models include human tissues with known initiating factors, the use of anatomical locations with defined relationships to the primary cartilage lesion area, timing of OA development in well-described animal models and the versatility of a non-invasive model of murine knee joint trauma.
Collapse
Affiliation(s)
- Blandine Poulet
- Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
277
|
Longobardi L, Temple JD, Tagliafierro L, Willcockson H, Esposito A, D'Onofrio N, Stein E, Li T, Myers TJ, Ozkan H, Balestrieri ML, Ulici V, Loeser RF, Spagnoli A. Role of the C-C chemokine receptor-2 in a murine model of injury-induced osteoarthritis. Osteoarthritis Cartilage 2017; 25:914-925. [PMID: 27856294 PMCID: PMC5430000 DOI: 10.1016/j.joca.2016.11.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 09/26/2016] [Accepted: 11/07/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We previously found in our embryonic studies that proper regulation of the chemokine CCL12 through its sole receptor CCR2, is critical for joint and growth plate development. In the present study, we examined the role of CCR2 in injury-induced-osteoarthritis (OA). METHOD We used a murine model of injury-induced-OA (destabilization of medial meniscus, DMM), and systemically blocked CCR2 using a specific antagonist (RS504393) at different times during disease progression. We examined joint degeneration by assessing cartilage (cartilage loss, chondrocyte hypertrophy, MMP-13 expression) and bone lesions (bone sclerosis, osteophytes formation) with or without the CCR2 antagonist. We also performed pain behavioral studies by assessing the weight distribution between the normal and arthritic hind paws using the IITS incapacitance meter. RESULTS Testing early vs delayed administration of the CCR2 antagonist demonstrated differential effects on joint damage. We found that OA changes in articular cartilage and bone were ameliorated by pharmacological CCR2 blockade, if given early in OA development: specifically, pharmacological targeting of CCR2 during the first 4 weeks (wks) following injury, reduced OA cartilage and bone damage, with less effectiveness with later treatments. Importantly, our pain-related behavioral studies showed that blockade of CCR2 signaling during early, 1-4 wks post-surgery or moderate, 4-8 wks post-surgery, OA was sufficient to decrease pain measures, with sustained improvement at later stages, after treatment was stopped. CONCLUSIONS Our data highlight the potential efficacy of antagonizing CCR2 at early stages to slow the progression of post-injury OA and, in addition, improve pain symptoms.
Collapse
Affiliation(s)
- L Longobardi
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - J D Temple
- Department of Biomedical Engineering, UNC-Chapel Hill, NC, USA; Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| | - L Tagliafierro
- Department of Neurology, Duke University, Durham, NC, USA.
| | - H Willcockson
- Department of Cell Biology and Physiology, UNC-Chapel Hill, NC, USA.
| | - A Esposito
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| | - N D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.
| | - E Stein
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - T Li
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| | - T J Myers
- Department of Pediatrics, UNC-Chapel Hill, NC, USA.
| | - H Ozkan
- Department of Orthopaedics, Gulhane Military Medical Academy, Etlik, Ankara, Turkey.
| | - M L Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.
| | - V Ulici
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - R F Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - A Spagnoli
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
278
|
Abstract
Osteoarthritis (OA) is a multi-factorial and highly prevalent joint disorder worldwide. Since the establishment of murine surgical knee OA models in 2005, many of the key molecules and signalling pathways responsible for OA development have been identified. Here we review the roles of two multi-functional signalling pathways in OA development: Notch and nuclear factor kappa-light-chain-enhancer of activated B cells. Previous studies have identified various aspects of articular chondrocyte regulation by these pathways. However, comprehensive understanding of the molecular networks regulating articular cartilage homeostasis and OA pathogenesis is needed.
Collapse
Affiliation(s)
- Taku Saito
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan. .,Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Sakae Tanaka
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
279
|
Yamamoto K, Santamaria S, Botkjaer KA, Dudhia J, Troeberg L, Itoh Y, Murphy G, Nagase H. Inhibition of Shedding of Low-Density Lipoprotein Receptor-Related Protein 1 Reverses Cartilage Matrix Degradation in Osteoarthritis. Arthritis Rheumatol 2017; 69:1246-1256. [PMID: 28235248 PMCID: PMC5449214 DOI: 10.1002/art.40080] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The aggrecanase ADAMTS-5 and the collagenase matrix metalloproteinase 13 (MMP-13) are constitutively secreted by chondrocytes in normal cartilage, but rapidly endocytosed via the cell surface endocytic receptor low-density lipoprotein receptor-related protein 1 (LRP-1) and subsequently degraded. This endocytic system is impaired in osteoarthritic (OA) cartilage due to increased ectodomain shedding of LRP-1. The aim of this study was to identify the LRP-1 sheddase(s) in human cartilage and to test whether inhibition of LRP-1 shedding prevents cartilage degradation in OA. METHODS Cell-associated LRP-1 and soluble LRP-1 (sLRP-1) released from human cartilage explants and chondrocytes were measured by Western blot analysis. LRP-1 sheddases were identified by proteinase inhibitor profiling and gene silencing with small interfering RNAs. Specific monoclonal antibodies were used to selectively inhibit the sheddases. Degradation of aggrecan and collagen in human OA cartilage was measured by Western blot analysis using an antibody against an aggrecan neoepitope and a hydroxyproline assay, respectively. RESULTS Shedding of LRP-1 was increased in OA cartilage compared with normal tissue. Shed sLRP-1 bound to ADAMTS-5 and MMP-13 and prevented their endocytosis without interfering with their proteolytic activities. Two membrane-bound metalloproteinases, ADAM-17 and MMP-14, were identified as the LRP-1 sheddases in cartilage. Inhibition of their activities restored the endocytic capacity of chondrocytes and reduced degradation of aggrecan and collagen in OA cartilage. CONCLUSION Shedding of LRP-1 is a key link to OA progression. Local inhibition of LRP-1 sheddase activities of ADAM-17 and MMP-14 is a unique way to reverse matrix degradation in OA cartilage and could be effective as a therapeutic approach.
