251
|
Mitrofanis J, Jeffery G. Does photobiomodulation influence ageing? Aging (Albany NY) 2019; 10:2224-2225. [PMID: 30219804 PMCID: PMC6188498 DOI: 10.18632/aging.101556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Affiliation(s)
- John Mitrofanis
- Department of Anatomy F13, University of Sydney, Sydney 2006, Australia
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, England
| |
Collapse
|
252
|
de la Torre JC, Olmo AD, Valles S. Can mild cognitive impairment be stabilized by showering brain mitochondria with laser photons? Neuropharmacology 2019; 171:107841. [PMID: 31704275 DOI: 10.1016/j.neuropharm.2019.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 11/17/2022]
Abstract
There is now substantial evidence that cerebral blood flow (CBF) declines with age. From age 20 to 60, CBF is estimated to dip about 16% and continues to drop at a rate of 0.4%/year. This CBF dip will slowly reduce oxygen/glucose delivery to brain thus lowering ATP energy production needed by brain cells to perform normal activities. Reduced ATP production from mitochondrial loss or damage in the wear-and-tear of aging worsens when vascular risk factors (VRF) to Alzheimer's disease develop that can accelerate both age-decline CBF and mitochondrial deficiency to a level where mild cognitive impairment (MCI) develops. To date, no pharmacological or any other treatment has been successful in reversing, stabilizing or delaying MCI. For the first time in medical interventions, a non-pharmacological, non-invasive, well-tolerated, easy to perform, free of significant side effects and cost-effective treatment may achieve what virtually all AD treatments in the past have been unable to accomplish. This intervention uses transcranial infrared brain stimulation (TIBS), a form of photobiomodulation (PBM). PBM is a bioenergetic non-ionizing, therapeutic approach using low level light emission from laser or light emitting diodes. PBM has been used in a number of neurological conditions including Parkinson's disease, depression, traumatic brain injury, and stroke with diverse reported benefits. This brief review examines the impact of reduced energy supply stemming from chronic brain hypoperfusion in the aging brain. In this context, the use of TIBS is planned in a randomized, placebo-controlled study of MCI patients to be done at our University Clinic. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Jack C de la Torre
- Department of Psychology, University of Texas at Austin, Austin, TX, 78712, USA; Department of Physiology, University of Valencia, Valencia, 46010, Spain.
| | - Antonio Del Olmo
- Neurology Section, Hospital Universitario Dr. Peset, Valencia, 46017, Spain
| | - Soraya Valles
- Department of Physiology, University of Valencia, Valencia, 46010, Spain
| |
Collapse
|
253
|
Photobiomodulation Mitigates Cerebrovascular Leakage Induced by the Parkinsonian Neurotoxin MPTP. Biomolecules 2019; 9:biom9100564. [PMID: 31590236 PMCID: PMC6843129 DOI: 10.3390/biom9100564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson’s disease (PD) as it specifically damages the nigrostriatal dopaminergic pathway. Recent studies in mice have, however, provided evidence that MPTP also compromises the integrity of the brain’s vasculature. Photobiomodulation (PBM), the irradiation of tissue with low-intensity red light, mitigates MPTP-induced loss of dopaminergic neurons in the midbrain, but whether PBM also mitigates MPTP-induced damage to the cerebrovasculature has not been investigated. This study aimed to characterize the time course of cerebrovascular disruption following MPTP exposure and to determine whether PBM can mitigate this disruption. Young adult male C57BL/6 mice were injected with 80 mg/kg MPTP or isotonic saline and perfused with fluorescein isothiocyanate FITC-labelled albumin at various time points post-injection. By 7 days post-injection, there was substantial and significant leakage of FITC-labelled albumin into both the substantia nigra pars compacta (SNc; p < 0.0001) and the caudate-putamen complex (CPu; p ≤ 0.0003); this leakage partly subsided by 14 days post-injection. Mice that were injected with MPTP and treated with daily transcranial PBM (670 nm, 50 mW/cm2, 3 min/day), commencing 24 h after MPTP injection, showed significantly less leakage of FITC-labelled albumin in both the SNc (p < 0.0001) and CPu (p = 0.0003) than sham-treated MPTP mice, with levels of leakage that were not significantly different from saline-injected controls. In summary, this study confirms that MPTP damages the brain’s vasculature, delineates the time course of leakage induced by MPTP out to 14 days post-injection, and provides the first direct evidence that PBM can mitigate this leakage. These findings provide new understanding of the use of the MPTP mouse model as an experimental tool and highlight the potential of PBM as a therapeutic tool for reducing vascular dysfunction in neurological conditions.
Collapse
|
254
|
Salehpour F, Majdi A, Pazhuhi M, Ghasemi F, Khademi M, Pashazadeh F, Hamblin MR, Cassano P. Transcranial Photobiomodulation Improves Cognitive Performance in Young Healthy Adults: A Systematic Review and Meta-Analysis. Photobiomodul Photomed Laser Surg 2019; 37:635-643. [PMID: 31549906 PMCID: PMC6818490 DOI: 10.1089/photob.2019.4673] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Transcranial photobiomodulation (t-PBM) is a noninvasive modality that may improve cognitive function in both healthy and diseased subjects. Objective: This systematic review and meta-analysis addresses the question of whether t-PBM improves cognitive function in healthy adults. Methods: We searched MEDLINE using PubMed, EMBASE, SCOPUS, Web of Science, and Cochrane Library up to March 2019. We also searched ProQuest and Google Scholar databases for unpublished material. The search was limited to articles on the procognitive effects of t-PBM in healthy adults. The initial search resulted in 871 studies, of which nine publications met our criteria for inclusion and exclusion. Seven studies were performed on young, healthy subjects (17-35 years), and two studies were conducted on older (≥49 years), normal subjects. A meta-analysis was performed on six full-text publications whose subjects were young adults. Results: t-PBM administration improved cognition-related outcomes by an 0.833 standardized mean difference (SMD; 95% confidence interval (CI): 0.458-1.209, 14 comparisons) in young, healthy participants. Funnel plotting revealed asymmetry, which was validated using Egger's (p = 0.030) and Begg's regression (p = 0.006) tests. However after reanalysis, this asymmetry disappeared in the attention subgroup, but not in the memory subgroup. The trim-and-fill analysis indicated two studies were lacking required data. Thus, the effect size was adjusted from an SMD of 0.761 (95% CI: 0.573-0.949) to 0.949 (0.779-1.120). The overall quality score of the studies was modest. Conclusions: We demonstrated a significant, beneficial effect of t-PBM on cognitive performance of young, healthy individuals; however, the heterogeneity of the data was high. This could be due to the modest quality or to the low number of included studies, or to the differences between the various subdomains assessed. These shortcomings should be meticulously addressed before concluding that t-PBM is a cognitive-enhancing intervention in healthy individuals.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Niraxx Light Therapeutics, Inc., Irvine, California
- ProNeuroLIGHT LLC, Phoenix, Arizona
| | - Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Faranak Ghasemi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Khademi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Center: A Joanna Briggs Institute Affiliated Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Paolo Cassano
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
- Department of Psychiatry, Center for Anxiety and Traumatic Stress Disorders, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
255
|
Salehpour F, Cassano P, Rouhi N, Hamblin MR, De Taboada L, Farajdokht F, Mahmoudi J. Penetration Profiles of Visible and Near-Infrared Lasers and Light-Emitting Diode Light Through the Head Tissues in Animal and Human Species: A Review of Literature. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:581-595. [PMID: 31553265 DOI: 10.1089/photob.2019.4676] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background and objective: Photobiomodulation (PBM) therapy is a promising and noninvasive approach to stimulate neuronal function and improve brain repair. The optimization of PBM parameters is important to maximize effectiveness and tolerability. Several studies have reported on the penetration of visible-to-near-infrared (NIR) light through various animal and human tissues. Scientific findings on the penetration of PBM light vary, likely due to use of different irradiation parameters and to different characteristics of the subject such as species, age, and gender. Materials and methods: In this article, we review published data on PBM penetration through the tissues of the head in both animal and human species. The patterns of visible-to-NIR light penetration are summarized based on the following study specifications: wavelength, coherence, operation mode, beam type and size, irradiation site, species, age, and gender. Results: The average penetration of transcranial red/NIR (630-810 nm) light ranged 60-70% in C57BL/6 mouse (skull), 1-10% in BALB/c mouse (skull), 10-40% in Sprague-Dawley rats (scalp plus skull), 20% in Oryctolagus cuniculus rabbit (skull), 0.11% in pig (scalp plus skull), and 0.2-10% in humans (scalp plus skull). The observed variation in the reported values is due to the difference in factors (e.g., wavelengths, light coherence, tissue thickness, and anatomic irradiation site) used by researchers. It seems that these data challenge the applicability of the animal model data on transcranial PBM to humans. Nevertheless, two animal models seem particularly promising, as they approximate penetration in humans: (I) Penetration of 808 nm laser through the scalp plus skull was 0.11% in the pig head; (II) Penetration of 810 nm laser through intact skull was 1.75% in BALB/c mouse. Conclusions: In conclusion, it is worthwhile mentioning that since the effectiveness of brain PBM is closely dependent on the amount of light energy reaching the target neurons, further quantitative estimation of light penetration depth should be performed to validate the current findings.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Niraxx Light Therapeutics, Inc., Irvine, California
| | - Paolo Cassano
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts.,Center for Anxiety and Traumatic Stress Disorders, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Naser Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | | | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
256
|
Hamilton CL, El Khoury H, Hamilton D, Nicklason F, Mitrofanis J. "Buckets": Early Observations on the Use of Red and Infrared Light Helmets in Parkinson's Disease Patients. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:615-622. [PMID: 31536464 DOI: 10.1089/photob.2019.4663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background: Parkinson's disease is a well-known neurological disorder with distinct motor signs and non-motor symptoms. Objective: We report on six patients with Parkinson's disease that used in-house built photobiomodulation (PBM) helmets. Methods: We used "buckets" lined with light-emitting diodes (LEDs) of wavelengths across the red to near-infrared range (i.e., 670, 810, and 850 nm; n = 5) or an homemade intranasal LED device (660 nm; n = 1). Progress was assessed by the patients themselves, their spouse, or their attending medical practitioners. Results: We found that 55% of the initial signs and symptoms of the six patients showed overall improvement, whereas 43% stayed the same and only 2% got worse. We also found that PBM did not target a specific sign or symptom, with both motor and nonmotor ones being affected, depending on the patient. Conclusions: In summary, our early observations are the first to note the impact of PBM on patients' signs and symptoms over an extended period, up to 24 months, and lays the groundwork for further development to clinical trial.
