251
|
Wang C, Qu Z, Kong L, Xu L, Zhang M, Liu J, Yang Z. RETRACTED: Quercetin ameliorates lipopolysaccharide-caused inflammatory damage via down-regulation of miR-221 in WI-38 cells. Exp Mol Pathol 2019; 108:1-8. [PMID: 30849307 DOI: 10.1016/j.yexmp.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Given the comments of Dr Elisabeth Bik regarding this article “… the Western blot bands in all 400+ papers are all very regularly spaced and have a smooth appearance in the shape of a dumbbell or tadpole, without any of the usual smudges or stains. All bands are placed on similar looking backgrounds, suggesting they were copy/pasted from other sources, or computer generated”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Chong Wang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhenghai Qu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lingpeng Kong
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lei Xu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Mengxue Zhang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jianke Liu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhaochuan Yang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
252
|
Berberine-loaded solid proliposomes prepared using solution enhanced dispersion by supercritical CO2: Sustained release and bioavailability enhancement. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
253
|
Li XD, Wang Z, Wang XR, Shao D, Zhang X, Li L, Ge MF, Chang ZM, Dong WF. Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition. Int J Nanomedicine 2019; 14:3967-3982. [PMID: 31239666 PMCID: PMC6554520 DOI: 10.2147/ijn.s206044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background: The combination of chemotherapy with radiotherapy serves as a common therapeutic strategy in clinics. However, it is unsatisfactory due to its poor therapeutic efficiency and severe side-effects originating from chemotherapy-exerted systemic toxicity as well as radiation-induced injury. Purpose: Hence, Berberine (Ber), an isoquinolin alkaloid with low toxicity and protective effects against radiotherapy, was used as a novel chemotherapeutic agent for chemo-radiotherapy of liver cancer. Patients and methods: We preloaded Ber into folic acid targeting Janus gold mesoporous silica nanocarriers (FA-JGMSNs) for overcoming the poor bioavailability of Ber. Furthermore, FA-JGMSNs were not only employed as radiosensitizers for expanding radiotherapeutic effect, but also used as photothermal agents for supplementing chemo-radiotherapeutic effect by local photothermal therapy. Results: In vitro and in vivo experiemtal results demonstrated the highly efficient anti-tumor effect, good biosafety as well as the effective protection of normal tissue of this nanoplatform. Conclusion: Based on its superb performance, we believe our work provided a feasible strategy for triple-therapies of liver cancer.
Collapse
Affiliation(s)
- Xiao-Dong Li
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Department of Echocardiography, The First Hospital of Jilin University, Changchun130021, People’s Republic of China
| | - Zheng Wang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Xin-Rui Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun130021, People’s Republic of China
| | - Dan Shao
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, People’s Republic of China
| | - Xi Zhang
- Department of Rheumatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510630, People’s Republic of China
| | - Li Li
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, People’s Republic of China
| | - Ming-Feng Ge
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, People’s Republic of China
| | - Zhi-Min Chang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, People’s Republic of China
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, People’s Republic of China
| |
Collapse
|
254
|
Abegaz BM, Kinfe HH. Secondary metabolites, their structural diversity, bioactivity, and ecological functions: An overview. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Natural products are also called secondary metabolites to distinguish them from the primary metabolites, i.e. those natural compounds like glucose, amino acids, etc. that are present in every living cell and are used and required in the essential life processes of cells. Natural products are classified according to their metabolic building blocks into alkaloids, fatty acids, polyketides, phenyl propanoids and aromatic polyketides, and terpenoids. The structural diversity of natural products is explored using the scaffold approach focusing on the characteristic carbon frameworks. Aside from discussing specific alkaloids that are either pharmacologically (e.g. boldine, berberine, galantamine, etc.) or historically (caffeine, atropine, lobeline, etc.) important alkaloids, a single chart is presented which shows the typical scaffolds of the most important subclasses of alkaloids. How certain classes of natural products are formed in nature from simple biochemical ‘building blocks’ are shown using graphical schemes. This has been done for a typical tetra-ketide (6-methylsalicylic acid) from acetyl coenzyme A, or in general to all the major subclasses of terpenes. An important aspect of understanding the structural diversity of natural products is to recognize how some compounds can be visualized as key intermediates for enzyme mediated transformation to several other related structures. This is seen in the case of how arachidonic acid can transform into prostaglandins, or geranyl diphosphate to various monoterpenes, or squalene epoxide to various pentacyclic triterpenes, or cholesterol transforming to sex hormones, bile acids and the cardioactive cardenolides and bufadienolides. These are presented in carefully designed schemes and charts that are appropriately placed in the relevant sections of the narrative texts. The ecological functions and pharmacological properties of natural products are also presented showing wherever possible how the chemical scaffolds have led to developing drugs as well as commercial products like sweeteners.
Collapse
|
255
|
Berberine Alleviates Amyloid β-Induced Mitochondrial Dysfunction and Synaptic Loss. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7593608. [PMID: 31191803 PMCID: PMC6525905 DOI: 10.1155/2019/7593608] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/12/2019] [Indexed: 11/18/2022]
Abstract
Synaptic structural and functional damage is a typical pathological feature of Alzheimer's disease (AD). Normal axonal mitochondrial function and transportation are vital to synaptic function and plasticity because they are necessary for maintaining cellular energy supply and regulating calcium and redox signalling as well as synaptic transmission and vesicle release. Amyloid-β (Aβ) accumulation is another pathological hallmark of AD that mediates synaptic loss and dysfunction by targeting mitochondria. Therefore, it is important to develop strategies to protect against synaptic mitochondrial damage induced by Aβ. The present study examined the beneficial effects of berberine, a natural isoquinoline alkaloid extracted from the traditional medicinal plant Coptis chinensis, on Aβ-induced mitochondrial and synaptic damage in primary cultured hippocampal neurons. We demonstrate that berberine alleviates axonal mitochondrial abnormalities by preserving the mitochondrial membrane potential and preventing decreases in ATP, increasing axonal mitochondrial density and length, and improving mitochondrial motility and trafficking in cultured hippocampal neurons. Although the underlying protective mechanism remains to be elucidated, the data suggest that the effects of berberine were in part related to its potent antioxidant activity. These findings highlight the neuroprotective and specifically mitoprotective effects of berberine treatment under conditions of Aβ enrichment.
Collapse
|
256
|
Yang SS, Yu CB, Luo Z, Luo WL, Zhang J, Xu JX, Xu WN. Berberine attenuates sodium palmitate-induced lipid accumulation, oxidative stress and apoptosis in grass carp(Ctenopharyngodon idella)hepatocyte in vitro. FISH & SHELLFISH IMMUNOLOGY 2019; 88:518-527. [PMID: 30880233 DOI: 10.1016/j.fsi.2019.02.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The objective of this work was to investigate the effect of berberine (BBR) on the Cell viability, lipid accumulation, apoptosis, cytochrome c, caspase-9 and caspase-3 in lipid accumulation-hepatocytes induced by sodium palmitate in vitro. The lipid accumulation-hepatocytes (induced by 0.5 mM sodium palmitate for 24 h) were treated with 5 μM berberine for 12 h. Then, the Cell viability, intracellular triglyceride (TG) content, lipid peroxide (LPO), malonaldehyde (MDA) content, cytochrome c, caspase-9, caspase-3 and apoptosis were detected. Sodium palmitate decreased Cell viability and increased intracellular TG content, lipid droplet accumulation, LPO and MDA concentrations, caused caspase-3 and caspase-9 activation, then led to apoptosis accompanied by cytochrome c release from mitochondria into the cytoplasm. Beberine could improve intracellular lipid droplet accumulation and oxidative stress, while reduce apoptosis induced by sodium palmitate.
Collapse
Affiliation(s)
- Shuo-Shuo Yang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Cheng-Bing Yu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Zhen Luo
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Wen-Li Luo
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jing Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jian-Xiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Wei-Na Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
257
|
Luo R, Liao Z, Song Y, Yin H, Zhan S, Li G, Ma L, Lu S, Wang K, Li S, Zhang Y, Yang C. Berberine ameliorates oxidative stress-induced apoptosis by modulating ER stress and autophagy in human nucleus pulposus cells. Life Sci 2019; 228:85-97. [PMID: 31047897 DOI: 10.1016/j.lfs.2019.04.064] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
AIM Nucleus pulposus (NP) cell apoptosis induced by oxidative stress is known to be closely involved in the pathogenesis of intervertebral disc (IVD) degeneration. Berberine, a small molecule derived from Rhizoma coptidis, has been found to exert antioxidative activity and preserve cell viability. The present study aims to investigate whether berberine can prevent NP cell apoptosis under oxidative damage and the potential underlying mechanisms. METHODS AND MATERIALS The effects of berberine on IVD degeneration were investigated both in vitro and in vivo. KEY FINDINGS Our results showed that berberine significantly mitigated oxidative stress-decreased cell viability as well as apoptosis in human NP cells. Berberine treatment could attenuate oxidative stress-induced ER stress and autophagy in a concentration-dependent manner. With 4-PBA (ER stress specific inhibitor) and 3-MA (autophagy specific inhibitor) administration, we demonstrated that berberine inhibited oxidative stress-induced apoptosis by modulating the ER stress and autophagy pathway. We also found that the IRE1/JNK pathway was involved in the induction of ER stress-dependent autophagy. With Ca2+ chelator BAPTA-AM utilization, we revealed that oxidative stress-mediated ER stress and autophagy repressed by berberine could be restored by inducing intracellular Ca2+ dysregulation. Furthermore, in vivo study provided evidence that berberine treatment could retard the process of puncture-induced IVD degeneration in a rat model. SIGNIFICANCE Our results indicate that berberine could prevent oxidative stress-induced apoptosis by modulating ER stress and autophagy, thus offering a novel potential pharmacological treatment strategy for IVD degeneration.
