251
|
De Pasquale C, Palazzolo E, Lo Piccolo L, Quatrini P. Degradation of long-chain n-alkanes in soil microcosms by two actinobacteria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:374-381. [PMID: 22320689 DOI: 10.1080/10934529.2012.645786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The ability of two recently isolated actinobacteria, that degrade medium and long chain n-alkanes in laboratory water medium, was investigated in soil microcosms using different standard soils that were artificially contaminated with n-alkanes of different length (C(12)- C(20)- C(24)- C(30)). The two strains, identified as Nocardia sp. SoB and Gordonia sp. SoCp, revealed a similar high HC degradation efficiency with an average of 75% alkane degraded after 28 days incubation. A selectivity of bacteria towards n-alkanes of different length was detected as well as a consistent effect of soil texture and other soil physical chemical characteristics on degradation. It was demonstrated the specific aptitude of these selected strains towards specific environmental conditions.
Collapse
Affiliation(s)
- Claudio De Pasquale
- Dipartimento dei Sistemi Agro-Ambientali (SAgA), Università degli Studi di Palermo, Palermo, Italy.
| | | | | | | |
Collapse
|
252
|
Singh SN, Kumari B, Mishra S. Microbial Degradation of Alkanes. ENVIRONMENTAL SCIENCE AND ENGINEERING 2012. [DOI: 10.1007/978-3-642-23789-8_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
253
|
Meyer DD, Santestevan NA, Bücker F, Salamoni SP, Andreazza R, De Oliveira Camargo FA, Bento FM. Capability of a selected bacterial consortium for degrading diesel/biodiesel blends (B20): enzyme and biosurfactant production. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1776-1784. [PMID: 22755524 DOI: 10.1080/10934529.2012.689227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The search for alternative sources of energy, such as biodiesel, has been stimulated, since this biofuel is highly susceptible for biodegradation and has low toxicity, thus, reducing the impact in ecosystems. The objective of this study was to select a bacterial consortium with potential for degrading diesel/biodiesel blends (B20) obtained from areas contaminated with hydrocarbons/esters. In order to evaluate the biodegrability of the blend, six enzyme assays were conducted: alkane hydroxylase, Catechol 1,2-dioxygenase, Catechol 2,3-dioxygenase, Protocatechol 3,4-dioxygenase, ρ-NPA hydrolysis (esterase), and release of fatty acids through titration (lipase), with estimative of total protein and biosurfactant production (surface tension measurement and emulsifying index E(24)). The best results obtained allowed the selection of four bacteria isolates (Bacillus megaterium, Bacillus pumilus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia) for compiling a consortium, which will be used for bioaugmentation strategies in soils contaminated with these fuels. This consortium exhibited high potential for biodegradation of biodiesel, and might be an efficient alternative for cleaning up these contaminated environments.
Collapse
Affiliation(s)
- Daniel Derrossi Meyer
- Department of Microbiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
254
|
Mara K, Decorosi F, Viti C, Giovannetti L, Papaleo MC, Maida I, Perrin E, Fondi M, Vaneechoutte M, Nemec A, van den Barselaar M, Dijkshoorn L, Fani R. Molecular and phenotypic characterization of Acinetobacter strains able to degrade diesel fuel. Res Microbiol 2011; 163:161-72. [PMID: 22210401 DOI: 10.1016/j.resmic.2011.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/23/2011] [Indexed: 11/15/2022]
Abstract
Characterization of bacterial communities in oil-contaminated soils and evaluation of their degradation capacities may serve as a guide for improving remediation of such environments. Using physiological and molecular methods, the aim of this work was to characterize 17 Acinetobacter strains (13 species) able to use diesel fuel oil as sole carbon and energy source. The strains were first tested for their ability to grow on different alkanes on minimal medium containing high NaCl concentrations. The envelope hydrophobicity of each strain was assessed by microbial adhesion to the hydrocarbon test (MATH) when grown in LB medium or minimal medium containing succinate or diesel fuel. Most strains were hydrophobic both in LB and minimal medium, except for strain Acinetobacter venetianus VE-C3 that was hydrophobic only in minimal medium. Furthermore, two A. venetianus strains, RAG-1(T) and LUH 7437, and strain ATCC 17905 (genomic species 13BJ) displayed biosurfactant activity. The alkM gene encoding alkane hydroxylase was detected in the chromosome of the 15 strains by PCR amplification, sequencing and Southern blot analysis. Phenotype microarray analysis performed on the five A. venetianus strains revealed that they differentially used purines as N-source and confirmed that they are unable to use carbohydrates.
Collapse
Affiliation(s)
- Kostlend Mara
- Laboratory of Microbial and Molecular Evolution, Department of Evolutionary Biology, University of Florence, Via Romana 17-19, 50125 Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Pérez-de-Mora A, Engel M, Schloter M. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes. MICROBIAL ECOLOGY 2011; 62:959-972. [PMID: 21567188 DOI: 10.1007/s00248-011-9858-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 04/08/2011] [Indexed: 05/30/2023]
Abstract
Unraveling functional genes related to biodegradation of organic compounds has profoundly improved our understanding of biological remediation processes, yet the ecology of such genes is only poorly understood. We used a culture-independent approach to assess the abundance and diversity of bacteria catalyzing the degradation of n-alkanes with a chain length between C(5) and C(16) at a forest site co-contaminated with mineral oil hydrocarbons and metals for nearly 60 years. The alkB gene coding for a rubredoxin-dependent alkane monooxygenase enzyme involved in the initial activation step of aerobic aliphatic hydrocarbon metabolism was used as biomarker. Within the area of study, four different zones were evaluated: one highly contaminated, two intermediately contaminated, and a noncontaminated zone. Contaminant concentrations, hydrocarbon profiles, and soil microbial respiration and biomass were studied. Abundance of n-alkane-degrading bacteria was quantified via real-time PCR of alkB, whereas genetic diversity was examined using molecular fingerprints (T-RFLP) and clone libraries. Along the contamination plume, hydrocarbon profiles and increased respiration rates suggested on-going natural attenuation at the site. Gene copy numbers of alkB were similar in contaminated and control areas. However, T-RFLP-based fingerprints suggested lower diversity and evenness of the n-alkane-degrading bacterial community in the highly contaminated zone compared to the other areas; both diversity and evenness were negatively correlated with metal and hydrocarbon concentrations. Phylogenetic analysis of alkB denoted a shift of the hydrocarbon-degrading bacterial community from Gram-positive bacteria in the control zone (most similar to Mycobacterium and Nocardia types) to Gram-negative genotypes in the contaminated zones (Acinetobacter and alkB sequences with little similarity to those of known bacteria). Our results underscore a qualitative rather than a quantitative response of hydrocarbon-degrading bacteria to the contamination at the molecular level.
Collapse
Affiliation(s)
- Alfredo Pérez-de-Mora
- Helmholtz Zentrum München--Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Department of Terrestrial Ecogenetics, Institute of Soil Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | |
Collapse
|
256
|
Abstract
P450(BM3) (CYP102A1), a fatty acid hydroxylase from Bacillus megaterium, has been extensively studied over a period of almost forty years. The enzyme has been redesigned to catalyse the oxidation of non-natural substrates as diverse as pharmaceuticals, terpenes and gaseous alkanes using a variety of engineering strategies. Crystal structures have provided a basis for several of the catalytic effects brought about by mutagenesis, while changes to reduction potentials, inter-domain electron transfer rates and catalytic parameters have yielded functional insights. Areas of active research interest include drug metabolite production, the development of process-scale techniques, unravelling general mechanistic aspects of P450 chemistry, methane oxidation, and improving selectivity control to allow the synthesis of fine chemicals. This review draws together the disparate research themes and places them in a historical context with the aim of creating a resource that can be used as a gateway to the field.