Collapse
Affiliation(s)
| | - Hala El Khoury
- Department of Anatomy F13, University of Sydney, 2006, Sydney, Australia
| | - David Hamilton
- Department of Anatomy F13, University of Sydney, 2006, Sydney, Australia
| | - Frank Nicklason
- Department of Anatomy F13, University of Sydney, 2006, Sydney, Australia.,Geriatric Medicine, Royal Hobart Hospital, Hobart, Australia
| | - John Mitrofanis
- Department of Anatomy F13, University of Sydney, 2006, Sydney, Australia
| |
Collapse
|
257
|
Azeemi STY, Rafiq HM, Ismail I, Kazmi SR, Azeemi A. The mechanistic basis of chromotherapy: Current knowledge and future perspectives. Complement Ther Med 2019; 46:217-222. [PMID: 31519282 DOI: 10.1016/j.ctim.2019.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Chromotherapy is a method of treatment that uses wavelengths in the visible region for curing different diseases and medical conditions. Recent advances in photobiology and the speciality of Photobiomodulation are uncovering the cellular and molecular effects of visible range electromagnetic radiation. We discuss the reported effects of visible range radiation on cells (in vitro and in vivo) and the attempted explanations of the underlying processes with regard to therapeutic effects. Some of the important advances in this area are reviewed, especially the effects of visible light on bacteria, enzymes and the use of visible light for wound healing and treatment of psychiatric diseases for the purpose of explaining the therapeutic implications of chromotherapy. We highlight the correlation of wavelengths used between recently uncovered mechanisms of photobiology and conventional chromotherapy. The elucidation of mechanisms of the cellular and molecular interaction of light will help in deciphering the scientific background of chromotherapy and will help in the application of this alternative therapeutic treatment to many other diseases.
Collapse
Affiliation(s)
| | - Hafiz M Rafiq
- Physics Department, Punjab University, Lahore, Pakistan
| | - Iram Ismail
- Physics Department, Government Post Graduate College (W) Gulberg, Lahore, Pakistan
| | - Syeda Rabab Kazmi
- Physics Department, Government Post Graduate College (W) Gulberg, Lahore, Pakistan
| | | |
Collapse
|
258
|
Parkinson’s disease and light: The bright and the Dark sides. Brain Res Bull 2019; 150:290-296. [DOI: 10.1016/j.brainresbull.2019.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023]
|
259
|
Meynaghizadeh-Zargar R, Sadigh-Eteghad S, Mohaddes G, Salehpour F, Rasta SH. Effects of transcranial photobiomodulation and methylene blue on biochemical and behavioral profiles in mice stress model. Lasers Med Sci 2019; 35:573-584. [PMID: 31372913 DOI: 10.1007/s10103-019-02851-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022]
Abstract
The effectiveness of transcranial photobiomodulation (tPBM) and methylene Blue (MB) in treating learning and memory impairments is previously reported. In this study, we investigated the effect of tPBM and MB in combination or alone on unpredictable chronic mild stress (UCMS)-induced learning and memory impairments in mice. Fifty-five male BALB/c mice were randomly allocated to five groups: control, laser sham + normal saline (NS), tPBM + NS, laser sham + MB, and tPBM + MB. All groups except the control underwent UCMS and were treated simultaneously for 4 weeks. Elevated plus maze (EPM) was used to evaluate anxiety-like behaviors. Novel object recognition (NOR) test and Barnes maze tests were used to evaluate learning and memory function. The serum cortisol and brain nitric oxide (NO), reactive oxygen species (ROS), total antioxidant capacity (TAC), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels were measured by spectrophotometric methods. Behavioral tests revealed that UCMS impaired learning and memory, and treatment with PBM, MB, and their combination reversed these impairments. Levels of NO, ROS, SOD activity in brain, and serum cortisol levels significantly increased while brain GPx activity and total antioxidant capacity significantly decreased in the sham + NS animals when compared with the controls. A significant improvement was observed in treatment groups due to reversion of the aforementioned molecular analysis caused by UCMS when it was compared with control levels. Both tPBM and MB in combination or alone have significant therapeutic effects on learning and memory impairments in UCMS-received animals.
Collapse
Affiliation(s)
- Reza Meynaghizadeh-Zargar
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, 51666, Iran.,Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, 51666, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, 51666, Iran
| | - Gisou Mohaddes
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, 51666, Iran
| | - Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, 51666, Iran
| | - Seyed Hossein Rasta
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, 51666, Iran. .,Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, 51666, Iran. .,Department of Medical Bioengineering, Tabriz University of Medical Sciences, Tabriz, 51666, Iran. .,School of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
260
|
Campbell E, Hasan MT, Gonzalez Rodriguez R, Akkaraju GR, Naumov AV. Doped Graphene Quantum Dots for Intracellular Multicolor Imaging and Cancer Detection. ACS Biomater Sci Eng 2019; 5:4671-4682. [DOI: 10.1021/acsbiomaterials.9b00603] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | - Giridhar R. Akkaraju
- Department of Biology, Texas Christian University, 2955 S University Drive, Fort Worth, Texas 76129, United States
| | | |
Collapse
|
261
|
Hong N. Photobiomodulation as a treatment for neurodegenerative disorders: current and future trends. Biomed Eng Lett 2019; 9:359-366. [PMID: 31456895 DOI: 10.1007/s13534-019-00115-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Photobiomodulation (PBM) is a rapidly growing as an innovative therapeutic modality for various types of diseases in recent years. Neuronal degeneration is irreversible process and it is proven to be difficult to slow down or stop the progression. Pharmacologic approaches to slow neuronal degeneration have been studied, but are limited due to concerns about the side effects. Therefore, it is necessary to develop a new therapeutic approach to stabilize neuronal degeneration and achieve neuronal protection against several neurodegenerative diseases. In this review, we have introduced several previous studies showing the positive effect of PBM over neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and different types of epilepsy. Despite excellent outcomes of animal researches, not many clinical studies are conducted or showed positive outcome of PBM against neurodegenerative disease. To achieve clinical application of PBM against neurodegenerative disorder, determination of exact mechanism and establishment of effective clinical protocol seems to be necessary.
Collapse
Affiliation(s)
- Namgue Hong
- Department of Pre-medical Science, College of Medicine, Dankook University, Cheonan, 31116 Republic of Korea
| |
Collapse
|
262
|
Yang L, Dong Y, Wu C, Li Y, Guo Y, Yang B, Zong X, Hamblin MR, Cheng-Yi Liu T, Zhang Q. Photobiomodulation preconditioning prevents cognitive impairment in a neonatal rat model of hypoxia-ischemia. JOURNAL OF BIOPHOTONICS 2019; 12:e201800359. [PMID: 30652418 PMCID: PMC6546525 DOI: 10.1002/jbio.201800359] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/02/2018] [Accepted: 01/12/2019] [Indexed: 05/13/2023]
Abstract
Neonatal hypoxia-ischemia (HI) injury caused by oxygen deprivation is the most common cause of mortality and severe neurologic deficits in neonates. The present work evaluated the preventative effect of photobiomodulation (PBM) preconditioning, and its underlying mechanism of action on brain damage in an HI model in neonatal rats. According to the optimal time response of ATP levels in brain samples removed from normal rats, a PBM preconditioning (PBM-P) regimen (808 nm CW laser, 1 cm2 spot, 100 mW/cm2 , 12 J/cm2 ) was delivered to the scalp 6 hours before HI. PBM-P significantly attenuated cognitive impairment, volume shrinkage in the brain, neuron loss, dendritic and synaptic injury after HI. Further mechanistic investigation found that PBM-P could restore HI-induced mitochondrial dynamics and inhibit mitochondrial fragmentation, followed by a robust suppression of cytochrome c release, and prevention of neuronal apoptosis by inhibition of caspase activation. Our work suggests that PBM-P can attenuate HI-induced brain injury by maintaining mitochondrial dynamics and inhibiting the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Luodan Yang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Yan Dong
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Chongyun Wu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| | - Yong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Yichen Guo
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Baocheng Yang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Xuemei Zong
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| | - Quanguang Zhang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| |
Collapse
|
263
|
Hipskind SG. Near Infrared Light-Emitting Diodes Do More Than You Think (re: DOI: 10.1089/photob.2018.4603). PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:126-127. [PMID: 31050925 DOI: 10.1089/photob.2019.4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- S Gregory Hipskind
- Department of Brain Research, Brain Injury Consulting, LLC, Addison, Texas
| |
Collapse
|
264
|
Nawashiro H, Kawauchi S, Tsunoi Y, Sato S. Time courses of BOLD responses during transcranial near-infrared laser irradiation. Brain Stimul 2019; 12:778-780. [DOI: 10.1016/j.brs.2019.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 10/27/2022] Open
|
265
|
Zomorrodi R, Loheswaran G, Pushparaj A, Lim L. Pulsed Near Infrared Transcranial and Intranasal Photobiomodulation Significantly Modulates Neural Oscillations: a pilot exploratory study. Sci Rep 2019; 9:6309. [PMID: 31004126 PMCID: PMC6474892 DOI: 10.1038/s41598-019-42693-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/05/2019] [Indexed: 01/12/2023] Open
Abstract
Transcranial photobiomodulation (tPBM) is the application of low levels of red or near-infrared (NIR) light to stimulate neural tissues. Here, we administer tPBM in the form of NIR light (810 nm wavelength) pulsed at 40 Hz to the default mode network (DMN), and examine its effects on human neural oscillations, in a randomized, sham-controlled, double-blinded trial. Using electroencephalography (EEG), we found that a single session of tPBM significantly increases the power of the higher oscillatory frequencies of alpha, beta and gamma and reduces the power of the slower frequencies of delta and theta in subjects in resting state. Furthermore, the analysis of network properties using inter-regional synchrony via weighted phase lag index (wPLI) and graph theory measures, indicate the effect of tPBM on the integration and segregation of brain networks. These changes were significantly different when compared to sham stimulation. Our preliminary findings demonstrate for the first time that tPBM can be used to non-invasively modulate neural oscillations, and encourage further confirmatory clinical investigations.