Collapse
Affiliation(s)
- Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huipeng Yin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengfeng Zhan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
258
|
Li X, He P, Hou Y, Chen S, Xiao Z, Zhan J, Luo D, Gu M, Lin D. Berberine inhibits the interleukin-1 beta-induced inflammatory response via MAPK downregulation in rat articular chondrocytes. Drug Dev Res 2019; 80:637-645. [PMID: 31032997 DOI: 10.1002/ddr.21541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is one of the most chronic degenerative arthritic diseases, which gradually results in chondrocyte changes, articular cartilage degeneration, subchondral bone sclerosis, joint pain, swelling, and dysfunction. Berberine (BBR) has various confirmed biological activities, such as anti-inflammatory and antioxidant activities. However, the effect of BBR on the production of inflammation-associated proteins, including inducible nitric oxide synthase (iNOS), cyclooxygenase (Cox)-2, metalloproteinases (MMPs), Collagen II, TNF-α, and IL-6 via the MAPK (mitogen-activated protein kinases) pathway in IL-1β-stimulated rat chondrocytes, has not yet been studied. Thus, the purpose of this study was to evaluate whether BBR would decrease the production of inflammation-associated proteins through the MAPK signal pathway. Rat chondrocytes were cultured and pretreated with BBR at different concentrations (0, 25, 50, and 100 μM) and then stimulated with or without IL-1β (10 ng/mL). The mRNA expression of iNOS, COX-2, MMP-3, MMP-13, TNF-α, and IL-6 was measured by real-time polymerase chain reaction (RT-PCR), and the protein expression of iNOS, COX-2, Collagen II, MMP-3,MMP-13, and MAPKs were measured by Western blotting. The results showed that the expression of iNOS, COX-2, MMP-3, MMP-13, TNF-α, and IL-6 increased in the IL-1β-treated group and BBR showed an ability to inhibit the elevated expression under the pretreatment. Furthermore, the IL-1β-induced downregulation of Collagen II could be ameliorated by BBR. Moreover, the expression of MAPKs was significantly decreased by BBR. These results demonstrated that BBR had the anti-catabolic and anti-inflammation abilities that were through the MAPKs in IL-1β-induced rat chondrocytes. These findings may provide a novel therapeutic choice for treatment of OA using BBR.
Collapse
Affiliation(s)
- Xing Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| | - Peiheng He
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Hou
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| | - Shudong Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| | - Zhifeng Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| | - Jiheng Zhan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| | - Dan Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| | - Minghui Gu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dingkun Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, China.,Department of Orthopedic Surgery, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, P. R. China
| |
Collapse
|
259
|
Popiołek I, Niziołek A, Kamiński K, Kwolek U, Nowakowska M, Szczubiałka K. Cellular delivery and enhanced anticancer activity of berberine complexed with a cationic derivative of γ–cyclodextrin. Bioorg Med Chem 2019; 27:1414-1420. [DOI: 10.1016/j.bmc.2019.02.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
|
260
|
Sun S, Zhang X, Xu M, Zhang F, Tian F, Cui J, Xia Y, Liang C, Zhou S, Wei H, Zhao H, Wu G, Xu B, Liu X, Yang G, Wang Q, Zhang L, Gong Y, Shao C, Zou Y. Berberine downregulates CDC6 and inhibits proliferation via targeting JAK-STAT3 signaling in keratinocytes. Cell Death Dis 2019; 10:274. [PMID: 30894513 PMCID: PMC6426889 DOI: 10.1038/s41419-019-1510-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/17/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
Psoriasis is a chronic skin disease characterized by hyperproliferation and impaired differentiation of epidermal keratinocytes accompanied by increased inflammation, suggesting that molecules with antiproliferation and anti-inflammatory abilities may be effective for its treatment. One of the key steps in regulating cell proliferation is DNA replication initiation, which relies on prereplication complex (pre-RC) assembly on chromatin. CDC6 is an essential regulator of pre-RC assembly and DNA replication in eukaryotic cells, but its role in proliferation of keratinocytes and psoriasis is unknown. Here we examined CDC6 expression in psoriatic skin and evaluated its function in the proliferation of human keratinocytes. CDC6 expression is upregulated in epidermal cells in psoriatic lesions and it could be induced by IL-22/STAT3 signaling, a key signaling pathway involved in the pathogenesis of psoriasis, in keratinocytes. Depletion of CDC6 leads to decreased proliferation of keratinocytes. We also revealed that berberine (BBR) could inhibit CDK4/6-RB-CDC6 signaling in keratinocytes, leading to reduced proliferation of keratinocytes. The mechanism of antiproliferation effects of BBR is through the repression of JAK1, JAK2, and TYK2, which in turn inhibits activation of STAT3. Finally, we demonstrated that BBR could inhibit imiquimod-induced psoriasis-like skin lesions and upregulation of CDC6 and p-STAT3 in mice. Collectively, our findings indicate that BBR inhibits CDC6 expression and proliferation in human keratinocytes by interfering the JAK–STAT3 signaling pathway. Thus, BBR may serve as a potential therapeutic option for patients with psoriasis.
Collapse
Affiliation(s)
- Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Xiaojie Zhang
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Mengru Xu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Fang Zhang
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Fei Tian
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Jianfeng Cui
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China.,Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Yangyang Xia
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China.,Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Chenxi Liang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Shujie Zhou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Haifeng Wei
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Hui Zhao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Guojing Wu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Bohan Xu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Xiaochen Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Guanqun Yang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Qinzhou Wang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Lei Zhang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, 250012, Shandong, China.
| |
Collapse
|
261
|
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan ST, Šmejkal K, Malaník M, Sychrová A, Barreca D, Ziberna L, Mahomoodally MF, Zengin G, Xu S, Nabavi SM, Shen AZ. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 2019; 9:1923-1951. [PMID: 31037148 PMCID: PMC6485276 DOI: 10.7150/thno.30787] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMD) are the leading causes of death worldwide, underscoring the urgent necessity to develop new pharmacotherapies. Berberine (BBR) is an eminent component of traditional Chinese and Ayurvedic medicine for more than 2000 years. Recently, BBR has attracted much interest for its pharmacological actions in treating and/or managing CVMD. Recent discoveries of basic, translational and clinical studies have identified many novel molecular targets of BBR (such as AMPK, SIRT1, LDLR, PCSK9, and PTP1B) and provided novel evidences supporting the promising therapeutic potential of BBR to combat CVMD. Thus, this review provides a timely overview of the pharmacological properties and therapeutic application of BBR in CVMD, and underlines recent pharmacological advances which validate BBR as a promising lead drug against CVMD.
Collapse
|
262
|
Liu D, Meng X, Wu D, Qiu Z, Luo H. A Natural Isoquinoline Alkaloid With Antitumor Activity: Studies of the Biological Activities of Berberine. Front Pharmacol 2019; 10:9. [PMID: 30837865 PMCID: PMC6382680 DOI: 10.3389/fphar.2019.00009] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Coptis, a traditional medicinal plant, has been used widely in the field of traditional Chinese medicine for many years. More recently, the chemical composition and bioactivity of Coptis have been studied worldwide. Berberine is a main component of Rhizoma Coptidis. Modern medicine has confirmed that berberine has pharmacological activities, such as anti-inflammatory, analgesic, antimicrobial, hypolipidemic, and blood pressure-lowering effects. Importantly, the active ingredient of berberine has clear inhibitory effects on various cancers, including colorectal cancer, lung cancer, ovarian cancer, prostate cancer, liver cancer, and cervical cancer. Cancer, ranked as one of the world’s five major incurable diseases by WHO, is a serious threat to the quality of human life. Here, we try to outline how berberine exerts antitumor effects through the regulation of different molecular pathways. In addition, the berberine-mediated regulation of epigenetic mechanisms that may be associated with the prevention of malignant tumors is described. Thus, this review provides a theoretical basis for the biological functions of berberine and its further use in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xue Meng
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Donglu Wu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
263
|
Luganini A, Mercorelli B, Messa L, Palù G, Gribaudo G, Loregian A. The isoquinoline alkaloid berberine inhibits human cytomegalovirus replication by interfering with the viral Immediate Early-2 (IE2) protein transactivating activity. Antiviral Res 2019; 164:52-60. [PMID: 30738836 DOI: 10.1016/j.antiviral.2019.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
Abstract
The identification and validation of new small molecules able to inhibit the replication of human cytomegalovirus (HCMV) remains a priority to develop alternatives to the currently used DNA polymerase inhibitors, which are often burdened by long-term toxicity and emergence of cross-resistance. To contribute to this advancement, here we report on the characterization of the mechanism of action of a bioactive plant-derived alkaloid, berberine (BBR), selected in a previous drug repurposing screen expressly devised to identify early inhibitors of HCMV replication. Low micromolar concentrations of BBR were confirmed to suppress the replication of different HCMV strains, including clinical isolates and strains resistant to approved DNA polymerase inhibitors. Analysis of the HCMV replication cycle in infected cells treated with BBR then revealed that the bioactive compound compromised the progression of virus cycle at a stage prior to viral DNA replication and Early (E) genes expression, but after Immediate-Early (IE) proteins expression. Mechanistic studies in fact highlighted that BBR interferes with the transactivating functions of the viral IE2 protein, thus impairing efficient E gene expression and the progression of HCMV replication cycle. Finally, the mechanism of the antiviral activity of BBR appears to be conserved among different CMVs, since BBR suppressed murine CMV (MCMV) replication and inhibited the transactivation of the prototypic MCMV E1 gene by the IE3 protein, the murine homolog of IE2. Together, these observations warrant for further experimentation to obtain proof of concept that BBR could represent an attractive candidate for alternative anti-HCMV therapeutic strategies.