Collapse
|
280
|
Abstract
Although the potential effect of aberrant expression of catabolic and
anabolic genes on the development of osteoarthritis (OA) is well-documented, the
regulatory mechanism for the expression of these genes in articular chondrocytes
remains to be elucidated. The recent advances in epigenetic studies have
identified microRNA (miRNA) as one of the epigenetic mechanisms for the
regulation of gene expression. This mini review highlights the role of miRNA in
the regulation of gene expression in articular chondrocytes and its significance
in the pathogenesis of OA, with a discussion on the potential of miRNA as a new
biomarker and therapeutic target for OA. Further investigations are required to
determine the specificity, sensitivity, and efficacy of miRNA for clinical
applications.
Collapse
Affiliation(s)
- Mingcai Zhang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kate Lygrisse
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jinxi Wang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
281
|
McCulloch K, Litherland GJ, Rai TS. Cellular senescence in osteoarthritis pathology. Aging Cell 2017; 16:210-218. [PMID: 28124466 PMCID: PMC5334539 DOI: 10.1111/acel.12562] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/19/2022] Open
Abstract
Cellular senescence is a state of stable proliferation arrest of cells. The senescence pathway has many beneficial effects and is seen to be activated in damaged/stressed cells, as well as during embryonic development and wound healing. However, the persistence and accumulation of senescent cells in various tissues can also impair function and have been implicated in the pathogenesis of many age‐related diseases. Osteoarthritis (OA), a severely debilitating chronic condition characterized by progressive tissue remodeling and loss of joint function, is the most prevalent disease of the synovial joints, and increasing age is the primary OA risk factor. The profile of inflammatory and catabolic mediators present during the pathogenesis of OA is strikingly similar to the secretory profile observed in ‘classical’ senescent cells. During OA, chondrocytes (the sole cell type present within articular cartilage) exhibit increased levels of various senescence markers, such as senescence‐associated beta‐galactosidase (SAβGal) activity, telomere attrition, and accumulation of p16ink4a. This suggests the hypothesis that senescence of cells within joint tissues may play a pathological role in the causation of OA. In this review, we discuss the mechanisms by which senescent cells may predispose synovial joints to the development and/or progression of OA, as well as touching upon various epigenetic alterations associated with both OA and senescence.
Collapse
Affiliation(s)
- Kendal McCulloch
- Institute of Biomedical and Environmental Health Research; University of the West of Scotland; Paisley PA1 2BE UK
| | - Gary J. Litherland
- Institute of Biomedical and Environmental Health Research; University of the West of Scotland; Paisley PA1 2BE UK
| | - Taranjit Singh Rai
- Institute of Biomedical and Environmental Health Research; University of the West of Scotland; Paisley PA1 2BE UK
| |
Collapse
|
282
|
Wang CC, Guo L, Tian FD, An N, Luo L, Hao RH, Wang B, Zhou ZH. Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model. ACTA ACUST UNITED AC 2017; 50:e5714. [PMID: 28355351 PMCID: PMC5423744 DOI: 10.1590/1414-431x20165714] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/22/2016] [Indexed: 01/08/2023]
Abstract
Inflammation of cartilage is a primary symptom for knee-joint osteoarthritis. Matrix metalloproteinases (MMPs) are known to play an important role in the articular cartilage destruction related to osteoarthritis. Naringenin is a plant-derived flavonoid known for its anti-inflammatory properties. We studied the effect of naringenin on the transcriptional expression, secretion and enzymatic activity of MMP-3 in vivo in the murine monosodium iodoacetate (MIA) osteoarthritis model. The assessment of pain behavior was also performed in the MIA rats. The destruction of knee-joint tissues was analyzed microscopically. Moreover, the effect of naringenin was also studied in vitro in IL-1β activated articular chondrocytes. The transcriptional expression of MMP-3, MMP-1, MMP-13, thrombospondin motifs (ADAMTS-4) and ADAMTS-5 was also studied in primary cultured chondrocytes of rats. Naringenin caused significant reduction in pain behavior and showed marked improvement in the tissue morphology of MIA rats. Moreover, a significant inhibition of MMP-3 expression in MIA rats was observed upon treatment with naringenin. In the in vitro tests, naringenin caused a significant reduction in the transcriptional expression, secretion and enzymatic activity of the studied degradative enzymes. The NF-κB pathway was also found to be inhibited upon treatment with naringenin in vitro. Overall, the study suggests that naringenin alleviated pain and regulated the production of matrix-metalloproteinases via regulation of NF-κB pathway. Thus, naringenin could be a potent therapeutic option for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- C C Wang