Collapse
Affiliation(s)
- Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
- Vielight Inc., Toronto, Ontario, Canada.
| | | | - Abhiram Pushparaj
- Ironstone Product Development Inc. & Qunuba Sciences Inc., Toronto, Ontario, Canada
| | - Lew Lim
- Vielight Inc., Toronto, Ontario, Canada
| |
Collapse
|
266
|
Schiffer F. The physical nature of subjective experience and its interaction with the brain. Med Hypotheses 2019; 125:57-69. [DOI: 10.1016/j.mehy.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 11/30/2022]
|
267
|
Zupin L, Celsi F, Ottaviani G, Crovella S. Photobiomodulation therapy at different wavelength impacts on retinoid acid-dependent SH-SY5Y differentiation. Lasers Med Sci 2019; 35:221-226. [PMID: 30911931 DOI: 10.1007/s10103-019-02765-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/01/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy.
| | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy
| | - Giulia Ottaviani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Sergio Crovella
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
268
|
Levchenko SM, Kuzmin AN, Ohulchanskyy TY, Pliss A, Qu J, Prasad PN. Near-Infrared Irradiation Affects Lipid Metabolism in Neuronal Cells, Inducing Lipid Droplets Formation. ACS Chem Neurosci 2019; 10:1517-1523. [PMID: 30499655 DOI: 10.1021/acschemneuro.8b00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is known that lipids play an outstanding role in cellular regulation, and their dysfunction has been linked to many diseases. Thus, modulation of lipid metabolism may provide new pathways for disease treatment or prevention. In this work, near-infrared (NIR) light was applied to modulate lipid metabolism and increase intracellular lipid content in rat cortical neurons (RCN). Using label-free CARS microscopy, we have monitored the intracellular lipid content in RCN at a single-cell level. A major increase in average level of lipid per cell after treatment with laser diode at 808 nm was found, nonlinearly dependent on the irradiation dose. Moreover, a striking formation of lipid droplets (LDs) in the irradiated RCN was discovered. Further experiments and analysis reveal a strong correlation between NIR light induced generation of reactive oxygen species (ROS), lipids level, and LDs formation in RCN. Our findings can contribute to a development of therapeutic approaches for neurological disorders via NIR light control of lipid metabolism in neuronal cells.
Collapse
Affiliation(s)
- Svitlana M. Levchenko
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Andrey N. Kuzmin
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
- Advanced
Cytometry
Instrumentation Systems, LLC, 640 Ellicott Street − Suite 499, Buffalo, New York 14203, United States
| | - Tymish Y. Ohulchanskyy
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
- Advanced
Cytometry
Instrumentation Systems, LLC, 640 Ellicott Street − Suite 499, Buffalo, New York 14203, United States
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Paras N. Prasad
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
269
|
Salehpour F, Farajdokht F, Mahmoudi J, Erfani M, Farhoudi M, Karimi P, Rasta SH, Sadigh-Eteghad S, Hamblin MR, Gjedde A. Photobiomodulation and Coenzyme Q 10 Treatments Attenuate Cognitive Impairment Associated With Model of Transient Global Brain Ischemia in Artificially Aged Mice. Front Cell Neurosci 2019; 13:74. [PMID: 30983970 PMCID: PMC6434313 DOI: 10.3389/fncel.2019.00074] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/14/2019] [Indexed: 01/11/2023] Open
Abstract
Disturbances in mitochondrial biogenesis and bioenergetics, combined with neuroinflammation, play cardinal roles in the cognitive impairment during aging that is further exacerbated by transient cerebral ischemia. Both near-infrared (NIR) photobiomodulation (PBM) and Coenzyme Q10 (CoQ10) administration are known to stimulate mitochondrial electron transport that potentially may reverse the effects of cerebral ischemia in aged animals. We tested the hypothesis that the effects of PBM and CoQ10, separately or in combination, improve cognition in a mouse model of transient cerebral ischemia superimposed on a model of aging. We modeled aging by 6-week administration of D-galactose (500 mg/kg subcutaneous) to mice. We subsequently induced transient cerebral ischemia by bilateral occlusion of the common carotid artery (BCCAO). We treated the mice with PBM (810 nm transcranial laser) or CoQ10 (500 mg/kg by gavage), or both, for 2 weeks after surgery. We assessed cognitive function by the Barnes and Lashley III mazes and the What-Where-Which (WWWhich) task. PBM or CoQ10, and both, improved spatial and episodic memory in the mice. Separately and together, the treatments lowered reactive oxygen species and raised ATP and general mitochondrial activity as well as biomarkers of mitochondrial biogenesis, including SIRT1, PGC-1α, NRF1, and TFAM. Neuroinflammatory responsiveness declined, as indicated by decreased iNOS, TNF-α, and IL-1β levels with the PBM and CoQ10 treatments. Collectively, the findings of this preclinical study imply that the procognitive effects of NIR PBM and CoQ10 treatments, separately or in combination, are beneficial in a model of transient global brain ischemia superimposed on a model of aging in mice.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
- ProNeuroLIGHT LLC, Phoenix, AZ, United States
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Erfani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Higher Educational Institute of Rab-Rashid, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Bioengineering, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, United States
| | - Albert Gjedde
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Departments of Clinical Research and Nuclear Medicine, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
270
|
de Jesus Fonseca EG, Pedroso A, Neuls D, Barbosa D, Cidral-Filho FJ, Salgado ASI, Dubiela A, Carraro E, Kerppers II. Study of transcranial therapy 904 nm in experimental model of stroke. Lasers Med Sci 2019; 34:1619-1625. [PMID: 30826952 DOI: 10.1007/s10103-019-02758-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Cerebrovascular accidents (CVAs), commonly known as strokes, can damage the brain through vascular injuries caused by either blood vessel blockages (ischemic stroke) or ruptures (hemorrhagic stroke) which disrupt regular brain blood supply and can cause severe damage to the individual. The objective of the present study was to evaluate the effects of photobiomodulation with a light-emitting diode (LED) device (904 nm, 110 mW, 7 J/cm2) on neurogenesis, muscle resistance, and motor behavior in animals submitted to an experimental model of hemiplegia. The sample consisted of 30 Wistar rats, divided into two groups: control group (GC) and 904-nm LED-treated group (TG). All animals underwent stereotactic surgery for electrode implant and subsequent electrolytic injury to induce an ischemic stroke. TG was subjected to daily LED irradiation (904 nm, 110 mW, 7 J/cm2) for 63 s. Suspension test results indicate an improvement of TG muscle resistance when compared with baseline evaluation (BLT); a reduction in open-field freezing time and the number of fecal bolus pellets suggest diminished anxiety induced by 904-nm LED treatment on treatment days 7 and 21 (TG7 and TG21) compared with the baseline results; and lastly, histological analysis showed important signs of neurogenesis in TG in comparison to CG, especially on treatment days 7 and 21 (TG7 and TG21). In conclusion, the present study suggests that 904-nm LED irradiation may beneficially affect neurogenesis, muscle resistance, and animal motor behavior following ischemic CVA.
Collapse
Affiliation(s)
| | - Ariele Pedroso
- Laboratory of Neuroanatomy and Neurophysiology, Universidade Estadual do Centro-Oeste, Guarapuava, PR, Brazil
| | - Débora Neuls
- Laboratory of Neuroanatomy and Neurophysiology, Universidade Estadual do Centro-Oeste, Guarapuava, PR, Brazil
| | - Danilo Barbosa
- Department of Physical Therapy, Functional Neurology Discipline, Universidade Estadual do Centro Oeste, Guarapuava, PR, Brazil
| | - Francisco José Cidral-Filho
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | | | - Angela Dubiela
- Laboratório de Neuroanatomia e Neurofisiologia, Universidade Estadual do Centro-Oeste, Simeão Camargo Varela de Sá, 03, Guarapuava, Paraná, 88040-080, Brazil
| | - Emerson Carraro
- Laboratório de Imunologia, virologia e Biologia Molecular, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
| | - Ivo Ilvan Kerppers
- Laboratório de Neuroanatomia e Neurofisiologia, Universidade Estadual do Centro-Oeste, Simeão Camargo Varela de Sá, 03, Guarapuava, Paraná, 88040-080, Brazil.
| |
Collapse
|
271
|
Baihui Point Laser Acupuncture Ameliorates Cognitive Impairment, Motor Deficit, and Neuronal Loss Partly via Antioxidant and Anti-Inflammatory Effects in an Animal Model of Focal Ischemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1204709. [PMID: 30915140 PMCID: PMC6409074 DOI: 10.1155/2019/1204709] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 01/06/2023]
Abstract
Stroke is recognized as one of the most dangerous killer diseases in Thailand and other countries worldwide. The development of a novel strategy for treating stroke patients is therefore urgently required. The present study investigated the effect of laser acupuncture at the Baihui point on cognitive and functional recovery, neuronal loss, antioxidant enzyme activities, and interleukin-6 (IL-6) activity in the hippocampus in an animal model of focal ischemic stroke. Male Wistar rats were randomly divided into 4 groups: sham operation; permanent occlusion of the right middle cerebral artery (Rt.MCAO); Rt.MCAO with sham laser acupuncture; and Rt.MCAO with Baihui point laser acupuncture. Laser acupuncture at the Baihui point and sham acupuncture at a nonacupoint were performed once daily (10 min at each point) for 14 days after Rt.MCAO. Half of the rats in each group were examined to determine neuron density by Cresyl violet staining, while the other half were examined by biochemical assays to measure glutathione peroxidase (GSH-Px) in the hippocampus, superoxide dismutase (SOD) in mitochondria and interleukin-6 (IL-6) activity in the hippocampus. Laser acupuncture treatment was found to significantly enhance memory and neuron density in CA1 and CA3. Improved neurological score, improved GSH-Px and SOD activities, and decreased density ratio of IL-6 to β-actin were also observed in the hippocampus. In conclusion, Baihui point laser acupuncture alleviates cognitive impairment and motor deficits via antioxidant and anti-inflammatory effects in focal ischemic rats. Further study is warranted to investigate other possible mechanisms of action.
