251
|
Pietra S, Gustavsson A, Kiefer C, Kalmbach L, Hörstedt P, Ikeda Y, Stepanova AN, Alonso JM, Grebe M. Arabidopsis SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity. Nat Commun 2013. [PMID: 24240534 DOI: 10.1038/ncommns3779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes.
Collapse
Affiliation(s)
- Stefano Pietra
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Mustroph A, Zanetti ME, Girke T, Bailey-Serres J. Isolation and analysis of mRNAs from specific cell types of plants by ribosome immunopurification. Methods Mol Biol 2013; 959:277-302. [PMID: 23299683 DOI: 10.1007/978-1-62703-221-6_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Multiple ribosomes assemble onto an individual mRNA to form a polyribosome (polysome) complex. The epitope tagging of specific ribosomal proteins can enable the immunopurification of polysomes from crude cell extracts derived from cryopreserved tissue samples. Through expression of the epitope-tagged ribosomal protein in cell-type and regional specific domains of Arabidopsis thaliana and other organisms it is feasible to quantitatively assess the mRNAs that are associated with ribosomes with cell-specific resolution. Here we present detailed methods for development of transgenics that express a FLAG-tagged version of ribosomal protein L18 (RPL18) under the direction of individual promoters with specific domains of expression, the immunopurification of ribosomes, and bioinformatic analyses of the resultant datasets obtained by microarray profiling. This methodology provides researchers with the opportunity to assess rapid changes at the organ, tissue, regional or cell-type specific level of mRNAs that are associated with ribosomes and therefore engaged in translation.
Collapse
Affiliation(s)
- Angelika Mustroph
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany.
| | | | | | | |
Collapse
|
253
|
Gaertner B, Johnston J, Chen K, Wallaschek N, Paulson A, Garruss AS, Gaudenz K, De Kumar B, Krumlauf R, Zeitlinger J. Poised RNA polymerase II changes over developmental time and prepares genes for future expression. Cell Rep 2012; 2:1670-83. [PMID: 23260668 DOI: 10.1016/j.celrep.2012.11.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 09/29/2012] [Accepted: 11/27/2012] [Indexed: 01/20/2023] Open
Abstract
Poised RNA polymerase II (Pol II) is predominantly found at developmental control genes and is thought to allow their rapid and synchronous induction in response to extracellular signals. How the recruitment of poised RNA Pol II is regulated during development is not known. By isolating muscle tissue from Drosophila embryos at five stages of differentiation, we show that the recruitment of poised Pol II occurs at many genes de novo and this makes them permissive for future gene expression. A comparison with other tissues shows that these changes are stage specific and not tissue specific. In contrast, Polycomb group repression is tissue specific, and in combination with Pol II (the balanced state) marks genes with highly dynamic expression. This suggests that poised Pol II is temporally regulated and is held in check in a tissue-specific fashion. We compare our data with findings in mammalian embryonic stem cells and discuss a framework for predicting developmental programs on the basis of the chromatin state.
Collapse
Affiliation(s)
- Bjoern Gaertner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Heinig U, Gutensohn M, Dudareva N, Aharoni A. The challenges of cellular compartmentalization in plant metabolic engineering. Curr Opin Biotechnol 2012; 24:239-46. [PMID: 23246154 DOI: 10.1016/j.copbio.2012.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/13/2012] [Accepted: 11/16/2012] [Indexed: 12/21/2022]
Abstract
The complex metabolic networks in plants are highly compartmentalized and biochemical steps of a single pathway can take place in multiple subcellular locations. Our knowledge regarding reactions and precursor compounds in the various cellular compartments has increased in recent years due to innovations in tracking the spatial distribution of proteins and metabolites. Nevertheless, to date only few studies have integrated subcellular localization criteria in metabolic engineering attempts. Here, we highlight the crucial factors for subcellular-localization-based strategies in plant metabolic engineering including substrate availability, enzyme targeting, the role of transporters, and multigene transfer approaches. The availability of compartmentalized metabolic network models for plants in the near future will greatly advance the integration of localization constraints in metabolic engineering experiments and aid in predicting their outcomes.
Collapse
Affiliation(s)
- Uwe Heinig
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
255
|
Wang D, Mills ES, Deal RB. Technologies for systems-level analysis of specific cell types in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 197:21-29. [PMID: 23116668 PMCID: PMC4037754 DOI: 10.1016/j.plantsci.2012.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 05/08/2023]
Abstract
The study of biological processes at cell type resolution requires the isolation of the specific cell types from an organism, but this presents a great technical challenge. In recent years a number of methods have been developed that allow deep analyses of the epigenome, transcriptome, and ribosome-associated mRNA populations in individual cell types. The application of these methods has lead to a clearer understanding of important issues in plant biology, including cell fate specification and cell type-specific responses to the environment. In this review, we discuss current mechanical- and affinity-based technologies available for isolation and analysis of individual cell types in a plant. The integration of these methods is proposed as a means of achieving a holistic view of cellular processes at all levels, from chromatin dynamics to metabolomics. Finally, we explore the limitations of current methods and the needs for future technological development.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - E. Shannon Mills
- Graduate program in Genetics and Molecular Biology of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Roger B. Deal
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- To whom correspondence should be addressed:
| |
Collapse
|
256
|
Abstract
Epigenomics, the determination of epigenetic landscapes on a genome-wide scale, has progressed at an astounding rate over the past decade. Recent technological developments have enabled base-pair resolution of various epigenomic features, leading to new insights into epigenetic regulation.
Collapse
|
257
|
Zentner GE, Henikoff S. Surveying the epigenomic landscape, one base at a time. Genome Biol 2012; 13:250. [PMID: 23088423 DOI: 10.1186/gb4051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenomics, the determination of epigenetic landscapes on a genome-wide scale, has progressed at an astounding rate over the past decade. Recent technological developments have enabled base-pair resolution of various epigenomic features, leading to new insights into epigenetic regulation.
Collapse
|
258
|
Grønlund JT, Eyres A, Kumar S, Buchanan-Wollaston V, Gifford ML. Cell specific analysis of Arabidopsis leaves using fluorescence activated cell sorting. J Vis Exp 2012:4214. [PMID: 23070217 PMCID: PMC3490320 DOI: 10.3791/4214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
After initiation of the leaf primordium, biomass accumulation is controlled mainly by cell proliferation and expansion in the leaves1. However, the Arabidopsis leaf is a complex organ made up of many different cell types and several structures. At the same time, the growing leaf contains cells at different stages of development, with the cells furthest from the petiole being the first to stop expanding and undergo senescence1. Different cells within the leaf are therefore dividing, elongating or differentiating; active, stressed or dead; and/or responding to stimuli in sub-sets of their cellular type at any one time. This makes genomic study of the leaf challenging: for example when analyzing expression data from whole leaves, signals from genetic networks operating in distinct cellular response zones or cell types will be confounded, resulting in an inaccurate profile being generated. To address this, several methods have been described which enable studies of cell specific gene expression. These include laser-capture microdissection (LCM)2 or GFP expressing plants used for protoplast generation and subsequent fluorescence activated cell sorting (FACS)3,4, the recently described INTACT system for nuclear precipitation5 and immunoprecipitation of polysomes6. FACS has been successfully used for a number of studies, including showing that the cell identity and distance from the root tip had a significant effect on the expression profiles of a large number of genes3,7. FACS of GFP lines have also been used to demonstrate cell-specific transcriptional regulation during root nitrogen responses and lateral root development8, salt stress9 auxin distribution in the root10 and to create a gene expression map of the Arabidopsis shoot apical meristem11. Although FACS has previously been used to sort Arabidopsis leaf derived protoplasts based on autofluorescence12,13, so far the use of FACS on Arabidopsis lines expressing GFP in the leaves has been very limited4. In the following protocol we describe a method for obtaining Arabidopsis leaf protoplasts that are compatible with FACS while minimizing the impact of the protoplast generation regime. We demonstrate the method using the KC464 Arabidopsis line, which express GFP in the adaxial epidermis14, the KC274 line, which express GFP in the vascular tissue14 and the TP382 Arabidopsis line, which express a double GFP construct linked to a nuclear localization signal in the guard cells (data not shown; Figure 2). We are currently using this method to study both cell-type specific expression during development and stress, as well as heterogeneous cell populations at various stages of senescence.