- Department II of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - L Guo
- Department II of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - F D Tian
- Department II of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - N An
- Department II of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - L Luo
- Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - R H Hao
- Department II of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - B Wang
- Department II of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Z H Zhou
- Department II of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
283
|
Utility of circulating serum miRNAs as biomarkers of early cartilage degeneration in animal models of post-traumatic osteoarthritis and inflammatory arthritis. Osteoarthritis Cartilage 2017; 25:426-434. [PMID: 27621213 DOI: 10.1016/j.joca.2016.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/12/2016] [Accepted: 09/01/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this study was to determine if serum microRNA (miRNA) signatures were biomarkers of early cartilage degeneration in preclinical mouse models of post-traumatic osteoarthritis (OA) and inflammatory arthritis. METHODS Cartilage degeneration was induced in 10-12 week old male C57BL6 mice by destabilization of the medial meniscus (DMM) or intra-articular injection of methylated-bovine-serum-albumin (AIA), with sham-operated or saline-injected control animals (n = 6/treatment/time). Total serum RNA and knee joints were isolated at 1, 4 and 16 weeks post-induction. Cartilage degeneration was scored histologically. Serum miRNA expression profiling was performed using Agilent microarrays and validated by qPCR. RESULTS DMM-operated and AIA mice had characteristic cartilage degeneration (proteoglycan loss, chondrocyte hypertrophy, structural damage), that increased significantly with time compared with controls, and with distinct temporal differences between arthritis models. However, expression profiling revealed no statistically significant dysregulation of serum miRNAs between AIA vs saline-injected or DMM vs sham-operated control mice at the critical early disease stages. The inability to detect DMM or AIA serum miRNA signatures compared with controls was not due to the insensitivity of the expression profiling approach since significant changes were observed in miRNA expression between the arthritis models and between time points. CONCLUSION While distinct patterns of progressive cartilage degradation were induced in the arthritis models, we were unable to identify any serum miRNAs that were significantly dysregulated in early stages of disease compared with controls. This suggests circulating serum miRNAs may not be useful as cartilage biomarkers in distinguishing the early or progressive stages of arthritis cartilage degeneration.
Collapse
|
284
|
David MA, Smith MK, Pilachowski RN, White AT, Locke RC, Price C. Early, focal changes in cartilage cellularity and structure following surgically induced meniscal destabilization in the mouse. J Orthop Res 2017; 35:537-547. [PMID: 27664978 DOI: 10.1002/jor.23443] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is an accelerated form of osteoarthritic cartilage degeneration affecting approximately 20-50% of patients experiencing joint injury. Currently PTOA is incurable; to better understand the etiology of PTOA and to develop rational anti-osteoarthritic therapies, it is critical to understand the spatiotemporal initiation and the progression of PTOA. In this study, we employed semi-quantitative histological scoring and quantitative damage analysis to examine disease progression in the murine destabilization of the medial meniscus (DMM) model of PTOA from early (3 days) through late- (112 days) disease timepoints. We observed significant, progressive articular cartilage (AC) cellular, and structural changes in the medial compartments of injured joints as early as 3 days. Spatially within the joint, cartilage damage (erosions) were observed anteriorly at 84 days. Furthermore, a drastic loss in chondrocyte number (by 3 days), surface damage (at 7 days), and cartilage erosion (at 84 days) was found to co-localize to the specific region of the medial tibial plateau AC that experienced a change in meniscal coverage due to meniscal extrusion following DMM. Taken together, these results suggest that DMM-mediated extrusion of the medial meniscus leads to rapid, spatially dependent changes in AC cellularity and structure, and precipitates the focal degeneration of cartilage associated with PTOA. Importantly, this study suggests that joint instability injuries may trigger immediate (<3 days) processes within a small population of chondrocytes that directs the initiation and progression of PTOA, and that development of chondroprotective strategies for preventing and/or delaying PTOA-related cartilage degeneration are best targeted toward these immediately early processes following joint injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:537-547, 2017.