Collapse
Affiliation(s)
- Christopher J C Whitehouse
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | | | | |
Collapse
|
257
|
Nie Y, Liang J, Fang H, Tang YQ, Wu XL. Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation. Appl Environ Microbiol 2011; 77:7279-88. [PMID: 21873474 PMCID: PMC3194844 DOI: 10.1128/aem.00203-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 08/19/2011] [Indexed: 11/20/2022] Open
Abstract
Two alkane hydroxylase-rubredoxin fusion gene homologs (alkW1 and alkW2) were cloned from a Dietzia strain, designated DQ12-45-1b, which can grow on crude oil and n-alkanes ranging in length from 6 to 40 carbon atoms as sole carbon sources. Both AlkW1 and AlkW2 have an integral-membrane alkane monooxygenase (AlkB) conserved domain and a rubredoxin (Rd) conserved domain which are fused together. Phylogenetic analysis showed that these two AlkB-fused Rd domains formed a novel third cluster with all the Rds from the alkane hydroxylase-rubredoxin fusion gene clusters in Gram-positive bacteria and that this third cluster was distant from the known AlkG1- and AlkG2-type Rds. Expression of the alkW1 gene in DQ12-45-1b was induced when cells were grown on C(8) to C(32) n-alkanes as sole carbon sources, but expression of the alkW2 gene was not detected. Functional heterologous expression in an alkB deletion mutant of Pseudomonas fluorescens KOB2Δ1 suggested the alkW1 could restore the growth of KOB2Δ1 on C(14) and C(16) n-alkanes and induce faster growth on C(18) to C(32) n-alkanes than alkW1ΔRd, the Rd domain deletion mutant gene of alkW1, which also caused faster growth than KOB2Δ1 itself. In addition, the artificial fusion of AlkB from the Gram-negative P. fluorescens CHA0 and the Rds from both Gram-negative P. fluorescens CHA0 and Gram-positive Dietzia sp. DQ12-45-1b significantly increased the degradation of C(32) alkane compared to that seen with AlkB itself. In conclusion, the alkW1 gene cloned from Dietzia species encoded an alkane hydroxylase which increased growth on and degradation of n-alkanes up to C(32) in length, with its fused rubredoxin domain being necessary to maintain the functions. In addition, the fusion of alkane hydroxylase and rubredoxin genes from both Gram-positive and -negative bacteria can increase the degradation of long-chain n-alkanes (such as C(32)) in the Gram-negative bacterium.
Collapse
Affiliation(s)
- Yong Nie
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jieliang Liang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Hui Fang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yue-Qin Tang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Xiao-Lei Wu
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
258
|
Alonso-Gutiérrez J, Teramoto M, Yamazoe A, Harayama S, Figueras A, Novoa B. Alkane-degrading properties of Dietzia sp. H0B, a key player in the Prestige oil spill biodegradation (NW Spain). J Appl Microbiol 2011; 111:800-10. [PMID: 21767337 DOI: 10.1111/j.1365-2672.2011.05104.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Investigation of the alkane-degrading properties of Dietzia sp. H0B, one of the isolated Corynebacterineae strains that became dominant after the Prestige oil spill. METHODS AND RESULTS Using molecular and chemical analyses, the alkane-degrading properties of strain Dietzia sp. H0B were analysed. This Grampositive isolate was able to grow on n-alkanes ranging from C₁₂ to C₃₈ and branched alkanes (pristane and phytane). 8-Hexadecene was detected as an intermediate of hexadecane degradation by Dietzia H0B, suggesting a novel alkane-degrading pathway in this strain. Three putative alkane hydroxylase genes (one alkB homologue and two CYP153 gene homologues of cytochrome P450 family) were PCR-amplified from Dietzia H0B and differed from previously known hydroxylase genes, which might be related to the novel degrading activity observed on Dietzia H0B. The alkane degradation activity and the alkB and CYP153 gene expression were observed constitutively regardless of the presence of the substrate, suggesting additional, novel pathways for alkane degradation. CONCLUSIONS The results from this study suggest novel alkane-degrading pathways in Dietzia H0B and a genetic background coding for two different putative oil-degrading enzymes, which is mostly unexplored and worth to be subject of further functional analysis. SIGNIFICANCE AND IMPACT OF THE STUDY This study increases the scarce information available about the genetic background of alkane degradation in genus Dietzia and suggests new pathways and novel expression mechanisms of alkane degradation.
Collapse
|
259
|
Peixoto RS, Vermelho AB, Rosado AS. Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Res 2011; 2011:475193. [PMID: 21811673 PMCID: PMC3147008 DOI: 10.4061/2011/475193] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/27/2011] [Indexed: 11/20/2022] Open
Abstract
Anthropogenic forces, such as petroleum spills and the incomplete combustion of fossil fuels, have caused an accumulation of petroleum hydrocarbons in the environment. The accumulation of petroleum and its derivatives now constitutes an important environmental problem. Biocatalysis introduces new ways to improve the development of bioremediation strategies. The recent application of molecular tools to biocatalysis may improve bioprospecting research, enzyme yield recovery, and enzyme specificity, thus increasing cost-benefit ratios. Enzymatic remediation is a valuable alternative as it can be easier to work with than whole organisms, especially in extreme environments. Furthermore, the use of free enzymes avoids the release of exotic or genetically modified organisms (GMO) in the environment.
Collapse
Affiliation(s)
- R S Peixoto
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21 941902, Brazil
| | | | | |
Collapse
|
260
|
Paisse S, Duran R, Coulon F, Goñi-Urriza M. Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in chronically polluted coastal sediments? Appl Microbiol Biotechnol 2011; 92:835-44. [PMID: 21660544 DOI: 10.1007/s00253-011-3381-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 11/24/2022]
Abstract
The diversity of alkB-related alkane hydroxylase sequences and the relationship between alkB gene expression and the hydrocarbon contamination level have been investigated in the chronically polluted Etang-de-Berre sediments. For this purpose, these sediments were maintained in microcosms and submitted to a controlled oil input miming an oil spill. New degenerated PCR primers targeting alkB-related alkane hydroxylase sequences were designed to explore the diversity and the expression of these genes using terminal restriction fragment length polymorphism fingerprinting and gene library analyses. Induction of alkB genes was detected immediately after oil addition and their expression detected only during 2 days, although the n-alkane degradation was observed throughout the 14 days of incubation. The alkB gene expression within triplicate microcosms was heterogeneous probably due to the low level of alkB transcripts. Moreover, the alkB gene expression of dominant OTUs has been observed in unoiled microcosms indicating that the expression of this gene cannot be directly related to the oil contamination. Although the dominant alkB genes and transcripts detected were closely related to the alkB of Marinobacter aquaeolei isolated from an oil-producing well, and to alkB genes related to the obligate alkanotroph Alcanivorax borkumensis, no clear relationship between the oil contamination and the expression of the alkB genes could be established. This finding suggests that in such coastal environments, alkB gene expression is not a function relevant enough to monitor bacterial response to oil contamination.