Collapse
|
259
|
Bassel GW, Gaudinier A, Brady SM, Hennig L, Rhee SY, De Smet I. Systems analysis of plant functional, transcriptional, physical interaction, and metabolic networks. THE PLANT CELL 2012; 24:3859-75. [PMID: 23110892 PMCID: PMC3517224 DOI: 10.1105/tpc.112.100776] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/21/2012] [Accepted: 10/11/2012] [Indexed: 05/19/2023]
Abstract
Physiological responses, developmental programs, and cellular functions rely on complex networks of interactions at different levels and scales. Systems biology brings together high-throughput biochemical, genetic, and molecular approaches to generate omics data that can be analyzed and used in mathematical and computational models toward uncovering these networks on a global scale. Various approaches, including transcriptomics, proteomics, interactomics, and metabolomics, have been employed to obtain these data on the cellular, tissue, organ, and whole-plant level. We summarize progress on gene regulatory, cofunction, protein interaction, and metabolic networks. We also illustrate the main approaches that have been used to obtain these networks, with specific examples from Arabidopsis thaliana, and describe the pros and cons of each approach.
Collapse
Affiliation(s)
- George W. Bassel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Division of Plant and Crop Sciences, School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Siobhan M. Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Lars Hennig
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| |
Collapse
|
260
|
de Bruijn S, Angenent GC, Kaufmann K. Plant 'evo-devo' goes genomic: from candidate genes to regulatory networks. TRENDS IN PLANT SCIENCE 2012; 17:441-7. [PMID: 22698378 DOI: 10.1016/j.tplants.2012.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/23/2012] [Accepted: 05/01/2012] [Indexed: 05/21/2023]
Abstract
Plant development gives rise to a staggering complexity of morphological structures with different shapes, colors, and functions. Understanding the evolution of control mechanisms that underlie developmental processes provides insights into causes of morphological diversity and, therefore, is of great interest to biologists. New genomic resources and techniques enable biologists to assess for the first time the evolution of developmental regulatory networks at a global scale. Here, we address the question of how comparative regulatory genomics can be used to reveal the evolutionary dynamics of control networks linked to morphological evolution in plants.
Collapse
Affiliation(s)
- Suzanne de Bruijn
- Wageningen University, Laboratory for Molecular Biology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | |
Collapse
|
261
|
Henry GL, Davis FP, Picard S, Eddy SR. Cell type-specific genomics of Drosophila neurons. Nucleic Acids Res 2012; 40:9691-704. [PMID: 22855560 PMCID: PMC3479168 DOI: 10.1093/nar/gks671] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many tools are available to analyse genomes but are often challenging to use in a cell type–specific context. We have developed a method similar to the isolation of nuclei tagged in a specific cell type (INTACT) technique [Deal,R.B. and Henikoff,S. (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell, 18, 1030–1040; Steiner,F.A., Talbert,P.B., Kasinathan,S., Deal,R.B. and Henikoff,S. (2012) Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res., doi:10.1101/gr.131748.111], first developed in plants, for use in Drosophila neurons. We profile gene expression and histone modifications in Kenyon cells and octopaminergic neurons in the adult brain. In addition to recovering known gene expression differences, we also observe significant cell type–specific chromatin modifications. In particular, a small subset of differentially expressed genes exhibits a striking anti-correlation between repressive and activating histone modifications. These genes are enriched for transcription factors, recovering those known to regulate mushroom body identity and predicting analogous regulators of octopaminergic neurons. Our results suggest that applying INTACT to specific neuronal populations can illuminate the transcriptional regulatory networks that underlie neuronal cell identity.
Collapse
Affiliation(s)
- Gilbert L Henry
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | | | | | | |
Collapse
|
262
|
Meagher RB, Müssar KJ. The influence of DNA sequence on epigenome-induced pathologies. Epigenetics Chromatin 2012; 5:11. [PMID: 22818522 PMCID: PMC3439399 DOI: 10.1186/1756-8935-5-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/20/2012] [Indexed: 01/13/2023] Open
Abstract
Clear cause-and-effect relationships are commonly established between genotype and the inherited risk of acquiring human and plant diseases and aberrant phenotypes. By contrast, few such cause-and-effect relationships are established linking a chromatin structure (that is, the epitype) with the transgenerational risk of acquiring a disease or abnormal phenotype. It is not entirely clear how epitypes are inherited from parent to offspring as populations evolve, even though epigenetics is proposed to be fundamental to evolution and the likelihood of acquiring many diseases. This article explores the hypothesis that, for transgenerationally inherited chromatin structures, "genotype predisposes epitype", and that epitype functions as a modifier of gene expression within the classical central dogma of molecular biology. Evidence for the causal contribution of genotype to inherited epitypes and epigenetic risk comes primarily from two different kinds of studies discussed herein. The first and direct method of research proceeds by the examination of the transgenerational inheritance of epitype and the penetrance of phenotype among genetically related individuals. The second approach identifies epitypes that are duplicated (as DNA sequences are duplicated) and evolutionarily conserved among repeated patterns in the DNA sequence. The body of this article summarizes particularly robust examples of these studies from humans, mice, Arabidopsis, and other organisms. The bulk of the data from both areas of research support the hypothesis that genotypes predispose the likelihood of displaying various epitypes, but for only a few classes of epitype. This analysis suggests that renewed efforts are needed in identifying polymorphic DNA sequences that determine variable nucleosome positioning and DNA methylation as the primary cause of inherited epigenome-induced pathologies. By contrast, there is very little evidence that DNA sequence directly determines the inherited positioning of numerous and diverse post-translational modifications of histone side chains within nucleosomes. We discuss the medical and scientific implications of these observations on future research and on the development of solutions to epigenetically induced disorders.
