251
|
Ratnayaka JA, Serpell LC, Lotery AJ. Dementia of the eye: the role of amyloid beta in retinal degeneration. Eye (Lond) 2015; 29:1013-26. [PMID: 26088679 PMCID: PMC4541342 DOI: 10.1038/eye.2015.100] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/23/2015] [Indexed: 11/09/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the most common causes of irreversible blindness affecting nearly 50 million individuals globally. The disease is characterised by progressive loss of central vision, which has significant implications for quality of life concerns in an increasingly ageing population. AMD pathology manifests in the macula, a specialised region of the retina, which is responsible for central vision and perception of fine details. The underlying pathology of this complex degenerative disease is incompletely understood but includes both genetic as well as epigenetic risk factors. The recent discovery that amyloid beta (Aβ), a highly toxic and aggregate-prone family of peptides, is elevated in the ageing retina and is associated with AMD has opened up new perspectives on the aetiology of this debilitating blinding disease. Multiple studies now link Aβ with key stages of AMD progression, which is both exciting and potentially insightful, as this identifies a well-established toxic agent that aggressively targets cells in degenerative brains. Here, we review the most recent findings supporting the hypothesis that Aβ may be a key factor in AMD pathology. We describe how multiple Aβ reservoirs, now reported in the ageing eye, may target the cellular physiology of the retina as well as associated layers, and propose a mechanistic pathway of Aβ-mediated degenerative change leading to AMD.
Collapse
Affiliation(s)
- J A Ratnayaka
- Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, UK
| | - L C Serpell
- School of Life Sciences (Biochemistry, Dementia Research Group), University of Sussex, Brighton, UK
| | - A J Lotery
- Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
252
|
Microglia-derived IL-1β triggers p53-mediated cell cycle arrest and apoptosis in neural precursor cells. Cell Death Dis 2015; 6:e1779. [PMID: 26043079 PMCID: PMC4669832 DOI: 10.1038/cddis.2015.151] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/14/2022]
Abstract
Neurogenesis persists in the adult brain and can contribute to learning and memory processes and potentially to regeneration and repair of the affected nervous system. Deregulated neurogenesis has been observed in neuropathological conditions including neurodegenerative diseases, trauma and stroke. However, the survival of neural precursor cells (NPCs) and newly born neurons is adversely affected by the inflammatory environment that arises as a result of microglial activation associated with injury or disease processes. In the present study, we have investigated the mechanisms by which microglia affect NPC proliferation and survival. Importantly, we demonstrate that interleukin-1β (IL-1β) produced by lipopolysaccharide/interferon-γ-activated microglia is necessary to induce cell cycle arrest and apoptosis in NPCs in vitro. Mechanistically, we show that IL-1β activates the tumor suppressor p53 through an oxidative stress-dependent mechanism resulting in p53-mediated induction of the cyclin-dependent kinase inhibitor p21 and the proapoptotic Bcl-2 (B-cell lymphoma-2) family members Puma (p53-upregulated modulator of apoptosis) and Noxa. Furthermore, we demonstrate that cell cycle arrest and apoptosis induced by recombinant IL-1β or activated microglia is attenuated in p53-deficient NPCs. Finally, we have determined that IL-1β induces NPC death via the p53-dependent induction of Puma leading to the activation of a Bax (Bcl-2-associated X protein)-mediated mitochondrial apoptotic pathway. In summary, we have elucidated a novel role for p53 in the regulation of NPC proliferation and survival during neuroinflammatory conditions that could be targeted to promote neurogenesis and repair in a number of neurological conditions.
Collapse
|
253
|
Abstract
Age-related macular degeneration (AMD) affects approximately one-third of Americans over 70 and is characterized by lipoprotein-rich sub-retinal pigmented epithelium (sub-RPE) deposits. Substantial evidence has emerged that implicates complement factor H (CFH) in the pathogenesis of AMD. Here, we conduct an in vivo analysis to elucidate the role of CFH in AMD pathology. We show that (i) CFH and lipoproteins compete for binding in the sub-RPE extracellular matrix such that decreasing CFH leads to lipoprotein accumulation and sub-RPE deposit formation; and (ii) detrimental complement activation within sub-RPE deposits leads to RPE damage and vision loss. This new understanding of the complicated interactions of CFH in development of AMD-like pathology paves the way for identifying more targeted therapeutic strategies for AMD. Complement factor H (CFH) is a major susceptibility gene for age-related macular degeneration (AMD); however, its impact on AMD pathobiology is unresolved. Here, the role of CFH in the development of AMD pathology in vivo was interrogated by analyzing aged Cfh+/− and Cfh−/− mice fed a high-fat, cholesterol-enriched diet. Strikingly, decreased levels of CFH led to increased sub-retinal pigmented epithelium (sub-RPE) deposit formation, specifically basal laminar deposits, following high-fat diet. Mechanistically, our data show that deposits are due to CFH competition for lipoprotein binding sites in Bruch’s membrane. Interestingly and despite sub-RPE deposit formation occurring in both Cfh+/− and Cfh−/− mice, RPE damage accompanied by loss of vision occurred only in old Cfh+/− mice. We demonstrate that such pathology is a function of excess complement activation in Cfh+/− mice versus complement deficiency in Cfh−/− animals. Due to the CFH-dependent increase in sub-RPE deposit height, we interrogated the potential of CFH as a previously unidentified regulator of Bruch’s membrane lipoprotein binding and show, using human Bruch’s membrane explants, that CFH removes endogenous human lipoproteins in aged donors. Thus, advanced age, high-fat diet, and decreased CFH induce sub-RPE deposit formation leading to complement activation, which contributes to RPE damage and visual function impairment. This new understanding of the complicated interactions of CFH in AMD-like pathology provides an improved foundation for the development of targeted therapies for AMD.
Collapse
|
254
|
Konradi J, Mollenhauer M, Baldus S, Klinke A. Redox-sensitive mechanisms underlying vascular dysfunction in heart failure. Free Radic Res 2015; 49:721-42. [DOI: 10.3109/10715762.2015.1027200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
255
|
Ratikan JA, Micewicz ED, Xie MW, Schaue D. Radiation takes its Toll. Cancer Lett 2015; 368:238-45. [PMID: 25819030 DOI: 10.1016/j.canlet.2015.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022]
Abstract
The ability to recognize and respond to universal molecular patterns on invading microorganisms allows our immune system to stay on high alert, sensing danger to our self-integrity. Our own damaged cells and tissues in pathological situations activate similar warning systems as microbes. In this way, the body is able to mount a response that is appropriate to the danger. Toll-like receptors are at the heart of this pattern recognition system that initiates innate pro-oxidant, pro-inflammatory signaling cascades and ultimately bridges recognition of danger to adaptive immunity. The acute inflammatory lesions that are formed segue into resolution of inflammation, repair and healing or, more dysfunctionally, into chronic inflammation, autoimmunity, excessive tissue damage and carcinogenesis. Redox is at the nexus of this decision making process and is the point at which ionizing radiation initially intercepts to trigger similar responses to self-damage. In this review we discuss our current understanding of how radiation-damaged cells interact with Toll-like receptors and how the immune systems interprets these radiation-induced danger signals in the context of whole-body exposures and during local tumor irradiation.
Collapse
Affiliation(s)
- Josephine A Ratikan
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA
| | - Ewa D Micewicz
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA
| | - Michael W Xie
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA.
| |
Collapse
|
256
|
Paeng SH, Jung WK, Park WS, Lee DS, Kim GY, Choi YH, Seo SK, Jang WH, Choi JS, Lee YM, Park S, Choi IW. Caffeic acid phenethyl ester reduces the secretion of vascular endothelial growth factor through the inhibition of the ROS, PI3K and HIF-1α signaling pathways in human retinal pigment epithelial cells under hypoxic conditions. Int J Mol Med 2015; 35:1419-26. [PMID: 25738890 DOI: 10.3892/ijmm.2015.2116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/24/2015] [Indexed: 11/06/2022] Open
Abstract
Choroidal neovascularization (CNV) can lead to progressive and severe visual loss. Vascular endothelial growth factor (VEGF) promotes the development of CNV. Caffeic acid phenethyl ester (CAPE), a biologically active component of the honeybee (Apis mellifera) propolis, has been demonstrated to have several interesting biological regulatory properties. The objective of this study was to determine whether treatment with CAPE results in the inhibition of the production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial cells (RPE cells) under hypoxic conditions and to explore the possible underlying mechanisms. An in vitro experimental model of hypoxia was used to mimic an ischemic microenvironment for the RPE cells. Human RPE cells (ARPE-19) were exposed to hypoxia with or without CAPE pre-treatment. ARPE-19 cells were used to investigate the pathway involved in the regulation of VEGF production under hypoxic conditions, based on western blot analysis, enzyme-linked immunosorbent assay (ELISA) and electrophoretic mobility shift assay (EMSA). The amount of VEGF released from the hypoxia-exposed cells was significantly higher than that of the normoxic controls. Pre-treatment with CAPE suppressed the hypoxia-induced production of VEGF in the ARPE-19 cells, and this effect was inhibited through the attenuation of reactive oxygen species (ROS) production, and the inhibition of phosphoinositide 3-kinase (PI3K)/AKT and hypoxia-inducible factor-1α (HIF-1α) expression. These in vitro findings suggest that CAPE may prove to be a novel anti-angiogenic agent for the treatment of diseases associated with CNV.