Collapse
Affiliation(s)
- Sandrine Paisse
- Equipe Environnement et Microbiologie-UMR IPREM5254, Université de Pau, BP 1155, 64013 Pau cedex, France
| | | | | | | |
Collapse
|
261
|
An Improved Procedure for the Purification of Catalytically Active Alkane Hydroxylase from Pseudomonas putida GPo1. Appl Biochem Biotechnol 2011; 165:823-31. [DOI: 10.1007/s12010-011-9300-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
262
|
Coleman NV, Yau S, Wilson NL, Nolan LM, Migocki MD, Ly MA, Crossett B, Holmes AJ. Untangling the multiple monooxygenases of Mycobacterium chubuense strain NBB4, a versatile hydrocarbon degrader. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:297-307. [PMID: 23761275 DOI: 10.1111/j.1758-2229.2010.00225.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mycobacterium strain NBB4 was isolated on ethene as part of a bioprospecting study searching for novel monooxygenase (MO) enzymes of interest to biocatalysis and bioremediation. Previous work indicated that strain NBB4 contained an unprecedented diversity of MO genes, and we hypothesized that each MO type would support growth on a distinct hydrocarbon substrate. Here, we attempted to untangle the relationships between MO types and hydrocarbon substrates. Strain NBB4 was shown to grow on C2 -C4 alkenes and C2 -C16 alkanes. Complete gene clusters encoding six different monooxygenases were recovered from a fosmid library, including homologues of ethene MO (etnABCD), propene MO (pmoABCD), propane MO (smoABCD), butane MO (smoXYB1C1Z), cytochrome P450 (CYP153; fdx-cyp-fdr) and alkB (alkB-rubA1-rubA2). Catabolic enzymes involved in ethene assimilation (EtnA, EtnC, EtnD, EtnE) and alkane assimilation (alcohol and aldehyde dehydrogenases) were identified by proteomics, and we showed for the first time that stress response proteins (catalase/peroxidase, chaperonins) were induced by growth on C2 -C5 alkanes and ethene. Surprisingly, none of the identified MO genes could be specifically associated with oxidation of small alkanes, and thus the nature of the gaseous alkane MO in NBB4 remains mysterious.
Collapse
Affiliation(s)
- Nicholas V Coleman
- School of Molecular Bioscience, Building G08, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Induction of NAD+ dependent alcohol dehydrogenases with activity towards long chain aliphatic alcohols in mesophilic, thermophilic and extreme thermophilic microorganisms. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
264
|
Sayavedra-Soto LA, Hamamura N, Liu CW, Kimbrel JA, Chang JH, Arp DJ. The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:390-396. [PMID: 23761285 DOI: 10.1111/j.1758-2229.2010.00239.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Gram-positive bacterium Nocardioides sp. strain CF8 uses a membrane-associated monooxygenase (pBMO) to grow on butane. The nucleotide sequences of the genes encoding this novel monooxygenase were revealed through analysis of a de novo assembled draft genome sequence determined by high-throughput sequencing of the whole genome. The pBMO genes were in a similar arrangement to the genes for ammonia monooxygenase (AMO) from the ammonia-oxidizing bacteria and for particulate methane monooxygenase (pMMO) from the methane-oxidizing bacteria. The pBMO genes likely constitute an operon in the order bmoC, bmoA and bmoB. The nucleotide sequence was less than 50% similar to the genes for AMO and pMMO. The operon for pBMO was confirmed to be a single copy in the genome by Southern and computational analyses. In an incubation on butane the increase of transcriptional activity of the pBmoA gene was congruent with the increase of pBMO activity and suggested correspondence between gene expression and the utilization of butane. Phylogenetic comparison revealed distant but significant similarity of all three pBMO subunits to homologous members of the AMO/pMMO family and indicated that the pBMO represents a deeply branching third lineage of this group of particulate monooxygenases. No other bmoCAB-like genes were found to cluster with pBMO lineage in phylogenetic analysis by database searches including genomic and metagenomic sequence databases. pBMO is the first example of the AMO/pMMO-like monooxygenase from Gram-positive bacteria showing similarities to proteobacterial pMMO and AMO sequences.
Collapse
Affiliation(s)
- Luis A Sayavedra-Soto
- Department of Botany and Plant Pathology Molecular and Cellular Biology Program Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA. Center for Marine Environmental Studies, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan. Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | | | | | | | | | | |
Collapse
|
265
|
Sabirova JS, Becker A, Lünsdorf H, Nicaud JM, Timmis KN, Golyshin PN. Transcriptional profiling of the marine oil-degrading bacterium Alcanivorax borkumensis during growth on n-alkanes. FEMS Microbiol Lett 2011; 319:160-8. [DOI: 10.1111/j.1574-6968.2011.02279.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
266
|
Huf S, Krügener S, Hirth T, Rupp S, Zibek S. Biotechnological synthesis of long-chain dicarboxylic acids as building blocks for polymers. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201000112] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
267
|
Complete genome sequence of Polymorphum gilvum SL003B-26A1T, a crude oil-degrading bacterium from oil-polluted saline soil. J Bacteriol 2011; 193:2894-5. [PMID: 21478361 DOI: 10.1128/jb.00333-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polymorphum gilvum SL003B-26A1(T) is a type strain of a newly published novel species in the novel genus Polymorphum. It was isolated from a crude oil-polluted saline soil in Shengli Oilfield, China, and was able to use the crude oil as the sole carbon source. Here we report the complete genome of SL003B-26A1(T) and the genes likely to be involved in oil degradation and ecological adaption.
Collapse
|
268
|
Wu RR, Dang Z, Yi XY, Yang C, Lu GN, Guo CL, Liu CQ. The effects of nutrient amendment on biodegradation and cytochrome P450 activity of an n-alkane degrading strain of Burkholderia sp. GS3C. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:978-983. [PMID: 21167642 DOI: 10.1016/j.jhazmat.2010.11.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 10/29/2010] [Accepted: 11/23/2010] [Indexed: 05/30/2023]
Abstract
The promotion of hexadecane biodegradation activity by an n-alkane degrading strain of Burkholderia cepacia (GS3C) with yeast extract amendment was studied using various carbon, nitrogen, vitamin, and amino acid amendments. Cytochrome P450 monooxygenase enzymes play a very important role and are especially required to introduce oxygen in n-alkane degradation. These enzymes from GS3C were located and detected using amino acid amendments. It was shown that biodegradation activity was promoted with amino acids amendments. However, only specific amino acids (L-phenylalanine, L-glutamic acid, L-proline, L-lysine, L-valine and L-leucine) have biodegradation promoting ability for GS3C. Cell protein concentration and cytochrome P450 activity were promoted significantly with the addition of L-phenylalanine and yeast extract. Furthermore, a significant positive linear relationship between cytochrome P450 activity and biodegradation efficiency of GS3C was observed. The results indicate that amino acid is the primary factor of nutrient amendment in promoting hexadecane biodegradation by influencing cytochrome P450 activity in GS3C.
