251
|
CircRNA CDR1as promotes hepatoblastoma proliferation and stemness by acting as a miR-7-5p sponge to upregulate KLF4 expression. Aging (Albany NY) 2020; 12:19233-19253. [PMID: 33052880 PMCID: PMC7732296 DOI: 10.18632/aging.103748] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Hepatoblastoma (HB) is a malignant embryonal tumor of the liver that consists of heterogenous populations of stem/progenitor cells. Although circular RNAs (circRNAs) play an essential role in tumor development, the effects of circRNA on the proliferation of HB cells, especially cancer stem cells (CSCs), remain unclear. We found that the circRNA, CDR1as, was highly expressed in CSC-enriched populations of HB cell lines. Results from flow cytometric and sphere-forming assays revealed that CDR1as knockdown in HB cell lines decreased the proportion of stem cells. The Cell Counting Kit-8 (CCK-8) assay, colony formation experiments, and EdU assay revealed that CDR1as knockdown in HB cell lines decreased cell growth and the colony-forming abilities. Biotin-coupled probe pull-down assays and biotin-coupled microRNA capture were conducted to evaluate the interaction between CDR1as and miR-7-5p. Dual-luciferase reporter assays demonstrated that Kruppel-like factor 4 (KLF4), expression of which is highly correlated with cancer stemness, was a target of miR-7-5p. Overall, the knockdown of CDR1as significantly inhibited the proliferation and stemness of HB cells by reducing the sponge activity on miR-7-5p and subsequently suppressing the interaction between miR-7-5p and KLF4. Results from this study suggest that CDR1as is an oncogene that effects the proliferation and stemness of HBs.
Collapse
|
252
|
Differentiation Potential of Early- and Late-Passage Adipose-Derived Mesenchymal Stem Cells Cultured under Hypoxia and Normoxia. Stem Cells Int 2020; 2020:8898221. [PMID: 33014073 PMCID: PMC7519987 DOI: 10.1155/2020/8898221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
With an increasing focus on the large-scale expansion of mesenchymal stem cells (MSCs) required for clinical applications for the treatment of joint and bone diseases such as osteoarthritis, the optimisation of conditions for in vitro MSC expansion requires careful consideration to maintain native MSC characteristics. Physiological parameters such as oxygen concentration, media constituents, and passage numbers influence the properties of MSCs and may have major impact on their therapeutic potential. Cells grown under hypoxic conditions have been widely documented in clinical use. Culturing MSCs on large scale requires bioreactor culture; however, it is challenging to maintain low oxygen and other physiological parameters over several passages in large bioreactor vessels. The necessity to scale up the production of cells in vitro under normoxia may affect important attributes of MSCs. For these reasons, our study investigated the effects of normoxic and hypoxic culture condition on early- and late-passage adipose-derived MSCs. We examined effect of each condition on the expression of key stem cell marker genes POU5F1, NANOG, and KLF4, as well as differentiation genes RUNX2, COL1A1, SOX9, COL2A1, and PPARG. We found that expression levels of stem cell marker genes and osteogenic and chondrogenic genes were higher in normoxia compared to hypoxia. Furthermore, expression of these genes reduced with passage number, with the exception of PPARG, an adipose differentiation marker, possibly due to the adipose origin of the MSCs. We confirmed by flow cytometry the presence of cell surface markers CD105, CD73, and CD90 and lack of expression of CD45, CD34, CD14, and CD19 across all conditions. Furthermore, in vitro differentiation confirmed that both early- and late-passage adipose-derived MSCs grown in hypoxia or normoxia could differentiate into chondrogenic and osteogenic cell types. Our results demonstrate that the minimal standard criteria to define MSCs as suitable for laboratory-based and preclinical studies can be maintained in early- or late-passage MSCs cultured in hypoxia or normoxia. Therefore, any of these culture conditions could be used when scaling up MSCs in bioreactors for allogeneic clinical applications or tissue engineering for the treatment of joint and bone diseases such as osteoarthritis.
Collapse
|
253
|
Tiwari A, Swamynathan S, Jhanji V, Swamynathan SK. KLF4 Coordinates Corneal Epithelial Apical-Basal Polarity and Plane of Cell Division and Is Downregulated in Ocular Surface Squamous Neoplasia. Invest Ophthalmol Vis Sci 2020; 61:15. [PMID: 32396634 PMCID: PMC7409308 DOI: 10.1167/iovs.61.5.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Previously, we demonstrated that Krüppel-like factor 4 (KLF4) promotes corneal epithelial (CE) homeostasis by suppressing epithelial-mesenchymal transition (EMT) and TGF-β signaling. As TGF-β affects epithelial apicobasal polarity (ABP) and plane of division, we investigated the role of KLF4 in these processes. Methods Klf4 was ablated in adult ternary transgenic Klf4Δ/ΔCE (Klf4LoxP/LoxP/Krt12rtTA/rtTA/Tet-O-Cre) mouse CE using doxycycline chow. ABP and plane of division markers’ expression in Klf4Δ/ΔCE and human ocular surface squamous neoplasia (OSSN) tissues relative to controls was evaluated by quantitative PCR, immunoblots, and/or immunofluorescent staining. Results Klf4Δ/ΔCE CE cells displayed downregulation of apical Pals1 and Crumbs1, apicolateral Par3, and basolateral Scribble, as well as upregulation of Rho family GTPase Cdc42, suggesting disruption of ABP. Phalloidin staining revealed that the Klf4Δ/ΔCE CE actin cytoskeleton is disrupted. Klf4Δ/ΔCE cells favored vertical plane of division within 67.5° to 90° of the CE basement membrane (39% and 47% of the dividing cells relative to 23% and 26% in the control based on phospho-histone-H3 and survivin, respectively), resulting in more dividing cells within the Klf4Δ/ΔCE CE as reported previously. KLF4 was downregulated in human OSSN tissues that displayed EMT and downregulation of PAR3, PALS1, and SCRIB, consistent with a protective role for KLF4. Conclusions By demonstrating that Klf4 ablation affects CE expression of ABP markers and Cdc42, cytoskeletal actin organization, and the plane of cell division and that KLF4 is downregulated in OSSN tissues that display EMT and lack ABP, these results elucidate the key integrative role of KLF4 in coordinating CE cell polarity and plane of division, loss of which results in OSSN.
Collapse
|
254
|
Zhang G, Chen F, Wu P, Li T, He M, Yin X, Shi H, Duan Y, Zhang T, Wang J, Xie K, Dai G. MicroRNA-7 Targets the KLF4 Gene to Regulate the Proliferation and Differentiation of Chicken Primary Myoblasts. Front Genet 2020; 11:842. [PMID: 33193566 PMCID: PMC7530283 DOI: 10.3389/fgene.2020.00842] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
The proliferation and differentiation of chicken primary myoblasts (CPMs) play an important role in the development of skeletal muscle. In our previous research, RNA-seq analysis showed that microRNA-7 (miR-7) was relatively highly expressed in the proliferation phase of CPMs, but its expression level decreased significantly after CPMS-induced differentiation. Meanwhile, the mechanism by which the miR-7 regulates the proliferation and differentiation of CPMs is still unknown. In this study, we found that the expression levels of miR-7 and the Krüppel-like factor 4 (KLF4) gene were negatively correlated during the embryonic phase, and in vitro induced differentiation. A dual-luciferase assay and a rescue experiment show that there is a target relationship between miR-7 and the KLF4 gene. Meanwhile, the results show that overexpression of miR-7 inhibited the proliferation and differentiation of CPMs, while inhibition of miR-7 had the opposite effects. Furthermore, overexpression of the KLF4 gene was found to significantly promote the proliferation and differentiation of CPMs. Conversely, inhibition of the KLF4 gene was able to significantly decrease the proliferation and differentiation of CPMs. Our results demonstrate, for the first time, that miR-7 inhibits the proliferation and differentiation of myoblasts by targeting the KLF4 gene in chicken primary myoblasts.