Collapse
Affiliation(s)
- Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123, Turin, Italy
| | | | - Lorenzo Messa
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123, Turin, Italy.
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy.
| |
Collapse
|
264
|
Han L, Sheng W, Li X, Sik A, Lin H, Liu K, Wang L. Novel carbohydrate modified berberine derivatives: synthesis and in vitro anti-diabetic investigation. MEDCHEMCOMM 2019; 10:598-605. [PMID: 31057739 DOI: 10.1039/c9md00036d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
Abstract
Berberine is a bioactive alkaloid used in Chinese medicine and has numerous positive effects on biological systems. This paper describes the facile and highly efficient synthesis of some carbohydrate modified berberine derivatives, and conjugation of the carbohydrate moiety with berberine was finished by "click" chemistry. The cytotoxicity and anti-diabetic measurements of all berberine derivatives were accomplished on HepG2 cell lines, and the results indicated that most of the derivatives exhibit higher anti-diabetic activity than berberine. The mannose modified berberine derivative has significantly lower cytotoxicity than berberine, and the induced IC50 value of this derivative is nearly 1.5 times that of berberine. Furthermore, this mannose modified berberine derivative exhibits high anti-diabetic activity at both high and low drug concentrations, thereby indicating its potential application for the development of novel anti-diabetic drugs.
Collapse
Affiliation(s)
- Liwen Han
- Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250014 , Shandong Province , China . ; ; Tel: +8613869197581
| | - Wenlong Sheng
- Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250014 , Shandong Province , China . ; ; Tel: +8613869197581
| | - Xiaobin Li
- Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250014 , Shandong Province , China . ; ; Tel: +8613869197581
| | - Attila Sik
- Institute of Transdisciplinary Discoveries , University of Pecs , Ifjúság útja 20 , Pécs , 7624 , Hungary
| | - Houwen Lin
- Research Center for Marine Drugs , State Key Laboratory of Oncogenes and Related Genes , Department of Pharmacy , Ren Ji Hospital , School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Kechun Liu
- Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250014 , Shandong Province , China . ; ; Tel: +8613869197581
| | - Lizhen Wang
- Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250014 , Shandong Province , China . ; ; Tel: +8613869197581
| |
Collapse
|
265
|
Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): A clinical review. Phytother Res 2019; 33:504-523. [DOI: 10.1002/ptr.6252] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/20/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
266
|
Lin J, Cai Q, Liang B, Wu L, Zhuang Y, He Y, Lin W. Berberine, a Traditional Chinese Medicine, Reduces Inflammation in Adipose Tissue, Polarizes M2 Macrophages, and Increases Energy Expenditure in Mice Fed a High-Fat Diet. Med Sci Monit 2019; 25:87-97. [PMID: 30606998 PMCID: PMC6330261 DOI: 10.12659/msm.911849] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The uncoupling protein 1 (UCP1) gene has a role in mitochondrial energy expenditure in brown adipose tissue. This study aimed to investigate the effects of berberine, a benzylisoquinoline alkaloid used in traditional Chinese medicine, on energy expenditure, expression of the UCP1 gene, the cell stress protein inositol-requiring enzyme 1α (IRE1α), apoptosis genes, and macrophage phenotype (M1 and M2) in white and brown adipose tissue in an obese mouse model fed a high-fat diet. MATERIAL AND METHODS Four-week-old C57BL/6J male mice (n=20) were divided into a high-fat diet group, a normal diet group, a group treated with berberine at 100 mg/kg/d in 0.9% normal saline, and a non-treated group. Whole-body fat mass, blood glucose, insulin resistance, and oxygen expenditure during physical activity were measured. After 16 weeks, the mice were euthanized for examination of liver and adipose tissue. The expression of pro-inflammatory cytokines, apoptosis genes, thermogenic genes (including UCP1), and IRE1α, were investigated using immunohistochemistry, Western blot, and quantitative reverse transcription polymerase chain reaction (qRT-PCR), in white and brown adipose tissue. Magnetic cell sorting harvested M1 and M2 macrophages in adipose tissue. Clodronate liposomes were used to inhibit macrophage recruitment. RESULTS Berberine treatment in mice fed a high-fat diet increased energy metabolism, glucose tolerance, and expression of UCP1, and reduced expression of pro-inflammatory cytokines, macrophage recruitment, and resulted in M2 macrophage polarization in white adipose tissue. Polarized M2 macrophages showed reduced expression of apoptotic genes and IRE1α. CONCLUSIONS Berberine improved metabolic function in a mouse model fed a high-fat diet.
Collapse
Affiliation(s)
- Jiayu Lin
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Qingyan Cai
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Bo Liang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Lizhen Wu
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yong Zhuang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yuanfang He
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Wanrong Lin
- Department of Endocrinology, Shishi (Overseas Chinese) Hospital, Quanzhou, Fujian, China (mainland)
| |
Collapse
|
267
|
Sun H, Ansari MF, Battini N, Bheemanaboina RRY, Zhou CH. Novel potential artificial MRSA DNA intercalators: synthesis and biological evaluation of berberine-derived thiazolidinediones. Org Chem Front 2019. [DOI: 10.1039/c8qo01180j] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel berberine-derived thiazolidinediones as potential artificial DNA intercalators were synthesized, and the preliminary mechanism suggested that active compound 6b could intercalate into MRSA DNA.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Rammohan R. Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
268
|
Lima JA, Hamerski L. Alkaloids as Potential Multi-Target Drugs to Treat Alzheimer's Disease. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64183-0.00008-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
269
|
Fan D, Liu L, Wu Z, Cao M. Combating Neurodegenerative Diseases with the Plant Alkaloid Berberine: Molecular Mechanisms and Therapeutic Potential. Curr Neuropharmacol 2019; 17:563-579. [PMID: 29676231 PMCID: PMC6712296 DOI: 10.2174/1570159x16666180419141613] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases are among the most serious health problems affecting millions of people worldwide. Such diseases are characterized by a progressive degeneration and / or death of neurons in the central nervous system. Currently, there are no therapeutic approaches to cure or even halt the progression of neurodegenerative diseases. During the last two decades, much attention has been paid to the neuroprotective and anti-neurodegenerative activities of compounds isolated from natural products with high efficacy and low toxicity. Accumulating evidence indicates that berberine, an isoquinoline alkaloid isolated from traditional Chinese medicinal herbs, may act as a promising anti-neurodegenerative agent by inhibiting the activity of the most important pathogenic enzymes, ameliorating intracellular oxidative stress, attenuating neuroinflammation, triggering autophagy and protecting neurons against apoptotic cell death. This review attempts to summarize the current state of knowledge regarding the therapeutic potential of berberine against neurodegenerative diseases, with a focus on the molecular mechanisms that underlie its effects on Alzheimer's, Parkinson's and Huntington's diseases.
Collapse
Affiliation(s)
| | | | - Zhengzhi Wu
- Address correspondence to these authors at the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China;, E-mail: and Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China; E-mail:
| | - Meiqun Cao
- Address correspondence to these authors at the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China;, E-mail: and Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China; E-mail:
| |
Collapse
|
270
|
Park B, You S, Cho WCS, Choi JY, Lee MS. A systematic review of herbal medicines for the treatment of cancer cachexia in animal models. J Zhejiang Univ Sci B 2019; 20:9-22. [PMID: 30614226 PMCID: PMC6331334 DOI: 10.1631/jzus.b1800171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this study is to summarize preclinical studies on herbal medicines used to treat cancer cachexia and its underlying mechanisms. METHODS We searched four representing databases, including PubMed, EMBASE, the Allied and Complementary Medicine Database, and the Web of Science up to December 2016. Randomized animal studies were included if the effects of any herbal medicine were tested on cancer cachexia. The methodological quality was evaluated by the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADE) checklist. RESULTS A total of fourteen herbal medicines and their compounds were identified, including Coptidis Rhizoma, berberine, Bing De Ling, curcumin, Qing-Shu-Yi-Qi-Tang, Scutellaria baicalensis, Hochuekkito, Rikkunshito, hesperidin, atractylodin, Sipjeondaebo-tang, Sosiho-tang, Anemarrhena Rhizoma, and Phellodendri Cortex. All the herbal medicines, except curcumin, have been shown to ameliorate the symptoms of cancer cachexia through anti-inflammation, regulation of the neuroendocrine pathway, and modulation of the ubiquitin proteasome system or protein synthesis. CONCLUSIONS This study showed that herbal medicines might be a useful approach for treating cancer cachexia. However, more detailed experimental studies on the molecular mechanisms and active compounds are needed.
Collapse
Affiliation(s)
- Bongki Park
- Liver and Immunology Research Center, Oriental College, Daejeon University, Daejeon 34020, Republic of Korea
| | - Sooseong You
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Jun-Yong Choi
- Department of Korean Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Myeong Soo Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
271
|
Zhang YT, Yu YQ, Yan XX, Wang WJ, Tian XT, Wang L, Zhu WL, Gong LK, Pan GY. Different structures of berberine and five other protoberberine alkaloids that affect P-glycoprotein-mediated efflux capacity. Acta Pharmacol Sin 2019; 40:133-142. [PMID: 30442987 DOI: 10.1038/s41401-018-0183-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/10/2018] [Indexed: 11/09/2022] Open
Abstract
Berberine, berberrubine, thalifendine, demethyleneberberine, jatrorrhizine, and columbamine are six natural protoberberine alkaloid (PA) compounds that display extensive pharmacological properties and share the same protoberberine molecular skeleton with only slight substitution differences. The oral delivery of most PAs is hindered by their poor bioavailability, which is largely caused by P-glycoprotein (P-gp)-mediated drug efflux. Meanwhile, P-gp undergoes large-scale conformational changes (from an inward-facing to an outward-facing state) when transporting substrates, and these changes might strongly affect the P-gp-binding specificity. To confirm whether these six compounds are substrates of P-gp, to investigate the differences in efflux capacity caused by their trivial structural differences and to reveal the key to increasing their binding affinity to P-gp, we conducted a series of in vivo, in vitro, and in silico assays. Here, we first confirmed that all six compounds were substrates of P-gp by comparing the drug concentrations in wild-type and P-gp-knockout mice in vivo. The efflux capacity (net efflux) ranked as berberrubine > berberine > columbamine ~ jatrorrhizine > thalifendine > demethyleneberberine based on in vitro transport studies in Caco-2 monolayers. Using molecular dynamics simulation and molecular docking techniques, we determined the transport pathways of the six compounds and their binding affinities to P-gp. The results suggested that at the early binding stage, different hydrophobic and electrostatic interactions collectively differentiate the binding affinities of the compounds to P-gp, whereas electrostatic interactions are the main determinant at the late release stage. In addition to hydrophobic interactions, hydrogen bonds play an important role in discriminating the binding affinities.