Collapse
Affiliation(s)
- Michael A David
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware, 19716
| | - Melanie K Smith
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware, 19716
| | - Rachael N Pilachowski
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware, 19716
| | - Avery T White
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware, 19716
| | - Ryan C Locke
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware, 19716
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware, 19716
| |
Collapse
|
285
|
Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res 2017; 35:424-439. [PMID: 27312470 DOI: 10.1002/jor.23343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is defined by its development after joint injury. Factors contributing to the risk of PTOA occurring, the rate of progression, and degree of associated disability in any individual, remain incompletely understood. What constitutes an "OA-inducing injury" is not defined. In line with advances in the traumatic brain injury field, we propose the scope of PTOA-inducing injuries be expanded to include not only those causing immediate structural damage and instability (Type I), but also those without initial instability/damage from moderate (Type II) or minor (Type III) loading severity. A review of the literature revealed this full spectrum of potential PTOA subtypes can be modeled in mice, with 27 Type I, 6 Type II, and 4 Type III models identified. Despite limitations due to cartilage anatomy, joint size, and bio-fluid availability, mice offer advantages as preclinical models to study PTOA, particularly genetically modified strains. Histopathology was the most common disease outcome, cartilage more frequently studied than bone or synovium, and meniscus and ligaments rarely evaluated. Other methods used to examine PTOA included gene expression, protein analysis, and imaging. Despite the major issues reported by patients being pain and biomechanical dysfunction, these were the least commonly measured outcomes in mouse models. Informative correlations of simultaneously measured disease outcomes in individual animals, was rarely done in any mouse PTOA model. This review has identified knowledge gaps that need to be addressed to increase understanding and improve prevention and management of PTOA. Preclinical mouse models play a critical role in these endeavors. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:424-439, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
286
|
Taniguchi Y, Kawata M, Ho Chang S, Mori D, Okada K, Kobayashi H, Sugita S, Hosaka Y, Inui H, Taketomi S, Yano F, Ikeda T, Akiyama H, Mills AA, Chung UI, Tanaka S, Kawaguchi H, Saito T. Regulation of Chondrocyte Survival in Mouse Articular Cartilage by p63. Arthritis Rheumatol 2017; 69:598-609. [DOI: 10.1002/art.39976] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Alea A. Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor; New York
| | | | | | | | | |
Collapse
|
287
|
Wu Y, Wu T, Xu B, Xu X, Chen H, Li X. Oxytocin prevents cartilage matrix destruction via regulating matrix metalloproteinases. Biochem Biophys Res Commun 2017; 486:601-606. [PMID: 28238786 DOI: 10.1016/j.bbrc.2017.02.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 02/22/2017] [Indexed: 12/14/2022]
Abstract
Degradation of the extracellular matrix type II Collagen (Col II) induced by proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) is an important hallmark of Osteoarthritis (OA). Oxytocin (OT) is a well-known neurohypophysical hormone that is synthesized in the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus. In this study, we have found that oxytocin receptor (OTR) was expressed in human primary chondrocytes, and the expression of which was reduced in chondrocytes from OA patients and in response to TNF-α treatment in a dose dependent manner. Notably, it was shown that TNF-α -induced degradation of Col II was restored by treatment with OT in a dose-dependent manner. In addition, TNF-α treatment (10 ng/mL) highly elevated the expression of MMP-1 and MMP-13 in SW1353 chondrocytes, which were reversed by OT in a dose dependent manner at both gene and protein expression levels. In addition, it was demonstrated that the JAK2/STAT1 pathway was involved in the restoration effects of OT in the degradation of Col II. Lastly, knockdown of OTR abolished the inhibitory effects of OT on the degradation of col II and the induction of MMP-1 and MMP-13 expression, suggesting the involvement of OTR. Our study implied the therapeutic potential of OT for cartilage degradation.
Collapse
Affiliation(s)
- Yixin Wu
- Department of Hip Injury, Luoyang Orthopedic Hospital of Henan Province Orthopedic Institute of Henan Province, 471002, China
| | - Tongyu Wu
- China Medical University, Henan Province, 471002, China
| | - Binbin Xu
- Shenqiu People's Hospital Henan Province, 471002, China
| | - Xiaoyan Xu
- Department of Hip Injury, Luoyang Orthopedic Hospital of Henan Province Orthopedic Institute of Henan Province, 471002, China
| | - Honggan Chen
- Department of Hip Injury, Luoyang Orthopedic Hospital of Henan Province Orthopedic Institute of Henan Province, 471002, China
| | - Xiyao Li
- Department of Hip Injury, Luoyang Orthopedic Hospital of Henan Province Orthopedic Institute of Henan Province, 471002, China.
| |
Collapse
|
288
|
Kang DG, Lee HJ, Kim KT, Hwang SC, Lee CJ, Park JS. Effect of oleanolic acid on the activity, secretion and gene expression of matrix metalloproteinase-3 in articular chondrocytes in vitro and the production of matrix metalloproteinase-3 in vivo. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:197-204. [PMID: 28280413 PMCID: PMC5343053 DOI: 10.4196/kjpp.2017.21.2.197] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022]
Abstract
In the present study, we tried to examine whether oleanolic acid regulates the activity, secretion and gene expression of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as the production of MMP-3 in the knee joint of rat to evaluate the potential chondroprotective effect of oleanolic acid. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-1β (IL-1β)-induced gene expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen. In rabbit articular chondrocytes, the effects of oleanolic acid on IL-1β-induced secretion and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of oleanolic acid on in vivo MMP-3 protein production was also examined, after intra-articular injection to the knee joint of rat. The results were as follows: (1) oleanolic acid inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5, but increased the gene expression of type II collagen; (2) oleanolic acid reduced the secretion and proteolytic activity of MMP-3; (3) oleanolic acid suppressed the production of MMP-3 protein in vivo. These results suggest that oleanolic acid can regulate the activity, secretion and gene expression of MMP-3, by directly acting on articular chondrocytes.