Collapse
Affiliation(s)
- Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - TingTing Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Xuemei Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Huiqiang Shi
- Jiangsu Jinghai Poultry Group Co., Ltd., Nantong, China
| | - Yanjun Duan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
255
|
Liu WH, Mrozek-Gorska P, Wirth AK, Herold T, Schwarzkopf L, Pich D, Völse K, Melo-Narváez MC, Carlet M, Hammerschmidt W, Jeremias I. Inducible transgene expression in PDX models in vivo identifies KLF4 as a therapeutic target for B-ALL. Biomark Res 2020; 8:46. [PMID: 32944247 PMCID: PMC7493381 DOI: 10.1186/s40364-020-00226-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Background Clinically relevant methods are not available that prioritize and validate potential therapeutic targets for individual tumors, from the vast amount of tumor descriptive expression data. Methods We established inducible transgene expression in clinically relevant patient-derived xenograft (PDX) models in vivo to fill this gap. Results With this technique at hand, we analyzed the role of the transcription factor Krüppel-like factor 4 (KLF4) in B-cell acute lymphoblastic leukemia (B-ALL) PDX models at different disease stages. In competitive preclinical in vivo trials, we found that re-expression of wild type KLF4 reduced the leukemia load in PDX models of B-ALL, with the strongest effects being observed after conventional chemotherapy in minimal residual disease (MRD). A nonfunctional KLF4 mutant had no effect on this model. The re-expression of KLF4 sensitized tumor cells in the PDX model towards systemic chemotherapy in vivo. It is of major translational relevance that azacitidine upregulated KLF4 levels in the PDX model and a KLF4 knockout reduced azacitidine-induced cell death, suggesting that azacitidine can regulate KLF4 re-expression. These results support the application of azacitidine in patients with B-ALL as a therapeutic option to regulate KLF4. Conclusion Genetic engineering of PDX models allows the examination of the function of dysregulated genes like KLF4 in a highly clinically relevant translational context, and it also enables the selection of therapeutic targets in individual tumors and links their functions to clinically available drugs, which will facilitate personalized treatment in the future.
Collapse
Affiliation(s)
- Wen-Hsin Liu
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Anna-Katharina Wirth
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - Tobias Herold
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany.,Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Larissa Schwarzkopf
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Kerstin Völse
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - M Camila Melo-Narváez
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Michela Carlet
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
256
|
Chen M, Ye AX, Wei J, Wang R, Poon K. Deoxycholic Acid Upregulates the Reprogramming Factors KFL4 and OCT4 Through the IL-6/STAT3 Pathway in Esophageal Adenocarcinoma Cells. Technol Cancer Res Treat 2020; 19:1533033820945302. [PMID: 32869704 PMCID: PMC7469721 DOI: 10.1177/1533033820945302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells, a special subgroup of cancer cells, have self-renewal capabilities and multidirectional potential, which may be reprogrammed from the dedifferentiation of cancer cells, contributing to the failure of clinical treatments. Esophageal adenocarcinoma grows in an inflammatory environment stimulated by deoxycholic acid, an important component of gastroesophageal reflux content, contributing to the transformation of esophageal squamous epithelium to the precancerous lesions of esophageal adenocarcinoma, that is, Barrett esophagus. In the present study, deoxycholic acid was used to investigate whether it could induce the expression of reprogramming factors Krüppel-like factor, OCT4, and Nanog; the transformation to cancer stem cells in esophageal adenocarcinoma; and the involvement of the interleukin-6/signal transduction and activation of transcription 3 inflammatory signaling pathway. OE33 cells were treated with deoxycholic acid (250 μM) for 0 hour, 3 hours, 6 hours, and 12 hours before evaluating the messenger RNA expression of Krüppel-like factor, OCT4, Nanog, interleukin-6, and Bcl-xL by reverse transcription-quantitative polymerase chain reaction. Interleukin-6 protein was detected by enzyme linked immunosorbent assay, while signal transduction and activation of transcription 3, phosphorylated signal transduction and activation of transcription 3, Krüppel-like factor, and OCT4 were detected by Western blot. Signal transduction and activation of transcription 3 small interfering RNA and human recombinant interleukin-6 were used to treat OE33 cells and to detect their effects on Krüppel-like factor, OCT4, Nanog, CD44, hypoxia-inducible factor 1-α, and Bcl-xL expression. Results showed that deoxycholic acid promotes the expression of reprogramming factors Krüppel-like factor and OCT4, which are regulated by the interleukin-6/signal transduction and activation of transcription 3 signaling pathway. Deoxycholic acid has a malignancy-inducing effect on the transformation of esophageal adenocarcinoma stem cells, improving the antiapoptotic ability of tumors, and increasing the malignancy of esophageal adenocarcinoma. Deactivating the regulatory signaling pathway of interleukin-6/signal transduction and activation of transcription 3 and neutralizing deoxycholic acid may be novel targets for improving the clinical efficacy of esophageal adenocarcinoma therapy.
Collapse
Affiliation(s)
- Mei Chen
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China
| | - AXiaojun Ye
- Division of Science and Technology, Program of Food Science and Technology, 125809BNU-HKBU United International College, Tangjiawan, Zhuhai, Guangdong, People's Republic of China
| | - Jingxi Wei
- Division of Science and Technology, Program of Food Science and Technology, 125809BNU-HKBU United International College, Tangjiawan, Zhuhai, Guangdong, People's Republic of China
| | - Ruihua Wang
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China
| | - Karen Poon
- Division of Science and Technology, Program of Food Science and Technology, 125809BNU-HKBU United International College, Tangjiawan, Zhuhai, Guangdong, People's Republic of China
| |
Collapse
|
257
|
Khan MJ, Singh P, Dohare R, Jha R, Rahmani AH, Almatroodi SA, Ali S, Syed MA. Inhibition of miRNA-34a Promotes M2 Macrophage Polarization and Improves LPS-Induced Lung Injury by Targeting Klf4. Genes (Basel) 2020; 11:genes11090966. [PMID: 32825525 PMCID: PMC7563942 DOI: 10.3390/genes11090966] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an outcome of an accelerated immune response that starts initially as a defensive measure, however, due to non-canonical signaling, it later proves to be fatal not only to the affected tissue but to the whole organ system. microRNAs are known for playing a decisive role in regulating the expression of genes involved in diverse functions such as lung development, repair, and inflammation. In-silico analyses of clinical data and microRNA databases predicted a probable interaction between miRNA-34a (miR-34a), mitogen-activated protein kinase 1 (ERK), and kruppel like factor 4 (Klf4). Parallel to in silico results, here, we show that intra-tracheal instillation of lipopolysaccharides (LPS) to mice enhanced miR-34a expression in lung macrophages. Inhibition of miR-34a significantly improved lung histology, whereas over-expression of miR-34a worsened the lung injury phenotype. miR-34a over-expression in macrophages were also demonstrated to favour pro-inflammatory M1 phenotype and inhibition of M2 polarization. In a quest to confirm this likely interaction, expression profiles of Klf4 as the putative target were analyzed in different macrophage polarizing conditions. Klf4 expression was found to be prominent in the miR-34a inhibitor-treated group but down-regulated in the miR-34a mimic treated group. Immuno-histopathological analyses of lung tissue from the mice treated with miR-34a inhibitor also showed reduced inflammatory M1 markers as well as enhanced cell proliferation. The present study indicates that miR-34a intensified LPS-induced lung injury and inflammation by regulating Klf4 and macrophage polarization, which may serve as a potential therapeutic target for acute lung injury/ARDS.