Collapse
Affiliation(s)
- Sung Hwa Paeng
- Department of Neurosurgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Dae-Sung Lee
- Marine Biodiversity Institute of Korea, Seocheon, Chungcheongnam-do, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Won Hee Jang
- Department of Biochemistry, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jung Sik Choi
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Min Lee
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Saegwang Park
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
257
|
Dai Y, Zhao C, Liang X, Dai R, Dong F. Protectin DX, a double lipoxygenase product from DHA, inhibits the production of both inflammatory cytokines and reactive oxygen species in human retinal pigment epithelium cells. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yining Dai
- Department of Ophthalmology; Peking Union Medical College Hospital; Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Chan Zhao
- Department of Ophthalmology; Peking Union Medical College Hospital; Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Xiaofang Liang
- Department of Ophthalmology; Peking Union Medical College Hospital; Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Rongping Dai
- Department of Ophthalmology; Peking Union Medical College Hospital; Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| | - Fangtian Dong
- Department of Ophthalmology; Peking Union Medical College Hospital; Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing China
| |
Collapse
|
258
|
Thichanpiang P, Wongprasert K. Green Tea Polyphenol Epigallocatechin-3-Gallate Attenuates TNF-α-Induced Intercellular Adhesion Molecule-1 Expression and Monocyte Adhesion to Retinal Pigment Epithelial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:103-19. [DOI: 10.1142/s0192415x1550007x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea (Camellia sinensis) and demonstrates anti-oxidant, anticancer and anti-inflammatory properties. EGCG has been shown to protect retinal pigment epithelium (RPE) against oxidative stress-induced cell death. The pathogenesis of diseases in the retina is usually initiated by local inflammation at the RPE cell layer, and inflammation is mostly associated with leukocyte migration and the secretion of pro-inflammatory cytokines. Whether EGCG can modulate the cytokine-induced inflammatory response of RPE, particularly leukocyte migration, has not been clearly elucidated, and was therefore the objective of this study. ARPE-19 cells were cultured with different concentrations of TNF-α in the presence or absence of EGCG to different time points. Intracellular reactive oxygen species (ROS) levels were determined. Intercellular adhesion molecule (ICAM)-1 and phosphor-NF-κB and IκB expression were determined by Western blot analysis. Phosphor-NF-κB nuclear translocation and monocyte–RPE adhesion were investigated using immunofluorescence confocal laser scanning microscopy. Scanning electron microscopy (SEM) was carried out to further determine the ultrastructure of monocyte–RPE adhesion. The results demonstrated that TNF-α modulated inflammatory effects in ARPE-19 by induction of ROS and up-regulation of ICAM-1 expression. Moreover, TNF-α-induced phosphor-NF-κB nuclear translocation, increased phosphor-NF-κB expression and IκB degradation, and increased the degree of monocyte–RPE adhesion. Pretreating the cells with EGCG ameliorated the inflammatory effects of TNF-α. The results indicated that EGCG significantly exerts anti-inflammatory effects in ARPE-19 cells, partly as a suppressor of TNF-α signaling and that the inhibition was mediated via the NF-κB pathway.
Collapse
Affiliation(s)
- Peeradech Thichanpiang
- Division of Occupational Therapy, Faculty of Physical Therapy, Nakhon Pathom 73170, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
259
|
Transgenic Mice Overexpressing Human Angiotensin I Receptor Gene Are Susceptible to Stroke Injury. Mol Neurobiol 2015; 53:1533-1539. [PMID: 25652270 DOI: 10.1007/s12035-015-9109-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Hypertension is one of the co-morbid conditions for stroke and profoundly increases its incidence. Angiotensin II (AngII) is shown to be at the center stage in driving the renin angiotensin system via activation of angiotensin 1 receptor (AT1R). This makes the AT1R gene one of the candidates whose differential regulation leads to the predisposition to disorders associated with hypertension. A haplotype block of four SNPs is represented primarily by haplotype-I, or Hap-I (TTAA), and haplotype-II, or Hap-II (AGCG), in the promoter of human AT1R (hAT1R) gene. To better understand the physiological role of these haplotypes, transgenic (TG) mice containing Hap-I and Hap-II of the hAT1R gene in a 166-kb bacterial artificial chromosome (BAC) were generated. Mice received injection of endothelin-1 (1 mg/ml) directly in to the striatum and were evaluated for neurologic deficit scores and sacrificed for analysis of infarct volume and mRNA levels of various proteins. Mice containing Hap-I suffered from significantly higher neurological deficits and larger brain infarcts than Hap II. Similarly, the molecular analysis of oxidant and inflammatory markers in brains of mice showed a significant increase (p < 0.05) in NOX-1 (2.3-fold), CRP (4.3-fold), and IL6 (1.9-fold) and a corresponding reduced expression of antioxidants SOD (60%) and HO1 (55%) in Hap-I mice as compared to Hap-II mice. These results suggest that increased expression of hAT1R rendered Hap-I TG mice susceptible to stroke-related pathology, possibly due to increased level of brain inflammatory and oxidative stress markers and a suppressed antioxidant defense system.
Collapse
|
260
|
Bicarbonate transport inhibitor SITS modulates pH homeostasis triggering apoptosis of Dalton's lymphoma: implication of novel molecular mechanisms. Mol Cell Biochem 2014; 397:167-78. [PMID: 25123669 DOI: 10.1007/s11010-014-2184-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/08/2014] [Indexed: 12/30/2022]
Abstract
Bicarbonate transporter (BCT) plays a crucial role in maintaining pH homeostasis of tumor cells by import of HCO3(-). This helps the tumor cells in manifesting extracellular tumor acidosis, accompanied by a relative intracellular alkalinization, which in turn promotes tumor progression. Therefore, blocking BCT-mediated HCO3(-) transport is envisaged as a promising anticancer therapeutic approach. Thus, using a murine model of a T cell lymphoma, designated as Dalton's lymphoma (DL), in the present in vitro investigation the antitumor consequences of blocking BCT function by its inhibitor 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS) were explored. Treatment of DL cells with SITS resulted in an increase in the extracellular pH, associated with a decline in DL cell survival and augmented induction of apoptosis. BCT inhibition also elevated the expression of cytochrome c, caspase-9, caspase-3, Bax, reactive oxygen species, and nitric oxide along with inhibition of HSP-70 and Bcl2, which regulate tumor cell survival and apoptosis. SITS-treated DL cells displayed upregulated production of IFN-γ and IL-6 along with a decline of IL-10. Treatment of DL cells with SITS also inhibited the expression of fatty acid synthase, which is crucial for membrane biogenesis in neoplastic cells. The expression of lactate transporter MCT-1 and multidrug resistance regulating protein MRP-1 got inhibited along with hampered uptake of glucose and lactate production in SITS-treated DL cells. Thus, the declined tumor cell survival following inhibition of BCT could be the consequence of interplay of several inter-connected regulatory molecular events. The outcome of this study indicates the potential of BCT inhibition as a novel therapeutic approach for treatment of hematological malignancies.
Collapse
|
261
|
Abstract
PURPOSE We evaluated light exposure-induced dry eye syndrome by investigating the phototoxic effects of an operating microscope on the ocular surface and tear film in rabbits. METHODS Sixty eyes of 30 rabbits were divided into 3 groups based on the intensity of light exposure received from an operating microscope: Control group, no exposure to light; group A, 40,000-lx intensity for 30 minutes; and group B, 100,000-lx intensity for 30 minutes. To evaluate the potential damage to the ocular surface and tear film, Schirmer tests, rose bengal staining, and conjunctival impression cytology were performed before the light exposure and at 1, 3, and 5 days afterward. In addition, the expression of interleukin 1-beta was analyzed in tear samples. The expression of mucin 5AC was evaluated using immunofluorescence staining, and periodic acid-Schiff staining was conducted on conjunctival tissues. Corneal and conjunctival tissues were observed by means of electron microscopy. RESULTS Potential damage to the ocular surface and tear film was found in the light-exposed groups as evidenced by decreased aqueous tear production, devitalized corneal and conjunctival epithelial cells, squamous metaplasia of conjunctival epithelial cells, decreased conjunctival goblet cell density, decreased expression of mucin 5AC, ultrastructural cellular damage to corneal and conjunctival tissues, and increased interleukin 1-beta expression in tears. This damage was more noticeable in group B than in group A (P < 0.05). CONCLUSIONS Light exposure from an operating microscope had phototoxic effects on the ocular surface and tear film in this in vivo experiment. These changes seemed to intensify as the intensity of the light increased. Therefore, excessive light exposure during ophthalmic procedures could be a pathogenic factor in dry eye syndrome after a surgery is performed.
Collapse
|
262
|
Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014; 2014:149185. [PMID: 24901008 PMCID: PMC4036716 DOI: 10.1155/2014/149185] [Citation(s) in RCA: 1166] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022] Open
Abstract
Acute inflammation is a response to an alteration induced by a pathogen or a physical or chemical insult, which functions to eliminate the source of the damage and restore homeostasis to the affected tissue. However, chronic inflammation triggers cellular events that can promote malignant transformation of cells and carcinogenesis. Several inflammatory mediators, such as TNF-α, IL-6, TGF-β, and IL-10, have been shown to participate in both the initiation and progression of cancer. In this review, we explore the role of these cytokines in important events of carcinogenesis, such as their capacity to generate reactive oxygen and nitrogen species, their potential mutagenic effect, and their involvement in mechanisms for epithelial mesenchymal transition, angiogenesis, and metastasis. Finally, we will provide an in-depth analysis of the participation of these cytokines in two types of cancer attributable to chronic inflammatory disease: colitis-associated colorectal cancer and cholangiocarcinoma.
Collapse
Affiliation(s)
- Glauben Landskron
- Disciplinary Program, Institute of Biomedical Sciences, School of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Marjorie De la Fuente
- Disciplinary Program, Institute of Biomedical Sciences, School of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Peti Thuwajit
- Department of Immunology, School of Medicine, Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok Noi, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, School of Medicine, Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok Noi, Bangkok 10700, Thailand
| | - Marcela A. Hermoso
- Disciplinary Program, Institute of Biomedical Sciences, School of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| |
Collapse
|
263
|
Singh R, Shankar BS, Sainis KB. TGF-β1-ROS-ATM-CREB signaling axis in macrophage mediated migration of human breast cancer MCF7 cells. Cell Signal 2014; 26:1604-15. [PMID: 24705025 DOI: 10.1016/j.cellsig.2014.03.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 12/22/2022]
Abstract
Macrophages in the tumor microenvironment play an important role in tumor cell survival. They influence the tumor cell to proliferate, invade into surrounding normal tissues and metastasize to local and distant sites. In this study, we evaluated the effect of conditioned medium from monocytes and macrophages on growth and migration of breast cancer cells. Macrophage conditioned medium (MϕCM) containing elevated levels of cytokines TNF-α, IL-1β and IL-6 had a differential effect on non-invasive (MCF7) and highly invasive (MDA-MB-231) breast cancer cell lines. MϕCM induced the secretion of TGF-β1 in MCF7 cells. This was associated with apoptosis in a fraction of cells and generation of reactive oxygen and nitrogen species (ROS and RNS) and DNA damage in the remaining cells. This, in turn, increased expression of cAMP response element binding protein (CREB) and vimentin resulting in migration of cells. These effects were inhibited by neutralization of TNF-α, IL-1β and IL-6, inhibition of ROS and RNS, DNA damage and siRNA mediated knockdown of ATM. In contrast, MDA-MB-231 cells which had higher basal levels of pCREB were not affected by MϕCM. In summary, we have found that pro-inflammatory cytokines secreted by macrophages induce TGF-β1 in tumor cells, which activate pCREB signaling, epithelial-mesenchymal-transition (EMT) responses and enhanced migration.