Collapse
Affiliation(s)
- Ren-Ren Wu
- School of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006, PR China
| | | | | | | | | | | | | |
Collapse
|
269
|
Liu C, Wang W, Wu Y, Zhou Z, Lai Q, Shao Z. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environ Microbiol 2011; 13:1168-78. [PMID: 21261799 DOI: 10.1111/j.1462-2920.2010.02416.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alcanivorax dieselolei strain B-5 is a marine bacterium that can utilize a broad range of n-alkanes (C(5) -C(36) ) as sole carbon source. However, the mechanisms responsible for this trait remain to be established. Here we report on the characterization of four alkane hydroxylases from A. dieselolei, including two homologues of AlkB (AlkB1 and AlkB2), a CYP153 homologue (P450), as well as an AlmA-like (AlmA) alkane hydroxylase. Heterologous expression of alkB1, alkB2, p450 and almA in Pseudomonas putida GPo12 (pGEc47ΔB) or P. fluorescens KOB2Δ1 verified their functions in alkane oxidation. Quantitative real-time RT-PCR analysis showed that these genes could be induced by alkanes ranging from C(8) to C(36) . Notably, the expression of the p450 and almA genes was only upregulated in the presence of medium-chain (C(8) -C(16) ) or long-chain (C(22) -C(36) ) n-alkanes, respectively; while alkB1 and alkB2 responded to both medium- and long-chain n-alkanes (C(12) -C(26) ). Moreover, branched alkanes (pristane and phytane) significantly elevated alkB1 and almA expression levels. Our findings demonstrate that the multiple alkane hydroxylase systems ensure the utilization of substrates of a broad chain length range.
Collapse
Affiliation(s)
- Chenli Liu
- Key Lab of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, China
| | | | | | | | | | | |
Collapse
|
270
|
Bihari Z, Szvetnik A, Szabó Z, Blastyák A, Zombori Z, Balázs M, Kiss I. Functional analysis of long-chain n-alkane degradation by Dietzia spp. FEMS Microbiol Lett 2011; 316:100-7. [DOI: 10.1111/j.1574-6968.2010.02198.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
271
|
Scheps D, Honda Malca S, Hoffmann H, Nestl BM, Hauer B. Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666. Org Biomol Chem 2011; 9:6727-33. [DOI: 10.1039/c1ob05565h] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
272
|
Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
273
|
Fernández-Luqueño F, Valenzuela-Encinas C, Marsch R, Martínez-Suárez C, Vázquez-Núñez E, Dendooven L. Microbial communities to mitigate contamination of PAHs in soil--possibilities and challenges: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:12-30. [PMID: 20623198 DOI: 10.1007/s11356-010-0371-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/23/2010] [Indexed: 05/26/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Although highly diverse and specialized prokaryotic and eukaryotic microbial communities in soil degrade polycyclic aromatic hydrocarbons (PAHs), most of these are removed slowly. This review will discuss the biotechnological possibilities to increase the microbial dissipation of PAHs from soil as well as the main biological and biotechnological challenges. DISCUSSION AND CONCLUSIONS Microorganism provides effective and economically feasible solutions for soil cleanup and restoration. However, when the PAHs contamination is greater than the microbial ability to dissipate them, then applying genetically modified microorganisms might help to remove the contaminant. Nevertheless, it is necessary to have a more holistic review of the different individual reactions that are simultaneously taking place in a microbial cell and of the interactions microorganism-microorganism, microorganism-plant, microorganism-soil, and microorganisms-PAHs. PERSPECTIVES Elucidating the function of genes from the PAHs-polluted soil and the study in pure cultures of isolated PAHs-degrading organisms as well as the generation of microorganisms in the laboratory that will accelerate the dissipation of PAHs and their safe application in situ have not been studied extensively. There is a latent environmental risk when genetically engineered microorganisms are used to remedy PAHs-contaminated soil.
Collapse
Affiliation(s)
- F Fernández-Luqueño
- Renewable Energy Engineering, Universidad Tecnológica de Tulancingo, Tulancingo, Hidalgo 43642, México.
| | | | | | | | | | | |
Collapse
|
274
|
Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes. Appl Environ Microbiol 2010; 77:1204-13. [PMID: 21183636 DOI: 10.1128/aem.02180-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes involved in oxidation of long-chain n-alkanes are still not well known, especially those in gram-positive bacteria. This work describes the alkane degradation system of the n-alkane degrader actinobacterium Gordonia sp. strain SoCg, which is able to grow on n-alkanes from dodecane (C(12)) to hexatriacontane (C(36)) as the sole C source. SoCg harbors in its chromosome a single alk locus carrying six open reading frames (ORFs), which shows 78 to 79% identity with the alkane hydroxylase (AH)-encoding systems of other alkane-degrading actinobacteria. Quantitative reverse transcription-PCR showed that the genes encoding AlkB (alkane 1-monooxygenase), RubA3 (rubredoxin), RubA4 (rubredoxin), and RubB (rubredoxin reductase) were induced by both n-hexadecane and n-triacontane, which were chosen as representative long-chain liquid and solid n-alkane molecules, respectively. Biotransformation of n-hexadecane into the corresponding 1-hexadecanol was detected by solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME/GC-MS) analysis. The Gordonia SoCg alkB was heterologously expressed in Escherichia coli BL21 and in Streptomyces coelicolor M145, and both hosts acquired the ability to transform n-hexadecane into 1-hexadecanol, but the corresponding long-chain alcohol was never detected on n-triacontane. However, the recombinant S. coelicolor M145-AH, expressing the Gordonia alkB gene, was able to grow on n-triacontane as the sole C source. A SoCg alkB disruption mutant that is completely unable to grow on n-triacontane was obtained, demonstrating the role of an AlkB-type AH system in degradation of solid n-alkanes.
Collapse
|
275
|
Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A. Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:523-532. [PMID: 20851515 DOI: 10.1016/j.jhazmat.2010.08.067] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 05/06/2023]
Abstract
Twenty-six different plant species were analyzed regarding their performance in soil contaminated with petroleum oil. Two well-performing species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) and the combination of these two plants were selected to study the ecology of plant-associated, culturable alkane-degrading bacteria. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA gene, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Furthermore, we investigated whether alkane hydroxylase genes are plasmid located. Higher numbers of culturable, alkane-degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Degradation genes were found both on plasmids as well as in the chromosome. In regard to application of plants for rhizodegradation, where support of numerous degrading bacteria is essential for efficient break-down of pollutants, Italian ryegrass seems to be more appropriate than Birdsfoot trefoil.
Collapse
Affiliation(s)
- Sohail Yousaf
- Bioresources Unit, AIT Austrian Institute of Technology GmbH, A-2444 Seibersdorf, Austria
| | - Verania Andria
- Bioresources Unit, AIT Austrian Institute of Technology GmbH, A-2444 Seibersdorf, Austria
| | - Thomas G Reichenauer
- Unit of Environmental Resources & Technologies, AIT Austrian Institute of Technology GmbH, A-2444 Seibersdorf, Austria
| | - Kornelia Smalla
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, D-38104 Braunschweig, Germany
| | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology GmbH, A-2444 Seibersdorf, Austria.
| |
Collapse
|
276
|
Abstract
Bacteria construct elaborate nanostructures, obtain nutrients and energy from diverse sources, synthesize complex molecules, and implement signal processing to react to their environment. These complex phenotypes require the coordinated action of multiple genes, which are often encoded in a contiguous region of the genome, referred to as a gene cluster. Gene clusters sometimes contain all of the genes necessary and sufficient for a particular function. As an evolutionary mechanism, gene clusters facilitate the horizontal transfer of the complete function between species. Here, we review recent work on a number of clusters whose functions are relevant to biotechnology. Engineering these clusters has been hindered by their regulatory complexity, the need to balance the expression of many genes, and a lack of tools to design and manipulate DNA at this scale. Advances in synthetic biology will enable the large-scale bottom-up engineering of the clusters to optimize their functions, wake up cryptic clusters, or to transfer them between organisms. Understanding and manipulating gene clusters will move towards an era of genome engineering, where multiple functions can be "mixed-and-matched" to create a designer organism.