Collapse
Affiliation(s)
- Mohd Junaid Khan
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.); (R.J.)
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.); (R.J.)
| | - Rishabh Jha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.); (R.J.)
| | - Arshad H. Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.H.R.); (S.A.A.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.H.R.); (S.A.A.)
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi 110025, India;
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Correspondence: ; Tel.: +91-995-378-6440
| |
Collapse
|
258
|
KLF4 Exerts Sedative Effects in Pentobarbital-Treated Mice. J Mol Neurosci 2020; 71:596-606. [PMID: 32789565 DOI: 10.1007/s12031-020-01680-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
KLF4 is a zinc-finger transcription factor that plays an essential role in many biological processes, including neuroinflammation, neuron regeneration, cell proliferation, and apoptosis. Through effects on these processes, KLF4 has likely roles in Alzheimer's disease, Parkinson's disease, and traumatic brain injury. However, little is known about the role of KLF4 in more immediate behavioral processes that similarly depend upon broad changes in brain excitability, such as the sleep process. Here, behavioral approaches, western blot, and immunohistochemical experiments were used to explore the role of KLF4 on sedation and the potential mechanisms of those effects. The results showed that overexpression of KLF4 prolonged loss of righting reflex (LORR) duration in pentobarbital-treated mice and increased c-Fos expression in the lateral hypothalamus (LH) and the ventrolateral preoptic nucleus (VLPO), while it decreased c-Fos expression in the tuberomammillary nucleus (TMN). Moreover, overexpression of KLF4 reduced the expression of p53 in the hypothalamus and increased the expression of STAT3 in the hypothalamus. Therefore, these results suggest that KLF4 exerts sedative effects through the regulation of p53 and STAT3 expression, and it indicates a role of KLF4 ligands in the treatment of sleep disorders.
Collapse
|
259
|
Xue M, Zhou C, Zheng Y, Zhang Z, Wang S, Fu Y, Atyah M, Xue X, Zhu L, Dong Q, Jia H, Ren N, Hu R. The association between KLF4 as a tumor suppressor and the prognosis of hepatocellular carcinoma after curative resection. Aging (Albany NY) 2020; 12:15566-15580. [PMID: 32756012 PMCID: PMC7467357 DOI: 10.18632/aging.103592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/13/2020] [Indexed: 12/11/2022]
Abstract
Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor in klfs family, is known for its crucial role in regulating cell growth, proliferation, and differentiation. This research aimed to explore the prognostic significance of KLF4 in hepatocellular carcinoma’s (HCC) patients after curative resection and the role of KLF4 in HCC progression. There were 185 HCC patients who had hepatectomy from July 2010 to July 2011 included in this study. KLF4 expression was detected by microarray immunohistochemical technique, western blot, and qRT-PCR. Then, the correlation between the prognosis of patients and KLF4 expression was evaluated based on patients’ follow-up data. The research found KLF4 expression was significantly downregulated in HCC tissues compared to para-tumorous tissues. More importantly, the overall survival rate (OS) and recurrence-free survival rate (RFS) of HCC patients with low KLF4 expression were both significantly decreased compared to those with a high level of KLF4. Further function and mechanism analysis showed that KLF4 could inhibit the proliferation, migration, invasion and epithelial-mesenchymal transition of HCC cells. The study revealed that KLF4 was not only a tumor suppressor in HCC but also can be regarded as a valuable prognostic factor and potential biological target for diagnosis and treatment in HCC patients.
Collapse
Affiliation(s)
- Min Xue
- Department of Biochemistry and Molecular Biology, Laboratory of Molecular Biology, Anhui Medical University, Hefei, China
| | - Chenhao Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ziping Zhang
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Manar Atyah
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolong Xue
- Department of Biochemistry and Molecular Biology, Laboratory of Molecular Biology, Anhui Medical University, Hefei, China
| | - Le Zhu
- Department of Biochemistry and Molecular Biology, Laboratory of Molecular Biology, Anhui Medical University, Hefei, China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Ruolei Hu
- Department of Biochemistry and Molecular Biology, Laboratory of Molecular Biology, Anhui Medical University, Hefei, China
| |
Collapse
|
260
|
Barth DA, Juracek J, Slaby O, Pichler M, Calin GA. lncRNA and Mechanisms of Drug Resistance in Cancers of the Genitourinary System. Cancers (Basel) 2020; 12:cancers12082148. [PMID: 32756406 PMCID: PMC7463785 DOI: 10.3390/cancers12082148] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023] Open
Abstract
Available systemic treatment options for cancers of the genitourinary system have experienced great progress in the last decade. However, a large proportion of patients eventually develop resistance to treatment, resulting in disease progression and shorter overall survival. Biomarkers indicating the increasing resistance to cancer therapies are yet to enter clinical routine. Long non-coding RNAs (lncRNA) are non-protein coding RNA transcripts longer than 200 nucleotides that exert multiple types of regulatory functions of all known cellular processes. Increasing evidence supports the role of lncRNAs in cancer development and progression. Additionally, their involvement in the development of drug resistance across various cancer entities, including genitourinary malignancies, are starting to be discovered. Consequently, lncRNAs have been suggested as factors in novel therapeutic strategies to overcome drug resistance in cancer. In this review, the existing evidences on lncRNAs and their involvement in mechanisms of drug resistance in cancers of the genitourinary system, including renal cell carcinoma, bladder cancer, prostate cancer, and testicular cancer, will be highlighted and discussed to facilitate and encourage further research in this field. We summarize a significant number of lncRNAs with proposed pathways in drug resistance and available reported studies.
Collapse
Affiliation(s)
- Dominik A. Barth
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (D.A.B.); (M.P.)
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jaroslav Juracek
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic;
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Ondrej Slaby
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic;
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (D.A.B.); (M.P.)
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Correspondence:
| |
Collapse
|
261
|
Yang J, Xie K, Wang Z, Li C. Elevated KLF7 levels may serve as a prognostic signature and might contribute to progression of squamous carcinoma. FEBS Open Bio 2020; 10:1577-1586. [PMID: 32536035 PMCID: PMC7396437 DOI: 10.1002/2211-5463.12912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023] Open
Abstract
Global efforts have been undertaken to define the genome-wide distribution of epigenetic markers in cancerous tissues, which provide an invaluable opportunity to understand cancer biology and identify predictive signatures. Several studies have focused on the gene expression patterns of squamous carcinoma to identify tumor subtypes and find prognostic and therapeutic targets because squamous carcinoma genomes showed high instability. However, the number of reliable reports referring prognostic significance of genes and their role in squamous carcinoma is still quite limited. Krüppel-like factor 7 (KLF7) is a transcription factor that is widely expressed in numerous human tissues at low levels. Members of the KLF family have established roles in tumor cell fate, stress response, cell survival and the tumor-initiating properties of cancer stem-like cells. Hence to investigate whether KFL7 expression from cancer tissue holds promise as a prognostic and/or therapeutic target, we analyzed gene expression profiles from squamous carcinoma and surgical margin tissues in The Cancer Genome Atlas. We identified significant up-regulation of KLF7 in squamous carcinoma, which was confirmed by immunohistochemical staining. Elevated KLF7 expression was associated with poor squamous carcinoma prognosis before and after correcting for confounding factors by multivariate Cox regression analysis. Several pathways, such as Neurotrophin and GnRH pathways, were activated in KLF7-up-regulated squamous carcinoma samples through Gene Set Enrichment Analysis. In conclusion, we consolidate the potential role(s) of KLF7 in squamous carcinoma carcinogenesis from The Cancer Genome Atlas surgical margin tissue, offering insights into expression signatures that are potentially useful for prognosis modalities.