Collapse
|
272
|
Fan J, Zhang K, Jin Y, Li B, Gao S, Zhu J, Cui R. Pharmacological effects of berberine on mood disorders. J Cell Mol Med 2018; 23:21-28. [PMID: 30450823 PMCID: PMC6307759 DOI: 10.1111/jcmm.13930] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Berberine, a natural isoquinoline alkaloid, is used in herbal medicine and has recently been shown to have efficacy in the treatment of mood disorders. Furthermore, berberine modulates neurotransmitters and their receptor systems within the central nervous system. However, the detailed mechanisms of its action remain unclear. This review summarizes the pharmacological effects of berberine on mood disorders. Therefore, it may be helpful for potential application in the treatment of mood disorders.
Collapse
Affiliation(s)
- Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjini Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Shuohui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaming Zhu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
273
|
Ju J, Li J, Lin Q, Xu H. Efficacy and safety of berberine for dyslipidaemias: A systematic review and meta-analysis of randomized clinical trials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:25-34. [PMID: 30466986 DOI: 10.1016/j.phymed.2018.09.212] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND In recent years, berberine has become widely used as an effective alternative to treat dyslipidaemias; much clinical evidence has emerged. It is important to systematically and critically evaluate the existing evidence. PURPOSE This study aims to evaluate the efficacy and safety of berberine in patients with dyslipidaemias. STUDY DESIGN A systematic review and meta-analysis of randomized clinical trials. METHODS Five electronic databases were searched up to Apr 15, 2018 to identify randomized controlled trials (RCTs) of berberine in treatment of dyslipidaemias. The outcomes were lipid profile parameters and adverse events. Study selection, data collection, risk of bias assessment, data analyses and interpretations were conducted according to the Cochrane handbook. RESULTS Sixteen trials with total of 2147 participants were judged to be eligible and were included in the meta-analysis. The included trials were assessed to be of high clinical heterogeneity. The methodological quality of the majority of the trials was generally low in terms of random sequence generation, allocation concealment, blinding and incomplete outcome data. Thus, selection bias, performance bias, detection bias, attrition bias and confounding bias might exist. Meta-analysis showed that berberine significantly reduced levels of total cholesterol (TC) (MD = -0.47 mmol/l 95% CI [-0.64, -0.31], p < 0.00001), low-density lipoprotein cholesterol (LDL-C) (MD =-0.38 mmol/l 95% CI [-0.53, -0.22], p < 0.00001) and triglycerides (TG) (MD = -0.28 mmol/l 95% CI [-0.46, -0.10], p = 0.002). Berberine also increased the level of high-density lipoprotein cholesterol (HDL-C) when used alone (MD = 0.08 mmol/l 95% CI [0.03, 0.12], p = 0.001). No significant differences were found between groups in terms of incidence of adverse events (RR = 0.64 95% CI [0.31, 1.30], p = 0.22). No severe adverse effects were reported in either group. CONCLUSION Berberine improves lipid profiles in dyslipidaemias with satisfactory safety. Nevertheless, these findings should be interpreted with caution because of the high clinical heterogeneity and high risk of bias in the included trials. Rigorous clinical trials should be carried out to provide more reliable evidence.
Collapse
Affiliation(s)
- Jianqing Ju
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingen Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qian Lin
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Xu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China..
| |
Collapse
|
274
|
Zhang XH, Wu J, Huang JG, Zhou LJ. Cytotoxicity of the natural herbicidal chemical, berberine, on Nicotiana tabacum Bright yellow-2 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:131-137. [PMID: 30497703 DOI: 10.1016/j.pestbp.2018.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Berberine is a naturally occurring plant secondary metabolite with allelopathic and cytotoxic properties. We investigated the cytotoxic effects of berberine against tobacco Bright Yellow-2 (BY-2) cells. We found that berberine inhibited tobacco BY-2 cell growth in a concentration-dependent manner and the potency of berberine was comparable to the traditional herbicide glyphosate. Meanwhile, the in vivo test revealed that the herbicidal activity of berberine was also comparable to that of glyphosate. Further mechanism studies for the cytotoxicity demonstrated that berberine at concentrations of 40 μg/mL and 80 μg/mL induced cell death by causing mitochondrial membrane depolarization, irregular nuclei and chromatin condensation but not leading to significant apoptosis. Ultra-structure analysis through transmission electron microscopy (TEM) indicated that treatments with 40 μg/mL berberine for 2 d or 80 μg/mL berberine for 1 d induced cell damage, including nuclei morphological changes, cytoplasm and mitochondria degradation and cell wall fibrosis. Treatment at higher concentration of 80 μg/mL for longer period of 2 d, induced plasmolysis and severe damage to basic cell structure, which are indicative of explosive necrosis. Our results suggest that berberine was cytotoxic to tobacco BY-2 cells by inducing necrosis but not apoptosis. Cell wall, mitochondria, nuclei and chromatin were damaged and may be possible primary targets. Therefore, the herbicidal activity of berberine appears to be a complex process associated with multiple mechanisms of action.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jiao Wu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Ji-Guang Huang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Li-Juan Zhou
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
275
|
Preparation and in vitro-in vivo evaluation of intestinal retention pellets of Berberine chloride to enhance hypoglycemic and lipid-lowing efficacy. Asian J Pharm Sci 2018; 14:559-568. [PMID: 32104483 PMCID: PMC7032169 DOI: 10.1016/j.ajps.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 11/21/2022] Open
Abstract
Berberine chloride (BBR) is a pharmacokinetic profile of drug with poor bioavailability but good therapeutic efficacy, which is closely related to the discovery of BBR intestinal target. The major aim of this paper is to develop BBR intestinal retention type sustained-release pellets and evaluate their in vivo and in vitro behaviors base on the aspect of local action on intestinal tract. Here, wet milling technology is used to improve dissolution and dissolution rate of BBR by decreasing the particle size and increasing the wettability. The pellets are prepared by liquid layer deposition technology, and then the core pellets are coated with Eudragit® L30D-55 and Eudragit® NE30D aqueous dispersion. The prepared pellets show high drug loading capacity, and the drug loading up to 93%. Meanwhile, it possesses significant sustained drug release effect in purified water which is expected to improve the pharmacokinetic behavior of BBR. The pharmacokinetics results demonstrate that the half-life of BBR was increased significantly from 24 h to 36 h and the inter- and intra-subject variability are decreased compared to commercial BBR tablets. The retention test results indicate that the pellet size and Eudragit® NE30D plays an important role in retention time of the pellet, and it is found that the pellets with small particle size and high Eudragit® NE30D coating content can stay longer in the intestine than the pellets with large particle size. All in all, BBR intestinal retention type pellets are prepared successfully in this study, and the pellets show satisfactory in vivo and in vitro behaviors.
Collapse
|
276
|
Hu Q, Li L, Zou X, Xu L, Yi P. Berberine Attenuated Proliferation, Invasion and Migration by Targeting the AMPK/HNF4α/WNT5A Pathway in Gastric Carcinoma. Front Pharmacol 2018; 9:1150. [PMID: 30405404 PMCID: PMC6202939 DOI: 10.3389/fphar.2018.01150] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Recent epidemiologic studies have found that patients with diabetes have a higher risk of gastric cancer (GC), and the long-term use of metformin is associated with a lower risk of gastric cancer. It is believed that blocking tumor energy metabolic alterations is now emerging as a new therapeutic approach of cancer. Berberine, a natural isoquinoline alkaloid, could modulate lipid metabolism and glucose homeostasis by regulating the expression of HNF4α in many metabolic diseases. Here, we investigated the effect of Berberine on GC and its possible molecular mechanism through targeting HNF4α. Methods and Results: (1) AGS and SGC7901 gastric cancer cells were treated with Berberine (BBR). We found that in AGS and SGC7901 cell, BBR inhibited cell proliferation in a time- and dose-dependent manner through downregulating C-myc. BBR also induced G0-G1 phase arrest with the decreased expression of cyclin D1. Moreover, BBR attenuated the migration and invasion by downregulating MMP-3. (2) The lentivirus infection was used to silence the expression of HNF4α in SGC7901 cell. The results demonstrated that the knockdown of HNF4α in SGC7901 slowed cells proliferation, induced S phase arrest and dramatically attenuated gastric cancer cells’ metastasis and invasion. (3) We performed GC cells perturbation experiments through BI6015 (an HNF4α antagonist), AICAR (an AMPK activator), Compound C (AMPK-kinase inhibitor), metformin and BBR. Our findings indicated that BBR downregulated HNF4α while upregulating p-AMPK. Moreover, the inhibition of HNF4α by BBR was AMPK dependent. (4) Then the LV-HNF4α-RNAi SGC7901 cell model was used to detect the downstream of HNF4α in vitro. The results showed that the knockdown of HNF4α significantly decreased WNT5A and cytoplasmic β-catenin, but increased E-cadherin in vitro. Berberine also downregulated WNT5A and cytoplasmic β-catenin, the same as LV-HNF4α-RNAi and BI6015 in GC cells. (5) Finally, the SGC7901 and LV-HNF4α-RNAi SGC7901 mouse-xenograft model to evaluate the effect of BBR and HNF4α gene on GC tumor growth. The result illustrated that BBR and knockdown of HNF4α suppressed tumor growth in vivo, and BBR decreased HNF4α, WNT5A and cytoplasmic β-catenin levels, the same effect as HNF4α knockout in vivo. Conclusion: BBR not only had proliferation inhibition effect, attenuated the invasion and migration on GC cell lines, but also suppressed the GC tumor growth in vivo. The anti-gastric cancer mechanism of BBR might be involved in AMPK-HNF4α-WNT5A signaling pathway. HNF4α antagonists, such as BBR, could be a promising anti-gastric cancer treatment supplement.