Collapse
Affiliation(s)
- Michael Fischbach
- Department of Bioengineering and Therapeutic Sciences, University of California – San Francisco, MC 2530, Room 308C, 1700 4 Street, (415) 514-9435
| | - Christopher A. Voigt
- Department of Pharmaceutical Chemistry, University of California – San Francisco, MC 2540, Room 408C, 1700 4 Street, San Francisco, CA 94158, (415) 502-7050
| |
Collapse
|
277
|
Pirog TP, Shevchuk TA, Klimenko YA. Intensification of surfactant synthesis in Rhodococcus erythropolis EK-1 cultivated on hexadecane. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810060074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
278
|
Militon C, Boucher D, Vachelard C, Perchet G, Barra V, Troquet J, Peyretaillade E, Peyret P. Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol 2010; 74:669-81. [PMID: 21044099 DOI: 10.1111/j.1574-6941.2010.00982.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The microbial community response during the oxygen biostimulation process of aged oil-polluted soils is poorly documented and there is no reference for the long-term monitoring of the unsaturated zone. To assess the potential effect of air supply on hydrocarbon fate and microbial community structure, two treatments (0 and 0.056 mol h⁻¹ molar flow rate of oxygen) were performed in fixed bed reactors containing oil-polluted soil. Microbial activity was monitored continuously over 2 years throughout the oxygen biostimulation process. Microbial community structure before and after treatment for 12 and 24 months was determined using a dual rRNA/rRNA gene approach, allowing us to characterize bacteria that were presumably metabolically active and therefore responsible for the functionality of the community in this polluted soil. Clone library analysis revealed that the microbial community contained many rare phylotypes. These have never been observed in other studied ecosystems. The bacterial community shifted from Gammaproteobacteria to Actinobacteria during the treatment. Without aeration, the samples were dominated by a phylotype linked to the Streptomyces. Members belonging to eight dominant phylotypes were well adapted to the aeration process. Aeration stimulated an Actinobacteria phylotype that might be involved in restoring the ecosystem studied. Phylogenetic analyses suggested that this phylotype is a novel, deep-branching member of the Actinobacteria related to the well-studied genus Acidimicrobium.
Collapse
Affiliation(s)
- Cécile Militon
- Clermont Université, Université d'Auvergne, Laboratoire: Microorganismes Génome et Environnement, Clermont-Ferrand, France
| | | | | | | | | | | | | | | |
Collapse
|
279
|
Vilchez-Vargas R, Junca H, Pieper DH. Metabolic networks, microbial ecology and ‘omics’ technologies: towards understanding in situ biodegradation processes. Environ Microbiol 2010; 12:3089-104. [DOI: 10.1111/j.1462-2920.2010.02340.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
280
|
Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2010; 2011:941810. [PMID: 21350672 PMCID: PMC3042690 DOI: 10.4061/2011/941810] [Citation(s) in RCA: 450] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/28/2010] [Accepted: 07/07/2010] [Indexed: 11/20/2022]
Abstract
One of the major environmental problems today is hydrocarbon contamination resulting from the activities related to the petrochemical industry. Accidental releases of petroleum products are of particular concern in the environment. Hydrocarbon components have been known to belong to the family of carcinogens and neurotoxic organic pollutants. Currently accepted disposal methods of incineration or burial insecure landfills can become prohibitively expensive when amounts of contaminants are large. Mechanical and chemical methods generally used to remove hydrocarbons from contaminated sites have limited effectiveness and can be expensive. Bioremediation is the promising technology for the treatment of these contaminated sites since it is cost-effective and will lead to complete mineralization. Bioremediation functions basically on biodegradation, which may refer to complete mineralization of organic contaminants into carbon dioxide, water, inorganic compounds, and cell protein or transformation of complex organic contaminants to other simpler organic compounds by biological agents like microorganisms. Many indigenous microorganisms in water and soil are capable of degrading hydrocarbon contaminants. This paper presents an updated overview of petroleum hydrocarbon degradation by microorganisms under different ecosystems.
Collapse
Affiliation(s)
- Nilanjana Das
- Environmental Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - Preethy Chandran
- Environmental Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
281
|
Johnston JB, Ouellet H, Podust LM, Ortiz de Montellano PR. Structural control of cytochrome P450-catalyzed ω-hydroxylation. Arch Biochem Biophys 2010; 507:86-94. [PMID: 20727847 DOI: 10.1016/j.abb.2010.08.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 11/25/2022]
Abstract
The regiospecific or preferential ω-hydroxylation of hydrocarbon chains is thermodynamically disfavored because the ease of C-H bond hydroxylation depends on the bond strength, and the primary C-H bond of a terminal methyl group is stronger than the secondary or tertiary C-H bond adjacent to it. The hydroxylation reaction will therefore occur primarily at the adjacent secondary or tertiary C-H bond unless the protein structure specifically enforces primary C-H bond oxidation. Here we review the classes of enzymes that catalyze ω-hydroxylation and our current understanding of the structural features that promote the ω-hydroxylation of unbranched and methyl-branched hydrocarbon chains. The evidence indicates that steric constraints are used to favor reaction at the ω-site rather than at the more reactive (ω-1)-site.
Collapse
Affiliation(s)
- Jonathan B Johnston
- Department of Pharmaceutical Chemistry, University of California-San Francisco, CA 94158-2517, United States
| | | | | | | |
Collapse
|
282
|
Wang W, Wang L, Shao Z. Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen Island. MICROBIAL ECOLOGY 2010; 60:429-39. [PMID: 20683589 DOI: 10.1007/s00248-010-9724-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/09/2010] [Indexed: 05/13/2023]
Abstract
In this report, the diversity of oil-degrading bacteria and alkB gene was surveyed in the seawater around Xiamen Island. Forty-four isolates unique in 16S rRNA sequence were obtained after enrichment with crude oil. Most of the obtained isolates exhibited growth with diesel oil and crude oil. alkB genes were positively detected in 16 isolates by degenerate polymerase chain reaction (PCR). And for the first time, alkB genes were found in bacteria of Gallaecimonas, Castellaniella, Paracoccus, and Leucobacter. Additional 29 alkB sequences were retrieved from genomic DNA of the oil-degrading communities. Phylogenetic analysis showed that the obtained alkB genes formed five groups, most of which exhibited 60-80% similarity at the amino acid level with sequences retrieved from the GenBank database. Furthermore, the abundance of alkB genes in seawater was examined by real-time PCR. The results showed that alkB genes of each group in situ ranged from about 3 × 10(3) to 3 × 10(5) copies L(-1), with the homologs of Alcanivorax and Pseudomonas being the most predominant. Bacteria of Alcanivorax, Acinetobacter, and Pseudomonas are important oil degraders in this area; while those frequently reported in other area, like Oleiphilus spp., Oleispira spp., and Thalassolituus spp. were not found in our report. These results indicate that bacteria and genes involved in oil degradation are quite diverse, and may have restriction in geographic distribution in some species.