Collapse
Affiliation(s)
- Richard B Meagher
- Genetics Department, Davison Life Sciences Building, University of Georgia, Athens, GA, 30605, USA.
| | | |
Collapse
|
263
|
Haenni S, Ji Z, Hoque M, Rust N, Sharpe H, Eberhard R, Browne C, Hengartner MO, Mellor J, Tian B, Furger A. Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3'-end-seq. Nucleic Acids Res 2012; 40:6304-18. [PMID: 22467213 PMCID: PMC3401467 DOI: 10.1093/nar/gks282] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 01/01/2023] Open
Abstract
Despite the many advantages of Caenorhabditis elegans, biochemical approaches to study tissue-specific gene expression in post-embryonic stages are challenging. Here, we report a novel experimental approach for efficient determination of tissue-specific transcriptomes involving the rapid release and purification of nuclei from major tissues of post-embryonic animals by fluorescence-activated nuclei sorting (FANS), followed by deep sequencing of linearly amplified 3'-end regions of transcripts (3'-end-seq). We employed these approaches to compile the transcriptome of the developed C. elegans intestine and used this to analyse tissue-specific cleavage and polyadenylation. In agreement with intestinal-specific gene expression, highly expressed genes have enriched GATA-elements in their promoter regions and their functional properties are associated with processes that are characteristic for the intestine. We systematically mapped pre-mRNA cleavage and polyadenylation sites, or polyA sites, including more than 3000 sites that have previously not been identified. The detailed analysis of the 3'-ends of the nuclear mRNA revealed widespread alternative polyA site use (APA) in intestinally expressed genes. Importantly, we found that intestinal polyA sites that undergo APA tend to have U-rich and/or A-rich upstream auxiliary elements that may contribute to the regulation of 3'-end formation in the intestine.
Collapse
Affiliation(s)
- Simon Haenni
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Zhe Ji
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Mainul Hoque
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Nigel Rust
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Helen Sharpe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Ralf Eberhard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Cathy Browne
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Michael O. Hengartner
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - Bin Tian
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| | - André Furger
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK, Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich and Institute of Neuropathology, Schmelzbergstrasse 12, CH 8091 Zürich, Switzerland
| |
Collapse
|
264
|
Velasquez M, Salter JS, Dorosz JG, Petersen BL, Estevez JM. Recent Advances on the Posttranslational Modifications of EXTs and Their Roles in Plant Cell Walls. FRONTIERS IN PLANT SCIENCE 2012; 3:93. [PMID: 22639676 PMCID: PMC3355594 DOI: 10.3389/fpls.2012.00093] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/23/2012] [Indexed: 05/08/2023]
Abstract
The genetic set up and the enzymes that define the O-glycosylation sites and transfer the activated sugars to cell wall glycoprotein Extensins (EXTs) have remained unknown for a long time. We are now beginning to see the emerging components of the molecular machinery that assembles these complex O-glycoproteins on the plant cell wall. Genes conferring the posttranslational modifications, i.e., proline hydroxylation and subsequent O-glycosylation, of the EXTs have been recently identified. In this review we summarize the enzymes that define the O-glycosylation sites on the O-glycoproteins, i.e., the prolyl 4-hydroxylases (P4Hs), the glycosyltransferases that transfer arabinose units (named arabinosyltransferases, AraTs), and the one responsible for transferring a single galactose (galactosyltransferase, GalT) on the protein EXT backbones. We discuss the effects of posttranslational modifications on the structure and function of extensins in plant cell walls.
Collapse
Affiliation(s)
- Melina Velasquez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Universidad de Buenos AiresBuenos Aires, Argentina
| | - Juan Salgado Salter
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Universidad de Buenos AiresBuenos Aires, Argentina
| | - Javier Gloazzo Dorosz
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Universidad de Buenos AiresBuenos Aires, Argentina
| | - Bent L. Petersen
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of CopenhagenCopenhagen, Denmark
| | - José M. Estevez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Universidad de Buenos AiresBuenos Aires, Argentina
| |
Collapse
|
265
|
Petricka JJ, Schauer MA, Megraw M, Breakfield NW, Thompson JW, Georgiev S, Soderblom EJ, Ohler U, Moseley MA, Grossniklaus U, Benfey PN. The protein expression landscape of the Arabidopsis root. Proc Natl Acad Sci U S A 2012. [PMID: 22447775 DOI: 10.1073/pnas,0.1202546109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Because proteins are the major functional components of cells, knowledge of their cellular localization is crucial to gaining an understanding of the biology of multicellular organisms. We have generated a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins. Grouping proteins into functional categories revealed unique cellular functions and identified cell type-specific biomarkers. Cellular colocalization provided support for numerous protein-protein interactions. With a binary comparison, we found that RNA and protein expression profiles are weakly correlated. We then performed peak integration at cell type-specific resolution and found an improved correlation with transcriptome data using continuous values. We performed GeLC-MS/MS (in-gel tryptic digestion followed by liquid chromatography-tandem mass spectrometry) proteomic experiments on mutants with ectopic and no root hairs, providing complementary proteomic data. Finally, among our root hair-specific proteins we identified two unique regulators of root hair development.
Collapse
Affiliation(s)
- Jalean J Petricka
- Department of Biology, Duke Center for Systems Biology, and Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Zhang H, Bishop B, Ringenberg W, Muir WM, Ogas J. The CHD3 remodeler PICKLE associates with genes enriched for trimethylation of histone H3 lysine 27. PLANT PHYSIOLOGY 2012; 159:418-32. [PMID: 22452853 PMCID: PMC3375975 DOI: 10.1104/pp.112.194878] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/24/2012] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the ATP-dependent chromatin remodeler PICKLE (PKL) determines expression of genes associated with developmental identity. PKL promotes the epigenetic mark trimethylation of histone H3 lysine 27 (H3K27me3) that facilitates repression of tissue-specific genes in plants. It has previously been proposed that PKL acts indirectly to promote H3K27me3 by promoting expression of the POLYCOMB REPRESSIVE COMPLEX2 complex that generates H3K27me3. We undertook expression and chromatin immunoprecipitation analyses to further characterize the contribution of PKL to gene expression and developmental identity. Our expression data support a critical and specific role for PKL in expression of H3K27me3-enriched loci but do not support a role for PKL in expression of POLYCOMB REPRESSIVE COMPLEX2. Moreover, our chromatin immunoprecipitation data reveal that PKL protein is present at the promoter region of multiple H3K27me3-enriched loci, indicating that PKL directly acts on these loci. In particular, we find that PKL is present at LEAFY COTYLEDON1 and LEAFY COTYLEDON2 during germination, which is when PKL acts to repress these master regulators of embryonic identity. Surprisingly, we also find that PKL is present at the promoters of actively transcribed genes that are ubiquitously expressed such as ACTIN7 and POLYUBIQUITIN10 that do not exhibit PKL-dependent expression. Taken together, our data contravene the previous model of PKL action and instead support a direct role for PKL in determining levels of H3K27me3 at repressed loci. Our data also raise the possibility that PKL facilitates a common chromatin remodeling process that is not restricted to H3K27me3-enriched regions.
Collapse
|
267
|
Cell type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP. Nat Protoc 2012; 7:978-94. [PMID: 22538849 DOI: 10.1038/nprot.2012.049] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol describes the batch isolation of tissue-specific chromatin for immunoprecipitation (BiTS-ChIP) for analysis of histone modifications, transcription factor binding, or polymerase occupancy within the context of a multicellular organism or tissue. Embryos expressing a cell type-specific nuclear marker are formaldehyde cross-linked and then subjected to dissociation. Fixed nuclei are isolated and sorted using FACS on the basis of the cell type-specific nuclear marker. Tissue-specific chromatin is extracted, sheared by sonication and used for ChIP-seq or other analyses. The key advantages of this method are the covalent cross-linking before embryo dissociation, which preserves the transcriptional context, and the use of FACS of nuclei, yielding very high purity. The protocol has been optimized for Drosophila, but with minor modifications should be applicable to any model system. The full protocol, including sorting, immunoprecipitation and generation of sequencing libraries, can be completed within 5 d.