Collapse
Affiliation(s)
- Qian Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yi
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
277
|
MicroRNA-21-Mediated Inhibition of Mast Cell Degranulation Involved in the Protective Effect of Berberine on 2,4-Dinitrofluorobenzene-Induced Allergic Contact Dermatitis in Rats via p38 Pathway. Inflammation 2018; 41:689-699. [PMID: 29282578 DOI: 10.1007/s10753-017-0723-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The study aimed to investigate the effect of berberine on allergic contact dermatitis (ACD) in rats and explore its underlying mechanisms. Firstly, ACD model was established by sensitizing and challenging with 2,4-dinitrofluorobenzene (DNFB) topically, and the rats were treated with berberine. Ear swelling was assessed, and cytokine, IgE, and histamine productions were measured. The ear biopsies were obtained for histology analysis. Additionally, rat peritoneal mast cells (RPMCs) were isolated for detection of microRNA-21 (miR-21) expression, mitogen-activated protein kinase (MAPK) signaling, and MC degranulation. Lastly, RPMCs were transfected with miR-21 mimic or miR-21 inhibitor to investigate the relationship between miR-21 and p38 pathway in MC. Our results showed that berberine significantly attenuated ear swelling in DNFB-induced ACD (ACD vs high dose of berberine 0.48 ± 0.03 vs. 0.33 ± 0.03 mm, P < 0.01), inhibited inflammatory cell infiltration (86 ± 5.16 vs. 58 ± 4.32 cells/mm2, P < 0.01), reduced MC recruitment (61 ± 4.07 vs. 39 ± 3.42 mast cells/mm2, P < 0.01), as well as decreased inflammatory cytokine, IgE, and histamine productions (all P < 0.05). Berberine treatment inhibited miR-21 expression, suppressed β-hexosaminidase and histamine release, and prevented p38 phosphorylation (all P < 0.05), which was abrogated by pretreatment with miR-21 overexpression. These findings indicate that miR-21-mediated inhibition of MC degranulation is involved in the anti-ACD effect of berberine via inhibiting p38 pathway, which provide a new insight into the immunopharmacological role of berberine and suggest its potential application for the treatment of allergic inflammation, such as ACD.
Collapse
|
278
|
Patil MD, Grogan G, Yun H. Biocatalyzed C−C Bond Formation for the Production of Alkaloids. ChemCatChem 2018. [DOI: 10.1002/cctc.201801130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mahesh D. Patil
- Department of Systems BiotechnologyKonkuk University Seoul 143-701 Korea
| | - Gideon Grogan
- Department of ChemistryUniversity of York Heslington York, YO10 5DD UK
| | - Hyungdon Yun
- Department of Systems BiotechnologyKonkuk University Seoul 143-701 Korea
| |
Collapse
|
279
|
Shang X, Miao X, Yang F, Li B, Guo X, Pan H, Zhang Y, Zhang J. The Anti-diarrheal Activity of the Non-toxic Dihuang Powder in Mice. Front Pharmacol 2018; 9:1037. [PMID: 30271346 PMCID: PMC6147127 DOI: 10.3389/fphar.2018.01037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 08/27/2018] [Indexed: 11/13/2022] Open
Abstract
Dihuang powder (DHP) has been used in the traditional Chinese medicine for the treatment of diarrhea in some regions of China. But up to now, the anti-diarrheal activity of DHP haven't been performed with modern pharmacological technology. This study aims to investigate the quality control, the potential toxicity and anti-diarrheal activity of Dihuang powder in mice. High performance liquid chromatography (HPLC) and thin layer chromatography (TLC) were used to detect five active compounds in DHP for quality control, and the acute toxicity and sub-acute toxicity for 28-day oral administration of DHP were then evaluated. The anti-diarrheal activity was investigated using mouse model. Results showed that the levels of quercetin and berberine in DHP were 0.054 and 0.632 mg/g, respectively, and atractylodin, matrine, and patehouli aleohal were also detected in DHP. At the given doses, DHP was safe in terms of acute and sub-acute toxicity. Meanwhile, DHP exhibited strong anti-diarrheal effects as well as decreased gastrointestinal motility and the secretions induced by Sennae and castor oil in a dose-dependent manner. It could decrease the content of IL-1β, IL-6, and TNF-α in the small intestine, and improve the histopathological changes of small intestine and large intestine induced by Sennae. The antinociceptive and anti-inflammatory activities in vivo also were presented. Based on all of the results, we thought that DHP has anti-diarrheal activity, and could be used to treat diarrhea as well as alleviate the pain and inflammation induced by diarrhea. This study provides a theoretical basis for the clinical use of DHP and may assist in the development of new drugs for the treatment of diarrhea. The mechanism of the anti-diarrheal activity should be investigated in the future.
Collapse
Affiliation(s)
- Xiaofei Shang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Feng Yang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bing Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, Xining, China
| | - Hu Pan
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu Zhang
- Department of Emergency, Lanzhou Army General Hospital, Lanzhou, China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
280
|
Shi Y, Hu J, Geng J, Hu T, Wang B, Yan W, Jiang Y, Li J, Liu S. Berberine treatment reduces atherosclerosis by mediating gut microbiota in apoE-/- mice. Biomed Pharmacother 2018; 107:1556-1563. [PMID: 30257374 DOI: 10.1016/j.biopha.2018.08.148] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Berberine (BBR) has long been used for treating bacterial diarrhea due to its antimicrobial effect and is currently used to treat obesity, diabetes, hyperlipemia and atherosclerosis. Given the poor oral bioavailability of BBR, the mechanisms through which BBR mediates metabolic disorders are not well understood. The present study was designed to explore the role of BBR-induced gut microbiota modulation in the development of atherosclerosis. METHODS Male apoE-/- mice were fed a high-fat diet (HFD) with or without the intragastric administration of BBR. Because mice are coprophagic and can transfer their gut microbiota to each other, we cohoused BBR-treated HFD-mice with non-BBR-treated HFD-fed mice. RESULTS After 12 weeks of HFD feeding, compared with non-BBR-treated HFD-fed mice, BBR-treated HFD-fed mice exhibited a significant reduction in both atherosclerosis development and inflammatory cytokine expression. In addition, cohousing BBR-treated HFD-fed mice with non-BBR-treated HFD-fed mice decreased atherosclerosis development and inflammatory cytokine expression. The denaturing gradient gel electrophoresis and principal component analyses showed that the gut microbial profiles of BBR-treated HFD-fed mice were significantly different from those of HFD-fed mice but were similar to those of cohoused mice. The abundances ofFirmicutes and Verrucomicrobia in cohoused and BBR-treated mice were different from those in HFD-fed and normal chow-fed mice. Moreover, BBR reduced hepatic FMO3 expression and serum trimethylamine N-oxide levels. CONCLUSION The antiatherosclerotic effect of BBR is related to alterations in gut microbiota compositions, indicating the potential therapeutic value of pharmacological approaches that may modulate the gut microbiota in treating atherosclerosis.
Collapse
Affiliation(s)
- Yafei Shi
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China; Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jiaxin Hu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jin Geng
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Tingting Hu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Bingjian Wang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Wenting Yan
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yicheng Jiang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jiangjin Li
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.
| |
Collapse
|
281
|
Kim EH, Kim W. An Insight into Ginsenoside Metabolite Compound K as a Potential Tool for Skin Disorder. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8075870. [PMID: 30046346 PMCID: PMC6036801 DOI: 10.1155/2018/8075870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
Ginsenosides are the major bioactive natural compounds derived from Panax ginseng. Several studies report the pharmaceutical benefits of several ginsenosides, including antidementia, antitumor, and anti-inflammatory activity. Biotransformations by gut microbiome contribute to the biological function of these ginsenosides. After ingestion ginsenosides are hydrolyzed to Rg2, Rg3, compound K, and others by human gut flora. Compound K is considered the representative active metabolite after oral administration of ginseng or ginsenosides. Various studies report the diverse biological functions of compound K, such as antitumor, antidiabetic, antiallergic, and anti-inflammatory activity. Recent clinical trial and in vitro studies demonstrate the antiaging activities of ginsenosides in human skin. Ginsenosides have been considered as an important natural dermatological agent. In this review, we will cover the modern tools and techniques to understand biotransformation and delivery of compound K. Also the biological function of compound K on skin disorder and its potential dermatological application will be discussed.