Collapse
Affiliation(s)
- Jingrun Yang
- Department of DermatologyPLA General HospitalBeijingChina
| | - Kuixia Xie
- Dermatological DepartmentTianjin Fifth Centre HospitalTianjinChina
| | - Zihui Wang
- Department of PharmacyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Chengxin Li
- Department of DermatologyPLA General HospitalBeijingChina
| |
Collapse
|
262
|
Cheng J, Lin M, Chu M, Gong L, Bi Y, Zhao Y. Emerging role of FBXO22 in carcinogenesis. Cell Death Discov 2020; 6:66. [PMID: 32793396 PMCID: PMC7385156 DOI: 10.1038/s41420-020-00303-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
The F-box protein 22 (FBXO22), one of F-box proteins, has been identified to be critically involved in carcinogenesis. FBXO22 promotes proliferation in breast cancer and lung cancer, but suppresses migration and metastasis. FBXO22 exerts oncogenetic functions via promoting the ubiquitination and degradation of its substrates, including KDM4A, KDM4B, methylated p53, p21, KLF4, LKB1, Snail, CD147, Bach1, PTEN, and HDM2. FBXO22 is also regulated by several regulatory factors such as p53, miR-155, SNHG14, and circ_0006282. In this review, we summarize the regulatory factors and downstream targets of FBXO22 in cancers, discuss its functions in tumorigenesis, and further highlight the alteration of FBXO22 expression in a variety of human malignancies. Finally, we provide novel insights for future perspectives on targeting FBXO22 as a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Jiangting Cheng
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Man Chu
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Longyuan Gong
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Bi
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
263
|
Ibrahim MA, Mohammed SA, Elhabak DM. Role of KLF2: New insight in inflammatory acne pathogenesis. J Cosmet Dermatol 2020; 20:964-970. [PMID: 32623820 DOI: 10.1111/jocd.13595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Acne is an inflammatory skin condition of pilosebaceous unit. Its pathogenesis is multifactorial with a central role of inflammatory and pro-inflammatory cytokines mediators. Downregulated Kruppel-like factor 2 (KLF2) leads to rapid secretion of many cytokines that are involved in acne pathogenesis. AIMS This study aimed at evaluating the level of KLF2 mRNA, clarifying its role in acne pathogenesis and its relation to acne lesion type, degree of severity, and outcome. PATIENTS AND METHODS The level of KLF2 mRNA was measured in 100 patients with acne and 50 age- and sex-matched healthy controls by using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The value of KLF2 mRNA was lower in acne patients than control group (P < .001), being lowest in inflammatory acne group (grades III, IV, and V) than noninflammatory acne group (grades I and II) and highest in the control group (P < .001). KLF2 mRNA was decreased significantly with increased acne severity grade (P < .001). KLF2 mRNA was lower in cases healed by scars than those healed by postinflammatory hyperpigmentation. CONCLUSIONS Decreased serum level of KLF2 is not only a claimed for AV pathogenesis but also a predictor for degree of acne severity and outcome.
Collapse
Affiliation(s)
- Menha A Ibrahim
- Dermatology, Venereology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Shuzan Ali Mohammed
- Medical Biochemistry &Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Doaa M Elhabak
- Dermatology, Venereology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
264
|
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B, Cheng SY. Stem cell programs in cancer initiation, progression, and therapy resistance. Am J Cancer Res 2020; 10:8721-8743. [PMID: 32754274 PMCID: PMC7392012 DOI: 10.7150/thno.41648] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, substantial evidence has convincingly revealed the existence of cancer stem cells (CSCs) as a minor subpopulation in cancers, contributing to an aberrantly high degree of cellular heterogeneity within the tumor. CSCs are functionally defined by their abilities of self-renewal and differentiation, often in response to cues from their microenvironment. Biological phenotypes of CSCs are regulated by the integrated transcriptional, post-transcriptional, metabolic, and epigenetic regulatory networks. CSCs contribute to tumor progression, therapeutic resistance, and disease recurrence through their sustained proliferation, invasion into normal tissue, promotion of angiogenesis, evasion of the immune system, and resistance to conventional anticancer therapies. Therefore, elucidation of the molecular mechanisms that drive cancer stem cell maintenance, plasticity, and therapeutic resistance will enhance our ability to improve the effectiveness of targeted therapies for CSCs. In this review, we highlight the key features and mechanisms that regulate CSC function in tumor initiation, progression, and therapy resistance. We discuss factors for CSC therapeutic resistance, such as quiescence, induction of epithelial-to-mesenchymal transition (EMT), and resistance to DNA damage-induced cell death. We evaluate therapeutic approaches for eliminating therapy-resistant CSC subpopulations, including anticancer drugs that target key CSC signaling pathways and cell surface markers, viral therapies, the awakening of quiescent CSCs, and immunotherapy. We also assess the impact of new technologies, such as single-cell sequencing and CRISPR-Cas9 screening, on the investigation of the biological properties of CSCs. Moreover, challenges remain to be addressed in the coming years, including experimental approaches for investigating CSCs and obstacles in therapeutic targeting of CSCs.
Collapse
|
265
|
Ni Z, Min Y, Han C, Yuan T, Lu W, Ashktorab H, Smoot DT, Wu Q, Wu J, Zeng W, Shi Y. TGR5-HNF4α axis contributes to bile acid-induced gastric intestinal metaplasia markers expression. Cell Death Discov 2020; 6:56. [PMID: 32655894 PMCID: PMC7338499 DOI: 10.1038/s41420-020-0290-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/18/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022] Open
Abstract
Intestinal metaplasia (IM) increases the risk of gastric cancer. Our previous results indicated that bile acids (BAs) reflux promotes gastric IM development through kruppel-like factor 4 (KLF4) and caudal-type homeobox 2 (CDX2) activation. However, the underlying mechanisms remain largely elusive. Herein, we verified that secondary BAs responsive G-protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) was increased significantly in IM specimens. Moreover, TGR5 contributed to deoxycholic acid (DCA)-induced metaplastic phenotype through positively regulating KLF4 and CDX2 at transcriptional level. Then we employed PCR array and identified hepatocyte nuclear factor 4α (HNF4α) as a candidate mediator. Mechanically, DCA treatment could induce HNF4α expression through TGR5 and following ERK1/2 pathway activation. Furthermore, HNF4α mediated the effects of DCA treatment through directly regulating KLF4 and CDX2. Finally, high TGR5 levels were correlated with high HNF4α, KLF4, and CDX2 levels in IM tissues. These findings highlight the TGR5-ERK1/2-HNF4α axis during IM development in patients with BAs reflux, which may help to understand the mechanism underlying IM development and provide prospective strategies for IM treatment.