Collapse
Affiliation(s)
- Dong-Geun Kang
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Changwon 51472, Korea
| | - Hyun Jae Lee
- Department of Health Management, Sahmyook University, Seoul 01795, Korea
| | - Kun Tae Kim
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Sun-Chul Hwang
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jin Sung Park
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
289
|
Age-dependent Changes in the Articular Cartilage and Subchondral Bone of C57BL/6 Mice after Surgical Destabilization of Medial Meniscus. Sci Rep 2017; 7:42294. [PMID: 28181577 PMCID: PMC5299455 DOI: 10.1038/srep42294] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
Age is the primary risk factor for osteoarthritis (OA), yet surgical OA mouse models such as destabilization of the medial meniscus (DMM) used for evaluating disease-modifying OA targets are frequently performed on young adult mice only. This study investigates how age affects cartilage and subchondral bone changes in mouse joints following DMM. DMM was performed on male C57BL/6 mice at 4 months (4 M), 12 months (12 M) and 19+ months (19 M+) and on females at 12 M and 18 M+. Two months after surgery, operated and unoperated contralateral knees were harvested and evaluated using cartilage histology scores and μCT quantification of subchondral bone plate thickness and osteophyte formation. The 12 M and 19 M+ male mice developed more cartilage erosions and thicker subchondral bone plates after DMM than 4 M males. The size of osteophytes trended up with age, while the bone volume fraction was significantly higher in the 19 M+ group. Furthermore, 12 M females developed milder OA than males as indicated by less cartilage degradation, less subchondral bone plate sclerosis and smaller osteophytes. Our results reveal distinct age/gender-dependent structural changes in joint cartilage and subchondral bone post-DMM, facilitating more thoughtful selection of murine age/gender when using this surgical technique for translational OA research.
Collapse
|
290
|
Gibson AL, Hui Mingalone CK, Foote AT, Uchimura T, Zhang M, Zeng L. Wnt7a Inhibits IL-1β Induced Catabolic Gene Expression and Prevents Articular Cartilage Damage in Experimental Osteoarthritis. Sci Rep 2017; 7:41823. [PMID: 28165497 PMCID: PMC5292965 DOI: 10.1038/srep41823] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022] Open
Abstract
Wnt7a is a protein that plays a critical role in skeletal development. However, its effect on cartilage homeostasis under pathological conditions is not known. In this study, we found a unique inverse correlation between Wnt7a gene expression and that of MMP and IL-1β in individual human OA cartilage specimens. Upon ectopic expression in primary human articular chondrocytes, Wnt7a inhibited IL-1β-induced MMP and iNOS gene expression. Western blot analysis indicated that Wnt7a induced both canonical Wnt signaling and NFAT and Akt non-canonical signaling. Interestingly, inhibiting the canonical and Akt pathway did not affect Wnt7a activity. However, inhibiting the NFAT pathway impaired Wnt7a’s ability to inhibit MMP expression, suggesting that Wnt7a requires NFAT signaling to exert this function. In vivo, intraarticular injection of lentiviral Wnt7a strongly attenuated articular cartilage damage induced by destabilization of the medial meniscus (DMM) OA-inducing surgery in mice. Consistently, Wnt7a also inhibited the progressive increase of joint MMP activity in DMM animals. These results indicate that Wnt7a signaling inhibits inflammatory stimuli-induced catabolic gene expression in human articular chondrocytes and is sufficient to attenuate MMP activities and promote joint cartilage integrity in mouse experimental OA, demonstrating a novel effect of Wnt7a on regulating OA pathogenesis.
Collapse
Affiliation(s)
- Averi L Gibson
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Carrie K Hui Mingalone
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Andrea T Foote
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Tomoya Uchimura
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ming Zhang
- Department of Rheumatology, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Li Zeng
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA.,Department of Orthopedics, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
291
|
Nakamura DS, Hollander JM, Uchimura T, Nielsen HC, Zeng L. Pigment Epithelium-Derived Factor (PEDF) mediates cartilage matrix loss in an age-dependent manner under inflammatory conditions. BMC Musculoskelet Disord 2017; 18:39. [PMID: 28122611 PMCID: PMC5264335 DOI: 10.1186/s12891-017-1410-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 01/16/2017] [Indexed: 02/04/2023] Open
Abstract
Background Inflammation is a major cause of cartilage destruction and leads to the imbalance of metabolic activities in the arthritic joint. Pigment epithelium-derived factor (PEDF) has been reported to have both pro- and anti-inflammatory activities in various cell types and to be upregulated in the arthritic joint, but its role in joint destruction is unclear. Our aim was to investigate the role of PEDF in cartilage degeneration under inflammatory conditions. Methods PEDF was ectopically expressed in primary human articular chondrocytes, and catabolic gene expression and protein secretion in response to the pro-inflammatory cytokine interleukin 1 beta (IL-1β) were evaluated. Metatarsal bones from PEDF-deficient and wild type mice were cultured in the presence or absence of IL-1β. Cartilage matrix integrity and matrix metalloproteinases MMP-1, MMP-3, and MMP-13 were evaluated. PEDF-deficient and wild type mice were evaluated in the monosodium iodoacetate (MIA) inflammatory joint destruction animal model to determine the role of PEDF in inflammatory arthritis in vivo. Student’s t-tests and Mann–Whitney tests were employed where appropriate, for parametric and non-parametric data, respectively. Results We showed that PEDF protein levels were higher in human osteoarthritis samples compared to normal samples. We demonstrated that ectopic PEDF expression in primary human articular chondrocytes exacerbated catabolic gene expression in the presence of IL-1β. In whole bone organ cultures, IL-1β induced MMP-1, MMP-3 and MMP-13 protein production, and caused significant cartilage matrix loss. Interestingly, Toluidine Blue staining showed that PEDF-deficient bones from 29 week old animals, but not 10 week old animals, had reduced matrix loss in response to IL-1β compared to their wild type counterparts. In addition, PEDF-deficiency in 29 week old animals preserved matrix integrity and protected against cell loss in the MIA joint destruction model in vivo. Conclusion We conclude that PEDF exacerbates cartilage degeneration in an age-dependent manner under an inflammatory setting. This is the first study identifying a specific role for PEDF in joint inflammation and highlights the multi-faceted activities of PEDF. Electronic supplementary material The online version of this article (doi:10.1186/s12891-017-1410-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daisy S Nakamura
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Judith M Hollander
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Tomoya Uchimura
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Heber C Nielsen
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Pediatrics, Tufts Medical Center, Boston, MA, USA.