Collapse
|
268
|
Rattner BP. Discussing epigenetics in Southern California: A report from the International Symposium on Epigenetic Control and Cellular Plasticity, UCI, December 15–16, 2011. Epigenetics 2012; 7:415-8. [PMID: 22414797 PMCID: PMC3368824 DOI: 10.4161/epi.19815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
With the goal of discussing how epigenetic control and chromatin remodeling contribute to the various processes that lead to cellular plasticity and disease, this symposium marks the collaboration between the Institut National de la Santé et de la Recherche Médicale (INSERM) in France and the University of California, Irvine (UCI). Organized by Paolo Sassone-Corsi (UCI) and held at the Beckman Center of the National Academy of Sciences at the UCI campus December 15–16, 2011, this was the first of a series of international conferences on epigenetics dedicated to the scientific community in Southern California. The meeting also served as the official kick off for the newly formed Center for Epigenetics and Metabolism at the School of Medicine, UCI (http://cem.igb.uci.edu).
Collapse
|
269
|
Rogers ED, Jackson T, Moussaieff A, Aharoni A, Benfey PN. Cell type-specific transcriptional profiling: implications for metabolite profiling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:5-17. [PMID: 22449039 PMCID: PMC3315153 DOI: 10.1111/j.1365-313x.2012.04888.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant development and survival is centered on complex regulatory networks composed of genes, proteins, hormone pathways, metabolites and signaling pathways. The recent advancements in whole genome biology have furthered our understanding of the interactions between these networks. As a result, numerous cell type-specific transcriptome profiles have been generated that have elucidated complex gene regulatory networks occurring at the cellular level, many of which were masked during whole-organ analysis. Modern technologies have also allowed researchers to generate multiple whole-organ metabolite profiles; however, only a limited number have been generated at the level of individual cells. Recent advancements in the isolation of individual cell populations have made cell type-specific metabolite profiles possible, enabling the enhanced detection and quantification of metabolites that were formerly unavailable when considering the whole organ. The comparison of metabolite and transcriptome profiles from the same cells has been a valuable resource to generate predictions regarding specific metabolite activity and function. In this review, we focus on recent studies that demonstrate the value of cell type-specific transcriptional profiles and their comparison with profiles generated from whole organs. Advancements in the isolation of single-cell populations will be highlighted, and the potential application towards generating detailed metabolic profiles will be discussed.
Collapse
Affiliation(s)
- Eric D. Rogers
- Department of Biologyand Duke Center for Systems Biology, Duke University, Durham, NC, USA 27708
| | - Terry Jackson
- Department of Biologyand Duke Center for Systems Biology, Duke University, Durham, NC, USA 27708
| | - Arieh Moussaieff
- Department of Plant Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Philip N. Benfey
- Department of Biologyand Duke Center for Systems Biology, Duke University, Durham, NC, USA 27708
| |
Collapse
|
270
|
Salse J. In silico archeogenomics unveils modern plant genome organisation, regulation and evolution. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:1-3. [PMID: 22280839 DOI: 10.1016/j.pbi.2011.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Increasing access to plant genome sequences as well as high resolution gene-based genetic maps have recently offered the opportunity to compare modern genomes and model their evolutionary history from their reconstructed founder ancestors on an unprecedented scale. In silico paleogenomic data have revealed the evolutionary forces that have shaped present-day genomes and allowed us to gain insight into how they are organised and regulated today.
Collapse
Affiliation(s)
- Jérôme Salse
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Group PPAV 'Paléogénomique des Plantes pour l'Amélioration Variétale', Domaine de Crouelle, 234 avenue du Brézet, 63100 Clermont Ferrand, France.
| |
Collapse
|
271
|
Abstract
Because proteins are the major functional components of cells, knowledge of their cellular localization is crucial to gaining an understanding of the biology of multicellular organisms. We have generated a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins. Grouping proteins into functional categories revealed unique cellular functions and identified cell type-specific biomarkers. Cellular colocalization provided support for numerous protein-protein interactions. With a binary comparison, we found that RNA and protein expression profiles are weakly correlated. We then performed peak integration at cell type-specific resolution and found an improved correlation with transcriptome data using continuous values. We performed GeLC-MS/MS (in-gel tryptic digestion followed by liquid chromatography-tandem mass spectrometry) proteomic experiments on mutants with ectopic and no root hairs, providing complementary proteomic data. Finally, among our root hair-specific proteins we identified two unique regulators of root hair development.
Collapse
|
272
|
Schmitz RJ, Ecker JR. Epigenetic and epigenomic variation in Arabidopsis thaliana. TRENDS IN PLANT SCIENCE 2012; 17:149-54. [PMID: 22342533 PMCID: PMC3645451 DOI: 10.1016/j.tplants.2012.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/23/2011] [Accepted: 01/04/2012] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana (Arabidopsis) is ideally suited for studies of natural phenotypic variation. This species has also provided an unparalleled experimental system to explore the mechanistic link between genetic and epigenetic variation, especially with regard to cytosine methylation. Using high-throughput sequencing methods, genotype to epigenotype to phenotype observations can now be extended to plant populations. We review the evidence for induced and spontaneous epigenetic variants that have been identified in Arabidopsis in the laboratory and discuss how these experimental observations could explain existing variation in the wild.
Collapse
Affiliation(s)
- Robert J Schmitz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
273
|
Posé D, Yant L, Schmid M. The end of innocence: flowering networks explode in complexity. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:45-50. [PMID: 21974961 DOI: 10.1016/j.pbi.2011.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 05/20/2023]
Abstract
Substantial recent advances in genome-scale transcription factor target mapping have provided a fresh view of the gene networks governing developmental transitions. In particular, our understanding of the fine-scale spatial and temporal dynamics underlying the floral transition at the shoot apex has seen great advances in the past two years. Single transcription factors are regularly observed to act in complex manners, directly promoting the expression of particular targets while directly repressing the expression of others, based at least partly on defined heterodimerization patterns. For single regulators this behavior reaches into distinct physiological processes, providing compelling evidence that particular transcription factors act to directly integrate diverse processes to orchestrate complex developmental transitions.
Collapse
Affiliation(s)
- David Posé
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Spemannstrasse 37-39, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
274
|
Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme N, Ghavi-Helm Y, Wilczyński B, Riddell A, Furlong EEM. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 2012; 44:148-56. [PMID: 22231485 DOI: 10.1038/ng.1064] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 12/07/2011] [Indexed: 12/15/2022]
Abstract
Chromatin modifications are associated with many aspects of gene expression, yet their role in cellular transitions during development remains elusive. Here, we use a new approach to obtain cell type-specific information on chromatin state and RNA polymerase II (Pol II) occupancy within the multicellular Drosophila melanogaster embryo. We directly assessed the relationship between chromatin modifications and the spatio-temporal activity of enhancers. Rather than having a unique chromatin state, active developmental enhancers show heterogeneous histone modifications and Pol II occupancy. Despite this complexity, combined chromatin signatures and Pol II presence are sufficient to predict enhancer activity de novo. Pol II recruitment is highly predictive of the timing of enhancer activity and seems dependent on the timing and location of transcription factor binding. Chromatin modifications typically demarcate large regulatory regions encompassing multiple enhancers, whereas local changes in nucleosome positioning and Pol II occupancy delineate single active enhancers. This cell type-specific view identifies dynamic enhancer usage, an essential step in deciphering developmental networks.