Collapse
Affiliation(s)
- Zhen Ni
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 China
- Department of Gastroenterology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083 China
| | - Yali Min
- Department of Gastroenterology, Second Affiliated Hospital of Xi’an Medical College, Xi’an, Shaanxi 710038 China
| | - Chuan Han
- Department of Endocrinology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083 China
| | - Ting Yuan
- Department of Gastroenterology, 989 Hospital of the People’s Liberation Army, Luoyang, Henan 471003 China
| | - Wenquan Lu
- Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, Washington, DC 20060 USA
| | - Duane T. Smoot
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208 USA
| | - Qiong Wu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 China
| | - Jian Wu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 China
| | - Weizheng Zeng
- Department of Gastroenterology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083 China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 China
| |
Collapse
|
266
|
Checa-Rodríguez C, Cepeda-García C, Ramón J, López-Saavedra A, Balestra FR, Domínguez-Sánchez MS, Gómez-Cabello D, Huertas P. Methylation of the central transcriptional regulator KLF4 by PRMT5 is required for DNA end resection and recombination. DNA Repair (Amst) 2020; 94:102902. [PMID: 32623319 DOI: 10.1016/j.dnarep.2020.102902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/12/2023]
Abstract
Cell fitness and survival upon exposure to DNA damage depends on the repair of DNA lesions. Interestingly, cellular identity does affect and finetunes such response, although the molecular basis of such differences between tissues and cell types is not well understood. Thus, a possibility is that DNA repair itself is controlled by the mechanisms that govern cell identity. Here we show that the KLF4, involved in cellular homeostasis, proliferation, cell reprogramming and cancer development, directly regulates resection and homologous recombination proficiency. Indeed, resection efficiency follows KLF4 protein levels, i.e. decreases upon KLF4 downregulation and increases when is overexpressed. Moreover, KLF4 role in resection requires its methylation by the methyl-transferase PRMT5. Thus, PRMT5 depletion not only mimics KLF4 downregulation, but also showed an epistatic genetic relationship. Our data support a model in which the methylation of KLF4 by PRMT5 is a priming event required to license DNA resection and homologous recombination.
Collapse
Affiliation(s)
- Cintia Checa-Rodríguez
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Cristina Cepeda-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Javier Ramón
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Ana López-Saavedra
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Fernando R Balestra
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - María S Domínguez-Sánchez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Daniel Gómez-Cabello
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain.
| |
Collapse
|
267
|
Sousa L, Pankonien I, Clarke LA, Silva I, Kunzelmann K, Amaral MD. KLF4 Acts as a wt-CFTR Suppressor through an AKT-Mediated Pathway. Cells 2020; 9:cells9071607. [PMID: 32630830 PMCID: PMC7408019 DOI: 10.3390/cells9071607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic Fibrosis (CF) is caused by >2000 mutations in the CF transmembrane conductance regulator (CFTR) gene, but one mutation-F508del-occurs in ~80% of patients worldwide. Besides its main function as an anion channel, the CFTR protein has been implicated in epithelial differentiation, tissue regeneration, and, when dysfunctional, cancer. However, the mechanisms that regulate such relationships are not fully elucidated. Krüppel-like factors (KLFs) are a family of transcription factors (TFs) playing central roles in development, stem cell differentiation, and proliferation. Herein, we hypothesized that these TFs might have an impact on CFTR expression and function, being its missing link to differentiation. Our results indicate that KLF4 (but not KLF2 nor KLF5) is upregulated in CF vs. non-CF cells and that it negatively regulates wt-CFTR expression and function. Of note, F508del-CFTR expressing cells are insensitive to KLF4 modulation. Next, we investigated which KLF4-related pathways have an effect on CFTR. Our data also show that KLF4 modulates wt-CFTR (but not F508del-CFTR) via both the serine/threonine kinase AKT1 (AKT) and glycogen synthase kinase 3 beta (GSK3β) signaling. While AKT acts positively, GSK3β is a negative regulator of CFTR. This crosstalk between wt-CFTR and KLF4 via AKT/ GSK3β signaling, which is disrupted in CF, constitutes a novel mechanism linking CFTR to the epithelial differentiation.
Collapse
Affiliation(s)
- Luis Sousa
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
| | - Ines Pankonien
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
| | - Luka A Clarke
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
| | - Iris Silva
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany;
| | - Margarida D Amaral
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
- Correspondence: ; Tel.: +351-21-750-08-61; Fax: +351-21-750-00-88
| |
Collapse
|
268
|
Gao Y, Qiao H, Zhong T, Lu Z, Hou Y. MicroRNA‑29a promotes the neural differentiation of rat neural stem/progenitor cells by targeting KLF4. Mol Med Rep 2020; 22:1008-1016. [PMID: 32468029 PMCID: PMC7339629 DOI: 10.3892/mmr.2020.11177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/23/2020] [Indexed: 01/13/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) remain in the mammalian brain throughout life, where they have the ability to self-renew and generate different types of cell in the central nervous system (CNS). Therefore, NSPCs may be a potential novel therapeutic strategy following damage to the CNS. Previous research has reported that microRNA (miR)-29a served an important role in regulating cell proliferation, differentiation and survival; however, to the best of our knowledge, little is known of the effect of miR-29a in neural differentiation. The present study aimed to investigate the effect of miR-29a on the differentiation of NSPCs, determined via RNA interference, immunostaining, reverse transcription-quantitative PCR and western blotting. The present study discovered that the expression levels of miR-29a were significantly upregulated in a time-dependent manner during neural differentiation. Immunostaining showed that overexpression of miR-29a promoted neural differentiation, which manifested in increased expression levels of neuron-specific class III β-tubulin (Tuj1); however, miR-29a had no effect on neuroglial differentiation. The expression levels of Kruppel-like factor 4 (KLF4) were downregulated following overexpression of miR-29a, whereas the inhibition of miR-29a demonstrated the opposite effect. These results suggested that the overexpression of miR-29a may promote neural differentiation in cultured rat NSPCs by decreasing the expression levels of KLF4. Thus indicating that targeting KLF4, a crucial regulatory factor for the maintenance of stemness, may be a potential underlying mechanism of action for miR-29a. In conclusion, the findings of the present study identified a potential mechanism of action for miR-29a in NSPC differentiation and provided a novel insight into the treatment strategies for CNS damage.
Collapse
Affiliation(s)
- Yunan Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hu Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tianyu Zhong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhen Lu
- Department of Orthodontics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
269
|
Profiling and quantification of pluripotency reprogramming reveal that WNT pathways and cell morphology have to be reprogramed extensively. Heliyon 2020; 6:e04035. [PMID: 32490244 PMCID: PMC7260443 DOI: 10.1016/j.heliyon.2020.e04035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023] Open
Abstract
Pluripotent state can be established via reprogramming of somatic nuclei by factors within an oocyte or by ectopic expression of a few transgenes. Considered as being extensive and intensive, the full complement of genes to be reprogrammed, however, has never been defined, nor has the degree of reprogramming been determined quantitatively. Here, we propose a new concept of reprogramome, which is defined as the full complement of genes to be reprogrammed to the expression levels found in pluripotent stem cells (PSCs). This concept in combination with RNA-seq enables us to precisely profile reprogramome and sub-reprogramomes, and study the reprogramming process with the help of other available tools such as GO analyses. With reprogramming of human fibroblasts into PSCs as an example, we have defined the full complement of the human fibroblast-to-PSC reprogramome. Furthermore, our analyses of the reprogramome revealed that WNT pathways and genes with roles in cellular morphogenesis should be extensively and intensely reprogrammed for the establishment of pluripotency. We further developed a new mathematical model to quantitate the overall reprogramming, as well as reprogramming in a specific cellular feature such as WNT signaling pathways and genes regulating cellular morphogenesis. We anticipate that our concept and mathematical model may be applied to study and quantitate other reprogramming (pluripotency reprogramming from other somatic cells, and lineage reprogramming), as well as transcriptional and epigenetic differences between any two types of cells including cancer cells and their normal counterparts.