Collapse
Affiliation(s)
- Rajshri Singh
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Bhavani S Shankar
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Krishna B Sainis
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
264
|
Li J, Li J, Yue Y, Hu Y, Cheng W, Liu R, Pan X, Zhang P. Genistein suppresses tumor necrosis factor α-induced inflammation via modulating reactive oxygen species/Akt/nuclear factor κB and adenosine monophosphate-activated protein kinase signal pathways in human synoviocyte MH7A cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:315-23. [PMID: 24669186 PMCID: PMC3962316 DOI: 10.2147/dddt.s52354] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aims Genistein, an isoflavone derivative found in soy, is known as a promising treatment for rheumatoid arthritis (RA). However, the detailed molecular mechanism of genistein in suppression of proinflammatory cytokine production remains ambiguous. The aim of this work was to evaluate the signal pathway by which genistein modulates inflammatory cytokine expression. Materials and methods MH7A cells were stimulated with tumor necrosis factor (TNF)-α and incubated with genistein, and interleukin (IL)-1β, IL-6, and IL-8 production was measured by enzyme-linked immunosorbent assay. Nuclear translocation of nuclear factor (NF)-κB was measured by a confocal fluorescence microscopy. The intracellular accumulation of reactive oxygen species (ROS) was monitored using the fluorescent probe 5-6-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate. Signal-transduction protein expression was measured by Western blot. Results Genistein decreased the secretion of IL-1β, IL-6, and IL-8 from TNF-α-stimulated MH7A cells in a dose-dependent manner. Genistein prevented TNF-α-induced NF-κB translocation as well as phosphorylation of IκB kinase-α/β and IκBα, and also suppressed TNF-α-induced AMPK inhibition. The production of IL-1β, IL-6, and IL-8 induced by TNF-α was decreased by the phosphatidylinositol-3 kinase inhibitor LY294002, suggesting that inhibition of Akt activation might inhibit IL-1β, IL-6, and IL-8 production induced by TNF-α. In addition, we also found that pretreatment with the adenosine monophosphate-activated protein kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside obviously inhibited TNF-α-induced proinflammatory cytokine production. These observations suggest that the inhibitory effect of genistein on TNF-α-induced proinflammatory cytokine production is dependent on AMPK activation. Conclusion These findings indicate that genistein suppressed TNF-α-induced inflammation by inhibiting the ROS/Akt/NF-κB pathway and promoting AMPK activation in MH7A cells.
Collapse
Affiliation(s)
- Jinchao Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Jun Li
- Emergency Surgery Department, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Ye Yue
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Yiping Hu
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| | - Ruoxi Liu
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaohua Pan
- Department of Orthopedics, Second Clinical Medical College, Jinan University, Shenzhen, People's Republic of China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, People's Republic of China
| |
Collapse
|
265
|
Chaubey N, Sahoo AK, Chattopadhyay A, Ghosh SS. Silver nanoparticle loaded PLGA composite nanoparticles for improving therapeutic efficacy of recombinant IFNγ by targeting the cell surface. Biomater Sci 2014; 2:1080-1089. [PMID: 32482003 DOI: 10.1039/c3bm60251f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The field of medical science has advanced significantly with the discoveries of new drugs and the development of sophisticated biomedical tools; still cancer therapy remains one of the major hurdles currently. Herein, we report a new approach, which exhibits complementary anti-cancer effects of recombinant IFNγ protein and silver nanoparticles (Ag NPs) when loaded together in PLGA composite NPs (GST IFNγ-Ag PLGA NPs). IFNγ acts as an antiviral and tumoricidal agent. To augment therapeutic efficacy, IFNγ was cloned, purified as GST tagged IFNγ recombinant protein, and immobilized on the composite NPs preloaded with Ag NPs. The NPs were characterized using UV-vis spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) and dynamic light scattering (DLS) analysis. Finally, the composite NPs were delivered into two different human cancer cell types, HeLa (cervical cancer) and MCF-7 (breast cancer) cells. Our results demonstrated that the recombinant IFNγ could block the cell cycle at the G1 phase and its anticancer activity could be potentiated in the presence of Ag NPs. The interaction between the recombinant IFNγ with its cell surface receptors facilitated the delivery of the composite NPs, and thus the combination of the duos ultimately led to induction of apoptosis in the cancer cells.
Collapse
Affiliation(s)
- Nidhi Chaubey
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | | | | | | |
Collapse
|
266
|
Gimeno-Bayón J, López-López A, Rodríguez M, Mahy N. Glucose pathways adaptation supports acquisition of activated microglia phenotype. J Neurosci Res 2014; 92:723-31. [DOI: 10.1002/jnr.23356] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/04/2013] [Accepted: 12/03/2013] [Indexed: 01/25/2023]
Affiliation(s)
- J. Gimeno-Bayón
- Unitat de Bioquímica i Biologia Molecular, Facultat de Medicina; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona; Barcelona CIBERNED Spain
| | - A. López-López
- Unitat de Bioquímica i Biologia Molecular, Facultat de Medicina; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona; Barcelona CIBERNED Spain
| | - M.J. Rodríguez
- Unitat de Bioquímica i Biologia Molecular, Facultat de Medicina; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona; Barcelona CIBERNED Spain
| | - N. Mahy
- Unitat de Bioquímica i Biologia Molecular, Facultat de Medicina; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona; Barcelona CIBERNED Spain
| |
Collapse
|
267
|
Chen LJ, Sun BH, Qu JP, Xu S, Li S. Avermectin induced inflammation damage in king pigeon brain. CHEMOSPHERE 2013; 93:2528-2534. [PMID: 24134892 DOI: 10.1016/j.chemosphere.2013.09.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
To determine the effect of Avermectin (AVM) on inflammation damage in king pigeon brain, eighty two-month-old American king pigeons were randomly divided into four groups, and were fed with either commercial diet or AVM-supplemented diet containing 20 mg kg(-1)diet, 40 mg kg(-1)diet, and 60 mg kg(-1)diet AVM for 30, 60 and 90 d, respectively. Then, the expression level of inflammatory factors (iNOS, PTGEs, NF-κB), histological damage, and ultra-structural damage were examined. It showed that AVM caused higher expressions (P<0.05) of iNOS, PTGEs, NF-κB with disorganized histological and ultra-structural structures in cerebrum, cerebellum, and optic lobe. Meanwhile, inflammatory and histopathological damage were induced by AVM in king pigeon brains. In addition, the main targeted organelle in nervous system was mitochondria, which indicated that mitochondria may be relevant to the process of inflammation induced by AVM. To our best knowledge, this is the first report to study the toxic effect of AVM on inflammatory damage in king pigeon. Thus, the information presented in this study is believed to be helpful in supplementing data for further AVM toxicity study.
Collapse
Affiliation(s)
- Li-Jie Chen
- Department of Veterinary Physiology, Northeast Agricultural University, Harbin 150030, PR China; Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, PR China
| | | | | | | | | |
Collapse
|
268
|
Tormos AM, Taléns-Visconti R, Nebreda AR, Sastre J. p38 MAPK: a dual role in hepatocyte proliferation through reactive oxygen species. Free Radic Res 2013; 47:905-16. [PMID: 23906070 DOI: 10.3109/10715762.2013.821200] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
p38 MAPKs are important mediators of signal transduction that respond to a wide range of extracellular stressors such as UV radiation, osmotic shock, hypoxia, pro-inflammatory cytokines, and oxidative stress. The most abundant family member is p38α, which helps to couple cell proliferation and growth in response to certain damaging stimuli. In fact, increased proliferation and impaired differentiation are hallmarks of p38α-deficient cells. It has been reported that reactive oxygen species (ROS) play a critical role in cytokine-induced p38α activation. Under physiological conditions, p38α can function as a mediator of ROS signaling and either activate or suppress cell cycle progression depending on the activation stimulus. The interplay between cell proliferation, p38 MAPK activation, and ROS production plays an important role in hepatocytes. In fact, low levels of ROS seem to be needed to activate several signaling pathways in response to hepatectomy and to orchestrate liver regeneration. p38 MAPK works as a sensor of oxidative stress and cells that have developed mechanisms to uncouple p38 MAPK activation from oxidative stress are more likely to become tumorigenic. So far, p38α influences the redox balance, determining cell survival, terminal differentiation, proliferation, and senescence. Further studies would be necessary in order to clarify the precise role of p38 MAPK signaling as a redox therapeutical target.
Collapse
Affiliation(s)
- A M Tormos
- Department of Physiology, Faculty of Pharmacy, University of Valencia , Valencia , Spain
| | | | | | | |
Collapse
|
269
|
Muralidharan S, Mandrekar P. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 2013; 94:1167-84. [PMID: 23990626 DOI: 10.1189/jlb.0313153] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Extensive research in the past decade has identified innate immune recognition receptors and intracellular signaling pathways that culminate in inflammatory responses. Besides its role in cytoprotection, the importance of cell stress in inflammation and host defense against pathogens is emerging. Recent studies have shown that proteins in cellular stress responses, including the heat shock response, ER stress response, and DNA damage response, interact with and regulate signaling intermediates involved in the activation of innate and adaptive immune responses. The effect of such regulation by cell stress proteins may dictate the inflammatory profile of the immune response during infection and disease. In this review, we describe the regulation of innate immune cell activation by cell stress pathways, present detailed descriptions of the types of stress response proteins and their crosstalk with immune signaling intermediates that are essential in host defense, and illustrate the relevance of these interactions in diseases characteristic of aberrant immune responses, such as chronic inflammatory diseases, autoimmune disorders, and cancer. Understanding the crosstalk between cellular stress proteins and immune signaling may have translational implications for designing more effective regimens to treat immune disorders.