Collapse
|
272
|
Chao LL. Effects of Home Photobiomodulation Treatments on Cognitive and Behavioral Function, Cerebral Perfusion, and Resting-State Functional Connectivity in Patients with Dementia: A Pilot Trial. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:133-141. [PMID: 31050950 DOI: 10.1089/photob.2018.4555] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: To examine the effects of transcranial and intranasal photobiomodulation (PBM) therapy, administered at home, in patients with dementia. Background: This study sought to replicate and build upon a previously published case series report describing improved cognitive function in five patients with mild-to-moderate dementia after 12 weeks of transcranial and intranasal near-infrared (NIR) PBM therapy. Materials and methods: Eight participants (mean age: 79.8 ± 5.8 years old) diagnosed with dementia by their physicians were randomized to 12 weeks of usual care (UC, n = 4) or home PBM treatments (n = 4). The NIR PBM treatments were administered by a study partner at home three times per week with the Vielight Neuro Gamma device. The participants were assessed with the Alzheimer's Disease Assessment Scale-cognitive (ADAS-cog) subscale and the Neuropsychiatric Inventory (NPI) at baseline and 6 and 12 weeks, and with arterial spin-labeled perfusion magnetic resonance imaging (MRI) and resting-state functional MRI at baseline and 12 weeks. Results: At baseline, the UC and PBM groups did not differ demographically or clinically. However, after 12 weeks, there were improvements in ADAS-cog (group × time interaction: F1,6 = 16.35, p = 0.007) and NPI (group × time interaction: F1,6 = 7.52, p = 0.03), increased cerebral perfusion (group × time interaction: F1,6 = 8.46, p < 0.03), and increased connectivity between the posterior cingulate cortex and lateral parietal nodes within the default-mode network in the PBM group. Conclusions: Because PBM was well tolerated and associated with no adverse side effects, these results support the potential of PBM therapy as a viable home treatment for individuals with dementia.
Collapse
Affiliation(s)
- Linda L Chao
- 1 Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center, San Francisco, California.,2 Department of Radiology and Biomedical Imaging and University of California, San Francisco, San Francisco, California.,3 Department of Psychiatry, University of California, San Francisco, San Francisco, California
| |
Collapse
|
273
|
Chan AS, Lee TL, Yeung MK, Hamblin MR. Photobiomodulation improves the frontal cognitive function of older adults. Int J Geriatr Psychiatry 2019; 34:369-377. [PMID: 30474306 PMCID: PMC6333495 DOI: 10.1002/gps.5039] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVES The frontal lobe hypothesis of age-related cognitive decline suggests that the deterioration of the prefrontal cortical regions that occurs with aging leads to executive function deficits. Photobiomodulation (PBM) is a newly developed, noninvasive technique for enhancing brain function, which has shown promising effects on cognitive function in both animals and humans. This randomized, sham-controlled study sought to examine the effects of PBM on the frontal brain function of older adults. METHODS/DESIGNS Thirty older adults without a neuropsychiatric history performed cognitive tests of frontal function (ie, the Eriksen flanker and category fluency tests) before and after a single 7.5-minute session of real or sham PBM. The PBM device consisted of three separate light-emitting diode cluster heads (633 and 870 nm), which were applied to both sides of the forehead and posterior midline, and delivered a total energy of 1349 J. RESULTS Significant group (experimental, control) × time (pre-PBM, post-PBM) interactions were found for the flanker and category fluency test scores. Specifically, only the older adults who received real PBM exhibited significant improvements in their action selection, inhibition ability, and mental flexibility after vs before PBM. CONCLUSIONS Our findings support that PBM may enhance the frontal brain functions of older adults in a safe and cost-effective manner.
Collapse
Affiliation(s)
- Agnes S. Chan
- Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Chanwuyi Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Tsz Lok Lee
- Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Michael K. Yeung
- Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
274
|
Kim WS, Lee K, Kim S, Cho S, Paik NJ. Transcranial direct current stimulation for the treatment of motor impairment following traumatic brain injury. J Neuroeng Rehabil 2019; 16:14. [PMID: 30683136 PMCID: PMC6347832 DOI: 10.1186/s12984-019-0489-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
After traumatic brain injury (TBI), motor impairment is less common than neurocognitive or behavioral problems. However, about 30% of TBI survivors have reported motor deficits limiting the activities of daily living or participation. After acute primary and secondary injuries, there are subsequent changes including increased GABA-mediated inhibition during the subacute stage and neuroplastic alterations that are adaptive or maladaptive during the chronic stage. Therefore, timely and appropriate neuromodulation by transcranial direct current stimulation (tDCS) may be beneficial to patients with TBI for neuroprotection or restoration of maladaptive changes.Technologically, combination of imaging-based modelling or simultaneous brain signal monitoring with tDCS could result in greater individualized optimal targeting allowing a more favorable neuroplasticity after TBI. Moreover, a combination of task-oriented training using virtual reality with tDCS can be considered as a potent tele-rehabilitation tool in the home setting, increasing the dose of rehabilitation and neuromodulation, resulting in better motor recovery.This review summarizes the pathophysiology and possible neuroplastic changes in TBI, as well as provides the general concepts and current evidence with respect to the applicability of tDCS in motor recovery. Through its endeavors, it aims to provide insights on further successful development and clinical application of tDCS in motor rehabilitation after TBI.
Collapse
Affiliation(s)
- Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Kiwon Lee
- Ybrain Research Institute, Seongnam-si, Republic of Korea
| | - Seonghoon Kim
- Ybrain Research Institute, Seongnam-si, Republic of Korea
| | | | - Nam-Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
275
|
Litscher G. Brain Photobiomodulation-Preliminary Results from Regional Cerebral Oximetry and Thermal Imaging. MEDICINES 2019; 6:medicines6010011. [PMID: 30654508 PMCID: PMC6473852 DOI: 10.3390/medicines6010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 11/16/2022]
Abstract
A new piece of equipment for LED (light emitting diode) brain photobiomodulation is introduced. Preliminary results from regional cerebral oxygen saturation and from thermography are shown before, during and after stimulation. The procedure offers a new way to quantify the biological effects of a possible innovative therapeutic method. However further measurements are absolutely necessary.
Collapse
Affiliation(s)
- Gerhard Litscher
- Research Unit for Complementary and Integrative Laser Medicine, Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, and TCM Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, EG19, 8036 Graz, Austria.
| |
Collapse
|
276
|
Caldieraro MA, Cassano P. Transcranial and systemic photobiomodulation for major depressive disorder: A systematic review of efficacy, tolerability and biological mechanisms. J Affect Disord 2019; 243:262-273. [PMID: 30248638 DOI: 10.1016/j.jad.2018.09.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/24/2018] [Accepted: 09/15/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Photobiomodulation (PBM) with red and near-infrared light (NIR) -also known as Low-Level Light Therapy-is a low risk, inexpensive treatment-based on non-retinal exposure-under study for several neuropsychiatric conditions. The aim of this paper is to discuss the proposed mechanism of action and to perform a systematic review of pre-clinical and clinical studies on PBM for major depressive disorder (MDD). METHODS A search on MEDLINE and EMBASE databases was performed in July 2017. No time or language restrictions were used. Studies with a primary focus on MDD and presenting original data were included (n = 17). References on the mechanisms of action of PBM also included review articles and studies not focused on MDD. RESULTS Red and NIR light penetrate the skull and modulate brain cortex; an indirect effect of red and NIR light, when delivered non-transcranially, is also postulated. The main proposed mechanism for PBM is the enhancement of mitochondrial metabolism after absorption of NIR energy by the cytochrome C oxidase; however, actions on other pathways relevant to MDD are also reported. Studies on animal models indicate a benefit from PBM that is comparable to antidepressant medications. Clinical studies also indicate a significant antidepressant effect and good tolerability. LIMITATIONS Clinical studies are heterogeneous for population and treatment parameters, and most lack an appropriate control. CONCLUSIONS Preliminary evidence supports the potential of non-retinal PBM as a novel treatment for MDD. Future studies should clarify the ideal stimulation parameters as well as the overall efficacy, effectiveness and safety profile of this treatment.
Collapse
Affiliation(s)
- Marco A Caldieraro
- Serviço de Psiquiatria, Hospital de Clínicas de Porto Alegre. Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil.
| | - Paolo Cassano
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital. 1 Bowdoin Square, Boston, MA 02114, USA; Center for Anxiety and Traumatic Stress Disorders, Department of Psychiatry, Massachusetts General Hospital, Boston. 1 Bowdoin Square, MA 02114, USA
| |
Collapse
|
277
|
Mussttaf RA, Jenkins DFL, Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. Int J Radiat Biol 2019; 95:120-143. [DOI: 10.1080/09553002.2019.1524944] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ruwaidah A. Mussttaf
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - David F. L. Jenkins
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
278
|
Wu MX, Hamblin MR. Photobiomodulation and mitochondria for traumatic brain injury in mouse models. PHOTOBIOMODULATION IN THE BRAIN 2019:169-187. [DOI: 10.1016/b978-0-12-815305-5.00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
279
|
Keszler A, Lindemer B, Hogg N, Lohr NL. Ascorbate attenuates red light mediated vasodilation: Potential role of S-nitrosothiols. Redox Biol 2019; 20:13-18. [PMID: 30261342 PMCID: PMC6156744 DOI: 10.1016/j.redox.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
There is significant therapeutic advantage of nitric oxide synthase (NOS) independent nitric oxide (NO) production in maladies where endothelium, and thereby NOS, is dysfunctional. Electromagnetic radiation in the red and near infrared region has been shown to stimulate NOS-independent but NO-dependent vasodilation, and thereby has significant therapeutic potential. We have recently shown that red light induces acute vasodilatation in the pre-constricted murine facial artery via the release of an endothelium derived substance. In this study we have investigated the mechanism of vasodilatation and conclude that 670 nm light stimulates vasodilator release from an endothelial store, and that this vasodilator has the characteristics of an S-nitrosothiol (RSNO). This study shows that 670 nm irradiation can be used as a targeted and non-invasive means to release biologically relevant amounts of vasodilator from endothelial stores. This raises the possibility that these stores can be pharmacologically built-up in pathological situations to improve the efficacy of red light treatment. This strategy may overcome eNOS dysfunction in peripheral vascular pathologies for the improvement of vascular health.