| | - Li Zeng
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA. .,Department of Orthopaedics, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
292
|
Hoshi H, Akagi R, Yamaguchi S, Muramatsu Y, Akatsu Y, Yamamoto Y, Sasaki T, Takahashi K, Sasho T. Effect of inhibiting MMP13 and ADAMTS5 by intra-articular injection of small interfering RNA in a surgically induced osteoarthritis model of mice. Cell Tissue Res 2017; 368:379-387. [PMID: 28120109 DOI: 10.1007/s00441-016-2563-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/07/2023]
Abstract
Matrix metalloproteinase 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) are thought to play critical roles in cartilage degradation at the early phase of osteoarthritis (OA). The aim of this study is to examine the effect of chemically modified Mmp13 or Adamts5 small interfering RNA (siRNA), alone or in combination, in a mouse OA model. OA pathology was surgically induced in 9-week-old male C57/BL6 mice (n = 64) via destabilization of the medial meniscus (DMM). We used chemically modified siRNA (Accell siRNAs®) for Mmp13 and Adamts5, as well as a non-targeting control and evaluated their combined and individual effects after injection in the DMM model. The control group (n = 16) was injected with non-targeting siRNA and the normal group (n = 16) did not undergo any surgical induction or intra-articular injection. Histological assessment of the articular cartilage was conducted at 4 and 8 weeks post-DMM surgery to evaluate OA progression. Significant improvement in the histological score was observed at 8 weeks after DMM in all three siRNA-treated groups compared to the control siRNA-injected group. The score of the combined group was significantly lower than that of the Adamts5 siRNA-only group. No significant differences were noted between the Mmp13 siRNA-only group and the combined group. Combined intra-articular injection of Mmp13 and Adamts5 siRNA resulted in almost the same inhibitory effects as Mmp13 siRNA alone on cartilage degradation at the early phase of OA.
Collapse
Affiliation(s)
- Hiroko Hoshi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ryuichiro Akagi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Satoshi Yamaguchi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuta Muramatsu
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yorikazu Akatsu
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yohei Yamamoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Toshihide Sasaki
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kazuhisa Takahashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takahisa Sasho
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Center for Preventive Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
293
|
Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, Im HJ. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 2017; 5:16044. [PMID: 28149655 PMCID: PMC5240031 DOI: 10.1038/boneres.2016.44] [Citation(s) in RCA: 689] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease and a major cause of pain and disability in adult individuals. The etiology of OA includes joint injury, obesity, aging, and heredity. However, the detailed molecular mechanisms of OA initiation and progression remain poorly understood and, currently, there are no interventions available to restore degraded cartilage or decelerate disease progression. The diathrodial joint is a complicated organ and its function is to bear weight, perform physical activity and exhibit a joint-specific range of motion during movement. During OA development, the entire joint organ is affected, including articular cartilage, subchondral bone, synovial tissue and meniscus. A full understanding of the pathological mechanism of OA development relies on the discovery of the interplaying mechanisms among different OA symptoms, including articular cartilage degradation, osteophyte formation, subchondral sclerosis and synovial hyperplasia, and the signaling pathway(s) controlling these pathological processes.
Collapse
Affiliation(s)
- Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University, St Louis, MO, USA
| | - Weiwei Zhao
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - John L Hamilton
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
294
|
Small animal models to understand pathogenesis of osteoarthritis and use of stem cell in cartilage regeneration. Cell Biochem Funct 2017; 35:3-11. [DOI: 10.1002/cbf.3246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/06/2016] [Accepted: 12/04/2016] [Indexed: 01/05/2023]
|
295
|
Abstract
Osteoarthritis (OA) was once defined as a non-inflammatory arthropathy, but it is now well-recognized that there is a major inflammatory component to this disease. In addition to synovial cells, articular chondrocytes and other cells of diarthrodial joints are also known to express inflammatory mediators. It has been proposed that targeting inflammation pathways could be a promising strategy to treat OA. There have been many reports of cross-talk between inflammation and epigenetic factors in cartilage. Specifically, inflammatory mediators have been shown to regulate levels of enzymes that catalyze changes in DNA methylation and histone structure, as well as alter levels of non-coding RNAs. In addition, expression levels of a number of these epigenetic factors have been shown to be altered in OA, thereby suggesting potential interplay between inflammation and epigenetics in this disease. This review provides information on inflammatory pathways in arthritis and summarizes published research on how epigenetic regulators are affected by inflammation in chondrocytes. Furthermore, we discuss data showing how altered expression of some of these epigenetic factors can induce either catabolic or anti-catabolic effects in response to inflammatory signals. A better understanding of how inflammation affects epigenetic factors in OA may provide us with novel therapeutic strategies to treat this condition.