Collapse
Affiliation(s)
- Wanpeng Wang
- School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | |
Collapse
|
283
|
Dioxygen activation responsible for oxidation of aliphatic and aromatic hydrocarbon compounds: current state and variants. Appl Microbiol Biotechnol 2010; 87:1595-603. [DOI: 10.1007/s00253-010-2715-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/03/2010] [Accepted: 06/05/2010] [Indexed: 10/19/2022]
|
284
|
Occurrence, production, and export of lipophilic compounds by hydrocarbonoclastic marine bacteria and their potential use to produce bulk chemicals from hydrocarbons. Appl Microbiol Biotechnol 2010; 86:1693-706. [DOI: 10.1007/s00253-010-2515-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 02/15/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
285
|
Wang L, Wang W, Lai Q, Shao Z. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 2010; 12:1230-42. [PMID: 20148932 DOI: 10.1111/j.1462-2920.2010.02165.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alkane hydroxylases, including the integral-membrane non-haem iron monooxygenase (AlkB) and cytochrome P450 CYP153 family, are key enzymes in bacterial alkane oxidation. Although both genes have been detected in a number of bacteria and environments, knowledge about the diversity of these genes in marine alkane-degrading bacteria is still limited, especially in pelagic areas. In this report, 177 bacterial isolates, comprising 43 genera, were obtained from 18 oil-degrading consortia enriched from surface seawater samples collected from the Atlantic Ocean. Many isolates were confirmed to be the first oil-degraders in their affiliated genera including Brachybacterium, Idiomarina, Leifsonia, Martelella, Kordiimonas, Parvibaculum and Tistrella. Using degenerate PCR primers, alkB and CYP153A P450 genes were surveyed in these bacteria. In total, 82 P450 and 52 alkB gene fragments were obtained from 80 of the isolates. These isolates mainly belonged to Alcanivorax, Bacillus, Erythrobacter, Martelella, Parvibaculum and Salinisphaera, some of which were reported, for the first time, to encode alkane hydroxylases. Phylogenetic analysis showed that both genes were quite diverse and formed several clusters, most of which were generated from various Alcanivorax bacteria. Noticeably, some sequences, such as those from the Salinisphaera genus, were grouped into a distantly related novel cluster. Inspection of the linkage between gene and host revealed that alkB and P450 tend to coexist in Alcanivorax and Salinisphaera, while in all isolates of Parvibaculum, only P450 genes were found, but of multiple homologues. Multiple homologues of alkB mostly cooccurred in Alcanivorax isolates. Conversely, distantly related isolates contained similar or even identical sequences. In summary, various oil-degrading bacteria, which harboured diverse P450 and alkB genes, were found in the surface water of Atlantic Ocean. Our results help to show the diversity of P450 and alkB genes in prokaryotes, and to portray the geographic distribution of oil-degrading bacteria in marine environments.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, State of Oceanic Administration, Xiamen, China
| | | | | | | |
Collapse
|
286
|
Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. J Biotechnol 2010; 146:9-24. [PMID: 20132846 DOI: 10.1016/j.jbiotec.2010.01.021] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/22/2010] [Accepted: 01/25/2010] [Indexed: 12/29/2022]
Abstract
Monooxygenases are enzymes that catalyze the insertion of a single oxygen atom from O(2) into an organic substrate. In order to carry out this type of reaction, these enzymes need to activate molecular oxygen to overcome its spin-forbidden reaction with the organic substrate. In most cases, monooxygenases utilize (in)organic cofactors to transfer electrons to molecular oxygen for its activation. Monooxygenases typically are highly chemo-, regio-, and/or enantioselective, making them attractive biocatalysts. In this review, an exclusive overview of known monooxygenases is presented, based on the type of cofactor that these enzymes require. This includes not only the cytochrome P450 and flavin-dependent monooxygenases, but also enzymes that utilize pterin, metal ions (copper or iron) or no cofactor at all. As most of these monooxygenases require nicotinamide coenzymes as electron donors, also an overview of current methods for coenzyme regeneration is given. This latter overview is of relevance for the biotechnological applications of these oxidative enzymes.
Collapse
|
287
|
Pérez-de-Mora A, Schulz S, Schloter M. MPN- and real-time-based PCR methods for the quantification of alkane monooxygenase homologous genes (alkB) in environmental samples. Methods Mol Biol 2010; 599:59-68. [PMID: 19882279 DOI: 10.1007/978-1-60761-439-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hydrocarbons are major contaminants of soil ecosystems as a result of uncontrolled oil spills and wastes disposal into the environment. Ecological risk assessment and remediation of affected sites is often constrained due to lack of suitable prognostic and diagnostic tools that provide information of abiotic-biotic interactions occurring between contaminants and biological targets. Therefore, the identification and quantification of genes involved in the degradation of hydrocarbons may play a crucial role for evaluating the natural attenuation potential of contaminated sites and the development of successful bioremediation strategies. Besides other gene clusters, the alk operon has been identified as a major player for alkane degradation in different soils. An oxygenase gene (alkB) codes for the initial step of the degradation of aliphatic alkanes under aerobic conditions. In this work, we present an MPN- and a real-time PCR method for the quantification of the bacterial gene alkB (coding for rubredoxin-dependent alkane monooxygenase) in environmental samples. Both approaches enable a rapid culture-independent screening of the alkB gene in the environment, which can be used to assess the intrinsic natural attenuation potential of a site or to follow up the on-going progress of bioremediation assays.
Collapse
Affiliation(s)
- Alfredo Pérez-de-Mora
- Department for Terrestrial Ecogenetics, Helmholtz Zentrum München, Institute of Soil Ecology, Neuherberg, Germany
| | | | | |
Collapse
|
288
|
Panicker G, Mojib N, Aislabie J, Bej AK. Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR. Antonie van Leeuwenhoek 2009; 97:275-87. [PMID: 20043207 DOI: 10.1007/s10482-009-9408-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/16/2009] [Indexed: 11/29/2022]
Abstract
In this study, 28 hydrocarbon-degrading bacterial isolates from oil-contaminated Antarctic soils were screened for the presence of biodegradative genes such as alkane hydroxylase (alks), the ISPalpha subunit of naphthalene dioxygenase (ndoB), catechol 2,3-dioxygenase (C23DO) and toluene/biphenyl dioxygenase (todC1/bphA1) by using polymerase chain reaction (PCR) methods. All naphthalene degrading bacterial isolates exhibited the presence of a 648 bp amplicon that shared 97% identity to a known ndoB sequence from Pseudomonas putida. Twenty-two out of the twenty-eight isolates screened were positive for one, two or all three different regions of the C23DO gene. For alkane hydroxylase, all 6 Rhodococcus isolates were PCR-positive for a 194 bp and a 552 bp segment of the alkB gene, but exhibited variable results with primers located at different segments of this gene. Three Pseudomonas spp. 4/101, 19/1, 30/3 amplified 552 bp segment of alkB. Only two Pseudomonas sp. 7/156 and 4/101 amplified a segment of alkB exhibiting 89-94% nucleotide sequence identity with the existing sequence of alkB in the GenBank sequence database. Transcripts of three genes, alkB2, C23DO and ndoB, that were amplified by DNA-PCR in three different bacterial isolates also exhibited positive amplification by reverse transcriptase PCR (RT-PCR) method confirming that these genes are functional. A competitive PCR (cPCR) method was developed for a quantitative estimation of ndoB from pure cultures of the naphthalene-degrading Pseudomonas sp. 30/2. A minimum of 1 x 10(7) copies of the ndoB gene was detected based on the comparison of the intensities of the competitor and target DNA bands. It is expected that the identification and characterization of the biodegradative genes will provide a better understanding of the catabolic pathways in Antarctic psychrotolerant bacteria, and thereby help support bioremediation strategies for oil-contaminated Antarctic soils.