Collapse
Key Words
- enos, endothelial nitric oxide synthase
- rsno, s-nitrosothiols
- r/nir, red and near infrared light
- gsno, s-nitrosoglutathione
- dnic, dinitrosyl iron complex
- gsh-dnic, glutathione dinitrosyl iron complexes
- proli/no, 1-(hydroxy-nno-azoxy)-l-proline
- cl, ozone-chemiluminescence signal
- dha, dehydroascorbate
- dtpa, diethylenetriamine pentaacetic acid
- nem, n-ethylmaleimide
- se, standard error
Collapse
Affiliation(s)
- Agnes Keszler
- Department of Medicine-Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Brian Lindemer
- Department of Medicine-Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Nicole L Lohr
- Department of Medicine-Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Clement J Zablocki VA Medical Center, 5000 W National Ave., Milwaukee, WI 53295, USA.
| |
Collapse
|
280
|
Cassano P, Tran AP, Katnani H, Bleier BS, Hamblin MR, Yuan Y, Fang Q. Selective photobiomodulation for emotion regulation: model-based dosimetry study. NEUROPHOTONICS 2019; 6:015004. [PMID: 30796882 PMCID: PMC6366475 DOI: 10.1117/1.nph.6.1.015004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/07/2019] [Indexed: 05/19/2023]
Abstract
The transcranial photobiomodulation (t-PBM) technique is a promising approach for the treatment of a wide range of neuropsychiatric disorders, including disorders characterized by poor regulation of emotion such as major depressive disorder (MDD). We examine various approaches to deliver red and near-infrared light to the dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC) in the human brain, both of which have shown strong relevance to the treatment of MDD. We apply our hardware-accelerated Monte Carlo simulations to systematically investigate the light penetration profiles using a standard adult brain atlas. To better deliver light to these regions-of-interest, we study, in particular, intranasal and transcranial illumination approaches. We find that transcranial illumination at the F3-F4 location (based on 10-20 system) provides excellent light delivery to the dlPFC, while a light source located in close proximity to the cribriform plate is well-suited for reaching the vmPFC, despite the fact that accessing the latter location may require a minimally invasive approach. Alternative noninvasive illumination strategies for reaching vmPFC are also studied and both transcranial illumination at the Fp1-FpZ-Fp2 location and intranasal illumination in the mid-nose region are shown to be valid. Different illumination wavelengths, ranging from 670 to 1064 nm, are studied and the amounts of light energy deposited to a wide range of brain regions are quantitatively compared. We find that 810 nm provided the overall highest energy delivery to the targeted regions. Although our simulations carried out on locations and wavelengths are not designed to be exhaustive, the proposed illumination strategies inform the design of t-PBM systems likely to improve brain emotion regulation, both in clinical research and practice.
Collapse
Affiliation(s)
- Paolo Cassano
- Massachusetts General Hospital, Depression Clinical and Research Program, Center for Anxiety and Traumatic Stress Disorders, Boston, Massachusetts, United States
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
| | - Anh Phong Tran
- Northeastern University, Department of Chemical Engineering, Boston, Massachusetts, United States
| | - Husam Katnani
- Massachusetts General Hospital, Harvard Medical School, Department of Neurosurgery, Boston, Massachusetts, United States
| | - Benjamin S. Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Department of Otolaryngology, Boston, Massachusetts, United States
| | - Michael R. Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
- Harvard Medical School, Department of Dermatology, Boston, Massachusetts, United States
| | - Yaoshen Yuan
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
- Address all correspondence to Qianqian Fang, E-mail:
| |
Collapse
|
281
|
Kemper KJ. “Let there be light.” Research on phototherapy, light therapy, and photobiomodulation for healing – Alternative therapy becomes mainstream. Complement Ther Med 2018; 41:A1-A6. [DOI: 10.1016/j.ctim.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
282
|
Handayani S, Purwanto B, Saputra K, Tamtomo DG. Laserpuncture Increases Serum Concentration of Insulin-Like Growth Factor-1 in Adolescent Rats. Med Acupunct 2018; 30:319-325. [PMID: 30671152 DOI: 10.1089/acu.2018.1279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: Previous studies have demonstrated that laserpuncture has a positive effect on longitudinal bone growth within varying parameters. The current authors hypothesized that laserpuncture affects serum concentration of insulinlike growth factor 1 (IGF-1), a growth factor that influences growth plates, and ghrelin, a growth hormone (GH) secretagogue. The goal of this research was to investigate if laserpuncture could increase serum concentrations of IGF-1 and ghrelin in adolescent rats. Materials and Methods: This was an experimental study with a post-test only and a controlled group design. The study was performed in a laboratory on 40 male Wistar rats, age ±3 weeks and weighing >40 g. The rats were divided randomly into 2 groups, A and B, each receiving laserpuncture for 10 days and 15 days, respectively. There were 4 subgroups in each group: control (C); GV 20; ST 36; and GV 20 + ST 36. The rats were stimulated by laserpuncture with a KX Laser GX-2000B (Kangxing), a semiconductor-based low-level laser therapy (LLLT) device emitting a cold red laser (635-680 nm/5 mW) for 60 seconds (0.3 J/cm2) The length of each rat's lower limb was measured using a caliper; IGF-1 and ghrelin concentrations were assessed using enzyme-linked immunosorbent assays. Results: A marked increase in IGF-1 concentration was observed in the ST 36 and GV 20 + ST 36 subgroups after 15 days, compared to the C subgroup (P = 0.001 and P = 0.002, respectively). The GV 20 subgroup had a lower IGF-1 concentration than the C subgroup (P = 0.06) at both 10 and 15 days. Laserpuncture did not influence ghrelin concentrations significantly, compared to the C subgroups. Conclusions: Laserpuncture administered to both the ST 36 and GV 20 + ST 36 subgroups with a power density of 0.3 J/cm2 increased serum concentrations of IGF-1 in adolescent rats.
Collapse
Affiliation(s)
- Selfi Handayani
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia.,Doctoral Program in Medical Sciences, Postgraduate Program, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Bambang Purwanto
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia.,Department of Internal Medicine, Dr. Muwardi Hospital, Surakarta, Central Java, Indonesia
| | - Koosnadi Saputra
- Acupuncture Research Laboratory for Health Services, National Institute of Health of the Republic of Indonesia, Surabaya, Jawatimur, Indonesia.,Surabaya Acupuncture Academy, Surabaya, Jawatimur, Indonesia
| | - Didik G Tamtomo
- Department of Anatomy Faculty of Medicine Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| |
Collapse
|
283
|
Hipskind SG, Grover FL, Fort TR, Helffenstein D, Burke TJ, Quint SA, Bussiere G, Stone M, Hurtado T. Pulsed Transcranial Red/Near-Infrared Light Therapy Using Light-Emitting Diodes Improves Cerebral Blood Flow and Cognitive Function in Veterans with Chronic Traumatic Brain Injury: A Case Series. Photomed Laser Surg 2018:pho.2018.4489. [PMID: 30418082 DOI: 10.1089/pho.2018.4489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE This study explored the outcome of applying red/near-infrared light therapy using light-emitting diodes (LEDs) pulsed with three different frequencies transcranially to treat traumatic brain injury (TBI) in Veterans. BACKGROUND Photobiomodulation therapy (PBMT) using LEDs has been shown to have positive effects on TBI in humans and animal models. MATERIALS AND METHODS Twelve symptomatic military Veterans diagnosed with chronic TBI >18 months post-trauma received pulsed transcranial PBMT (tPBMT) using two neoprene therapy pads containing 220 infrared and 180 red LEDs, generating a power output of 3.3 W and an average power density of 6.4 mW/cm2 for 20 min, thrice per week over 6 weeks. Outcome measures included standardized neuropsychological test scores and qualitative and quantitative single photon emission computed tomography (SPECT) measures of regional cerebral blood flow (rCBF). RESULTS Pulsed tPBMT significantly improved neuropsychological scores in 6 of 15 subscales (40.0%; p < 0.05; two tailed). SPECT analysis showed increase in rCBF in 8 of 12 (66.7%) study participants. Quantitative SPECT analysis revealed a significant increase in rCBF in this subgroup of study participants and a significant difference between pre-treatment and post-treatment gamma ray counts per cubic centimeter [t = 3.77, df = 7, p = 0.007, 95% confidence interval (95,543.21-21,931.82)]. This is the first study to report quantitative SPECT analysis of rCBF in regions of interest following pulsed tPBMT with LEDs in TBI. CONCLUSIONS Pulsed tPBMT using LEDs shows promise in improving cognitive function and rCBF several years after TBI. Larger, controlled studies are indicated.