Collapse
Affiliation(s)
- Jie Shen
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Regis J. O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
296
|
Ra HJ, Lee HJ, Jo HS, Nam DC, Lee YB, Kang BH, Moon DK, Kim DH, Lee CJ, Hwang SC. Betulin suppressed interleukin-1β-induced gene expression, secretion and proteolytic activity of matrix metalloproteinase in cultured articular chondrocytes and production of matrix metalloproteinase in the knee joint of rat. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 21:19-26. [PMID: 28066137 PMCID: PMC5214907 DOI: 10.4196/kjpp.2017.21.1.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/31/2022]
Abstract
We investigated whether betulin affects the gene expression, secretion and proteolytic activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the rat knee joint to evaluate the potential chondroprotective effect of betulin. Rabbit articular chondrocytes were cultured and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-1β (IL-1β)-induced gene expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen. Effect of betulin on IL-1β-induced secretion and proteolytic activity of MMP-3 was investigated using western blot analysis and casein zymography, respectively. Effect of betulin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) betulin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5, but increased the gene expression of type II collagen; (2) betulin inhibited the secretion and proteolytic activity of MMP-3; (3) betulin suppressed the production of MMP-3 protein in vivo. These results suggest that betulin can regulate the gene expression, secretion, and proteolytic activity of MMP-3, by directly acting on articular chondrocytes.
Collapse
Affiliation(s)
- Ho Jong Ra
- Department of Orthopedic Surgery, Gangneung Asan Hospital, College of Medicine, University of Ulsan, Gangneung 25440, Korea
| | - Hyun Jae Lee
- Department of Health Management, Sahmyook University, Seoul 01795, Korea
| | - Ho Seung Jo
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Dae Cheol Nam
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Young Bok Lee
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Byeong Hun Kang
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Dong Kyu Moon
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Dong Hee Kim
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sun-Chul Hwang
- Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
297
|
Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis. Int J Mol Sci 2016; 17:ijms17122146. [PMID: 27999417 PMCID: PMC5187946 DOI: 10.3390/ijms17122146] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a joint pathology characterized by progressive cartilage degradation. Medical care is mainly based on alleviating pain symptoms. Compelling studies report the presence of empty lacunae and hypocellularity in cartilage with aging and OA progression, suggesting that chondrocyte cell death occurs and participates to OA development. However, the relative contribution of apoptosis per se in OA pathogenesis appears complex to evaluate. Indeed, depending on technical approaches, OA stages, cartilage layers, animal models, as well as in vivo or in vitro experiments, the percentage of apoptosis and cell death types can vary. Apoptosis, chondroptosis, necrosis, and autophagic cell death are described in this review. The question of cell death causality in OA progression is also addressed, as well as the molecular pathways leading to cell death in response to the following inducers: Fas, Interleukin-1β (IL-1β), Tumor Necrosis factor-α (TNF-α), leptin, nitric oxide (NO) donors, and mechanical stresses. Furthermore, the protective role of autophagy in chondrocytes is highlighted, as well as its decline during OA progression, enhancing chondrocyte cell death; the transition being mainly controlled by HIF-1α/HIF-2α imbalance. Finally, we have considered whether interfering in chondrocyte apoptosis or promoting autophagy could constitute therapeutic strategies to impede OA progression.
Collapse
|
298
|
Withrow J, Murphy C, Liu Y, Hunter M, Fulzele S, Hamrick MW. Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 2016; 18:286. [PMID: 27906035 PMCID: PMC5134070 DOI: 10.1186/s13075-016-1178-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are both debilitating diseases that cause significant morbidity in the US population. Extracellular vesicles (EVs), including exosomes and microvesicles, are now recognized to play important roles in cell-to-cell communication by transporting various proteins, microRNAs (miRNAs), and mRNAs. EV-derived proteins and miRNAs impact cell viability and cell differentiation, and are likely to play a prominent role in the pathophysiology of both OA and RA. Some of the processes by which these membrane-bound vesicles can alter joint tissue include extracellular matrix degradation, cell-to-cell communication, modulation of inflammation, angiogenesis, and antigen presentation. For example, EVs from IL-1β-stimulated fibroblast-like synoviocytes have been shown to induce osteoarthritic changes in chondrocytes. RA models have shown that EVs stimulated with inflammatory cytokines are capable of inducing apoptosis resistance in T cells, presenting antigen to T cells, and causing extracellular damage with matrix-degrading enzymes. EVs derived from rheumatoid models have also been shown to induce secretion of COX-2 and stimulate angiogenesis. Additionally, there is evidence that synovium-derived EVs may be promising biomarkers of disease in both OA and RA. The characterization of EVs in the joint space has also opened up the possibility for delivery of small molecules. This article reviews current knowledge on the role of EVs in both RA and OA, and their potential role as therapeutic targets for modulation of these debilitating diseases.