Collapse
|
270
|
Huang X, Wang C, Zhou X, Wang J, Xia K, Yang B, Gong Z, Ying L, Yu C, Shi K, Shu J, Cheng F, Han B, Liang C, Li F, Chen Q. Overexpression of the transcription factors OCT4 and KLF4 improves motor function after spinal cord injury. CNS Neurosci Ther 2020; 26:940-951. [PMID: 32449258 PMCID: PMC7415207 DOI: 10.1111/cns.13390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction Astrogliosis and glial scar formation following spinal cord injury (SCI) are viewed as major obstacles that hinder axonal regeneration and functional recovery. Regulating the glial scar and axonal regeneration in the lesion site is important for treating SCI. Aims Considering the important role of astrocyte in glial scar formation and subsequent axonal regeneration, we intended to investigate the effect of the transcription factors OCT4 and KLF4 on astrocyte and the underlying mechanism after spinal cord contusion injury in transgenic mice. Results Western blotting, q‐PCR, immunofluorescence, and functional evaluation suggested that glial fibrillary acidic protein (GFAP) expression decreased in the lesion area, the porosity of the scar increased, and remyelination enhanced. Mice overexpressing the transcription factors OCT4 and KLF4 had higher Basso Mouse Scale scores than did the control mice. Moreover, using immunofluorescence and Western blotting, we discovered that some astrocytes expressed nestin and sox2 protein, suggesting that these astrocytes were reprogrammed into neural stem cell‐like cells. Furthermore, a cell scratch assay showed that the migration ability of the astrocytes was significantly inhibited in the presence of the transcription factors OCT4 and KLF4. In addition, we demonstrated that the Hippo/Yap pathway was activated after these two transcription factors overexpressed in astrocytes. Conclusions In summary, these results suggest that overexpression of the transcription factors OCT4 and KLF4 could induce astrocyte reprogramming, which subsequently improves remyelination and functional recovery after SCI.
Collapse
Affiliation(s)
- Xianpeng Huang
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jingkai Wang
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Kaishun Xia
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Biao Yang
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Zhe Gong
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Liwei Ying
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chao Yu
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Kesi Shi
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jiawei Shu
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Feng Cheng
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Bin Han
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Fangcai Li
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Qixin Chen
- Department of Orthopedics Surgery, School of Medicine, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
271
|
A Novel Function for KLF4 in Modulating the De-differentiation of EpCAM -/CD133 - nonStem Cells into EpCAM +/CD133 + Liver Cancer Stem Cells in HCC Cell Line HuH7. Cells 2020; 9:cells9051198. [PMID: 32408542 PMCID: PMC7290717 DOI: 10.3390/cells9051198] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The complex and heterogeneous nature of hepatocellular carcinoma (HCC) hampers the identification of effective therapeutic strategies. Cancer stem cells (CSCs) represent a fraction of cells within tumors with the ability to self-renew and differentiate, and thus significantly contribute to the formation and maintenance of heterogeneous tumor mass. Increasing evidence indicates high plasticity in tumor cells, suggesting that non-CSCs could acquire stem cell properties through de-differentiation or reprogramming processes. In this paper, we reveal KLF4 as a transcription factor that can induce a CSC-like phenotype in non-CSCs through upregulating the EpCAM and E-CAD expression. Our studies indicated that KLF4 could directly bind to the promoter of EpCAM and increase the number of EpCAM+/CD133+ liver cancer stem cells (LCSCs) in the HuH7 HCC cell line. When KLF4 was overexpressed in EpCAM−/CD133− non-stem cells, the expressions of hepatic stem/progenitor cell genes such as CK19, EpCAM and LGR5 were significantly increased. KLF4 overexpressing non-stem cells exhibited greater cell viability upon sorafenib treatment, while the cell migration and invasion capabilities of these cells were suppressed. Importantly, we detected an increased membranous expression and colocalization of β-CAT, E-CAD and EpCAM in the KLF4-overexpressing EpCAM−/CD133− non-stem cells, suggesting that this complex might be required for the cancer stem cell phenotype. Moreover, our in vivo xenograft studies demonstrated that with a KLF4 overexpression, EpCAM−/CD133− non-stem cells attained an in vivo tumor forming ability comparable to EpCAM+/CD133+ LCSCs, and the tumor specimens from KLF4-overexpressing xenografts had increased levels of both the KLF4 and EpCAM proteins. Additionally, we identified a correlation between the KLF4 and EpCAM protein expressions in human HCC tissues independent of the tumor stage and differentiation status. Collectively, our data suggest a novel function for KLF4 in modulating the de-differentiation of tumor cells and the induction of EpCAM+/CD133+ LCSCs in HuH7 HCC cells.
Collapse
|
272
|
Leptin stimulates synaptogenesis in hippocampal neurons via KLF4 and SOCS3 inhibition of STAT3 signaling. Mol Cell Neurosci 2020; 106:103500. [PMID: 32438059 DOI: 10.1016/j.mcn.2020.103500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/25/2020] [Accepted: 05/05/2020] [Indexed: 01/26/2023] Open
Abstract
Normal development of neuronal connections in the hippocampus requires neurotrophic signals, including the cytokine leptin. During neonatal development, leptin induces formation and maturation of dendritic spines, the main sites of glutamatergic synapses in the hippocampal neurons. However, the molecular mechanisms for leptin-induced synaptogenesis are not entirely understood. In this study, we reveal two novel targets of leptin in developing hippocampal neurons and address their role in synaptogenesis. First target is Kruppel-Like Factor 4 (KLF4), which we identified using a genome-wide target analysis strategy. We show that leptin upregulates KLF4 in hippocampal neurons and that leptin signaling is important for KLF4 expression in vivo. Furthermore, KLF4 is required for leptin-induced synaptogenesis, as shKLF4 blocks and upregulation of KLF4 phenocopies it. We go on to show that KLF4 requires its signal transducer and activator of transcription 3 (STAT3) binding site and thus potentially blocks STAT3 activity to induce synaptogenesis. Second, we show that leptin increases the expression of suppressor of cytokine signaling 3 (SOCS3), another well-known inhibitor of STAT3, in developing hippocampal neurons. SOCS3 is also required for leptin-induced synaptogenesis and sufficient to stimulate it alone. Finally, we show that constitutively active STAT3 blocks the effects of leptin on spine formation, while the targeted knockdown of STAT3 is sufficient to induce it. Overall, our data demonstrate that leptin increases the expression of both KLF4 and SOCS3, inhibiting the activity of STAT3 in the hippocampal neurons and resulting in the enhancement of glutamatergic synaptogenesis during neonatal development.
Collapse
|
273
|
Qin Y, Zheng B, Yang GS, Zhou J, Yang HJ, Nie ZY, Wang TR, Zhang XH, Zhao HY, Shi JH, Wen JK. Tanshinone ⅡA inhibits VSMC inflammation and proliferation in vivo and in vitro by downregulating miR-712-5p expression. Eur J Pharmacol 2020; 880:173140. [PMID: 32387370 DOI: 10.1016/j.ejphar.2020.173140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
The inflammation and proliferation of vascular smooth muscle cells (VSMCs) are the basic pathological feature of proliferative vascular diseases. Tanshinone ⅡA (Tan ⅡA), which is the most abundant fat-soluble element extracted from Salvia miltiorrhiza, has potent protective effects on the cardiovascular system. However, the underlying mechanism is still not fully understood. Here, we show that Tan ⅡA significantly inhibits neointimal formation and decreases VSMC inflammation by upregulating the expression of KLF4 and inhibiting the activation of NFκB signaling. Using a microRNA array analysis, we found that miR-712-5p expression is significantly upregulated in tumor necrosis factor alpha (TNF-α)-treated VSMCs. Loss- and gain-of-function experiments revealed that transfection of miR-712-5p mimic promotes, whereas depletion of miR-712-5p suppresses TNF-α-induced VSMC inflammation, leading to amelioration of intimal hyperplasia induced by carotid artery ligation. Moreover, depletion of miR-712-5p by its antagomir largely abrogates TNF-α-induced VSMC proliferation. Our findings suggest that miR-712-5p mediates the stimulatory effect of TNF-α on VSMC inflammation, and that Tan ⅡA inhibits VSMC inflammation and proliferation in vivo and in vitro by suppression of miR-712-5p expression. Targeting miR-712-5p may be a novel therapeutic strategy to prevent proliferative vascular diseases.