Collapse
Affiliation(s)
- S Gregory Hipskind
- 1 Brain Injury Consulting, LLC , Department of Brain Research, Addison, Texas
- 2 InLight Medical , Medical Advisory Department, Addison, Texas
| | - Fred L Grover
- 3 Revolutionary MD , Department of Medical Research, Denver, Colorado
| | - T Richard Fort
- 4 CereScan Corporation , Department of Imaging Research, Littleton, Colorado
| | - Dennis Helffenstein
- 5 Colorado Neuropsychological Associates , Testing Department, Englewood, Colorado
| | - Thomas J Burke
- 6 University of Colorado School of Medicine, Department of Physiology (Retired) , Aurora, Colorado
| | - Shane A Quint
- 4 CereScan Corporation , Department of Imaging Research, Littleton, Colorado
| | - Garrett Bussiere
- 4 CereScan Corporation , Department of Imaging Research, Littleton, Colorado
| | - Michael Stone
- 7 Veterans Administration Hospital , Department of Radiology, Las Vegas, Nevada
| | - Timothy Hurtado
- 8 Penrose-St. Francis Health Services , Emergency Department, Colorado Springs, Colorado
| |
Collapse
|
284
|
Dalesio NM, Barreto Ortiz SF, Pluznick JL, Berkowitz DE. Olfactory, Taste, and Photo Sensory Receptors in Non-sensory Organs: It Just Makes Sense. Front Physiol 2018; 9:1673. [PMID: 30542293 PMCID: PMC6278613 DOI: 10.3389/fphys.2018.01673] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/07/2018] [Indexed: 01/28/2023] Open
Abstract
Sensory receptors that detect and respond to light, taste, and smell primarily belong to the G-protein-coupled receptor (GPCR) superfamily. In addition to their established roles in the nose, tongue, and eyes, these sensory GPCRs have been found in many ‘non-sensory' organs where they respond to different physicochemical stimuli, initiating signaling cascades in these extrasensory systems. For example, taste receptors in the airway, and photoreceptors in vascular smooth muscle cells, both cause smooth muscle relaxation when activated. In addition, olfactory receptors are present within the vascular system, where they play roles in angiogenesis as well as in modulating vascular tone. By better understanding the physiological and pathophysiological roles of sensory receptors in non-sensory organs, novel therapeutic agents can be developed targeting these receptors, ultimately leading to treatments for pathological conditions and potential cures for various disease states.
Collapse
Affiliation(s)
- Nicholas M Dalesio
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Otolaryngology/Head & Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Sebastian F Barreto Ortiz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
285
|
Role of photobiomodulation on the activation of the Smad pathway via TGF-β in wound healing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:138-144. [PMID: 30343208 DOI: 10.1016/j.jphotobiol.2018.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/31/2018] [Accepted: 10/09/2018] [Indexed: 12/30/2022]
Abstract
Wound healing is an essential process in which the separated or destroyed tissue attempts to restore itself into its normal state. In some instances, healing is prolonged and remains stagnant in the inflammatory phase, and is referred to as a chronic wound. At a cellular and molecular level, many factors are required during the process of successful wound healing, such as cytokines, polypeptide growth factors and components of the extracellular matrix (ECM). Transforming growth factor-beta (TGF-β) is considered as one of the essential growth factors in wound healing. Working through the Smad pathway, it is the main inducer of fibroblast differentiation which is essential for wound healing. Photobiomodulation (PBM) shows significant advantages in wound healing, and may stimulate cellular processes and tissue regeneration that results in an increase in growth factors and a decrease in inflammatory cytokines. Moreover, it leads to enhanced cell proliferation, migration, angiogenesis, and increased adenosine triphosphate (ATP) and cytochrome C oxidase (CCO) activity. In this review paper, we discuss the effects of PBM and its role on the activation of the TGF-β/Smad pathway in the process of wound healing.
Collapse
|
286
|
Stone J, Mitrofanis J, Johnstone DM, Falsini B, Bisti S, Adam P, Nuevo AB, George-Weinstein M, Mason R, Eells J. Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose Response 2018; 16:1559325818803428. [PMID: 30627064 PMCID: PMC6311597 DOI: 10.1177/1559325818803428] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system 'acquired resilience'. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life.
Collapse
Affiliation(s)
- Jonathan Stone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - John Mitrofanis
- Discipline of Anatomy and Histology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel M. Johnstone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Benedetto Falsini
- Facolta’ di Medicina e Chirurgia, Fondazione Policlinico A. Gemelli, Universita’ Cattolica del S. Cuore, Rome, Italy
| | - Silvia Bisti
- Department of Biotechnical and Applied Clinical Sciences, Università degli Studi dell’Aquila, IIT Istituto Italiano di Tecnologia Genova and INBB Istituto Nazionale Biosistemi e Biostrutture, Rome, Italy
| | - Paul Adam
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Arturo Bravo Nuevo
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Mindy George-Weinstein
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Rebecca Mason
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Janis Eells
- College of Health Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
287
|
Willis GL, Boda J, Freelance CB. Polychromatic Light Exposure as a Therapeutic in the Treatment and Management of Parkinson's Disease: A Controlled Exploratory Trial. Front Neurol 2018; 9:741. [PMID: 30778331 PMCID: PMC6156259 DOI: 10.3389/fneur.2018.00741] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a disorder characterized by loss of dopamine (DA) in the nigro-striatal dopamine (NSD) system with the primary symptoms of bradykinaesia, rigidity, tremor, and altered gate. Secondary symptoms including depression, insomnia, involuntary movement, and psychiatric side effects are also commonly observed. While the treatment focus for the past 50 years has been aimed at replacing deficient DA, to relieve the primary symptoms, more recent studies have suggested that the circadian system plays a critical role in the etiology and treatment of this disorder. Several case studies and open label trials have implemented bright light therapy (BT) in an attempt to repair sleep, depression and even the primary motor symptoms of this disorder, however controlled studies are yet to be fully implemented. In this controlled trial, patients that had been maintained on BT daily for 4 months to 5 years previously were assigned to one of three groups: continued polychromatic light, continued with red light or discontinued polychromatic light for a 2 week period. The Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDSUPDRS), The Parkinson's Disease Questionnaire (PDQ-39), The Beck Depression Inventory II, The Beck Anxiety Inventory, The Epworth Sleep Scale (ESS) and a global rating scale were used to assess patients prior to and at 1 and 2 weeks after commencing the trial. Patients continuing polychromatic BT showed significant improvement on the MDSUPDRS Rating Scale (12 points; p = 0.028), the PDQ-39 (10 points; p = 0.011), ESS (4 points; p = 0.013), and numerous motor and secondary symptoms on a global rating scale. Performance on standardized motor tests also incrementally improved in this group while those exposed to red light and those that discontinued BT treatment deteriorated. These results demonstrate that strategically applied polychromatic light was beneficial in reducing many primary motor and secondary symptoms of PD. Further work investigating the role of light in mitigating PD symptoms and involvement of the circadian system will provide further advances in the treatment of PD. Clinical Trial Registration: http://www.anzctr.org.au, identifier ACTRN12617001309370.
Collapse
Affiliation(s)
- Gregory L Willis
- The Bronowski Institute of Behavioural Neuroscience, The Bronowski Clinic, Coliban Medical Centre, Kyneton, VIC, Australia
| | - Jamilee Boda
- The Bronowski Institute of Behavioural Neuroscience, The Bronowski Clinic, Coliban Medical Centre, Kyneton, VIC, Australia
| | - Christopher B Freelance
- The Bronowski Institute of Behavioural Neuroscience, The Bronowski Clinic, Coliban Medical Centre, Kyneton, VIC, Australia
| |
Collapse
|
288
|
Cassano P, Dording C, Thomas G, Foster S, Yeung A, Uchida M, Hamblin MR, Bui E, Fava M, Mischoulon D, Iosifescu DV. Effects of transcranial photobiomodulation with near-infrared light on sexual dysfunction. Lasers Surg Med 2018; 51:127-135. [PMID: 30221776 DOI: 10.1002/lsm.23011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Transcranial photobiomodulation (t-PBM) consists of the delivery of near-infrared (NIR) or red light to the scalp designed to penetrate to subjacent cortical areas of the brain. NIR t-PBM has recently emerged as a potential therapy for brain disorders. This study assessed the efficacy of repeated sessions of NIR t-PBM on sexual dysfunction. METHODS We performed a secondary analysis of a double-blind clinical trial on t-PBM for major depressive disorder (MDD). Twenty individuals received NIR t-PBM (n = 9) or sham therapy (n = 11) twice a week for 8 weeks. Sexual desire, arousal, and orgasm were assessed using the Systematic Assessment for Treatment-Emergent Effects-Specific Inquiry (SAFTEE-SI). RESULTS The mean improvement in sexual function (decrease in SAFTEE sex total score) in subjects receiving t-PBM in NIR-mode was significantly greater than in subjects receiving sham-mode in the whole sample (NIR [n = 9] -2.55 ± 1.88 vs. sham [n = 11] -0.45 ± 1.21; z = 2.548, P = 0.011]) and in the completers (NIR [n = 5] -3.4 ± 1.95 vs. sham [n = 7] -0.14 ± 1.21; z = 2.576, P = 0.010]). CONCLUSION This exploratory study with a small sample size indicates that repeated sessions of NIR t-PBM may be associated with therapeutic effects on sexual dysfunction. The latter appeared unrelated to the antidepressant effect of t-PBM in our cohort. Lasers Surg. Med. 51:127-135, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paolo Cassano
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Christina Dording
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Garrett Thomas
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Simmie Foster
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Albert Yeung
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Mai Uchida
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Dan V Iosifescu
- Department of Psychiatry, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| |
Collapse
|
289
|
Dubois A, Chiang CC, Smekens F, Jan S, Cuplov V, Palfi S, Chuang KS, Senova S, Pain F. Optical and thermal simulations for the design of optodes for minimally invasive optogenetics stimulation or photomodulation of deep and large cortical areas in non-human primate brain. J Neural Eng 2018; 15:065004. [PMID: 30190446 DOI: 10.1088/1741-2552/aadf97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of optogenetics or photobiomodulation in non-human primate (NHP) requires the ability to noninvasively stimulate large and deep cortical brain tissues volumes. In this context, the optical and geometrical parameters of optodes are critical. Methods and general guidelines to optimize these parameters have to be defined. OBJECTIVE We propose the design of an optode for safe and efficient optical stimulation of a large volume of NHP cortex, down to 3-5 mm depths without inserting fibers into the cortex. APPROACH Monte Carlo simulations of optical and thermal transport have been carried out using the Geant4 application for tomographic emission (GATE) platform. Parameters such as the fiber diameter, numerical aperture, number of fibers and their geometrical arrangement have been studied. Optimal hardware parameters are proposed to obtain homogeneous fluence above the fluence threshold for opsin activation without detrimental thermal effects. MAIN RESULTS The simulations show that a large fiber diameter and a large numerical aperture are preferable since they allow limiting power concentration and hence the resulting thermal increases at the brain surface. To obtain a volume of 200-500 mm3 of brain tissues receiving a fluence above the opsin activation threshold for optogenetics or below a phototocixity threshold for photobiomodulation, a 4 fibers configuration is proposed. The optimal distance between the fibers was found to be 4 mm. A practical implementation of the optode has been performed and the corresponding fluence and thermal maps have been simulated. SIGNIFICANCE The present study defines a method to optimize the design of optode and the choice of stimulation parameters for optogenetics and more generally light delivery to deep and large volumes of tissues in NHP brain with a controlled irradiance dosimetry. The general guidelines are the use of silica fibers with a large numerical aperture and a large diameter. The combination of several fibers is required if large volumes need to be stimulated while avoiding thermal effects.