Collapse
Affiliation(s)
- Joseph Withrow
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Cameron Murphy
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Monte Hunter
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Sadanand Fulzele
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Mark W Hamrick
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA.
| |
Collapse
|
299
|
Zhou S, Wang Z, Tang J, Li W, Huang J, Xu W, Luo F, Xu M, Wang J, Wen X, Chen L, Chen H, Su N, Shen Y, Du X, Xie Y, Chen L. Exogenous fibroblast growth factor 9 attenuates cartilage degradation and aggravates osteophyte formation in post-traumatic osteoarthritis. Osteoarthritis Cartilage 2016; 24:2181-2192. [PMID: 27473558 DOI: 10.1016/j.joca.2016.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/24/2016] [Accepted: 07/19/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of the present study is to investigate the effects of exogenous fibroblast growth factor (FGF)9 on the progression of post-traumatic osteoarthritis (OA). DESIGN The expression of FGF9 in articular cartilage with OA is detected by immunohistochemistry (IHC). The effects of intra-articular exogenous FGF9 injection on post-traumatic OA induced by the destabilization of the medial meniscus (DMM) surgery are evaluated. Cartilage changes and osteophyte formation in knee joints are investigated by histological analysis. Changes in subchondral bone are evaluated by microcomputed tomography (micro-CT). The effect of exogenous FGF9 on an interleukin-1β (IL-1β)-induced ex vivo OA model of human articular cartilage tissues is also evaluated. RESULTS FGF9 expression was down-regulated in articular chondrocytes of OA but ectopically induced at sites of osteophyte formation. Intra-articular injection of exogenous FGF9 attenuated articular cartilage degradation in mice after DMM surgery. Exogenous FGF9 suppressed collagen X and MMP13 expressions in OA cartilage, while promoted collagen II expression. Similar results were observed in IL-1β-induced ex vivo OA model. Intra-articular injection of FGF9 had no significant effect on the subchondral bone of knee joints after DMM surgery, but aggravated osteophyte formation. The expressions of SOX9 and collagen II, and cell proliferation were up-regulated at sites of initial osteophyte formation in mice with exogenous FGF9 treatment. CONCLUSIONS Intra-articular injection of exogenous FGF9 delays articular cartilage degradation in post-traumatic OA, while aggravates osteophyte formation.
Collapse
Affiliation(s)
- S Zhou
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Z Wang
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - J Tang
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - W Li
- Department of Military Nursing, School of Nursing, Third Military Medical University, Chongqing 400042, China
| | - J Huang
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - W Xu
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - F Luo
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - M Xu
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - J Wang
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - X Wen
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - L Chen
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - H Chen
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - N Su
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Y Shen
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - X Du
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Y Xie
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | - L Chen
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
300
|
Ko FC, Dragomir CL, Plumb DA, Hsia AW, Adebayo OO, Goldring SR, Wright TM, Goldring MB, van der Meulen MC. Progressive cell-mediated changes in articular cartilage and bone in mice are initiated by a single session of controlled cyclic compressive loading. J Orthop Res 2016; 34:1941-1949. [PMID: 26896841 PMCID: PMC5349861 DOI: 10.1002/jor.23204] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/15/2016] [Indexed: 02/04/2023]
Abstract
We previously showed that repetitive cyclic loading of the mouse knee joint causes changes that recapitulate the features of osteoarthritis (OA) in humans. By applying a single loading session, we characterized the temporal progression of the structural and compositional changes in subchondral bone and articular cartilage. We applied loading during a single 5-minute session to the left tibia of adult (26-week-old) C57Bl/6 male mice at a peak load of 9.0N for 1,200 cycles. Knee joints were collected at times 0, 1, and 2 weeks after loading. The changes in articular cartilage and subchondral bone were analyzed by histology, immunohistochemistry (caspase-3 and cathepsin K), and microcomputed tomography. At time 0, no change was evident in chondrocyte viability or cartilage or subchondral bone integrity. However, cartilage pathology demonstrated by localized thinning and proteoglycan loss occurred at 1 and 2 weeks after the single session of loading. Transient cancellous bone loss was evident at 1 week, associated with increased osteoclast number. Bone loss was reversed to control levels at 2 weeks. We observed formation of fibrous and cartilaginous tissues at the joint margins at 1 and 2 weeks. Our findings demonstrate that a single session of noninvasive loading leads to the development of OA-like morphological and cellular alterations in articular cartilage and subchondral bone. The loss in subchondral trabecular bone mass and thickness returns to control levels at 2 weeks, whereas the cartilage thinning and proteoglycan loss persist. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1941-1949, 2016.
Collapse
Affiliation(s)
- Frank C. Ko
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | | | - Darren A. Plumb
- Research Division, Hospital for Special Surgery, New York, NY
| | - Allison W. Hsia
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | | | | | | | | | - Marjolein C.H. van der Meulen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY,Research Division, Hospital for Special Surgery, New York, NY
| |
Collapse
|