Collapse
Affiliation(s)
- Gitika Panicker
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294-1170, USA
| | | | | | | |
Collapse
|
289
|
Abstract
Pollution of soil and water environments by crude oil has been, and is still today, an important problem. Crude oil is a complex mixture of thousands of compounds. Among them, alkanes constitute the major fraction. Alkanes are saturated hydrocarbons of different sizes and structures. Although they are chemically very inert, most of them can be efficiently degraded by several microorganisms. This review summarizes current knowledge on how microorganisms degrade alkanes, focusing on the biochemical pathways used and on how the expression of pathway genes is regulated and integrated within cell physiology.
Collapse
Affiliation(s)
- Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
290
|
House AJ, Hyman MR. Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5. Biodegradation 2009; 21:525-41. [DOI: 10.1007/s10532-009-9321-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/26/2009] [Indexed: 11/28/2022]
|
291
|
Nicolau E, Kuhn L, Marchal R, Jouanneau Y. Proteomic investigation of enzymes involved in 2-ethylhexyl nitrate biodegradation in Mycobacterium austroafricanum IFP 2173. Res Microbiol 2009; 160:838-47. [DOI: 10.1016/j.resmic.2009.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/23/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022]
|
292
|
Amouric A, Quéméneur M, Grossi V, Liebgott PP, Auria R, Casalot L. Identification of different alkane hydroxylase systems inRhodococcus ruberstrain SP2B, an hexane-degrading actinomycete. J Appl Microbiol 2009; 108:1903-16. [DOI: 10.1111/j.1365-2672.2009.04592.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
293
|
Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea, Australia. Appl Environ Microbiol 2009; 75:7391-8. [PMID: 19820158 DOI: 10.1128/aem.01370-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrocarbon seeps provide inputs of petroleum hydrocarbons to widespread areas of the Timor Sea. Alkanes constitute the largest proportion of chemical components found in crude oils, and therefore genes involved in the biodegradation of these compounds may act as bioindicators for this ecosystem's response to seepage. To assess alkane biodegradation potential, the diversity and distribution of alkane hydroxylase (alkB) genes in sediments of the Timor Sea were studied. Deduced AlkB protein sequences derived from clone libraries identified sequences only distantly related to previously identified AlkB sequences, suggesting that the Timor Sea maybe a rich reservoir for novel alkane hydroxylase enzymes. Most sequences clustered with AlkB sequences previously identified from marine Gammaproteobacteria though protein sequence identities averaged only 73% (with a range of 60% to 94% sequence identities). AlkB sequence diversity was lower in deep water (>400 m) samples off the continental slope than in shallow water (<100 m) samples on the continental shelf but not significantly different in response to levels of alkanes. Real-time PCR assays targeting Timor Sea alkB genes were designed and used to quantify alkB gene targets. No correlation was found between gene copy numbers and levels of hydrocarbons measured in sediments using sensitive gas chromatography-mass spectrometry techniques, probably due to the very low levels of hydrocarbons found in most sediment samples. Interestingly, however, copy numbers of alkB genes increased substantially in sediments exposed directly to active seepage even though only low or undetectable concentrations of hydrocarbons were measured in these sediments in complementary geochemical analyses due to efficient biodegradation.
Collapse
|
294
|
Kang YS, Park W. Protection against diesel oil toxicity by sodium chloride-induced exopolysaccharides in Acinetobacter sp. strain DR1. J Biosci Bioeng 2009; 109:118-23. [PMID: 20129094 DOI: 10.1016/j.jbiosc.2009.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/21/2009] [Accepted: 08/02/2009] [Indexed: 11/16/2022]
Abstract
Acinetobacter sp. strain DR1 is capable of growth on diesel oil. Interestingly, the degradation of diesel oil by the strain DR1 is enhanced in the presence of sodium chloride (NaCl). However, the growth rate of strain DR1 is not affected by the presence of NaCl. Northern blot analysis has also demonstrated that the effect of NaCl on the degradation of diesel oil is not attributable to increased levels of alkane hydroxylase (AlkM-type) gene expression. Rather, we have noted an increase in the exopolysaccharide (EPS) yields of strain DR1 under high NaCl conditions (9-fold). The lag-time of diesel oil biodegradation was significantly shorter in the strain DR1 with exogenous EPS than in the controls, although EPS alone does not support the growth of strain DR1. The recovery of strain DR1 when exposed to diesel oil was accelerated when exogenous EPS was added to the medium. The overproduction of EPS was also noted in the presence of diesel oil and n-hexadecane. The data indicated that EPS overproduction might play a protective role against diesel oil toxicity. Along with the results of the soil microcosm tests, the data presented herein demonstrated that NaCl-induced EPS is associated with a reduction in diesel oil toxicity, and thus increases diesel oil biodegradation in Acinetobacter sp. strain DR1.
Collapse
Affiliation(s)
- Yoon-Suk Kang
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | | |
Collapse
|
295
|
Cooley RB, Dubbels BL, Sayavedra-Soto LA, Bottomley PJ, Arp DJ. Kinetic characterization of the soluble butane monooxygenase from Thauera butanivorans, formerly 'Pseudomonas butanovora'. MICROBIOLOGY-SGM 2009; 155:2086-2096. [PMID: 19383682 DOI: 10.1099/mic.0.028175-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Soluble butane monooxygenase (sBMO), a three-component di-iron monooxygenase complex expressed by the C(2)-C(9) alkane-utilizing bacterium Thauera butanivorans, was kinetically characterized by measuring substrate specificities for C(1)-C(5) alkanes and product inhibition profiles. sBMO has high sequence homology with soluble methane monooxygenase (sMMO) and shares a similar substrate range, including gaseous and liquid alkanes, aromatics, alkenes and halogenated xenobiotics. Results indicated that butane was the preferred substrate (defined by k(cat) : K(m) ratios). Relative rates of oxidation for C(1)-C(5) alkanes differed minimally, implying that substrate specificity is heavily influenced by differences in substrate K(m) values. The low micromolar K(m) for linear C(2)-C(5) alkanes and the millimolar K(m) for methane demonstrate that sBMO is two to three orders of magnitude more specific for physiologically relevant substrates of T. butanivorans. Methanol, the product of methane oxidation and also a substrate itself, was found to have similar K(m) and k(cat) values to those of methane. This inability to kinetically discriminate between the C(1) alkane and C(1) alcohol is observed as a steady-state concentration of methanol during the two-step oxidation of methane to formaldehyde by sBMO. Unlike methanol, alcohols with chain length C(2)-C(5) do not compete effectively with their respective alkane substrates. Results from product inhibition experiments suggest that the geometry of the active site is optimized for linear molecules four to five carbons in length and is influenced by the regulatory protein component B (butane monooxygenase regulatory component; BMOB). The data suggest that alkane oxidation by sBMO is highly specialized for the turnover of C(3)-C(5) alkanes and the release of their respective alcohol products. Additionally, sBMO is particularly efficient at preventing methane oxidation during growth on linear alkanes > or =C(2,) despite its high sequence homology with sMMO. These results represent, to the best of our knowledge, the first kinetic in vitro characterization of the closest known homologue of sMMO.