Collapse
Affiliation(s)
- En Hyung Kim
- Department of Dermatology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Wonnam Kim
- Division of Pharmacology, College of Korean Medicine, Semyung University, Jecheon, Republic of Korea
| |
Collapse
|
282
|
Zhang H, Jiao Y, Shi C, Song X, Chang Y, Ren Y, Shi X. Berbamine suppresses cell proliferation and promotes apoptosis in ovarian cancer partially via the inhibition of Wnt/β-catenin signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:532-539. [PMID: 29701777 DOI: 10.1093/abbs/gmy036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer is a common and lethal cancer affecting women globally. Berbamine is a natural compound from the plant Berberis amurensis, which is used in Chinese traditional medicine. Recent studies have shown the anti-tumor effects of berbamine in several types of cancers but not in ovarian cancer. In the present study, we investigated the potential anti-tumor effects of berbamine in ovarian cancer and explored the underlying molecular mechanisms. Berbamine suppressed the cell viability of ovarian cancer cells in a concentration-dependent manner as revealed by methyl thiazolyl tetrazolium assay. Berbamine also suppressed the cell growth and invasion of ovarian cancer cells as measured by colony formation and cell invasion assays, respectively. Flow cytometry experiments showed that berbamine increased cell apoptotic rate and induced cell cycle arrest at G0/G1 phase in ovarian cancer cells. Western blot analysis showed that berbamine increased the protein levels of cleaved caspase-3, cleaved caspase-9, Bax, and decreased the protein level of Bcl-2 in ovarian cancer cells. Quantitative real-time PCR and western blot analysis demonstrated that berbamine treatment inhibited the Wnt/β-catenin signaling in ovarian cancer cells. The inhibitory effects of berbamine on cell viability and invasion of ovarian cancer cells can be partially reversed by lithium chloride (LiCl) treatment. Growth of tumors developed from SKOV3 cells was significantly suppressed in berbamine-treated group, and berbamine treatment enhanced caspase-3 and -9 cleavage and reduced β-catenin protein level in tumor tissues. In summary, berbamine exerts its anti-cancer effects in vitro and in vivo via induction of apoptosis, partially associated with the inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Pharmacy, The Northwest Women and Children's Hospital, Xi'an 710065, China
| | - Yunping Jiao
- Department of Pharmacy, Shaanxi No.2 People's Hospital, Xi'an 710003, China
| | - Chunyang Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiao Song
- Department of Pharmacy, The Northwest Women and Children's Hospital, Xi'an 710065, China
| | - Ying Chang
- Department of Pharmacy, The Northwest Women and Children's Hospital, Xi'an 710065, China
| | - Yong Ren
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710061, China
| | - Xiaolin Shi
- Department of Pharmacy, The Northwest Women and Children's Hospital, Xi'an 710065, China
| |
Collapse
|
283
|
Berberine protects renal tubular cells against hypoxia/reoxygenation injury via the Sirt1/p53 pathway. J Nat Med 2018; 72:715-723. [DOI: 10.1007/s11418-018-1210-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/25/2018] [Indexed: 10/17/2022]
|
284
|
Liang H, Wang Y. Berberine alleviates hepatic lipid accumulation by increasing ABCA1 through the protein kinase C δ pathway. Biochem Biophys Res Commun 2018; 498:473-480. [DOI: 10.1016/j.bbrc.2018.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 02/08/2023]
|
285
|
A novel autophagy inhibitor berbamine blocks SNARE-mediated autophagosome-lysosome fusion through upregulation of BNIP3. Cell Death Dis 2018; 9:243. [PMID: 29445175 PMCID: PMC5833711 DOI: 10.1038/s41419-018-0276-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 11/08/2022]
Abstract
Increasing evidences reveal that autophagy inhibitor could enhance the effect of chemotherapy to cancer. However, few autophagy inhibitors are currently approved for clinical application in humans. Berbamine (BBM) is a natural compound extracted from traditional Chinese medicine that is widely used for treatment of a variety of diseases without any obvious side effects. Here we found that BBM is a novel auophagy inhibitor, which potently induced the accumulation of autophagosomes by inhibiting autophagosome-lysosome fusion in human breast cancer cells. Mechanistically, we found that BBM blocked autophagosome-lysosome fusion by inhibiting the interaction of SNAP29 and VAMP8. Furthermore, BBM induced upregulation of BNIP3 and the interaction between SNAP29 and BNIP3. BNIP3 depletion or SNAP29 overexpression abrogated BBM-mediated blockade of autophagosome-lysosome fusion through the interaction between SNAP29 and VAMP8, whereas BNIP3 overexpression blocked autophagosome-lysosome fusion through inhibition of the interaction between SNAP29 and VAMP8. These findings suggest that upregulation of BNIP3 and interaction between BNIP3 and SNAP29 could be involved in BBM-mediated blockade of autophagosome-lysosome fusion through inhibition of the interaction between SNAP29 and VAMP8. Our findings identify the critical role of BNIP3 in blockade of autophagosome-lysosome fusion mediated by BBM, and suggest that BBM could potentially be further developed as a novel autophagy inhibitor, which could enhance the effect of chemotherapy to cancer.
Collapse
|
286
|
Identification of cytotoxic metabolites from Mahonia aquifolium using 1 H NMR-based metabolomics approach. J Pharm Biomed Anal 2018; 150:9-14. [DOI: 10.1016/j.jpba.2017.11.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/10/2023]
|
287
|
Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumanii. Eur J Med Chem 2018; 146:15-37. [DOI: 10.1016/j.ejmech.2018.01.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/01/2023]
|
288
|
Regulation of Akt/FoxO3a/Skp2 Axis Is Critically Involved in Berberine-Induced Cell Cycle Arrest in Hepatocellular Carcinoma Cells. Int J Mol Sci 2018; 19:ijms19020327. [PMID: 29360760 PMCID: PMC5855549 DOI: 10.3390/ijms19020327] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
The maintenance of ordinal cell cycle phases is a critical biological process in cancer genesis, which is a crucial target for anti-cancer drugs. As an important natural isoquinoline alkaloid from Chinese herbal medicine, Berberine (BBR) has been reported to possess anti-cancer potentiality to induce cell cycle arrest in hepatocellular carcinoma cells (HCC). However, the underlying mechanism remains to be elucidated. In our present study, G0/G1 phase cell cycle arrest was observed in berberine-treated Huh-7 and HepG2 cells. Mechanically, we observed that BBR could deactivate the Akt pathway, which consequently suppressed the S-phase kinase-associated protein 2 (Skp2) expression and enhanced the expression and translocation of Forkhead box O3a (FoxO3a) into nucleus. The translocated FoxO3a on one hand could directly promote the transcription of cyclin-dependent kinase inhibitors (CDKIs) p21Cip1 and p27Kip1, on the other hand, it could repress Skp2 expression, both of which lead to up-regulation of p21Cip1 and p27Kip1, causing G0/G1 phase cell cycle arrest in HCC. In conclusion, BBR promotes the expression of CDKIs p21Cip1 and p27Kip1 via regulating the Akt/FoxO3a/Skp2 axis and further induces HCC G0/G1 phase cell cycle arrest. This research uncovered a new mechanism of an anti-cancer effect of BBR.
Collapse
|
289
|
Zhang QM, Wang Z, Cheng G, Ma H, Zhang QP, Wan FX, Tan B, Zhang C. Efficient alkaloid capture from water using a charged porous organic polymer. RSC Adv 2018; 8:33398-33402. [PMID: 35548106 PMCID: PMC9086464 DOI: 10.1039/c8ra06499g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/20/2018] [Indexed: 12/26/2022] Open
Abstract
Berberine hydrochloride (BH), an important alkaloid, can be captured from water and released in organic solution circularly by a charged porous polymer (TPB–HCP), which is hypercross-linked using the cost-effective Friedel–Crafts reaction using sodium tetraphenylborate as the monomer. With high BET surface area, hierarchical porous structure and charged characteristics, TPB–HCP displays excellent adsorption capacity for BH owing to the synergistic effects of size matching and electrostatic interaction. A charged porous polymer displays excellent adsorption capacity for berberine hydrochloride from the synergistic effects of size matching and electrostatic interaction.![]()
Collapse
Affiliation(s)
- Qing-Mei Zhang
- College of Life Science and Technology National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Zhen Wang
- College of Life Science and Technology National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Guang Cheng
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Hui Ma
- College of Life Science and Technology National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Qing-Pu Zhang
- College of Life Science and Technology National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Fu-Xian Wan
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian 271018
- China
| | - Bien Tan
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Chun Zhang
- College of Life Science and Technology National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
- China
- College of Chemistry and Molecular Engineering
| |
Collapse
|
290
|
Zhang GB, Maddili SK, Tangadanchu VKR, Gopala L, Gao WW, Cai GX, Zhou CH. Discovery of natural berberine-derived nitroimidazoles as potentially multi-targeting agents against drug-resistant Escherichia coli. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9169-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
291
|
Papi F, Ferraroni M, Rigo R, Da Ros S, Bazzicalupi C, Sissi C, Gratteri P. Role of the Benzodioxole Group in the Interactions between the Natural Alkaloids Chelerythrine and Coptisine and the Human Telomeric G-Quadruplex DNA. A Multiapproach Investigation. JOURNAL OF NATURAL PRODUCTS 2017; 80:3128-3135. [PMID: 29148767 DOI: 10.1021/acs.jnatprod.7b00350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The binding properties toward the human telomeric G-quadruplex of the two natural alkaloids coptisine and chelerythrine were studied using spectroscopic techniques, molecular modeling, and X-ray diffraction analysis. The results were compared with reported data for the parent compounds berberine and sanguinarine. Spectroscopic studies showed modest, but different rearrangements of the DNA-ligand complexes, which can be explained considering particular stereochemical features for these alkaloids, in spite of the similarity of their skeletons. In fact, the presence of a dioxolo moiety rather than the two methoxy functions improves the efficiency of coptisine and sanguinarine in comparison to berberine and chelerythrine, and the overall stability trend is sanguinarine > chelerythrine ≈ coptisine > berberine. Accordingly, the X-ray diffraction analysis confirmed the involvement of the benzodioxolo groups in the coptisine/DNA binding by means of π···π, O···π, and CH···O interactions. Similar information is provided by modeling studies, which, additionally, evidenced reasons for the quadruplex vs double-helix selectivity shown by these alkaloids. Thus, the analyses shed light on the key role of the benzodioxolo moieties in strengthening the interaction with the G4-folded human telomeric sequence and indicated the superior G4 stabilizing properties of the benzophenanthridine scaffold with respect to the protoberberine one and conversely the better G4 vs dsDNA selectivity profile of coptisine over the other alkaloids.