Collapse
Affiliation(s)
- Yan Qin
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; Department of Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Gao-Shan Yang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; Department of Biochemistry and Molecular Biology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jing Zhou
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; Department of Endocrine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hao-Jie Yang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Zi-Yuan Nie
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tian-Rui Wang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Hong-Ye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Jian-Hong Shi
- Department of Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
274
|
KLF4-mediated upregulation of CD9 and CD81 suppresses hepatocellular carcinoma development via JNK signaling. Cell Death Dis 2020; 11:299. [PMID: 32350244 PMCID: PMC7190708 DOI: 10.1038/s41419-020-2479-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023]
Abstract
Tetraspanins CD9 and CD81 frequently serve as the surface markers of exosomes, which are involved in intercellular communication during tumor progression. KLF4 is a well-known tumor suppressor in various cancers. This study aims to investigate the relationship between KLF4 and CD9/CD81 in hepatocellular carcinoma (HCC). The results showed that CD9 and CD81 were transcriptionally activated by KLF4 in HCC cell lines. Decreased expressions of CD9 and CD81 were found in most HCC tumor tissues and predicted advanced stages. Furthermore, KLF4 expression was positively associated with CD9 and CD81 expression in HCC specimens. Functionally, overexpression of CD9 and CD81 inhibited HCC cell proliferation in vitro and in vivo and silencing CD9 and CD81 displayed opposite phenotypes. Mechanistically, we found that JNK signaling pathway may be involved in the growth suppression mediated by CD9 and CD81. In addition, increased expression of KLF4, CD9 or CD81 had no obvious impact on exosome secretion from HCC cells. Collectively, we identified CD9 and CD81 as new transcriptional targets of KLF4 and the dysregulated KLF4-CD9/CD81-JNK signaling contributes to HCC development. Our findings will provide new promising targets against this disease.
Collapse
|
275
|
Hidalgo-Estévez AM, Stamatakis K, Jiménez-Martínez M, López-Pérez R, Fresno M. Cyclooxygenase 2-Regulated Genes an Alternative Avenue to the Development of New Therapeutic Drugs for Colorectal Cancer. Front Pharmacol 2020; 11:533. [PMID: 32410997 PMCID: PMC7201075 DOI: 10.3389/fphar.2020.00533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and recurrent types of cancer, with high mortality rates. Several clinical trials and meta-analyses have determined that the use of pharmacological inhibitors of cyclooxygenase 2 (COX-2), the enzyme that catalyses the rate-limiting step in the synthesis of prostaglandins (PG) from arachidonic acid, can reduce the incidence of CRC as well as the risk of recurrence of this disease, when used together with commonly used chemotherapeutic agents. These observations suggest that inhibition of COX-2 may be useful in the treatment of CRC, although the current drugs targeting COX-2 are not widely used since they increase the risk of health complications. To overcome this difficulty, a possibility is to identify genes regulated by COX-2 activity that could give an advantage to the cells to form tumors and/or metastasize. The modulation of those genes as effectors of COX-2 may cancel the beneficial effects of COX-2 in tumor transformation and metastasis. A review of the available databases and literature and our own data have identified some interesting molecules induced by prostaglandins or COX-2 that have been also described to play a role in colon cancer, being thus potential pharmacological targets in colon cancer. Among those mPGES-1, DUSP4, and 10, Programmed cell death 4, Trop2, and many from the TGFβ and p53 pathways have been identified as genes upregulated in response to COX-2 overexpression or PGs in colon carcinoma lines and overexpressed in colon tumor tissue. Here, we review the available evidence of the potential roles of those molecules in colon cancer in the context of PG/COX signaling pathways that could be critical mediators of some of the tumor growth and metastasis advantage induced by COX-2. At the end, this may allow defining new therapeutic targets/drugs against CRC that could act specifically against tumor cells and would be effective in the prevention and treatment of CRC, lacking the unwanted side effects of COX-2 pharmacological inhibitors, providing alternative approaches in colon cancer.
Collapse
Affiliation(s)
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Marta Jiménez-Martínez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo López-Pérez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| |
Collapse
|
276
|
Zhang Y, Li C, Huang Y, Zhao S, Xu Y, Chen Y, Jiang F, Tao L, Shen X. EOFAZ inhibits endothelial‑to‑mesenchymal transition through downregulation of KLF4. Int J Mol Med 2020; 46:300-310. [PMID: 32319539 PMCID: PMC7255478 DOI: 10.3892/ijmm.2020.4572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/11/2020] [Indexed: 01/09/2023] Open
Abstract
Essential oil from Alpinia zerumbet rhizome (EOFAZ), which is termed Yan shanjiang in China, is extensively used as an herbal medicine in the Guizhou area and has been shown to protect against the damaging effects of cardiovascular injury in vitro and in vivo. In the present study, it was hypothesized that the protective effects of EOFAZ on transforming growth factor (TGF)-β1-induced endothelial-to-mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs) were mediated by inhibition of Krüppel-like factor 4 (KLF4). Cell motility was assessed using wound healing and Transwell assays. The expression of endothelial markers and mesenchymal markers were determined by reverse transcription-quantitative PCR, immunofluorescence staining and western blotting, and additionally, phosphorylated NF-κB p65 expression was determined by western blotting. Furthermore, the involvement of KLF4 in EndMT was determined using RNA interference to knockdown the expression of KLF4. TGF-β1 treatment significantly promoted EndMT, as evidenced by downregu-lation of vascular endothelial-cadherin and upregulation of α-smooth muscle actin in HUVECs, and by enhancing cell migration. Small interfering RNA-mediated knockdown of KLF4 reversed TGF-β1-induced EndMT. Additionally, treatment with EOFAZ inhibited TGF-β1-induced EndMT in a dose-dependent manner. These results suggest that TGF-β1 may induce EndMT through upregulation of KLF4, and this may be reversed by EOFAZ. Therefore, EOFAZ was shown to inhibit TGF-β1-induced EndMT through regulation of KLF4.