Collapse
Affiliation(s)
- A Dubois
- IMNC, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay F-91405, France
| | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Zaizar ED, Gonzalez-Lima F, Telch MJ. Singular and combined effects of transcranial infrared laser stimulation and exposure therapy: A randomized clinical trial. Contemp Clin Trials 2018; 72:95-102. [PMID: 30092284 DOI: 10.1016/j.cct.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/02/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022]
Abstract
This RCT will test whether transcranial infrared laser stimulation (TILS) administered immediately following standard exposure therapy enhances the retention of fear extinction for naturally acquired pathological fear. A second aim is to investigate the efficacy of TILS as a stand-alone intervention for reducing pathological fear. Participants with elevated fear in any one of the following four domains: (a) fear of enclosed spaces, (b) fear of contamination, (c) fear of public speaking, or (d) fear of anxiety (i.e., anxiety sensitivity) will be recruited from introductory psychology classes and the greater Austin community. Participants displaying marked fear responding will be stratified on baseline fear responding and fear domain and randomized to one of four treatment arms: (1) Exposure + TILS, (2) Exposure + sham TILS, (3) TILS alone, or (4) Sham TILS alone. We anticipate that TILS will enhance exposure therapy outcome relative to sham TILS and that this enhancement effect will be most pronounced for (a) those displaying higher baseline fear responding, and (b) those showing greater fear reduction during exposure. Study rationale as well as additional predictions and clinical implications are discussed.
Collapse
Affiliation(s)
- Eric D Zaizar
- Department of Psychology, Laboratory for the Study of Anxiety Disorders, The University of Texas at Austin, United States
| | - F Gonzalez-Lima
- Department of Psychology, Laboratory for the Study of Anxiety Disorders, The University of Texas at Austin, United States
| | - Michael J Telch
- Department of Psychology, Laboratory for the Study of Anxiety Disorders, The University of Texas at Austin, United States.
| |
Collapse
|
291
|
Bicknell B, Liebert A, Johnstone D, Kiat H. Photobiomodulation of the microbiome: implications for metabolic and inflammatory diseases. Lasers Med Sci 2018; 34:317-327. [PMID: 30074108 DOI: 10.1007/s10103-018-2594-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
The human microbiome is intimately associated with human health, with a role in obesity, metabolic diseases such as type 2 diabetes, and divergent diseases such as cardiovascular and neurodegenerative diseases. The microbiome can be changed by diet, probiotics, and faecal transplants, which has flow-on effects to health outcomes. Photobiomodulation has a therapeutic effect on inflammation and neurological disorders (amongst others) and has been reported to influence metabolic disorders and obesity. The aim of this study was to examine the possibility that PBM could influence the microbiome of mice. Mice had their abdomen irradiated with red (660 nm) or infrared (808 nm) low-level laser, either as single or multiple doses, over a 2-week period. Genomic DNA extracted from faecal pellets was pyrosequenced for the 16S rRNA gene. There was a significant (p < 0.05) difference in microbial diversity between PBM- and sham-treated mice. One genus of bacterium (Allobaculum) significantly increased (p < 0.001) after infrared (but not red light) PBM by day 14. Despite being a preliminary trial with small experimental numbers, we have demonstrated for the first time that PBM can alter microbiome diversity in healthy mice and increase numbers of Allobaculum, a bacterium associated with a healthy microbiome. This change is most probably a result of PBMt affecting the host, which in turn influenced the microbiome. If this is confirmed in humans, the possibility exists for PBMt to be used as an adjunct therapy in treatment of obesity and other lifestyle-related disorders, as well as cardiovascular and neurodegenerative diseases. The clinical implications of altering the microbiome using PBM warrants further investigation.
Collapse
Affiliation(s)
- Brian Bicknell
- Australasian Research Institute, Wahroonga, Australia. .,Faculty of Health Sciences, Australian Catholic University, North Sydney, Australia.
| | - Ann Liebert
- Australasian Research Institute, Wahroonga, Australia.,Department of Medicine, University of Sydney, Camperdown, Australia
| | | | - Hosen Kiat
- Faculty of Medicine and Health Sciences, Macquarie University, West Ryde, Australia.,School of Medical Sciences, University of New South Wales, Kensington, Australia
| |
Collapse
|
292
|
Shuaib A, Bourisly AK. Photobiomodulation Optimization for Spinal Cord Injury Rat Phantom Model. Transl Neurosci 2018; 9:67-71. [PMID: 29967691 PMCID: PMC6024694 DOI: 10.1515/tnsci-2018-0012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Spinal Cord Injury (SCI) causes interruption along the severed axonal tract(s) resulting in complete or partial loss of sensation and motor function. SCI can cause tetraplegia or paraplegia. Both these conditions can have lifelong excessive medical costs, as well as can reduce life expectancy. Preclinical research showed that Photobiomodulation therapy (PBMT), also known as Low-level laser (light) therapy (LLLT), possesses reparative and regenerative capabilities that have the potential to be used as a complimentary or supplementary SCI therapy. Despite the promising effects of PBMT, there are still no standardized irradiation parameters (i.e. different wavelengths, power, fluence, irradiance, beam type, beam diameters, and irradiation time) and there is also a lack of standardized experimental protocol(s), which makes it difficult to compare different studies. It is, nonetheless, essential to standardize such irradiation parameters in order to provide better PBMTs. The aim of this study, therefore, is to evaluate the delivery of light in a 3D voxelated SCI rat model for PBMT using different irradiation parameters (wavelengths: 660, 810, and 980 nm; beam types: Gaussian and Flat beam; and beam diameters: 0.04-1.2 cm) using Monte Carlo simulation. This study also aids in providing standardization for preclinical research for PBMT, which will eventually translate into clinical standardization upon clinical research studies and results.
Collapse
Affiliation(s)
- Ali Shuaib
- Biomedical Engineering Unit, Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait city, Kuwait
| | - Ali K Bourisly
- Biomedical Engineering Unit, Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait city, Kuwait
| |
Collapse
|
293
|
Esenaliev RO, Petrov IY, Petrov Y, Guptarak J, Boone DR, Mocciaro E, Weisz H, Parsley MA, Sell SL, Hellmich H, Ford JM, Pogue C, DeWitt D, Prough DS, Micci MA. Nano-Pulsed Laser Therapy Is Neuroprotective in a Rat Model of Blast-Induced Neurotrauma. J Neurotrauma 2018; 35:1510-1522. [PMID: 29562823 PMCID: PMC5998828 DOI: 10.1089/neu.2017.5249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have developed a novel, non-invasive nano-pulsed laser therapy (NPLT) system that combines the benefits of near-infrared laser light (808 nm) and ultrasound (optoacoustic) waves, which are generated with each short laser pulse within the tissue. We tested NPLT in a rat model of blast-induced neurotrauma (BINT) to determine whether transcranial application of NPLT provides neuroprotective effects. The laser pulses were applied on the intact rat head 1 h after injury using a specially developed fiber-optic system. Vestibulomotor function was assessed on post-injury days (PIDs) 1–3 on the beam balance and beam walking tasks. Cognitive function was assessed on PIDs 6–10 using a working memory Morris water maze (MWM) test. BDNF and caspase-3 messenger RNA (mRNA) expression was measured by quantitative real-time PCR (qRT-PCR) in laser-captured cortical neurons. Microglia activation and neuronal injury were assessed in brain sections by immunofluorescence using specific antibodies against CD68 and active caspase-3, respectively. In the vestibulomotor and cognitive (MWM) tests, NPLT-treated animals performed significantly better than the untreated blast group and similarly to sham animals. NPLT upregulated mRNA encoding BDNF and downregulated the pro-apoptotic protein caspase-3 in cortical neurons. Immunofluorescence demonstrated that NPLT inhibited microglia activation and reduced the number of cortical neurons expressing activated caspase-3. NPLT also increased expression of BDNF in the hippocampus and the number of proliferating progenitor cells in the dentate gyrus. Our data demonstrate a neuroprotective effect of NPLT and prompt further studies aimed to develop NPLT as a therapeutic intervention after traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Rinat O Esenaliev
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas.,2 Department of Neuroscience and Cell Biology, University of Texas Medical Branch , Galveston, Texas.,3 Center for Biomedical Engineering, University of Texas Medical Branch , Galveston, Texas
| | - Irene Y Petrov
- 3 Center for Biomedical Engineering, University of Texas Medical Branch , Galveston, Texas
| | - Yuriy Petrov
- 3 Center for Biomedical Engineering, University of Texas Medical Branch , Galveston, Texas
| | - Jutatip Guptarak
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Debbie R Boone
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Emanuele Mocciaro
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Harris Weisz
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Margaret A Parsley
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Stacy L Sell
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Helen Hellmich
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Jonathan M Ford
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Connor Pogue
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Douglas DeWitt
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Donald S Prough
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Maria-Adelaide Micci
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
294
|
Dos Santos JGRP, Paiva WS, Teixeira MJ. Transcranial light-emitting diode therapy for neuropsychological improvement after traumatic brain injury: a new perspective for diffuse axonal lesion management. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2018; 11:139-146. [PMID: 29731669 PMCID: PMC5927185 DOI: 10.2147/mder.s155356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cost of traumatic brain injury (TBI) for public health policies is undeniable today. Even patients who suffer from mild TBI may persist with cognitive symptoms weeks after the accident. Most of them show no lesion in computed tomography or conventional magnetic resonance imaging, but microstructural white matter abnormalities (diffuse axonal lesion) can be found in diffusion tensor imaging. Different brain networks work together to form an important part of the cognition process, and they can be affected by TBI. The default mode network (DMN) plays an important central role in normal brain activities, presenting greater relative deactivation during more cognitively demanding tasks. After deactivation, it allows a distinct network to activate. This network (the central executive network) acts mainly during tasks involving executive functions. The salience network is another network necessary for normal executive function, and its activation leads to deactivation of the DMN. The use of red or near-infrared (NIR) light to stimulate or regenerate tissue is known as photobiomodulation. It was discovered that NIR (wavelength 800-900 nm) and red (wavelength 600 nm) light-emitting diodes (LEDs) are able to penetrate through scalp and skull and have the potential to improve the subnormal, cellular activity of compromised brain tissue. Based on this, different experimental and clinical studies were done to test LED therapy for TBI, and promising results were found. It leads us to consider developing different approaches to maximize the positive effects of this therapy and improve the quality of life of TBI patients.