Collapse
Affiliation(s)
- Sujatha Muralidharan
- 1.LRB 221, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605.
| | | |
Collapse
|
270
|
Hubackova S, Krejcikova K, Bartek J, Hodny Z. IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine 'bystander senescence'. Aging (Albany NY) 2013; 4:932-51. [PMID: 23385065 PMCID: PMC3615160 DOI: 10.18632/aging.100520] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many cancers arise at sites of infection and inflammation. Cellular senescence, a permanent state of cell cycle arrest that provides a barrier against tumorigenesis, is accompanied by elevated proinflammatory cytokines such as IL1, IL6, IL8 and TNFα. Here we demonstrate that media conditioned by cells undergoing any of the three main forms of senescence, i.e. replicative, oncogene- and drug-induced, contain high levels of IL1, IL6, and TGFb capable of inducing reactive oxygen species (ROS)-mediated DNA damage response (DDR). Persistent cytokine signaling and activated DDR evoke senescence in normal bystander cells, accompanied by activation of the JAK/STAT, TGFβ/SMAD and IL1/NFκB signaling pathways. Whereas inhibition of IL6/STAT signaling had no effect on DDR induction in bystander cells, inhibition of either TGFβ/SMAD or IL1/NFκB pathway resulted in decreased ROS production and reduced DDR in bystander cells. Simultaneous inhibition of both TGFβ/SMAD and IL1/NFκB pathways completely suppressed DDR indicating that IL1 and TGFβ cooperate to induce and/or maintain bystander senescence. Furthermore, the observed IL1- and TGFβ-induced expression of NAPDH oxidase Nox4 indicates a mechanistic link between the senescence-associated secretory phenotype (SASP) and DNA damage signaling as a feature shared by development of all major forms of paracrine bystander senescence.
Collapse
Affiliation(s)
- Sona Hubackova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
271
|
Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:956792. [PMID: 23738047 PMCID: PMC3657405 DOI: 10.1155/2013/956792] [Citation(s) in RCA: 707] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/07/2013] [Indexed: 12/14/2022]
Abstract
Free radical damage is linked to formation of many degenerative diseases, including cancer, cardiovascular disease, cataracts, and aging. Excessive reactive oxygen species (ROS) formation can induce oxidative stress, leading to cell damage that can culminate in cell death. Therefore, cells have antioxidant networks to scavenge excessively produced ROS. The balance between the production and scavenging of ROS leads to homeostasis in general; however, the balance is somehow shifted towards the formation of free radicals, which results in accumulated cell damage in time. Antioxidants can attenuate the damaging effects of ROS in vitro and delay many events that contribute to cellular aging. The use of multivitamin/mineral supplements (MVMs) has grown rapidly over the past decades. Some recent studies demonstrated no effect of antioxidant therapy; sometimes the intake of antioxidants even increased mortality. Oxidative stress is damaging and beneficial for the organism, as some ROS are signaling molecules in cellular signaling pathways. Lowering the levels of oxidative stress by antioxidant supplements is not beneficial in such cases. The balance between ROS and antioxidants is optimal, as both extremes, oxidative and antioxidative stress, are damaging. Therefore, there is a need for accurate determination of individual's oxidative stress levels before prescribing the supplement antioxidants.
Collapse
Affiliation(s)
- Borut Poljsak
- University of Ljubljana, Laboratory of Oxidative Stress Research, Faculty of Health Sciences, Zdravstvena Pot 5, SI-1000 Ljubljana, Slovenia
| | - Dušan Šuput
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | - Irina Milisav
- University of Ljubljana, Laboratory of Oxidative Stress Research, Faculty of Health Sciences, Zdravstvena Pot 5, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
272
|
Kutty RK, Nagineni CN, Samuel W, Vijayasarathy C, Jaworski C, Duncan T, Cameron JE, Flemington EK, Hooks JJ, Redmond TM. Differential regulation of microRNA-146a and microRNA-146b-5p in human retinal pigment epithelial cells by interleukin-1β, tumor necrosis factor-α, and interferon-γ. Mol Vis 2013; 19:737-50. [PMID: 23592910 PMCID: PMC3626297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/31/2013] [Indexed: 10/25/2022] Open
Abstract
PURPOSE The inflammatory response of the retinal pigment epithelium (RPE) is implicated in the pathogenesis of age-related macular degeneration. The microRNAs miR-146a and miR-146b-5p can regulate the inflammatory process by attenuating cytokine signaling via the nuclear factor-κB pathway. The aim of the present study is to investigate the expression of miR-146a and miR-146b-5p in human RPE cells and their response to proinflammatory cytokines. METHODS Confluent cultures of RPE cells established from adult human donor eyes were treated with the proinflammatory cytokines interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β. The expression of microRNAs was analyzed by real-time PCR using total RNA fraction. The retinal pigment epithelial cell line ARPE-19 was employed to analyze the promoter activity of the genes encoding miR-146a and miR-146b-5p. STAT1-binding activity of oligonucleotides was analyzed by electrophoretic mobility shift assay. ARPE-19 cells were transiently transfected with miR-146a and miR-146b-5p mimics for the analysis of IRAK1 expression by western immunoblotting. RESULTS Real-time PCR analysis showed that miR-146a and 146b-5p are expressed in RPE cells. The cells responded to proinflammatory cytokines (IFN-γ + TNF-α + IL-1β) by highly increasing the expression of both miR-146a and miR-146b-5p. This was associated with an increase in the expression of transcripts for CCL2, CCL5, CXCL9, CXCL10, and IL-6, and a decrease in that for HMOX1. The miR-146a induction was more dependent on IL-1β, since its omission from the cytokine mix resulted in a greatly reduced response. Similarly, the induction of miR-146b-5p was more dependent on IFN-γ, since its omission from the cytokine mix minimized the effect. In addition, the increase in MIR146B promoter activity by the cytokine mix was effectively blocked by JAK inhibitor 1, a known inhibitor of the JAK/STAT signaling pathway. The expression of IRAK1 protein was decreased when ARPE-19 cells were transiently transfected with either miR-146a mimic or miR-146b-5p mimic. CONCLUSIONS Our results clearly show that both miR-146a and miR-146b-5p are expressed in human RPE cells in culture and their expression is highly induced by proinflammatory cytokines (IFN-γ + TNF-α + IL-1β). The induction of miR-146a showed a dependency on IL-1β, while that of miR-146b-5p on IFN-γ. Our results show for the first time that miR-146b-5p expression is regulated by IFN-γ, potentially via the JAK/STAT pathway. These two microRNAs could play a role in inflammatory processes underlying age-related macular degeneration or other retinal degenerative diseases through their ability to negatively regulate the nuclear factor-κB pathway by targeting the expression of IRAK1.
Collapse
Affiliation(s)
- R. Krishnan Kutty
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | | | - William Samuel
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Camasamudram Vijayasarathy
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Cynthia Jaworski
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Jennifer E. Cameron
- Tulane Cancer Center, Tulane University, New Orleans, LA,Microbiology, Immunology & Parasitology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | | | - John J. Hooks
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - T. Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
273
|
Guzman-Aranguez A, Santano C, Martin-Gil A, Fonseca B, Pintor J. Nucleotides in the eye: focus on functional aspects and therapeutic perspectives. J Pharmacol Exp Ther 2013; 345:331-41. [PMID: 23504005 DOI: 10.1124/jpet.112.202473] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence and activity of nucleotides and dinucleotides in the physiology of most, if not all, organisms, from bacteria to humans, have been recognized by the scientific community, and the eye is no exception. Nucleotides in the dynamic fluids interact with many ocular structures, such as the tears and aqueous humor. Moreover, high concentrations of nucleotides in these secretions may reflect disease states such as dry eye and glaucoma. Apart from the nucleotide concentration in these fluids, P2 purinergic receptors have been described on the ocular surface (cornea and conjunctiva), anterior pole (ciliary body, trabecular meshwork), and posterior pole (retina). P2X and P2Y purinergic receptors are essential in maintaining the homeostasis of ocular processes, such as tear secretion, aqueous humor production, or retinal modulation. When they are functioning properly, they allow the eye to do its job (to see), but in some cases, a lack or an excess of nucleotides or a malfunction in the corresponding purinergic receptors leads to disease. This Perspective is focused on the nucleotides and dinucleotides and the P2 purinergic receptors in the eye and how they contribute to normal and disease states. We also emphasize the action of nucleotides and their receptors and antagonists as potential therapeutic agents.
Collapse
Affiliation(s)
- Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
| | | | | | | | | |
Collapse
|
274
|
Saccà SC, Roszkowska AM, Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat Res 2013; 752:153-171. [PMID: 23337404 DOI: 10.1016/j.mrrev.2013.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 02/03/2023]
Abstract
The human eye is constantly exposed to sunlight and artificial lighting. Exogenous sources of reactive oxygen species (ROS) such as UV light, visible light, ionizing radiation, chemotherapeutics, and environmental toxins contribute to oxidative damage in ocular tissues. Long-term exposure to these insults places the aging eye at considerable risk for pathological consequences of oxidative stress. Furthermore, in eye tissues, mitochondria are an important endogenous source of ROS. Over time, all ocular structures, from the tear film to the retina, undergo oxidative stress, and therefore, the antioxidant defenses of each tissue assume the role of a safeguard against degenerative ocular pathologies. The ocular surface and cornea protect the other ocular tissues and are significantly exposed to oxidative stress of environmental origin. Overwhelming of antioxidant defenses in these tissues clinically manifests as pathologies including pterygium, corneal dystrophies, and endothelial Fuch's dystrophy. The crystalline lens is highly susceptible to oxidative damage in aging because its cells and their intracellular proteins are not turned over or replaced, thus providing the basis for cataractogenesis. The trabecular meshwork, which is the anterior chamber tissue devoted to aqueous humor drainage, has a particular susceptibility to mitochondrial oxidative injury that affects its endothelium and leads to an intraocular pressure increase that marks the beginning of glaucoma. Photo-oxidative stress can cause acute or chronic retinal damage. The pathogenesis of age-related macular degeneration involves oxidative stress and death of the retinal pigment epithelium followed by death of the overlying photoreceptors. Accordingly, converging evidence indicates that mutagenic mechanisms of environmental and endogenous sources play a fundamental pathogenic role in degenerative eye diseases.