Collapse
Affiliation(s)
- Stefan Bonn
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Steiner FA, Talbert PB, Kasinathan S, Deal RB, Henikoff S. Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res 2012; 22:766-77. [PMID: 22219512 DOI: 10.1101/gr.131748.111] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An understanding of developmental processes requires knowledge of transcriptional and epigenetic landscapes at the level of tissues and ultimately individual cells. However, obtaining tissue- or cell-type-specific expression and chromatin profiles for animals has been challenging. Here we describe a method for purifying nuclei from specific cell types of animal models that allows simultaneous determination of both expression and chromatin profiles. The method is based on in vivo biotin-labeling of the nuclear envelope and subsequent affinity purification of nuclei. We describe the use of the method to isolate nuclei from muscle of adult Caenorhabditis elegans and from mesoderm of Drosophila melanogaster embryos. As a case study, we determined expression and nucleosome occupancy profiles for affinity-purified nuclei from C. elegans muscle. We identified hundreds of genes that are specifically expressed in muscle tissues and found that these genes are depleted of nucleosomes at promoters and gene bodies in muscle relative to other tissues. This method should be universally applicable to all model systems that allow transgenesis and will make it possible to determine epigenetic and expression profiles of different tissues and cell types.
Collapse
Affiliation(s)
- Florian A Steiner
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
276
|
Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, Zheng X, Wang JY, Lee MM, Benfey P, Woolf PJ, Schiefelbein J. A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet 2012; 8:e1002446. [PMID: 22253603 PMCID: PMC3257299 DOI: 10.1371/journal.pgen.1002446] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/28/2011] [Indexed: 11/18/2022] Open
Abstract
The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 "core" root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network.
Collapse
Affiliation(s)
- Angela Bruex
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Raghunandan M. Kainkaryam
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yana Wieckowski
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yeon Hee Kang
- Department of Biology, Yonsei University, Seoul, Korea
| | - Christine Bernhardt
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yang Xia
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaohua Zheng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jean Y. Wang
- Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, North Carolina, United States of America
| | | | - Philip Benfey
- Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, North Carolina, United States of America
| | - Peter J. Woolf
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
277
|
Shi L, Katavic V, Yu Y, Kunst L, Haughn G. Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:37-46. [PMID: 21883555 DOI: 10.1111/j.1365-313x.2011.04768.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Seed oil, one of the major seed storage compounds in plants, is of great economic importance for human consumption, as an industrial raw material and as a source of biofuels. Thus, improving the seed oil yield in crops is an important objective. The GLABRA2 (GL2) gene in Arabidopsis thaliana encodes a transcription factor that is required for the proper differentiation of several epidermal cell types. GL2 has also been shown to regulate seed oil levels, as a loss-of-function mutation in the GL2 gene results in plants with a higher seed oil content than wild-type. We have extended this observation by showing that loss-of-function mutations in several positive regulators of GL2 also result in a high seed oil phenotype. The GL2 gene is expressed in both the seed coat and embryo, but the embryo is the main site of seed oil accumulation. Surprisingly, our results indicate that it is loss of GL2 activity in the seed coat, not the embryo, that contributes to the high seed oil phenotype. One target of GL2 in the seed coat is the gene MUCILAGE MODIFIED 4 (MUM4), which encodes a rhamnose synthase that is required for seed mucilage biosynthesis. We found that mum4 mutant seeds, like those of gl2 mutants, have an increased seed oil content in comparison with wild-type. Therefore, GL2 regulates seed oil production at least partly through its influence on MUM4 expression in the seed coat. We propose that gl2 mutant seeds produce more oil due to increased carbon allocation to the embryo in the absence of seed coat mucilage biosynthesis.
Collapse
Affiliation(s)
- Lin Shi
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | | | | | | | | |
Collapse
|
278
|
Abstract
During the past two decades, molecular biologists and geneticists have deconstructed intracellular signaling pathways in individual cells, revealing a great deal of crosstalk among key signaling pathways in the animal kingdom. Fewer examples have been reported in plants, which appear to integrate multiple signals on the promoters of target genes or to use gene family members to convey signal-specific output. For both plants and animals, the question now is whether the "crosstalk" is biologically relevant or simply noise in the experimental system. To minimize such noise, we suggest studying signaling pathways in the context of intact organisms with minimal perturbation from the experimenter.
Collapse
Affiliation(s)
- Grégory Vert
- BPMP, CNRS UMR 5004, 2 Place Viala, 34060 Montpellier Cedex 1, France
- Plant Biology Laboratory and Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla CA 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory and Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla CA 92037, USA
| |
Collapse
|
279
|
Grafi G, Florentin A, Ransbotyn V, Morgenstern Y. The stem cell state in plant development and in response to stress. FRONTIERS IN PLANT SCIENCE 2011; 2:53. [PMID: 22645540 PMCID: PMC3355748 DOI: 10.3389/fpls.2011.00053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/03/2011] [Indexed: 05/18/2023]
Abstract
Stem cells are commonly defined by their developmental capabilities, namely, self-renewal and multitype differentiation, yet the biology of stem cells and their inherent features both in plants and animals are only beginning to be elucidated. In this review article we highlight the stem cell state in plants with reference to animals and the plastic nature of plant somatic cells often referred to as totipotency as well as the essence of cellular dedifferentiation. Based on recent published data, we illustrate the picture of stem cells with emphasis on their open chromatin conformation. We discuss the process of dedifferentiation and highlight its transient nature, its distinction from re-entry into the cell cycle and its activation following exposure to stress. We also discuss the potential hazard that can be brought about by stress-induced dedifferentiation and its major impact on the genome, which can undergo stochastic, abnormal reorganization leading to genetic variation by means of DNA transposition and/or DNA recombination.
Collapse
Affiliation(s)
- Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev Midreshet Ben-Gurion, Israel
| | | | | | | |
Collapse
|
280
|
Taylor-Teeples M, Ron M, Brady SM. Novel biological insights revealed from cell type-specific expression profiling. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:601-7. [PMID: 21704550 DOI: 10.1016/j.pbi.2011.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/27/2011] [Accepted: 05/30/2011] [Indexed: 05/20/2023]
Abstract
Transcriptional regulation plays a major role in defining cell identity. Analysis of cell type-resolution expression profiling datasets is moving beyond cataloging gene expression patterns to reveal novel biological insights. Recently developed expression maps of the shoot apical meristem and gametophytes can be used as tools to help define novel cell types and pathways. Already these maps have revealed cell type-specific epigenetic regulatory mechanisms that play important roles in development. Further examples are provided that demonstrate how cell type-specific expression profiling can also be used to uncover genes and pathways in development and response to stress that would be nearly impossible to identify using traditional genetics.