Collapse
Affiliation(s)
| | - Wellingson Silva Paiva
- Department of Neurological Surgery, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Department of Neurological Surgery, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
295
|
Santos JGRPD, Zaninotto ALC, Zângaro RA, Carneiro AMC, Neville IS, de Andrade AF, Teixeira MJ, Paiva WS. Effects of transcranial LED therapy on the cognitive rehabilitation for diffuse axonal injury due to severe acute traumatic brain injury: study protocol for a randomized controlled trial. Trials 2018; 19:249. [PMID: 29690927 PMCID: PMC5916588 DOI: 10.1186/s13063-018-2632-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Photobiomodulation describes the use of red or near-infrared light to stimulate or regenerate tissue. It was discovered that near-infrared wavelengths (800-900 nm) and red (600 nm) light-emitting diodes (LED) are able to penetrate through the scalp and skull and have the potential to improve the subnormal cellular activity of compromised brain tissue. Different experimental and clinical studies were performed to test LED therapy for traumatic brain injury (TBI) with promising results. One of the proposals of this present study is to develop different approaches to maximize the positive effects of this therapy and improve the quality of life of TBI patients. METHODS/DESIGN This is a double-blinded, randomized, controlled trial of patients with diffuse axonal injury (DAI) due to a severe TBI in an acute stage (less than 8 h). Thirty two patients will be randomized to active coil helmet and inactive coil (sham) groups in a 1:1 ratio. The protocol includes 18 sessions of transcranial LED stimulation (627 nm, 70 mW/cm2, 10 J/cm2) at four points of the frontal and parietal regions for 30 s each, totaling 120 s, three times per week for 6 weeks, lasting 30 min. Patients will be evaluated with the Glasgow Outcome Scale Extended (GOSE) before stimulation and 1, 3, and 6 months after the first stimulation. The study hypotheses are as follows: (1) transcranial LED therapy (TCLT) will improve the cognitive function of DAI patients and (2) TCLT will promote beneficial hemodynamic changes in cerebral circulation. DISCUSSION This study evaluates early and delayed effects of TCLT on the cognitive rehabilitation for DAI following severe acute TBI. There is a paucity of studies regarding the use of this therapy for cognitive improvement in TBI. There are some experimental studies and case series presenting interesting results for TBI cognitive improvement but no clinical trials. TRIAL REGISTRATION ClinicalTrials.gov, NCT03281759 . Registered on 13 September 2017.
Collapse
Affiliation(s)
- João Gustavo Rocha Peixoto dos Santos
- Department of Neurological Surgery, University of São Paulo School of Medicine, 255 Dr. Enéas de Carvalho Aguiar Av., São Paulo, SP 05403-010 Brazil
| | | | - Renato Amaro Zângaro
- Center for Innovation, Technology and Education (CITÉ) SJ dos Campos, São Paulo, 12245-650 Brazil
| | | | - Iuri Santana Neville
- Department of Neurological Surgery, University of São Paulo School of Medicine, 255 Dr. Enéas de Carvalho Aguiar Av., São Paulo, SP 05403-010 Brazil
| | - Almir Ferreira de Andrade
- Department of Neurological Surgery, University of São Paulo School of Medicine, 255 Dr. Enéas de Carvalho Aguiar Av., São Paulo, SP 05403-010 Brazil
| | - Manoel Jacobsen Teixeira
- Department of Neurological Surgery, University of São Paulo School of Medicine, 255 Dr. Enéas de Carvalho Aguiar Av., São Paulo, SP 05403-010 Brazil
| | - Wellingson Silva Paiva
- Department of Neurological Surgery, University of São Paulo School of Medicine, 255 Dr. Enéas de Carvalho Aguiar Av., São Paulo, SP 05403-010 Brazil
| |
Collapse
|
296
|
Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, Huang AJY, Hashimotodani Y, Kano M, Iwasaki H, Parajuli LK, Okabe S, Teh DBL, All AH, Tsutsui-Kimura I, Tanaka KF, Liu X, McHugh TJ. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018; 359:679-684. [PMID: 29439241 DOI: 10.1126/science.aaq1144] [Citation(s) in RCA: 659] [Impact Index Per Article: 94.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022]
Abstract
Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.
Collapse
Affiliation(s)
- Shuo Chen
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan.
| | - Adam Z Weitemier
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan
| | - Xiao Zeng
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Linmeng He
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan
| | - Xiyu Wang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan
| | - Yanqiu Tao
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan
| | - Arthur J Y Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan
| | - Yuki Hashimotodani
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,International Research Center for Neurointellegence (WPI), University of Tokyo Institute for Advanced Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hirohide Iwasaki
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Laxmi Kumar Parajuli
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel B Loong Teh
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore 117456, Singapore
| | - Angelo H All
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Iku Tsutsui-Kimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore 117602, Singapore
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan. .,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
297
|
Wong TW, Wu EC, Ko WC, Lee CC, Hor LI, Huang IH. Photodynamic inactivation of methicillin-resistant Staphylococcus aureus by indocyanine green and near infrared light. DERMATOL SIN 2018. [DOI: 10.1016/j.dsi.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
298
|
El Massri N, Weinrich TW, Kam JH, Jeffery G, Mitrofanis J. Photobiomodulation reduces gliosis in the basal ganglia of aged mice. Neurobiol Aging 2018; 66:131-137. [PMID: 29571001 PMCID: PMC5933512 DOI: 10.1016/j.neurobiolaging.2018.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 11/15/2022]
Abstract
This study explored the effects of long-term photobiomodulation (PBM) on the glial and neuronal organization in the striatum of aged mice. Mice aged 12 months were pretreated with PBM (670 nm) for 20 minutes per day, commencing at 5 months old and continued for 8 months. We had 2 control groups, young at 3 months and aged at 12 months old; these mice received no treatment. Brains were aldehyde-fixed and processed for immunohistochemistry with various glial and neuronal markers. We found a clear reduction in glial cell number, both astrocytes and microglia, in the striatum after PBM in aged mice. By contrast, the number of 2 types of striatal interneurons (parvalbumin+ and encephalopsin+), together with the density of striatal dopaminergic terminals (and their midbrain cell bodies), remained unchanged after such treatment. In summary, our results indicated that long-term PBM had beneficial effects on the aging striatum by reducing glial cell number; and furthermore, that this treatment did not have any deleterious effects on the neurons and terminations in this nucleus.
Collapse
Affiliation(s)
- Nabil El Massri
- Department of Anatomy F13, University of Sydney, Sydney, NSW, Australia
| | - Tobias W Weinrich
- Institute of Ophthalmology, University College London, London, England
| | - Jaimie Hoh Kam
- Institute of Ophthalmology, University College London, London, England
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, England
| | - John Mitrofanis
- Department of Anatomy F13, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
299
|
El Massri N, Cullen KM, Stefani S, Moro C, Torres N, Benabid AL, Mitrofanis J. Evidence for encephalopsin immunoreactivity in interneurones and striosomes of the monkey striatum. Exp Brain Res 2018; 236:955-961. [PMID: 29379995 DOI: 10.1007/s00221-018-5191-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
In this study, we examined the cellular distribution of encephalopsin (opsin 3; OPN3) expression in the striatum of non-human primates. In addition, because of our long standing interest in Parkinson's disease and neuroprotection, we examined whether parkinsonian (MPTP; 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) insult and/or photobiomodulation (670 nm) had any impact on encephalopsin expression in this key area of the basal ganglia. Striatal sections of control naïve monkeys, together with those that were either MPTP- and/or photobiomodulation-treated were processed for immunohistochemistry. Our results revealed two populations of striatal interneurones that expressed encephalopsin, one of which was the giant, choline acetyltransferase-containing, cholinergic interneurones. The other population had smaller somata and was not cholinergic. Neither cell group expressed the calcium-binding protein, parvalbumin. There was also rich encephalopsin expression in a set of terminals forming striosome-like patches across the striatum. Finally, we found that neither parkinsonian (MPTP) insult nor photobiomodulation had any effect on encephalopsin expression in the striatum. In summary, our results revealed an extensive network of encephalopsin containing structures throughout the striatum, indicating that external light is in a position to influence a range of striatal activities at both the interneurone and striosome level.
Collapse
Affiliation(s)
- Nabil El Massri
- Department of Anatomy F13, University of Sydney, Sydney, 2006, Australia
| | - Karen M Cullen
- Department of Anatomy F13, University of Sydney, Sydney, 2006, Australia
| | - Sebastian Stefani
- Department of Anatomy F13, University of Sydney, Sydney, 2006, Australia
| | - Cécile Moro
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Napoleon Torres
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Alim-Louis Benabid
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - John Mitrofanis
- Department of Anatomy F13, University of Sydney, Sydney, 2006, Australia.
| |
Collapse
|
300
|
Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol 2018; 55:6601-6636. [PMID: 29327206 DOI: 10.1007/s12035-017-0852-4] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. Brain PBM therapy enhances the metabolic capacity of neurons and stimulates anti-inflammatory, anti-apoptotic, and antioxidant responses, as well as neurogenesis and synaptogenesis. Its therapeutic role in disorders such as dementia and Parkinson's disease, as well as to treat stroke, brain trauma, and depression has gained increasing interest. In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.
Collapse
|