Collapse
Affiliation(s)
- Sergio C Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology unit, Genoa, Italy
| | - Anna Maria Roszkowska
- Department of Specialized Surgery, University Hospital, Ophthalmology Unit, Messina, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132, Genoa, Italy.
| |
Collapse
|
275
|
Pilat A, Herrnreiter AM, Skumatz CMB, Sarna T, Burke JM. Oxidative stress increases HO-1 expression in ARPE-19 cells, but melanosomes suppress the increase when light is the stressor. Invest Ophthalmol Vis Sci 2013; 54:47-56. [PMID: 23221079 DOI: 10.1167/iovs.12-11153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Phagocytized melanosomes in ARPE-19 cells were previously shown to decrease susceptibility to oxidative stress induced by hydrogen peroxide treatment and increase stress due to light irradiation relative to cells containing control black latex beads. Here we asked whether differential expression of antioxidant enzymes in cells containing pigment granules could explain the outcomes. METHODS ARPE-19 cells were loaded by phagocytosis with porcine RPE melanosomes or black latex beads (control particles). Heme oxygenase-1 (HO-1), HO-2, glutathione peroxidase (GPx), and catalase were quantified by Western blot analysis before and after treatment with sublethal hydrogen peroxide or blue light (400-450 nm). The stress was confirmed as sublethal by cell survival analysis using real-time quantification of propidium iodide fluorescence. RESULTS Phagocytosis itself produced transient changes in protein levels of some antioxidant enzymes, but steady-state levels (7 days after phagocytosis) did not differ in cells containing melanosomes versus beads. Sublethal stress, induced by either hydrogen peroxide or light, had no effect on catalase or HO-2 in either particle-free or particle-loaded cells. In contrast, HO-1 protein was upregulated by treatment with both hydrogen peroxide and light. Particle content did not affect the HO-1 increase induced by hydrogen peroxide, but the increase induced by blue light irradiation was partially blocked in cells containing black beads and blocked even more in cells containing melanosomes. CONCLUSIONS The results do not implicate differential antioxidant enzyme levels in stress protection by melanosomes against hydrogen peroxide, but they suggest a multifaceted role for melanosomes in regulating light stress susceptibility in RPE cells.
Collapse
Affiliation(s)
- Anna Pilat
- Department of Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | |
Collapse
|
276
|
Lijia Z, Zhao S, Wang X, Wu C, Yang J. A self-propelling cycle mediated by reactive oxide species and nitric oxide exists in LPS-activated microglia. Neurochem Int 2012; 61:1220-30. [PMID: 23000131 DOI: 10.1016/j.neuint.2012.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 08/29/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
It has been widely accepted that microglia, the innate immune cells in the brain, can be chronically activated in response to neuron death, fuelling a self-renewing cycle of microglial activation followed by further neuron damage (reactive microgliosis), which has been considered as the main reason responsible for the progressive nature of neurodegenerative diseases. In the present study, it was found that LPS (lipopolysaccharide) significantly induced the activation of N9 microglia, and the increase of NO level induced by pretreatment of LPS could last after the removal of LPS. The culture medium of activated microglia significantly decreased the viability of rat primary cortical neuron. These results can be blocked by the antioxidant N-acetylcysteine (NAC) and nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase inhibitor diphenyleneiodonium sulfate (DPI), suggesting that intracellular reactive oxide species (iROS) released from the activated microglial cells may continue to further activate microglia. Next, it was shown that the iROS level increased rapidly after the LPS treatment in microglia cells followed by the NO production through the regulation of iNOS (inducible nitric oxide synthase) expression. The increase of iROS could be reversed by gp91phox (the critical and catalytic subunit of NADPH oxidase) siRNA. Moreover, NO released from sodium nitroprusside (SNP) was able to increase the iROS production of N9 microglia by regulating of the activity and the expression of NADPH oxidase. In conclusion, our research suggests for the first time that there may exist a self-propelling cycle in microglial cells possibly mediated by iROS and NO when they become activated by LPS. It may be responsible partially for the ongoing microglial activation and the progressive nature of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhang Lijia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | | | | | | | | |
Collapse
|
277
|
Nitoda E, Moschos MM, Mavragani CP, Koutsilieris M. Ocular actions of platelet-activating factor: clinical implications. Expert Opin Ther Targets 2012; 16:1027-39. [DOI: 10.1517/14728222.2012.712961] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
278
|
Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med 2012; 33:399-417. [PMID: 22510306 PMCID: PMC3392472 DOI: 10.1016/j.mam.2012.03.009] [Citation(s) in RCA: 382] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 12/24/2022]
Abstract
The retina resides in an environment that is primed for the generation of reactive oxygen species (ROS) and resultant oxidative damage. The retina is one of the highest oxygen-consuming tissues in the human body. The highest oxygen levels are found in the choroid, but this falls dramatically across the outermost retina, creating a large gradient of oxygen towards the retina and inner segments of the photoreceptors which contain high levels of polyunsaturated fatty acids. This micro-environment together with abundant photosensitizers, visible light exposure and a high energy demand supports a highly oxidative milieu. However, oxidative damage is normally minimized by the presence of a range of antioxidant and efficient repair systems. Unfortunately, as we age oxidative damage increases, antioxidant capacity decreases and the efficiency of reparative systems become impaired. The result is retinal dysfunction and cell loss leading to visual impairment. It appears that these age-related oxidative changes are a hallmark of early age-related macular degeneration (AMD) which, in combination with hereditary susceptibility and other retinal modifiers, can progress to the pathology and visual morbidity associated with advanced AMD. This review reassesses the consequences of oxidative stress in AMD and strategies for preventing or reversing oxidative damage in retinal tissues.
Collapse
Affiliation(s)
- Stuart G Jarrett
- Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
279
|
Peng S, Gan G, Rao VS, Adelman RA, Rizzolo LJ. Effects of proinflammatory cytokines on the claudin-19 rich tight junctions of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2012; 53:5016-28. [PMID: 22761260 DOI: 10.1167/iovs.11-8311] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Chronic, subclinical inflammation contributes to the pathogenesis of several ocular diseases, including age-related macular degeneration. Proinflammatory cytokines affect tight junctions in epithelia that lack claudin-19, but in the retinal pigment epithelium claudin-19 predominates. We examined the effects of cytokines on the tight junctions of human fetal RPE (hfRPE). METHODS hfRPE was incubated with interleukin 1-beta (IL-1β), interferon-gamma (IFNγ), or tumor necrosis factor-alpha (TNFα), alone or in combination. Permeability and selectivity of the tight junctions were assessed using nonionic tracers and electrophysiology. Claudins, occludin, and ZO-1 were examined using PCR, immunoblotting, and confocal immunofluorescence microscopy. RESULTS Only TNFα consistently reduced transepithelial electrical resistance (TER) >80%. A serum-free medium revealed two effects of TNFα: (1) decreased TER was observed only when TNFα was added to the apical side of the monolayer, and (2) expression of TNFα receptors and inhibitors of apoptosis were induced from either side of the monolayer. In untreated cultures, tight junctions were slightly cation selective, and this was affected minimally by TNFα. The results were unexplained by effects on claudin-2, claudin-3, claudin-19, occludin, and ZO-1, but changes in the morphology of the junctions and actin cytoskeleton may have a role. CONCLUSIONS Claudin-19-rich tight junctions have low permeability for ionic and nonionic solutes, and are slightly cation-selective. Claudin-19 is not a direct target of TNFα. TNFα may protect RPE from apoptosis, but makes the monolayer leaky when it is presented to the apical side of the monolayer. Unlike other epithelia, IFNγ failed to augment the effect of TNFα on tight junctions.
Collapse
Affiliation(s)
- Shaomin Peng
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
280
|
Stewart MW. Clinical and differential utility of VEGF inhibitors in wet age-related macular degeneration: focus on aflibercept. Clin Ophthalmol 2012; 6:1175-86. [PMID: 22973088 PMCID: PMC3422153 DOI: 10.2147/opth.s33372] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) has become a major public health problem and a leading cause of blindness in industrialized nations. AMD results from the ageing eye's inability to metabolize and dispose completely of photoreceptor outer segments and other waste products. As a result, lipids, particularly apolipoproteins, accumulate within Bruch's membrane, leading to chronic ischemia and inflammation. The subsequent upregulation of inflammatory cytokines and growth factors, including vascular endothelial growth factor (VEGF), induces the growth of neovascular membranes from the choriocapillaris into the subretinal or subretinal pigment epithelium spaces. To counter this, intravitreally administered drugs (pegaptanib, bevacizumab, ranibizumab) that specifically target VEGF have become the standard treatment for exudative AMD. Aflibercept, a recently approved fusion protein, binds to all isoforms of both VEGF-A and placental growth factor with high affinity. Phase III trials showed that monthly or every other month injections of aflibercept prevent vision loss (fewer than 15 letters) in 95% of patients. Additionally, aflibercept injections every 4 or 8 weeks produce average vision gains of 6.9 letters to 10.9 letters, comparable with those achieved with monthly ranibizumab. After one year of regularly administered aflibercept injections, patients required an average of only 4.2 injections during the second year. Aflibercept promises to decrease the injection frequency required for many patients and appears to serve as an effective "salvage" therapy for patients who respond poorly to other anti-VEGF drugs.
Collapse
|
281
|
Kinnunen K, Petrovski G, Moe MC, Berta A, Kaarniranta K. Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmol 2012; 90:299-309. [PMID: 22112056 DOI: 10.1111/j.1755-3768.2011.02179.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Age-related macular degeneration (AMD) is attributed to a complex interaction of genetic and environmental factors. It is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium (RPE) and Bruch's membrane, as well as alterations in choroidal capillaries. AMD pathogenesis is strongly associated with chronic oxidative stress and inflammation that ultimately lead to protein damage, aggregation and degeneration of RPE. Specific degenerative findings for AMD are accumulation of intracellular lysosomal lipofuscin and extracellular drusens. In this review, we discuss thoroughly RPE-derived mechanisms in AMD pathology.