Collapse
Affiliation(s)
- Mallorie Taylor-Teeples
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
281
|
Abstract
Root hairs are single cells specialized in the absorption of water and nutrients from the soil. Growing root hairs require intensive cell-wall changes to accommodate cell expansion at the apical end by a process known as tip or polarized growth. We have recently shown that cell wall glycoproteins such as extensions (EXTs) are essential components of the cell wall during polarized growth. Proline hydroxylation, an early posttranslational modification of cell wall EXTs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs. Biochemical inhibition or genetic disruption of specific P4Hs resulted in the blockage of polarized growth in root hairs. Our results demonstrate that correct hydroxylation and also further O-glycosylation on EXTs are essential for cell-wall self-assembly and, hence, root hair elongation. The changes that O-glycosylated cell-wall proteins like EXTs undergo during cell growth represent a starting point to unravel the entire biochemical pathway involved in plant development.
Collapse
Affiliation(s)
- Silvia M Velasquez
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
282
|
High nitrogen insensitive 9 (HNI9)-mediated systemic repression of root NO3- uptake is associated with changes in histone methylation. Proc Natl Acad Sci U S A 2011; 108:13329-34. [PMID: 21788519 DOI: 10.1073/pnas.1017863108] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plants, root nitrate uptake systems are under systemic feedback repression by the N satiety of the whole organism, thus adjusting the N acquisition capacity to the N demand for growth; however, the underlying molecular mechanisms are largely unknown. We previously isolated the Arabidopsis high nitrogen-insensitive 9-1 (hni9-1) mutant, impaired in the systemic feedback repression of the root nitrate transporter NRT2.1 by high N supply. Here, we show that HNI9 encodes Arabidopsis INTERACT WITH SPT6 (AtIWS1), an evolutionary conserved component of the RNA polymerase II complex. HNI9/AtIWS1 acts in roots to repress NRT2.1 transcription in response to high N supply. At a genomic level, HNI9/AtIWS1 is shown to play a broader role in N signaling by regulating several hundred N-responsive genes in roots. Repression of NRT2.1 transcription by high N supply is associated with an HNI9/AtIWS1-dependent increase in histone H3 lysine 27 trimethylation at the NRT2.1 locus. Our findings highlight the hypothesis that posttranslational chromatin modifications control nutrient acquisition in plants.
Collapse
|
283
|
Abstract
Developmental biologists understand how different cells contribute to organ function and how cellular components work together to produce a phenotype. These insights need to be more widely applied to systems biology. Another challenge is to incorporate real-time imaging and develop computational approaches to model biological phenomena in four dimensions.
Collapse
Affiliation(s)
- Philip N Benfey
- Biology Department and IGSP Center for Systems Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
284
|
Velasquez SM, Ricardi MM, Dorosz JG, Fernandez PV, Nadra AD, Pol-Fachin L, Egelund J, Gille S, Harholt J, Ciancia M, Verli H, Pauly M, Bacic A, Olsen CE, Ulvskov P, Petersen BL, Somerville C, Iusem ND, Estevez JM. O-glycosylated cell wall proteins are essential in root hair growth. Science 2011; 332:1401-3. [PMID: 21680836 DOI: 10.1126/science.1206657] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Root hairs are single cells that develop by tip growth and are specialized in the absorption of nutrients. Their cell walls are composed of polysaccharides and hydroxyproline-rich glycoproteins (HRGPs) that include extensins (EXTs) and arabinogalactan-proteins (AGPs). Proline hydroxylation, an early posttranslational modification of HRGPs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs (which are mainly arabinosylated) and AGPs (which are mainly arabinogalactosylated). We explored the biological function of P4Hs, arabinosyltransferases, and EXTs in root hair cell growth. Biochemical inhibition or genetic disruption resulted in the blockage of polarized growth in root hairs and reduced arabinosylation of EXTs. Our results demonstrate that correct O-glycosylation on EXTs is essential for cell-wall self-assembly and, hence, root hair elongation in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Silvia M Velasquez
- Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas (IFIByNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Long TA. Many needles in a haystack: cell-type specific abiotic stress responses. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:325-31. [PMID: 21550295 DOI: 10.1016/j.pbi.2011.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/06/2011] [Accepted: 04/12/2011] [Indexed: 05/08/2023]
Abstract
Plants react to abiotic stress with a number of physiological, biochemical, and developmental alterations. These responses include changes in signaling components, gene transcription, non-coding RNAs, proteins, and metabolites that occur in a cell-type and tissue-specific manner. Recent advances in cell-type specifically isolating protoplasts and nuclei from plants, extracting mRNA from targeted cells, and whole-genome transcriptional profiling have enabled scientists to gain insight into how cells and tissues respond transcriptionally to abiotic stress. Continued technological advances in profiling the proteomes, metabolomes, and other biological components of specific cells will continue to broaden our understanding of plant stress responses.
Collapse
Affiliation(s)
- Terri A Long
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, United States.
| |
Collapse
|
286
|
Mirouze M, Paszkowski J. Epigenetic contribution to stress adaptation in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:267-74. [PMID: 21450514 DOI: 10.1016/j.pbi.2011.03.004] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 05/18/2023]
Abstract
Plant epigenetics has recently gained unprecedented interest, not only as a subject of basic research but also as a possible new source of beneficial traits for plant breeding. We discuss here mechanisms of epigenetic regulation that should be considered when undertaking the latter. Since these mechanisms are responsible for the formation of heritable epigenetic gene variants (epialleles) and also regulate transposons mobility, both aspects could be exploited to broaden plant phenotypic and genetic variation, which could improve long-term plant adaptation to environmental challenges and, thus, increase productivity.
Collapse
Affiliation(s)
- Marie Mirouze
- Department of Plant Biology, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva 4, Switzerland.