Collapse
Affiliation(s)
- F Papi
- Department of Chemistry "U. Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Department Neurofarba-Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence , Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - M Ferraroni
- Department of Chemistry "U. Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - R Rigo
- Department of Pharmaceutical and Pharmacological Science, University of Padua , Via F. Marzolo 5, 35131 Padua, Italy
| | - S Da Ros
- Department of Pharmaceutical and Pharmacological Science, University of Padua , Via F. Marzolo 5, 35131 Padua, Italy
| | - C Bazzicalupi
- Department of Chemistry "U. Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - C Sissi
- Department of Pharmaceutical and Pharmacological Science, University of Padua , Via F. Marzolo 5, 35131 Padua, Italy
| | - P Gratteri
- Department Neurofarba-Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence , Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
292
|
Xu Z, Feng W, Shen Q, Yu N, Yu K, Wang S, Chen Z, Shioda S, Guo Y. Rhizoma Coptidis and Berberine as a Natural Drug to Combat Aging and Aging-Related Diseases via Anti-Oxidation and AMPK Activation. Aging Dis 2017; 8:760-777. [PMID: 29344415 PMCID: PMC5758350 DOI: 10.14336/ad.2016.0620] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 06/20/2017] [Indexed: 12/25/2022] Open
Abstract
Aging is the greatest risk factor for human diseases, as it results in cellular growth arrest, impaired tissue function and metabolism, ultimately impacting life span. Two different mechanisms are thought to be primary causes of aging. One is cumulative DNA damage induced by a perpetuating cycle of oxidative stress; the other is nutrient-sensing adenosine monophosphate-activated protein kinase (AMPK) and rapamycin (mTOR)/ ribosomal protein S6 (rpS6) pathways. As the main bioactive component of natural Chinese medicine rhizoma coptidis (RC), berberine has recently been reported to expand life span in Drosophila melanogaster, and attenuate premature cellular senescence. Most components of RC including berberine, coptisine, palmatine, and jatrorrhizine have been found to have beneficial effects on hyperlipidemia, hyperglycemia and hypertension aging-related diseases. The mechanism of these effects involves multiple cellular kinase and signaling pathways, including anti-oxidation, activation of AMPK signaling and its downstream targets, including mTOR/rpS6, Sirtuin1/ forkhead box transcription factor O3 (FOXO3), nuclear factor erythroid-2 related factor-2 (Nrf2), nicotinamide adenine dinucleotide (NAD+) and nuclear factor-κB (NF-κB) pathways. Most of these mechanisms converge on AMPK regulation on mitochondrial oxidative stress. Therefore, such evidence supports the possibility that rhizoma coptidis, in particular berberine, is a promising anti-aging natural product, and has pharmaceutical potential in combating aging-related diseases via anti-oxidation and AMPK cellular kinase activation.
Collapse
Affiliation(s)
- Zhifang Xu
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wei Feng
- 3South Branch of Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing 102618, China
| | - Qian Shen
- 4Dongfang hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Nannan Yu
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Kun Yu
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shenjun Wang
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhigang Chen
- 4Dongfang hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Seiji Shioda
- 5Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo 142-8501, Japan
| | - Yi Guo
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| |
Collapse
|
293
|
Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer's-like disease in rats. Food Chem Toxicol 2017; 111:432-444. [PMID: 29170048 DOI: 10.1016/j.fct.2017.11.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 11/15/2017] [Accepted: 11/18/2017] [Indexed: 01/20/2023]
Abstract
Heavy metals are reported as neurodegenerative disorders progenitor. They play a role in the precipitation of abnormal β-amyloid protein and hyper-phosphorylated tau, the main hallmarks of Alzheimer's disease (AD). The present study aimed to validate the heavy metals-induced Alzheimer's-like disease in rats as an experimental model of AD and explore the therapeutic effect of berberine via tracking its effect on the oxidative stress-inflammatory pathway. Alzheimer's-like disease was induced in rats orally by a mixture of aluminium, cadmium and fluoride for three months, followed by berberine treatment for another one month. Berberine significantly improved the cognitive behaviors in Morris water maze test and offered a protective effect against heavy metals-induced memory impairment. Docking results showed that berberine inhibited AChE, COX-2 and TACE. Matching with in silico study, berberine downregulated the AChE expression and inhibited its activity in the brain tissues. Also, it normalized the production of TNF- α, IL-12, IL-6 and IL-1β. Moreover, it evoked the production of antioxidant Aβ40 and inhibited the formation of Aβ42, responsible for the aggregations of amyloid-β plaques. Histopathological examination confirmed the neuroprotective effect of berberine. The present data advocate the possible beneficial effect of berberine as therapeutic modality for Alzheimer's disease via its antiinflammatory/antioxidant mechanism.
Collapse
|
294
|
Sut S, Faggian M, Baldan V, Poloniato G, Castagliuolo I, Grabnar I, Perissutti B, Brun P, Maggi F, Voinovich D, Peron G, Dall'Acqua S. Natural Deep Eutectic Solvents (NADES) to Enhance Berberine Absorption: An In Vivo Pharmacokinetic Study. Molecules 2017; 22:E1921. [PMID: 29117131 PMCID: PMC6150298 DOI: 10.3390/molecules22111921] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 11/17/2022] Open
Abstract
In the present study results related to the in vivo administration of Natural Deep Eutectic Solvents (NADES)-solubilized berberine are reported for the first time. NADES are mixtures of small natural compounds having a melting point significantly lower than that of any individual component. Such solvents have gained much attention of the scientific community in the green chemistry area, being considered useful alternatives to common organic solvents. NADES can be used also as administration vehicles, and this can be attractive for nutraceutical products when eutectics are formed with food grade ingredients. In this work, different NADES were prepared using mainly food grade constituents and were tested as solvents for the alkaloid berberine. Three selected NADES/berberine solutions and an aqueous suspension were orally administered to mice with in dose of 50 mg/Kg. Blood levels of berberine were measured by a LC-MS/MS method. The pharmacokinetic analysis revealed a 2-20 fold increase in blood concentration of NADES/berberine with significant changes in pharmacokinetic profile. Natural Deep Eutectic Solvents may thus be considered attractive solubilizing agents and may also play a role in the increase of absorption of poorly bioavailable natural products such as berberine.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35121 Padova, Italy.
| | - Marta Faggian
- Unir&d, Nutraceutical lab, via Tommaseo, 35100 Padova, Italy.
| | - Valeria Baldan
- Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35121 Padova, Italy.
| | - Gabriele Poloniato
- Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35121 Padova, Italy.
| | - Ignazio Castagliuolo
- Department of Molecular Medicine University of Padova, via Gabelli, 35121 Padova, Italy.
| | - Iztok Grabnar
- Faculty of Pharmacy, University of Ljubljana, Askerceva Cesta 7, SI-1000 Ljubljana, Slovenia.
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Paola Brun
- Department of Molecular Medicine University of Padova, via Gabelli, 35121 Padova, Italy.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, I-62032 Camerino, Italy.
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35121 Padova, Italy.
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35121 Padova, Italy.
| |
Collapse
|
295
|
Barangi S, Hayes AW, Karimi G. The more effective treatment of atrial fibrillation applying the natural compounds; as NADPH oxidase and ion channel inhibitors. Crit Rev Food Sci Nutr 2017; 58:1230-1241. [PMID: 28925721 DOI: 10.1080/10408398.2017.1379000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia that occurs because of several different risk factors, e.g., valvular heart disease, coronary artery disease, age ≥75 years, hypertension and diabetes mellitus. One key risk factor that results in AF, is oxidative stress. Evidence suggests that there is a correlation between oxidative processes and the genesis of AF. Oxidative stress occurs when the generation of reactive oxygen species (ROS) increase due to excessive activity of enzymes including NADPH oxidase (NOX) and xanthine oxidase; or its degradation decrease by dysfunctional antioxidant enzyme systems, such as superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx). Afterwards, elevated ROS may shift ion channel activity to increase AF susceptibility. The outbreak of AF continues to grow. Unfortunately, current treatment strategies may have limited efficacy or adverse effects. On the other hand, the inhibition of ROS formation and alteration of ion channel activity could be important therapeutic targets for prevention or treatments of AF. Additionally, many studies have been shown that several natural compounds have the ability to inhibit NADPH oxidases directly. This review focuses on natural compounds which specially inhibit NOX isoforms and have direct effects on ion channels, suggesting these compounds can be helpful in AF treatment.