Collapse
Affiliation(s)
- Kati Kinnunen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
282
|
Mo C, Dai Y, Kang N, Cui L, He W. Ectopic expression of human MutS homologue 2 on renal carcinoma cells is induced by oxidative stress with interleukin-18 promotion via p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways. J Biol Chem 2012; 287:19242-54. [PMID: 22493490 DOI: 10.1074/jbc.m112.349936] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human MutS homologue 2 (hMSH2), a crucial element of the highly conserved DNA mismatch repair system, maintains genetic stability in the nucleus of normal cells. Our previous studies indicate that hMSH2 is ectopically expressed on the surface of epithelial tumor cells and recognized by both T cell receptor γδ (TCRγδ) and natural killer group 2 member D (NKG2D) on Vδ2 T cells. Ectopically expressed hMSH2 could trigger a γδ T cell-mediated cytolysis. In this study, we showed that oxidative stress induced ectopic expression of hMSH2 on human renal carcinoma cells. Under oxidative stress, both p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) pathways have been confirmed to mediate the ectopic expression of hMSH2 through the apoptosis-signaling kinase 1 (ASK1) upstream and activating transcription factor 3 (ATF3) downstream of both pathways. Moreover, renal carcinoma cell-derived interleukin (IL)-18 in oxidative stress was a prominent stimulator for ectopically induced expression of hMSH2, which was promoted by interferon (IFN)-γ as well. Finally, oxidative stress or pretreatment with IL-18 and IFN-γ enhanced γδ T cell-mediated cytolysis of renal carcinoma cells. Our results not only establish a mechanism of ectopic hMSH2 expression in tumor cells but also find a biological linkage between ectopic expression of hMSH2 and activation of γδ T cells in stressful conditions. Because γδ T cells play an important role in the early stage of innate anti-tumor response, γδ T cell activation triggered by ectopically expressed hMSH2 may be an important event in immunosurveillance for carcinogenesis.
Collapse
Affiliation(s)
- Chen Mo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|
283
|
Jiang K, To E, Cui JZ, Cao S, Gao J, Matsubara JA. Drusen and Pro-inflammatory Mediators in the Post-Mortem Human Eye. ACTA ACUST UNITED AC 2012; 3:208. [PMID: 24977103 PMCID: PMC4072635 DOI: 10.4172/2155-9570.1000208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kailun Jiang
- Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Eleanor To
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC, Canada
| | - Jing Z Cui
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC, Canada
| | - Sijia Cao
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC, Canada
| | - Jiangyuan Gao
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
284
|
Abstract
The human eye is subjected constantly to oxidative stress due to daily exposure to sunlight, high metabolic activities, and oxygen tension. Reactive oxygen species generated from environmental insults and pathological conditions render the human eye particularly vulnerable to oxidative damage. The ocular surface composed of the tear film, the cornea, and the aqueous humor forms the first physical and biochemical barrier of the eye and plays a pivotal role in combating free radicals. These ocular compartments are enriched in certain antioxidants in the form of metabolic enzymes or small molecules. Such an antioxidant defense system in the ocular surface is essential for the maintenance of redox homeostasis in the eye and protection against oxidative damage. Herein, we review the properties and functions of key constituent antioxidants of the ocular surface.
Collapse
Affiliation(s)
- Ying Chen
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | |
Collapse
|
285
|
Strategies for reducing or preventing the generation of oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:194586. [PMID: 22191011 PMCID: PMC3236599 DOI: 10.1155/2011/194586] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 12/14/2022]
Abstract
The reduction of oxidative stress could be achieved in three levels: by lowering exposure to environmental pollutants with oxidizing properties, by increasing levels of endogenous and exogenous antioxidants, or by lowering the generation of oxidative stress by stabilizing mitochondrial energy production and efficiency. Endogenous oxidative stress could be influenced in two ways: by prevention of ROS formation or by quenching of ROS with antioxidants. However, the results of epidemiological studies where people were treated with synthetic antioxidants are inconclusive and contradictory. Recent evidence suggests that antioxidant supplements (although highly recommended by the pharmaceutical industry and taken by many individuals) do not offer sufficient protection against oxidative stress, oxidative damage or increase the lifespan. The key to the future success of decreasing oxidative-stress-induced damage should thus be the suppression of oxidative damage without disrupting the wellintegrated antioxidant defense network. Approach to neutralize free radicals with antioxidants should be changed into prevention of free radical formation. Thus, this paper addresses oxidative stress and strategies to reduce it with the focus on nutritional and psychosocial interventions of oxidative stress prevention, that is, methods to stabilize mitochondria structure and energy efficiency, or approaches which would increase endogenous antioxidative protection and repair systems.
Collapse
|
286
|
Nagineni CN, Kommineni VK, William A, Detrick B, Hooks JJ. Regulation of VEGF expression in human retinal cells by cytokines: implications for the role of inflammation in age-related macular degeneration. J Cell Physiol 2011; 227:116-26. [PMID: 21374591 DOI: 10.1002/jcp.22708] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic inflammation is implicated in the pathogenesis of age-related macular degeneration (AMD). Choroidal neovascularization (CNV) observed in exudative form of AMD results in vision loss. Human retinal pigment epithelial cell (HRPE) layer and choroidal tissue are the primary pathological sites in AMD. Pathological and therapeutic evidences have strongly indicated the vascular endothelial growth factor (VEGF) molecules as critical components in CNV pathogenesis. In these studies, we used human primary HRPE and choroidal fibroblast cells (HCHF) prepared from adult donor eyes. The effects of inflammatory cytokine (IFN-γ+ TNF-α+IL-1β) mix (ICM) on global gene expression profiles in HRPE cells, revealed 10- and 9-fold increase in VEGF-A and VEGF-C expression, respectively. The microarray results were validated by quantitative RT-PCR and secretion of VEGFs proteins. IL-1β is the most potent in inducing VEGFs secretion followed by IFN-γ and TNF-α, and the secretion was more effective in the presence of 2 and 3 cytokines. NF-κB and JAK-STAT pathway, but not HIF-1α, Sp-1, Sp-3, and STAT-3, transcription factors were upregulated and translocated to nucleus by ICM treatment. The mRNA levels of VEGF-A and VEGF-C and secretion of these proteins were also significantly enhanced by ICM in HCHF cells. The secretion of other angiogenic molecules, PEDF, SDF-1α, endostatin, and angiopoietins was not affected by ICM. Our results show that the inflammatory cytokines enhance secretion of VEGF-A and VEGF-C by HRPE and HCHF cells. These studies indicate that VEGFs secreted by these cells initiate and promote pathological choroidal and retinal noevascularization processes in AMD.
Collapse
Affiliation(s)
- Chandrasekharam N Nagineni
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
287
|
Ultraviolet radiation: cellular antioxidant response and the role of ocular aldehyde dehydrogenase enzymes. Eye Contact Lens 2011; 37:206-13. [PMID: 21670692 DOI: 10.1097/icl.0b013e3182212642] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Solar ultraviolet radiation (UVR) exposes the human eye to near constant oxidative stress. Evidence suggests that UVR is the most important environmental insult leading to the development of a variety of ophthalmoheliosis disorders. UVR-induced reactive oxygen species (ROS) are highly reactive with DNA, proteins, and cellular membranes, resulting in cellular and tissue damage. Antioxidant defense systems present in ocular tissues function to combat ROS and protect the eye from oxidative damage. Important enzymatic antioxidants are the superoxide dismutases, catalase, glutathione peroxidases, glutathione reductase, and members of the aldehyde dehydrogenase (ALDH) superfamily. Glutathione, ascorbic and uric acids, α-tocopherol, nicotinamide-adenine dinucleotide phosphate, and ferritin serve as small molecule, nonenzymatic antioxidants. Ocular tissues have high levels of these antioxidants, which are essential for the maintenance of reduction-oxidation homeostasis in the eye and protection against oxidative damage. ALDH1A1 and ALDH3A1, present abundantly in the cornea and lens, have been shown to have unique roles in the defense against UVR and the downstream effects of oxidative stress. This review presents the properties and functions of ocular antioxidants that play critical roles in the cellular response to UVR exposure, including a focused discussion of the unique roles that the ALDH1A1 and ALDH3A1 enzymes have as multifunctional ocular antioxidants.
Collapse
|
288
|
Kawaji T, Elner VM, Yang DL, Clark A, Petty HR. Ischemia-induced nitrotyrosine formation and nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in human retinal pigment epithelium in vivo. Redox Rep 2011; 16:24-6. [PMID: 21605495 DOI: 10.1179/174329211x12968219310710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Reactive oxidative compounds including superoxide anions and nitric oxide are believed to play a central role in many blinding eye diseases. In the present study, we examine the effect of ischemia on human retinal pigment epithelial (RPE) cells in an unusual clinical case. We show that ischemia leads to extensive nitrotyrosine deposition in the RPE and choroid, thus indicating NO-dependent oxidative stress. We also show for the first time the in vivo translocation of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) to the nuclei of RPE cells. This enzyme's nuclear translocation has previously been demonstrated in vitro where it is a marker of apoptosis. Furthermore, nitrotyrosine deposition and GAPDH translocation have been duplicated in vitro using human RPE cells. Thus, nitrotyrosine formation and GAPDH trafficking to the nucleus may be observed during ischemic conditions.
Collapse
Affiliation(s)
- Takahiro Kawaji
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | | | | | | | | |
Collapse
|
289
|
Yang D, Elner SG, Chen X, Field MG, Petty HR, Elner VM. MCP-1-activated monocytes induce apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2011; 52:6026-34. [PMID: 21447688 DOI: 10.1167/iovs.10-7023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The inflammatory response in age-related macular degeneration (AMD) is characterized by mononuclear leukocyte infiltration of the outer blood-retina barrier formed by the retinal pigment epithelium (RPE). A key mechanistic element in AMD progression is RPE dysfunction and apoptotic cell loss. The purpose of this study was to evaluate whether monocyte chemoattractant protein (MCP)-1-activated monocytes induce human RPE apoptosis and whether Ca(2+) and reactive oxygen species (ROS) are involved in this process. METHODS A cell-based fluorometric assay was used to measure intracellular Ca(2+) concentrations ([Ca(2+)](i)) in RPE cells loaded with fluorescent Ca(2+) indicator. Intracellular RPE ROS levels were measured by using the 5- and 6-chloromethyl-2',7'-dichlorodihydrofluorescence diacetate acetyl ester (CM-H(2)DCFDA) assay. RPE apoptosis was evaluated by activated caspase-3, Hoechst staining, and apoptosis ELISA. RESULTS MCP-1-activated human monocytes increased [Ca(2+)](i), ROS levels, and apoptosis in RPE cells, all of which were inhibited by 8-bromo-cyclic adenosine diphosphoribosyl ribose (8-Br-cADPR), an antagonist of cADPR. Although the ROS scavengers pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) significantly inhibited ROS production and apoptosis induced by activated monocytes, they did not affect induced Ca(2+) levels. The induced Ca(2+) levels and apoptosis in RPE cells were inhibited by an antibody against cluster of differentiation antigen 14 (CD14), an adhesion molecule expressed by these cells. CONCLUSIONS These results indicate that CD14, Ca(2+), and ROS are involved in activated monocyte-induced RPE apoptosis and that cADPR contributes to these changes. Understanding the complex interactions among CD14, cADPR, Ca(2+), and ROS may provide new insights and treatments of retinal diseases, including AMD.