| | | |
Collapse
|
287
|
Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet 2011; 7:e1002040. [PMID: 21490956 PMCID: PMC3072373 DOI: 10.1371/journal.pgen.1002040] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/16/2011] [Indexed: 11/19/2022] Open
Abstract
During growth of multicellular organisms, identities of stem cells and differentiated cells need to be maintained. Cell fate is epigenetically controlled by the conserved Polycomb-group (Pc-G) proteins that repress their target genes by catalyzing histone H3 lysine 27 trimethylation (H3K27me3). Although H3K27me3 is associated with mitotically stable gene repression, a large fraction of H3K27me3 target genes are tissue-specifically activated during differentiation processes. However, in plants it is currently unclear whether H3K27me3 is already present in undifferentiated cells and dynamically regulated to permit tissue-specific gene repression or activation. We used whole-genome tiling arrays to identify the H3K27me3 target genes in undifferentiated cells of the shoot apical meristem and in differentiated leaf cells. Hundreds of genes gain or lose H3K27me3 upon differentiation, demonstrating dynamic regulation of an epigenetic modification in plants. H3K27me3 is correlated with gene repression, and its release preferentially results in tissue-specific gene activation, both during differentiation and in Pc-G mutants. We further reveal meristem- and leaf-specific targeting of individual gene families including known but also likely novel regulators of differentiation and stem cell regulation. Interestingly, H3K27me3 directly represses only specific transcription factor families, but indirectly activates others through H3K27me3-mediated silencing of microRNA genes. Furthermore, H3K27me3 targeting of genes involved in biosynthesis, transport, perception, and signal transduction of the phytohormone auxin demonstrates control of an entire signaling pathway. Based on these and previous analyses, we propose that H3K27me3 is one of the major determinants of tissue-specific expression patterns in plants, which restricts expression of its direct targets and promotes gene expression indirectly by repressing miRNA genes. All organs and differentiated tissues in multicellular organisms are derived from undifferentiated pluripotent stem cells. The evolutionarily conserved Polycomb-group (Pc-G) proteins control stem cell identity and maintenance, likely by repressing genes involved in differentiation processes. Pc-G proteins are epigenetic regulators, thus they maintain stable expression states of their target genes through cell divisions that are not accompanied by changes in their DNA sequence. In this study, we asked whether Pc-G–mediated gene regulation is also dynamically regulated in plant development to confer stable, but flexible gene expression states that may switch in response to developmental or environmental cues. We therefore generated genome-wide maps of Pc-G activity of undifferentiated stem cell and differentiated leaf cell tissues which revealed dynamic regulation of Pc-G activity in plants. Pc-G activity is correlated with gene repression and its tissue-specific release results in local gene activation. Pc-G proteins target specific gene families in the two analyzed tissues, indicating a role for Pc-G proteins in balancing pluripotency and differentiation in plants. Based on our analyses, we propose that Pc-G activity not only permits long-term gene regulation but also has a more basic gene regulatory function in fine-tuning expression patterns of specific gene families during differentiation.
Collapse
|
288
|
Deal RB, Henikoff S. Histone variants and modifications in plant gene regulation. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:116-22. [PMID: 21159547 PMCID: PMC3093162 DOI: 10.1016/j.pbi.2010.11.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/17/2010] [Indexed: 05/19/2023]
Abstract
Genomes are packaged by complexing DNA with histone proteins, which provides an opportunity to regulate gene expression by dynamically impeding access of transcriptional regulatory proteins and RNA polymerases to DNA. The incorporation of histone variants into nucleosomes and addition of post-translational modifications to histones can alter the physical properties of nucleosomes and thereby serve as a mechanism for regulating DNA exposure. Chromatin-based gene regulation has profound effects on developmental processes including regulation of the vegetative to reproductive transition, as well as responses to pathogens and abiotic factors. Incorporation of the histone variant H2A.Z and methylation of histone H3 lysine residues 4 and 27 have emerged as key elements in the regulation of genes involved in each of these processes.
Collapse
Affiliation(s)
- Roger B. Deal
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
289
|
Schmitz RJ, Zhang X. High-throughput approaches for plant epigenomic studies. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:130-6. [PMID: 21470901 PMCID: PMC3112054 DOI: 10.1016/j.pbi.2011.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 05/05/2023]
Abstract
In plant cells, DNA is packaged into chromatin by wrapping around histone octamers. Pathways that lead to cytosine DNA methylation, posttranslational histone modifications and certain components of the RNA interfering (RNAi) pathway are critically important in modulating chromatin structure, thereby affecting many molecular processes that take place in a cell. Recent advances in microarray and high-throughput sequencing technologies have made it possible to study these pathways on a genome-wide scale. Results from such epigenomic studies are broadening our understanding of plant genomes and are also providing important clues regarding the mechanisms and functions of these pathways that can be further tested using genetic and biochemical approaches. This review focuses on the high-throughput approaches that have been successfully applied in plant epigenomic studies.
Collapse
Affiliation(s)
- Robert J Schmitz
- Plant Biology and Genomic Analysis Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
290
|
Lauria M, Rossi V. Epigenetic control of gene regulation in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:369-78. [PMID: 21414429 DOI: 10.1016/j.bbagrm.2011.03.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/03/2011] [Accepted: 03/05/2011] [Indexed: 11/30/2022]
Abstract
In eukaryotes, including plants, the genome is compacted into chromatin, which forms a physical barrier for gene transcription. Therefore, mechanisms that alter chromatin structure play an essential role in gene regulation. When changes in the chromatin states are inherited trough mitotic or meiotic cell division, the mechanisms responsible for these changes are defined as epigenetic. In this paper, we review data arising from genome-wide analysis of the epigenetic landscapes in different plant species to establish the correlation between specific epigenetic marks and transcription. In the subsequent sections, mechanisms of epigenetic control of gene regulation mediated by DNA-binding transcription factors and by transposons located in proximity to genes are illustrated. Finally, plant peculiarities for epigenetic control of gene regulation and future perspectives in this research area are discussed. This article is part of a Special Issue entitled: Epigenetic Control of cellular and developmental processes in plants.
Collapse
Affiliation(s)
- Massimiliano Lauria
- Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria, Milano, Italy
| | | |
Collapse
|
291
|
Furlong EE. The importance of being specified: cell fate decisions and their role in cell biology. Mol Biol Cell 2011; 21:3797-8. [PMID: 21079016 PMCID: PMC2982138 DOI: 10.1091/mbc.e10-05-0436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Eileen E Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Myerhofstrasse, Heidelberg BW D69117, Germany.
| |
Collapse
|
292
|
Ito T. Coordination of flower development by homeotic master regulators. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:53-59. [PMID: 20869907 DOI: 10.1016/j.pbi.2010.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 08/30/2010] [Indexed: 05/29/2023]
Abstract
Floral homeotic genes encode transcription factors and act as master regulators of flower development. The homeotic protein complex is expressed in a specific whorl of the floral primordium and determines floral organ identity by the combinatorial action. Homeotic proteins continue to be expressed until late in flower development to coordinate growth and organogenesis. Recent genomic studies have shown that homeotic proteins bind thousands of target sites in the genome and regulate the expression of transcription factors, chromatin components and various proteins involved in hormone biosynthesis and signaling and other physiological activities. Further, homeotic proteins program chromatin to direct the developmental coordination of stem cell maintenance and differentiation in shaping floral organs.
Collapse
Affiliation(s)
- Toshiro Ito
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
293
|
Abstract
The genomic organization of chromatin is increasingly recognized as a key regulator of cell behavior, but deciphering its regulation mechanisms requires detailed knowledge of chromatin's primary structure-the assembly of nucleosomes throughout the genome. This Primer explains the principles for mapping and analyzing the primary organization of chromatin on a genomic scale. After introducing chromatin organization and its impact on gene regulation and human health, we then describe methods that detect nucleosome positioning and occupancy levels using chromatin immunoprecipitation in combination with deep sequencing (ChIP-Seq), a strategy that is now straightforward and cost efficient. We then explore current strategies for converting the sequence information into knowledge about chromatin, an exciting challenge for biologists and bioinformaticians.