Collapse
Affiliation(s)
- Samira Barangi
- a Department of Pharmacodynamics and Toxicology , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - A Wallace Hayes
- b Harvard University, Cambridge, MA, USA; Michigan State University , East Lansing , MI , USA
| | - Gholamreza Karimi
- a Department of Pharmacodynamics and Toxicology , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran.,c Pharmaceutical Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
296
|
Okubo S, Uto T, Goto A, Tanaka H, Nishioku T, Yamada K, Shoyama Y. Berberine Induces Apoptotic Cell Death via Activation of Caspase-3 and -8 in HL-60 Human Leukemia Cells: Nuclear Localization and Structure–Activity Relationships. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1497-1511. [DOI: 10.1142/s0192415x17500811] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Berberine (BBR), an isoquinoline alkaloid, is a well-known bioactive compound contained in medicinal plants used in traditional and folk medicines. In this study, we investigated the subcellular localization and the apoptotic mechanisms of BBR were elucidated. First, we confirmed the incorporation of BBR into the cell visually. BBR showed antiproliferative activity and promptly localized to the nucleus from 5[Formula: see text]min to 15[Formula: see text]min after BBR treatment in HL-60 human promyelocytic leukemia cells. Next, we examined the antiproliferative activity of BBR (1) and its biosynthetically related compounds (2-7) in HL-60 cells. BBR exerted strongest antiproliferative activity among 1-7 and the results of structures and activity relation suggested that a methylenedioxyl group in ring A, an [Formula: see text]-alkyl group at C-9 position, and the frame of isoquinoline may be necessary for antiproliferative activity. Moreover, BBR showed the most potent antiproliferative activity in HL-60 cells among human cancer and normal cell lines tested. Next, we examined the effect of BBR on molecular events known as apoptosis induction. In HL-60 cells, BBR induced chromatin condensation and DNA fragmentation, and triggered the activation of PARP, caspase-3 and caspase-8 without the activation of caspase-9. BBR-induced DNA fragmentation was abolished by pretreatment with inhibitors against caspase-3 and caspase-8, but not against caspase-9. ERK and p38 were promptly phosphorylated after 15 min of BBR treatment, and this was correlated with time of localization to the nucleus of BBR. These results demonstrated that BBR translocated into nucleus immediately after treatments and induced apoptotic cell death by activation of caspase-3 and caspase-8.
Collapse
Affiliation(s)
- Shinya Okubo
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| | - Takuhiro Uto
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| | - Aya Goto
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| | - Hiroyuki Tanaka
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | - Tsuyoshi Nishioku
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| | - Katsushi Yamada
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| | - Yukihiro Shoyama
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| |
Collapse
|
297
|
Anti-apoptotic and moderate anti-inflammatory effects of berberine in sulfur mustard exposed keratinocytes. Toxicol Lett 2017; 293:2-8. [PMID: 28916288 DOI: 10.1016/j.toxlet.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
Abstract
Skin affections after sulfur mustard (SM) exposure include erythema, blister formation and severe inflammation. An antidote or specific therapy does not exist. Anti-inflammatory compounds as well as substances counteracting SM-induced cell death are under investigation. In this study, we investigated the benzylisoquinoline alkaloide berberine (BER), a metabolite in plants like berberis vulgaris, which is used as herbal pharmaceutical in Asian countries, against SM toxicity using a well-established in vitro approach. Keratinocyte (HaCaT) mono-cultures (MoC) or HaCaT/THP-1 co-cultures (CoC) were challenged with 100, 200 or 300mM SM for 1h. Post-exposure, both MoC and CoC were treated with 10, 30 or 50μM BER for 24h. At that time, supernatants were collected and analyzed both for interleukine (IL) 6 and 8 levels and for content of adenylate-kinase (AK) as surrogate marker for cell necrosis. Cells were lysed and nucleosome formation as marker for late apoptosis was assessed. In parallel, AK in cells was determined for normalization purposes. BER treatment did not influence necrosis, but significantly decreased apoptosis. Anti-inflammatory effects were moderate, but also significant, primarily in CoC. Overall, BER has protective effects against SM toxicity in vitro. Whether this holds true should be evaluated in future in vivo studies.
Collapse
|
298
|
Wang H, Zhu C, Ying Y, Luo L, Huang D, Luo Z. Metformin and berberine, two versatile drugs in treatment of common metabolic diseases. Oncotarget 2017. [PMID: 29515798 PMCID: PMC5839379 DOI: 10.18632/oncotarget.20807] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Metformin has been used as a glucose lowering drug for several centuries and is now a first-line drug for type 2 diabetes mellitus (T2DM). Since the discovery that it activates AMP-activated protein kinase (AMPK) and reduces risk of cancer, metformin has drawn great attentions. Another drug, berberine, extracted from berberis vulgaris L. (root), was an ancient herbal medicine in treating diarrhea. Ongoing experimental and clinical studies have illuminated great potential of berberine in regulation of glucose and lipid homeostasis, cancer growth and inflammation. Furthermore, the lipid lowering effect of berberine is comparable to those conventional lipid drugs but with low toxicity. Therefore, it is right time to transform beneficial effects of berberine into therapeutic practice. Metformin and berberine share many features in actions despite different structure and both could be excellent drugs in treating T2DM, obesity, cardiac diseases, tumour, as well as inflammation. Since these disorders are often connected and comprise common pathogenic factors that could be targeted by the two drugs, understanding their actions can give us rationale for expansion of their clinical uses.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Hospital of Nanchang University, Nanchang, China
| | - Chen Zhu
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Hospital of Nanchang University, Nanchang, China
| | - Ying Ying
- Jiangxi Provincial Key Laboratory of Tumour Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Hospital of Nanchang University, Nanchang, China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Hospital of Nanchang University, Nanchang, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumour Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
299
|
Liu B, Fu XQ, Li T, Su T, Guo H, Zhu PL, Tse AKW, Liu SM, Yu ZL. Computational and experimental prediction of molecules involved in the anti-melanoma action of berberine. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:225-235. [PMID: 28729227 DOI: 10.1016/j.jep.2017.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/07/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Berberine (BBR) is a naturally occurring alkaloid compound that can be found in Chinese medicinal herbs such as Rhizoma Coptidis and Phellodendri Cortex. These BBR containing herbs are commonly used by Chinese medicine doctors to treat cancers including melanoma. In this study, we explored proteins potentially involved in the anti-melanoma effects of BBR using computational and experimental approaches. MATERIALS AND METHODS Target proteins of BBR were predicted using the reverse pharmacophore screening, molecular docking and molecular dynamics. Anti-melanoma activities of BBR in melanoma cells were examined by MTT and EdU proliferation assays. Effects of BBR on activities of target proteins in melanoma cells were examined by Western blotting or fluorescence assay. RESULTS Ten proteins implicated in cancer and with high fit-score in the reverse pharmacophore screening were selected as potential targets of BBR. Molecular docking and molecular dynamics revealed that BBR could stably bind to four of the ten proteins, namely 3-phosphoinositide-dependent protein kinase 1 (PDK1), glucocorticoid receptor (GR), p38 mitogen-activated protein kinase (p38) and dihydroorotate dehydrogenase (DHODH). Cellular experiments showed that BBR inhibited cell proliferation, increased the phosphorylation of GR and p38, and inhibited the activity of DHODH in A375 human melanoma cells. CONCLUSIONS These findings suggest that p38, GR and DHODH are potentially involved in the anti-melanoma action of BBR. This study provided a chemical and pharmacological justification for the clinical use of BBR-containing herbs in melanoma treatment.
Collapse
Affiliation(s)
- Bin Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Tao Su
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Hui Guo
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Pei-Li Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Anfernee Kai-Wing Tse
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Shi-Ming Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
300
|
Wu J, Ma JJ, Liu B, Huang L, Sang XQ, Zhou LJ. Herbicidal Spectrum, Absorption and Transportation, and Physiological Effect on Bidens pilosa of the Natural Alkaloid Berberine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6100-6113. [PMID: 28700828 DOI: 10.1021/acs.jafc.7b01259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Berberine is a natural herbicidal alkaloid from Coptis chinensis Franch. Here we characterized its herbicidal spectrum and absorption and transportation in the plant, along with the possible mechanism. Berberine showed no effect on the germination of the 10 tested plants. The IC50 values of berberine on the primary root length and fresh weight of the 10 tested plants ranged from 2.91 to 9.79 mg L-1 and 5.76 to 35.07 mg L-1, respectively. Berberine showed a similar herbicidal effect on Bidens pilosa as the commercial naturally derived herbicide cinmethylin. HPLC and fluorescence analysis revealed that berberine was mainly absorbed by B. pilosa root and transported through vascular bundle acropetally. Enzyme activity studies, GC-MS analysis, and SEM and TEM observations indicated that berberine might first function on the cell membrane indicated by variation of the IUFA percent and then cause POD, PPO, and SOD activity changes and cellular structure deformity, which was eventually expressed as the decrease of cell adaptation ability and abnormal cell function and may even result in cell death. Environmental safety evaluation tests revealed that berberine was low in toxicity to Brachydanio rerio. These indicate that berberine has the potential to be a bioherbicide and/or a lead molecule for new herbicides.
Collapse
Affiliation(s)
- Jiao Wu
- Key Lab of Natural Pesticides & Chemical Biology, Ministry of Education, Department of Pesticide Science, South China Agricultural University , Guangzhou, Guangdong, China 510642
| | - Jing-Jing Ma
- Key Lab of Natural Pesticides & Chemical Biology, Ministry of Education, Department of Pesticide Science, South China Agricultural University , Guangzhou, Guangdong, China 510642
| | - Bo Liu
- Key Lab of Natural Pesticides & Chemical Biology, Ministry of Education, Department of Pesticide Science, South China Agricultural University , Guangzhou, Guangdong, China 510642
| | - Lun Huang
- Key Lab of Natural Pesticides & Chemical Biology, Ministry of Education, Department of Pesticide Science, South China Agricultural University , Guangzhou, Guangdong, China 510642
| | - Xiao-Qing Sang
- Key Lab of Natural Pesticides & Chemical Biology, Ministry of Education, Department of Pesticide Science, South China Agricultural University , Guangzhou, Guangdong, China 510642
| | - Li-Juan Zhou
- Key Lab of Natural Pesticides & Chemical Biology, Ministry of Education, Department of Pesticide Science, South China Agricultural University , Guangzhou, Guangdong, China 510642
| |
Collapse
|