Collapse
Affiliation(s)
- Dongli Yang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105-0714, USA
| | | | | | | | | | | |
Collapse
|
290
|
Bambusae caulis in Liquamen Suppresses the Expression of Thymus and Activation-Regulated Chemokine and Macrophage-Derived Chemokine in Human Keratinocytes due to Antioxidant Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:617494. [PMID: 21785648 PMCID: PMC3137989 DOI: 10.1155/2012/617494] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/14/2011] [Indexed: 01/08/2023]
Abstract
Bambusae caulis in Liquamen (BCL), traditional herbal medicine used in East Asia, is known to have antioxidative and immune-regulating properties. We hypothesized that the potential antioxidant effects of BCL might suppress the production of thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) in human keratinocytes (HaCaT cell). The immune-regulating effect of BCL was demonstrated by antioxidant capacity using DPPH analysis and DCFH-DA analysis. We found that BCL had strong ROS scavenge effect in HaCaT cell. BCL also showed suppression of IFN-γ-induced expression of TARC and MDC, activation of NF-κB, and, moreover, significant block of IFN-γ-induced degradation and phosphorylation of IκB. However, it had no effects on phosphorylation of p38 MAPK. Collectively, these results suggest that BCL may have a therapeutic potential on skin disease such as atopic dermatitis by inhibiting Th2 chemokines which is due, at least in part, to its antioxidant capacities.
Collapse
|
291
|
Paimela T, Hyttinen JMT, Viiri J, Ryhänen T, Karjalainen RO, Salminen A, Kaarniranta K. Celastrol regulates innate immunity response via NF-κB and Hsp70 in human retinal pigment epithelial cells. Pharmacol Res 2011; 64:501-8. [PMID: 21683142 DOI: 10.1016/j.phrs.2011.05.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/25/2011] [Accepted: 05/31/2011] [Indexed: 12/22/2022]
Abstract
Elevated nuclear factor kappa B (NF-κB) activity and interleukin-6 (IL-6) secretion participates in the pathology of several age and inflammatory-related diseases, including age-related macular degeneration (AMD), in which retinal pigment epithelial cells are the key target. Recent findings reveal that heat shock protein 70 (Hsp70) may affect regulation of NF-κB. In the current study, effects of Hsp70 expression on NF-κB RelA/p65 activity were evaluated in human retinal pigment epithelial cells (ARPE-19) by using celastrol, a novel anti-inflammatory compound. Anti-inflammatory properties of celastrol were determined by measuring expression levels of IL-6 and endogenous NF-κB levels during lipopolysaccharide (LPS) exposure by using enzyme-linked immunosorbent assays (ELISA). Cell viability was measured by MTT and LDH assay, and Hsp70 expression levels were analyzed by Western blotting. ARPE-19 cells were transfected with hsp70 small interfering RNA (siRNA) in order to attenuate Hsp70 expression and activity of NF-κB RelA/p65 was measured using NF-κB consensus bound ELISA. Simultaneous exposures to LPS and celastrol reduced IL-6 expression levels as well as activity of phosphorylated NF-κB at serine 536 (Ser536) in ARPE-19 cells when compared to LPS exposure alone. In addition, inhibition of NF-κB RelA/p65 activity by celastrol was attenuated when Hsp70 response was silenced by siRNA. Favorable anti-inflammatory concentrations of celastrol showed no signs of cytotoxic response. Our findings reveal that celastrol is a novel plant compound which suppresses innate immunity response in human retinal pigment epithelial cells via NF-κB and Hsp70 regulation, and that Hsp70 is a critical regulator of NF-κB.
Collapse
Affiliation(s)
- Tuomas Paimela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
292
|
Reactive oxygen species hydrogen peroxide mediates Kaposi's sarcoma-associated herpesvirus reactivation from latency. PLoS Pathog 2011; 7:e1002054. [PMID: 21625536 PMCID: PMC3098240 DOI: 10.1371/journal.ppat.1002054] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 03/16/2011] [Indexed: 01/17/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a latent
infection in the host following an acute infection. Reactivation from latency
contributes to the development of KSHV-induced malignancies, which include
Kaposi's sarcoma (KS), the most common cancer in untreated AIDS patients,
primary effusion lymphoma and multicentric Castleman's disease. However,
the physiological cues that trigger KSHV reactivation remain unclear. Here, we
show that the reactive oxygen species (ROS) hydrogen peroxide
(H2O2) induces KSHV reactivation from latency through
both autocrine and paracrine signaling. Furthermore, KSHV spontaneous lytic
replication, and KSHV reactivation from latency induced by oxidative stress,
hypoxia, and proinflammatory and proangiogenic cytokines are mediated by
H2O2. Mechanistically, H2O2
induction of KSHV reactivation depends on the activation of mitogen-activated
protein kinase ERK1/2, JNK, and p38 pathways. Significantly,
H2O2 scavengers N-acetyl-L-cysteine (NAC), catalase
and glutathione inhibit KSHV lytic replication in culture. In a mouse model of
KSHV-induced lymphoma, NAC effectively inhibits KSHV lytic replication and
significantly prolongs the lifespan of the mice. These results directly relate
KSHV reactivation to oxidative stress and inflammation, which are physiological
hallmarks of KS patients. The discovery of this novel mechanism of KSHV
reactivation indicates that antioxidants and anti-inflammation drugs could be
promising preventive and therapeutic agents for effectively targeting KSHV
replication and KSHV-related malignancies. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of all
clinical forms of Kaposi's sarcoma (KS) and several other malignancies. The
life cycle of KSHV consists of latent and lytic phases. While establishment of
viral latency is essential for KSHV to evade host immune surveillances, viral
lytic replication promotes KSHV-induced malignancies. In this study, we show
that the reactive oxygen species (ROS) hydrogen peroxide
(H2O2) induces KSHV reactivation from latency.
Furthermore, induction of KSHV reactivation by oxidative stress, hypoxia, and
proinflammatory and proangiogenic cytokines, which are physiological hallmarks
in all clinical forms of KS patients, is mediated by H2O2.
Significantly, antioxidants inhibit H2O2-induced KSHV
lytic replication in culture and in a mouse model of KSHV-induced lymphoma.
These results show that ROS is likely an important physiological cue that
triggers KSHV replication. The discovery of this novel mechanism of KSHV
reactivation indicates that antioxidants and anti-inflammation drugs might be
promising preventive and therapeutic agents for effectively targeting KSHV
replication and KSHV-related malignancies.
Collapse
|
293
|
Lee HM, Sugino H, Aoki C, Nishimoto N. Underexpression of mitochondrial-DNA encoded ATP synthesis-related genes and DNA repair genes in systemic lupus erythematosus. Arthritis Res Ther 2011; 13:R63. [PMID: 21496236 PMCID: PMC3132058 DOI: 10.1186/ar3317] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/11/2011] [Accepted: 04/15/2011] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by various systemic symptoms and multiple organ damage. We clarify biological and functional abnormalities in SLE by comparing the gene expression profiles of SLE patients with those of healthy individuals. METHODS Gene expression profiles from the peripheral blood of 21 SLE patients and 45 healthy individuals were obtained using a DNA microarray. Gene ontology analysis and network pathway analysis were performed on the genes differentially expressed between SLE and healthy individuals. RESULTS A total of 2,329 upregulated genes and 1,884 downregulated genes were differentially expressed. Gene ontology analysis revealed that the upregulated genes were classified as response to biotic stimulus genes, which mainly includes genes related to immune response. Abnormalities in other categories such as cell motility and regulation of apoptosis were also revealed. Downregulated genes were mainly sorted into two gene categories, sensory perception and response to radiation/light. The sensory perception genes included ATPase/ATPase domain-containing genes, myosin-related genes, and two excision repair cross-complementing genes, which are involved in DNA repair. Other genes in this group--including three crystallin genes, genes encoding the receptor protein for melanocyte-stimulating hormone, and six mitochondrial-DNA encoded genes, which are involved in ATP synthesis--were also categorized as response to radiation genes. Using network pathway analysis, IL-6, transforming growth factor beta 1, TNF, and hepatocyte nuclear factor 4α were found to play central roles in the networks of sensory perception-related molecules. CONCLUSIONS Functional abnormalities in ATP synthesis and DNA repair are implicated in peripheral blood cells from SLE patients.
Collapse
Affiliation(s)
- Hooi-Ming Lee
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Hidehiko Sugino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Chieko Aoki
- Laboratory of Immune Regulation, Wakayama Medical University, 105 Saito Bio Innovation Center, 7-7-20 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Norihiro Nishimoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-Oka, Suita, Osaka 565-0871, Japan
- Laboratory of Immune Regulation, Wakayama Medical University, 105 Saito Bio Innovation Center, 7-7-20 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
294
|
Yang D, Elner SG, Clark AJ, Hughes BA, Petty HR, Elner VM. Activation of P2X receptors induces apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2011; 52:1522-30. [PMID: 21071745 DOI: 10.1167/iovs.10-6172] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The retinal pigment epithelium (RPE) is considered a primary site of pathology in age-related macular degeneration (AMD), which is the most prevalent form of irreversible blindness worldwide in the elderly population. Extracellular adenosine triphosphate (ATP) acts as a key signaling molecule in numerous cellular processes, including cell death. The purpose of this study was to determine whether extracellular ATP induces apoptosis in cultured human RPE. METHODS RPE apoptosis was evaluated by caspase-3 activation, Hoechst staining, and DNA fragmentation. Intracellular Ca(2+) levels were determined by both a cell-based fluorometric Ca(2+) assay and a ratiometric Ca(2+) imaging technique. P2X(7) mRNA and protein expression were detected by reverse transcription-polymerase chain reaction (RT-PCR) and confocal microscopy, respectively. RESULTS The authors found that both the endogenous P2X(7) agonist ATP and the synthetic, selective P2X(7) agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) induced RPE apoptosis, which was significantly inhibited by P2X(7) antagonist oxidized ATP (oATP) but not by the P2 receptor antagonist suramin; both ATP and BzATP increase intracellular Ca(2+) via extracellular Ca(2+) influx; both ATP- and BzATP-induced Ca(2+) responses were significantly inhibited by oATP but not by suramin; ATP-induced apoptosis was significantly inhibited or blocked by BAPTA-AM or by low or no extracellular Ca(2+); and P2X(7) receptor mRNA and protein were expressed in RPE cells. CONCLUSIONS These findings suggest that P2X receptors, especially P2X(7) receptors, contribute to ATP- and BzATP-induced Ca(2+) signaling and apoptosis in the RPE. Abnormal Ca(2+) homeostasis through the activation of P2X receptors could cause the dysfunction and apoptosis of RPE that underlie AMD.