Collapse
Affiliation(s)
- Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Bradley L Dubbels
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Luis A Sayavedra-Soto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Peter J Bottomley
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
296
|
Mehboob F, Junca H, Schraa G, Stams AJM. Growth of Pseudomonas chloritidismutans AW-1(T) on n-alkanes with chlorate as electron acceptor. Appl Microbiol Biotechnol 2009; 83:739-47. [PMID: 19352644 PMCID: PMC2690828 DOI: 10.1007/s00253-009-1985-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/20/2009] [Accepted: 03/21/2009] [Indexed: 10/27/2022]
Abstract
Microbial (per)chlorate reduction is a unique process in which molecular oxygen is formed during the dismutation of chlorite. The oxygen thus formed may be used to degrade hydrocarbons by means of oxygenases under seemingly anoxic conditions. Up to now, no bacterium has been described that grows on aliphatic hydrocarbons with chlorate. Here, we report that Pseudomonas chloritidismutans AW-1(T) grows on n-alkanes (ranging from C7 until C12) with chlorate as electron acceptor. Strain AW-1(T) also grows on the intermediates of the presumed n-alkane degradation pathway. The specific growth rates on n-decane and chlorate and n-decane and oxygen were 0.5 +/- 0.1 and 0.4 +/- 0.02 day(-1), respectively. The key enzymes chlorate reductase and chlorite dismutase were assayed and found to be present. The oxygen-dependent alkane oxidation was demonstrated in whole-cell suspensions. The strain degrades n-alkanes with oxygen and chlorate but not with nitrate, thus suggesting that the strain employs oxygenase-dependent pathways for the breakdown of n-alkanes.
Collapse
|
297
|
Kuhn E, Bellicanta GS, Pellizari VH. New alk genes detected in Antarctic marine sediments. Environ Microbiol 2009; 11:669-73. [PMID: 19207566 DOI: 10.1111/j.1462-2920.2008.01843.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alkane monooxygenases (Alk) are the key enzymes for alkane degradation. In order to understand the dispersion and diversity of alk genes in Antarctic marine environments, this study analysed by clone libraries the presence and diversity of alk genes (alkB and alkM) in sediments from Admiralty Bay, King George Island, Peninsula Antarctica. The results show a differential distribution of alk genes between the sites, and the predominant presence of new alk genes, mainly in the pristine site. Sequences presented 53.10-69.60% nucleotide identity and 50.90-73.40% amino acid identity to alkB genes described in Silicibacter pomeroyi, Gordonia sp., Prauserella rugosa, Nocardioides sp., Rhodococcus sp., Nocardia farcinica, Pseudomonas putida, Acidisphaera sp., Alcanivorax borkumensis, and alkM described in Acinetobacter sp. This is the first time that the gene alkM was detected and described in Antarctic marine environments. The presence of a range of previously undescribed alk genes indicates the need for further studies in this environment.
Collapse
Affiliation(s)
- Emanuele Kuhn
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
298
|
In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6. Appl Environ Microbiol 2008; 75:337-44. [PMID: 19011057 DOI: 10.1128/aem.01758-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes of the AlkB and CYP153 families catalyze the first step in the catabolism of medium-chain-length alkanes, selective oxidation of the alkane to the 1-alkanol, and enable their host organisms to utilize alkanes as carbon sources. Small, gaseous alkanes, however, are converted to alkanols by evolutionarily unrelated methane monooxygenases. Propane and butane can be oxidized by CYP enzymes engineered in the laboratory, but these produce predominantly the 2-alkanols. Here we report the in vivo-directed evolution of two medium-chain-length terminal alkane hydroxylases, the integral membrane di-iron enzyme AlkB from Pseudomonas putida GPo1 and the class II-type soluble CYP153A6 from Mycobacterium sp. strain HXN-1500, to enhance their activity on small alkanes. We established a P. putida evolution system that enables selection for terminal alkane hydroxylase activity and used it to select propane- and butane-oxidizing enzymes based on enhanced growth complementation of an adapted P. putida GPo12(pGEc47 Delta B) strain. The resulting enzymes exhibited higher rates of 1-butanol production from butane and maintained their preference for terminal hydroxylation. This in vivo evolution system could be useful for directed evolution of enzymes that function efficiently to hydroxylate small alkanes in engineered hosts.
Collapse
|
299
|
Involvement of a novel enzyme, MdpA, in methyl tert-butyl ether degradation in Methylibium petroleiphilum PM1. Appl Environ Microbiol 2008; 74:6631-8. [PMID: 18791002 DOI: 10.1128/aem.01192-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylibium petroleiphilum PM1 is a well-characterized environmental strain capable of complete metabolism of the fuel oxygenate methyl tert-butyl ether (MTBE). Using a molecular genetic system which we established to study MTBE metabolism by PM1, we demonstrated that the enzyme MdpA is involved in MTBE removal, based on insertional inactivation and complementation studies. MdpA is constitutively expressed at low levels but is strongly induced by MTBE. MdpA is also involved in the regulation of tert-butyl alcohol (TBA) removal under certain conditions but is not directly responsible for TBA degradation. Phylogenetic comparison of MdpA to related enzymes indicates close homology to the short-chain hydrolyzing alkane hydroxylases (AH1), a group that appears to be a distinct subfamily of the AHs. The unique, substrate-size-determining residue Thr(59) distinguishes MdpA from the AH1 subfamily as well as from AlkB enzymes linked to MTBE degradation in Mycobacterium austroafricanum.
Collapse
|
300
|
Yang Z, Zhou S. The biological treatment of landfill leachate using a simultaneous aerobic and anaerobic (SAA) bio-reactor system. CHEMOSPHERE 2008; 72:1751-1756. [PMID: 18565567 DOI: 10.1016/j.chemosphere.2008.04.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 05/26/2023]
Abstract
A set of simultaneous aerobic and anaerobic (SAA) bio-reactor system was used for the removal of organic pollutants and ammonia in the landfill leachate generated from Datian Shan Landfill in Guangzhou, China. The influent concentrations of COD and NH(4)(+)-N were 1000-3300 and 80-230 mg L(-1), respectively. The average effluent concentrations of COD and NH(4)(+)-N were 131 and 7 mg L(-1), respectively. The concentrations of COD and NH(4)(+)-N had reached the Chinese second grade effluent standard (COD<300 mg L(-1), NH(4)(+)-N<25 mg L(-1)) for this kind of wastewater. Gas chromatogram-mass spectrum (GC/MS) analysis was used to measure the organic pollutants in the landfill leachate. About 87 organics were detected in this landfill leachate, and 16 of them belong to the list of environmental priority pollutants established by the US Environmental Protection Agency. About 31 of the 87 organic pollutants were completely removed by the SAA bio-reactor, the concentrations of further 14 organic pollutants were reduced by more than 80%, and the removal efficiencies of the other 25 organic pollutants were over 50%.
Collapse
Affiliation(s)
- Zhiquan Yang
- School of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006, PR China
| | | |
Collapse
|