Collapse
Affiliation(s)
- Zhenhai Zhang
- Center for Comparative Genomics and Bioinformatics, Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - B. Franklin Pugh
- Center for Comparative Genomics and Bioinformatics, Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
294
|
Deal RB. Grand Challenge: Accelerating Discovery through Technology Development. FRONTIERS IN PLANT SCIENCE 2011; 2:41. [PMID: 22629262 PMCID: PMC3355533 DOI: 10.3389/fpls.2011.00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/02/2011] [Indexed: 05/04/2023]
Affiliation(s)
- Roger B. Deal
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattle, WA, USA
- *Correspondence:
| |
Collapse
|
295
|
Konopka G. Functional genomics of the brain: uncovering networks in the CNS using a systems approach. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:628-48. [PMID: 21197665 DOI: 10.1002/wsbm.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS) is undoubtedly the most complex human organ system in terms of its diverse functions, cellular composition, and connections. Attempts to capture this diversity experimentally were the foundation on which the field of neurobiology was built. Until now though, techniques were either painstakingly slow or insufficient in capturing this heterogeneity. In addition, the combination of multiple layers of information needed for a complete picture of neuronal diversity from the epigenome to the proteome requires an even more complex compilation of data. In this era of high-throughput genomics though, the ability to isolate and profile neurons and brain tissue has increased tremendously and now requires less effort. Both microarrays and next-generation sequencing have identified neuronal transcriptomes and signaling networks involved in normal brain development, as well as in disease. However, the expertise needed to organize and prioritize the resultant data remains substantial. A combination of supervised organization and unsupervised analyses are needed to fully appreciate the underlying structure in these datasets. When utilized effectively, these analyses have yielded striking insights into a number of fundamental questions in neuroscience on topics ranging from the evolution of the human brain to neuropsychiatric and neurodegenerative disorders. Future studies will incorporate these analyses with behavioral and physiological data from patients to more efficiently move toward personalized therapeutics.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neurology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
296
|
Deal RB, Henikoff S. The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 2010; 6:56-68. [PMID: 21212783 DOI: 10.1038/nprot.2010.175] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomic studies of cell differentiation and function within a whole organism depend on the ability to isolate specific cell types from a tissue, but this is technically difficult. We developed a method called INTACT (isolation of nuclei tagged in specific cell types) that allows affinity-based isolation of nuclei from individual cell types of a tissue, thereby circumventing the problems associated with mechanical purification techniques. In this method nuclei are affinity-labeled through transgenic expression of a biotinylated nuclear envelope protein in the cell type of interest. Total nuclei are isolated from transgenic plants and biotin-labeled nuclei are then purified using streptavidin-coated magnetic beads, without the need for specialized equipment. INTACT gives high yield and purity of nuclei from the desired cell types, which can be used for genome-wide analysis of gene expression and chromatin features. The entire procedure, from nuclei purification through cDNA preparation or chromatin immunoprecipitation (ChIP), can be completed within 2 d. The protocol we present assumes that transgenic lines are already available, and includes procedural details for amplification of cDNA or ChIP DNA prior to microarray or deep sequencing analysis.
Collapse
Affiliation(s)
- Roger B Deal
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | |
Collapse
|
297
|
Ferrier T, Matus JT, Jin J, Riechmann JL. Arabidopsis paves the way: genomic and network analyses in crops. Curr Opin Biotechnol 2010; 22:260-70. [PMID: 21167706 DOI: 10.1016/j.copbio.2010.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 01/08/2023]
Abstract
Arabidopsis genomic and network analyses have facilitated crop research towards the understanding of many biological processes of fundamental importance for agriculture. Genes that were identified through genomic analyses in Arabidopsis have been used to manipulate crop traits such as pathogen resistance, yield, water-use efficiency, and drought tolerance, with the effects being tested in field conditions. The integration of diverse Arabidopsis genome-wide datasets in probabilistic functional networks has been demonstrated as a feasible strategy to associate novel genes with traits of interest, and novel genomic methods continue to be developed. The combination of genome-wide location studies, using ChIP-Seq, with gene expression profiling data is affording a genome-wide view of regulatory networks previously delineated through genetic and molecular analyses, leading to the identification of novel components and of new connections within these networks.
Collapse
Affiliation(s)
- Thilia Ferrier
- Center for Research in Agricultural Genomics CSIC-IRTA-UAB, Barcelona 08034, Spain
| | | | | | | |
Collapse
|
298
|
Kaufmann K, Pajoro A, Angenent GC. Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet 2010; 11:830-42. [PMID: 21063441 DOI: 10.1038/nrg2885] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unlike animals, plants produce new organs throughout their life cycle using pools of stem cells that are organized in meristems. Although many key regulators of meristem and organ identities have been identified, it is still not well understood how they function at the molecular level and how they can switch an entire developmental programme in which thousands of genes are involved. Recent advances in the genome-wide identification of target genes controlled by key plant transcriptional regulators and their interactions with epigenetic factors provide new insights into general transcriptional regulatory mechanisms that control switches of developmental programmes and cell fates in complex organisms.
Collapse
|
299
|
Weinhofer I, Hehenberger E, Roszak P, Hennig L, Köhler C. H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet 2010; 6. [PMID: 20949070 PMCID: PMC2951372 DOI: 10.1371/journal.pgen.1001152] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/09/2010] [Indexed: 12/19/2022] Open
Abstract
Polycomb group (PcG) proteins act as evolutionary conserved epigenetic mediators of cell identity because they repress transcriptional programs that are not required at particular developmental stages. Each tissue is likely to have a specific epigenetic profile, which acts as a blueprint for its developmental fate. A hallmark for Polycomb Repressive Complex 2 (PRC2) activity is trimethylated lysine 27 on histone H3 (H3K27me3). In plants, there are distinct PRC2 complexes for vegetative and reproductive development, and it was unknown so far whether these complexes have target gene specificity. The FERTILIZATION INDEPENDENT SEED (FIS) PRC2 complex is specifically expressed in the endosperm and is required for its development; loss of FIS function causes endosperm hyperproliferation and seed abortion. The endosperm nourishes the embryo, similar to the physiological function of the placenta in mammals. We established the endosperm H3K27me3 profile and identified specific target genes of the FIS complex with functional roles in endosperm cellularization and chromatin architecture, implicating that distinct PRC2 complexes have a subset of specific target genes. Importantly, our study revealed that selected transposable elements and protein coding genes are specifically targeted by the FIS PcG complex in the endosperm, whereas these elements and genes are densely marked by DNA methylation in vegetative tissues, suggesting that DNA methylation prevents targeting by PcG proteins in vegetative tissues. Cell identity is established by the evolutionary conserved Polycomb group (PcG) proteins that repress transcriptional programs which are not required at particular developmental stages. The plant FERTILIZATION INDEPENDENT SEED (FIS) PcG complex is specifically expressed in the endosperm where it is essential for normal development. The endosperm nourishes the embryo, similar to the physiological function of the placenta in mammals. In this study, we established the cell type–specific epigenome profile of PcG activity in the endosperm. The endosperm has reduced levels of DNA methylation, and based on our data we propose that PcG proteins are specifically targeted to hypomethylated sequences in the endosperm. Among these endosperm-specific PcG targets are genes with functional roles in endosperm cellularization and chromatin architecture, implicating a fundamental role of PcG proteins in regulating endosperm development. Importantly, we identified transposable elements and genes among the specific PcG targets in the endosperm that are densely marked by DNA methylation in vegetative tissues, suggesting an antagonistic placement of DNA methylation and H3K27me3 at defined sequences.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Elisabeth Hehenberger
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Pawel Roszak
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Lars Hennig
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, Zurich, Switzerland
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Claudia Köhler
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, Zurich, Switzerland
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|