Collapse
Affiliation(s)
- Dongli Yang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105-0714, USA
| | | | | | | | | | | |
Collapse
|
295
|
Woodfin A, Hu DE, Sarker M, Kurokawa T, Fraser P. Acute NADPH oxidase activation potentiates cerebrovascular permeability response to bradykinin in ischemia-reperfusion. Free Radic Biol Med 2011; 50:518-24. [PMID: 21167936 PMCID: PMC3038265 DOI: 10.1016/j.freeradbiomed.2010.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/12/2010] [Accepted: 12/08/2010] [Indexed: 12/02/2022]
Abstract
Free radical generation is a key event in cerebral reperfusion injury. Bradykinin (Bk) and interleukin-1β (IL-1β) have both been implicated in edema formation after stroke, although acute Bk application itself results in only a modest permeability increase. We have investigated the molecular mechanism by assessing the permeability of single pial venules in a stroke model. Increased permeability on reperfusion was dependent on the duration of ischemia and was prevented by applying the B(2) receptor antagonist HOE 140. Postreperfusion permeability increases were mimicked by applying Bk (5μM) for 10 min and blocked by coapplying the IL-1 receptor antagonist with Bk. Furthermore, 10 min pretreatment with IL-1β resulted in a 3 orders of magnitude leftward shift of the acutely applied Bk concentration-response curve. The left shift was abolished by scavenging free radicals with superoxide dismutase and catalase. Apocynin coapplied with IL-1β completely blocked the potentiation, implying that NADPH oxidase assembly is the immediate target of IL-1β. In conclusion, this is first demonstration that bradykinin, released during cerebral ischemia, leads to IL-1β release, which in turn activates NADPH oxidase leading to blood-brain barrier breakdown.
Collapse
|
296
|
Mehmeti I, Lenzen S, Lortz S. Modulation of Bcl-2-related protein expression in pancreatic beta cells by pro-inflammatory cytokines and its dependence on the antioxidative defense status. Mol Cell Endocrinol 2011; 332:88-96. [PMID: 20933054 DOI: 10.1016/j.mce.2010.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/03/2010] [Accepted: 09/28/2010] [Indexed: 12/27/2022]
Abstract
Pro-inflammatory cytokines are key mediators in the selective and progressive destruction of insulin-producing beta cells during type 1 diabetes development. However, the mechanisms of cytokine-induced beta cell apoptosis are not fully understood. This study demonstrates that pro-inflammatory cytokines strongly modified the expression of the anti-apoptotic protein Bcl-2 and the pro-apoptotic BH3-only proteins Bad, Bim, and Bid in primary rat islets and insulin-producing RINm5F cells. Overexpression of mitochondrially located catalase (MitoCatalase) specifically increased basal Bcl-2 and decreased basal Bax expression, suppressed cytokine-mediated reduction of Bcl-2, and thereby prevented the release of cytochrome c, Smac/DIABLO and the activation of caspase-9 and -3. Thus, cytokine-mediated decrease of Bcl-2 expression and the sequentially changed Bax/Bcl-2 ratio are responsible for the release of pro-apoptotic mitochondrial factors, activation of caspase-9, and ultimately caspase-3. These results indicate that activation of the intrinsic/mitochondrial apoptosis pathway is essential for cytokine-induced beta cell death and the mitochondrial generation of reactive oxygen species, in particular mitochondrial hydrogen peroxide, differentially regulates the Bax/Bcl-2 ratio.
Collapse
Affiliation(s)
- Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | | | | |
Collapse
|
297
|
Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 2011; 63:218-42. [PMID: 21228261 DOI: 10.1124/pr.110.002980] [Citation(s) in RCA: 434] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NADPH oxidase (Nox) has a dedicated function of generating reactive oxygen species (ROS). Accumulating evidence suggests that Nox has an important role in signal transduction in cellular stress responses. We have reviewed the current evidence showing that the Nox system can be activated by a collection of chemical, physical, and biological cellular stresses. In many circumstances, Nox activation fits to the cellular stress response paradigm, in that (1) the response can be initiated by various forms of cellular stresses; (2) Nox-derived ROS may activate mitogen-activated protein kinases (extracellular signal-regulated kinase, p38) and c-Jun NH(2)-terminal kinase, which are the core of the cell stress-response signaling network; and (3) Nox is involved in the development of stress cross-tolerance. Activation of the cell survival pathway by Nox may promote cell adaptation to stresses, whereas Nox may also convey signals toward apoptosis in irreversibly injured cells. At later stage after injury, Nox is involved in tissue repair by modulating cell proliferation, angiogenesis, and fibrosis. We suggest that Nox may have an integral role in cell stress responses and the subsequent tissue repair process. Understanding Nox-mediated redox signaling mechanisms may be of prominent significance at the crossroads of directing cellular responses to stress, aiming at either enhancing the stress resistance (in such situations as preventing ischemia-reperfusion injuries and accelerating wound healing) or sensitizing the stress-induced cytotoxicity for proliferative diseases such as cancer. Therefore, an optimal outcome of interventions on Nox will only be achieved when this is dealt with in a timely and disease-and stage-specific manner.
Collapse
Affiliation(s)
- Fan Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China.
| | | | | |
Collapse
|
298
|
Jiang K, Cao S, Cui JZ, Matsubara JA. Immuno-modulatory Effect of IFN-gamma in AMD and its Role as a Possible Target for Therapy. ACTA ACUST UNITED AC 2011; Suppl 2:0071-76. [PMID: 24977104 PMCID: PMC4071053 DOI: 10.4172/2155-9570-s2-007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Age-related macular degeneration (AMD) is a neurodegenerative disease characterized by retinal cell atrophy, and/or choroidal neovascularization in the macula and constitutes the most common cause of blindness among the elderly in industrialized countries. The management of AMD is constrained by our insufficient knowledge of its underlying mechanisms. Recent studies point towards an emerging involvement of interferon-gamma (IFN-γ), a soluble cytokine associated with innate and adaptive immunity. IFN-γ promotes proinflammatory responses by activating proinflammatory cytokines and chemokines, thereby recruiting immune cells such as macrophages and T cells. On the other hand, IFN-γ modulates inflammatory response by upregulating anti-inflammatory factors or inhibiting development of immune cells related to autoimmune response. The complex role of IFN-γ in AMD pathogenesis is intriguing and worth further investigation in terms of therapeutic development.
Collapse
Affiliation(s)
- Kailun Jiang
- Department of Ophthalmology and Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada
| | - Sijia Cao
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver BC, Canada
| | - Jing Z Cui
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
299
|
Sata M, Fukuda D. Chronic inflammation and atherosclerosis : A critical role for renin angiotensin system that is activated by lifestyle-related diseases. Inflamm Regen 2011. [DOI: 10.2492/inflammregen.31.245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
300
|
Lofgren JL, Whary MT, Ge Z, Muthupalani S, Taylor NS, Mobley M, Potter A, Varro A, Eibach D, Suerbaum S, Wang TC, Fox JG. Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology 2011; 140:210-20. [PMID: 20950613 PMCID: PMC3006487 DOI: 10.1053/j.gastro.2010.09.048] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 08/31/2010] [Accepted: 09/17/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Transgenic FVB/N insulin-gastrin (INS-GAS) mice have high circulating gastrin levels, and develop spontaneous atrophic gastritis and gastrointestinal intraepithelial neoplasia (GIN) with 80% prevalence 6 months after Helicobacter pylori infection. GIN is associated with gastric atrophy and achlorhydria, predisposing mice to nonhelicobacter microbiota overgrowth. We determined if germfree INS-GAS mice spontaneously develop GIN and if H pylori accelerates GIN in gnotobiotic INS-GAS mice. METHODS We compared gastric lesions, levels of messenger RNA, serum inflammatory mediators, antibodies, and gastrin among germfree and H pylori-monoinfected INS-GAS mice. Microbiota composition of specific pathogen-free (SPF) INS-GAS mice was quantified by pyrosequencing. RESULTS Germfree INS-GAS mice had mild hypergastrinemia but did not develop significant gastric lesions until 9 months old and did not develop GIN through 13 months. H pylori monoassociation caused progressive gastritis, epithelial defects, oxyntic atrophy, marked foveolar hyperplasia, dysplasia, and robust serum and tissue proinflammatory immune responses (particularly males) between 5 and 11 months postinfection (P<0.05, compared with germfree controls). Only 2 of 26 female, whereas 8 of 18 male, H pylori-infected INS-GAS mice developed low to high-grade GIN by 11 months postinfection. Stomachs of H pylori-infected SPF male mice had significant reductions in Bacteroidetes and significant increases in Firmicutes. CONCLUSIONS Gastric lesions take 13 months longer to develop in germfree INS-GAS mice than male SPF INS-GAS mice. H pylori monoassociation accelerated gastritis and GIN but caused less severe gastric lesions and delayed onset of GIN compared with H pylori-infected INS-GAS mice with complex gastric microbiota. Changes in gastric microbiota composition might promote GIN in achlorhydric stomachs of SPF mice.
Collapse
Affiliation(s)
- Jennifer L. Lofgren
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mark T. Whary
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nancy S. Taylor
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Melissa Mobley
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Amanda Potter
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Andrea Varro
- Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Daniel Eibach
- Medizinische Hochschule Hannover, Institut für Medizinische Mikrobiologie und Krankenhaushygiene, D-30625 Hannover, Germany
| | - Sebastian Suerbaum
- Medizinische Hochschule Hannover, Institut für Medizinische Mikrobiologie und Krankenhaushygiene, D-30625 Hannover, Germany
| | - Timothy C. Wang
- Medizinische Hochschule Hannover, Institut für Medizinische Mikrobiologie und Krankenhaushygiene, D-30625 Hannover, Germany
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|