Collapse
Affiliation(s)
- Yanyan Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Chen Li
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yongpan Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Shuang Zhao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yan Chen
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Feng Jiang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Ling Tao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
277
|
Zhang X, Wang L, Han Z, Dong J, Pang D, Fu Y, Li L. KLF4 alleviates cerebral vascular injury by ameliorating vascular endothelial inflammation and regulating tight junction protein expression following ischemic stroke. J Neuroinflammation 2020; 17:107. [PMID: 32264912 PMCID: PMC7140364 DOI: 10.1186/s12974-020-01780-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Background Although inflammatory cell adhesion molecules (CAMs) and anti-inflammation factor Kruppel-like transcription factor (KLF) 4 have all been reported to be induced after cerebral ischemic stroke (CIS), the close temporal and spatial relationship between expressions of CAMs and KLF4 following CIS and whether and how CAMs and KLF-4 contribute to the development of CIS-induced vascular injury are still unclear. Methods Here, we first examined the correlation between serum levels of CAMs/KLF4 and infarct volume in acute CIS patients. Then, we determined the relationship between CAMs and KLF4 in mice after focal cerebral ischemia. Finally, we investigated the mechanism of KLF4 in protecting against oxygen-glucose deprivation-induced brain endothelial cell injury. Results Our results demonstrated that patients with moderate to severe CIS had higher serum levels of three CAMs including E-selectin, inter-cellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) but lower levels of KLF4 at 48 h after an acute event as compared to patients with minor CIS. The expression levels of three CAMs as well as KLF4 all correlated well with the infarct volume in all the CIS subjects at that time. Although the expressions of three CAMs and KLF4 were all induced in the ischemic hemisphere following focal cerebral ischemia, the peak timing and distribution patterns of their expression were different: the induction of KLF4 lagged behind that of the CAMs in the ischemic penumbra; furthermore, the dual immunofluorescent studies displayed that high expression of KLF4 was always associated with relatively less cerebral vascular endothelial inflammation response in the ischemic hemisphere and vice versa. Mechanistic analyses revealed that KLF4 alleviated CIS-induced cerebral vascular injury by regulating endothelial expressions of CAMs, nuclear factor-kB, and tight junction proteins. Conclusions These data indicate that KLF4 confers vascular protection against cerebral ischemic injury, suggesting that circulating CAMs and KLF4 might be used as potential biomarkers for predicting the prognosis of acute ischemic stroke and also providing a new proof of concept and potential targets for future prevention and treatment of CIS.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Neurology, Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China.,The Graduate School, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Lu Wang
- Department of Neurology, Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Zhenxiang Han
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, People's Republic of China
| | - Jing Dong
- Department of Pharmacy, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Defang Pang
- Department of Special Outpatient Service, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Yuan Fu
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Longxuan Li
- Department of Neurology, Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
278
|
Turpaev KT. Transcription Factor KLF2 and Its Role in the Regulation of Inflammatory Processes. BIOCHEMISTRY (MOSCOW) 2020; 85:54-67. [PMID: 32079517 DOI: 10.1134/s0006297920010058] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
KLF2 is a member of the Krüppel-like transcription factor family of proteins containing highly conserved DNA-binding zinc finger domains. KLF2 participates in the differentiation and regulation of the functional activity of monocytes, T lymphocytes, adipocytes, and vascular endothelial cells. The activity of KLF2 is controlled by several regulatory systems, including the MEKK2,3/MEK5/ERK5/MEF2 MAP kinase cascade, Rho family G-proteins, histone acetyltransferases CBP and p300, and histone deacetylases HDAC4 and HDAC5. Activation of KLF2 in endothelial cells induces eNOS expression and provides vasodilatory effect. Many KLF2-dependent genes participate in the suppression of blood coagulation and aggregation of T cells and macrophages with the vascular endothelium, thereby preventing atherosclerosis progression. KLF2 can have a dual effect on the gene transcription. Thus, it induces expression of multiple genes, but suppresses transcription of NF-κB-dependent genes. Transcription factors KLF2 and NF-κB are reciprocal antagonists. KLF2 inhibits induction of NF-κB-dependent genes, whereas NF-κB downregulates KLF2 expression. KLF2-mediated inhibition of NF-κB signaling leads to the suppression of cell response to the pro-inflammatory cytokines IL-1β and TNFα and results in the attenuation of inflammatory processes.
Collapse
Affiliation(s)
- K T Turpaev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
279
|
Targeted Krüppel-Like Factor 4 Gene Knock-Out in Retinal Ganglion Cells Improves Visual Function in Multiple Sclerosis Mouse Model. eNeuro 2020; 7:ENEURO.0320-19.2020. [PMID: 32165410 PMCID: PMC7139550 DOI: 10.1523/eneuro.0320-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Axonal demyelination injury and neuronal degeneration are the primary causes of visual disability in multiple sclerosis (MS)-linked optic neuritis patients. Immunomodulatory therapies targeting inflammation have failed to avert the disease progression and no therapies exist to prevent the neuronal deficits seen in MS to date. Neuroprotective strategies targeting oligodendrocytes and astroglia have shown limited success due to a lack of axonal regeneration from injured neurons. In this study, we used the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS to investigate the axonal regenerative approach to improve the neuronal function. Our approach focused on targeted knock-out (KO) of the developmentally regulated axon growth inhibitory Krüppel-like factor 4 (Klf4) gene in retinal ganglion cells (RGCs) of Klf4fl/flmice by intravitreal delivery of AAV2-Cre-ires-EGFP recombinant virus (1) at the time of EAE sensitization and (2) after the onset of optic neuritis-mediated visual defects in the mice. Klf4 gene KO performed simultaneous with EAE sensitization prevented the visual loss as assessed by pattern electroretinograms (PERGs) in the mice and protected the RGCs from EAE-mediated death. More importantly, however, Klf4 gene KO after the onset of optic neuritis also resulted in RGC neuroprotection with additional restoration of their function, thereby improving the visual function outcomes in the EAE model. This study establishes the efficacy of Klf4 targeted knock-down in EAE even after the onset of disease symptoms, and thus should be further explored as a potential treatment strategy for MS/optic neuritis patients.
Collapse
|
280
|
Xie H, Graf T. Selective killing of leukemia cells: Yamanaka factors' new trick. Stem Cells 2020; 38:818-821. [PMID: 32159910 DOI: 10.1002/stem.3173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/08/2020] [Indexed: 11/12/2022]
Abstract
The four transcription factors of the Yamanaka cocktail (Oct4, Sox2, Klf4, and Myc, termed OSKM) are famously capable of reprogramming somatic cells into induced pluripotent stem cells (iPSCs). In an article recently published in Nature Communications, Wang et al describe the unexpected discovery that short-term activation of OSKM expression in acute myeloid leukemia cells in vivo induces apoptosis while negligibly affecting normal hematopoietic stem and progenitor cells (Nat Commun 2019;10:5594). These findings have potential implications for novel anticancer strategies.
Collapse
Affiliation(s)
- Huafeng Xie
- Department of Hematology, Guangzhou First People's Hospital, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of China, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| |
Collapse
|
281
|
LY75 Ablation Mediates Mesenchymal-Epithelial Transition (MET) in Epithelial Ovarian Cancer (EOC) Cells Associated with DNA Methylation Alterations and Suppression of the Wnt/β-Catenin Pathway. Int J Mol Sci 2020; 21:ijms21051848. [PMID: 32156068 PMCID: PMC7084525 DOI: 10.3390/ijms21051848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Growing evidence demonstrates that epithelial-mesenchymal transition (EMT) plays an important role in epithelial ovarian cancer (EOC) progression and spreading; however, its molecular mechanisms remain poorly defined. We have previously shown that the antigen receptor LY75 can modulate EOC cell phenotype and metastatic potential, as LY75 depletion directed mesenchymal-epithelial transition (MET) in EOC cell lines with mesenchymal phenotype. We used the LY75-mediated modulation of EMT as a model to investigate for DNA methylation changes during EMT in EOC cells, by applying the reduced representation bisulfite sequencing (RRBS) methodology. Numerous genes have displayed EMT-related DNA methylation patterns alterations in their promoter/exon regions. Ten selected genes, whose DNA methylation alterations were further confirmed by alternative methods, were further identified, some of which could represent new EOC biomarkers/therapeutic targets. Moreover, our methylation data were strongly indicative for the predominant implication of the Wnt/β-catenin pathway in the EMT-induced DNA methylation variations in EOC cells. Consecutive experiments, including alterations in the Wnt/β-catenin pathway activity in EOC cells with a specific inhibitor and the identification of LY75-interacting partners by a proteomic approach, were strongly indicative for the direct implication of the LY75 receptor in modulating the Wnt/β-catenin signaling in EOC cells.
Collapse
|
282
|
KLF4 is required for suppression of histamine synthesis by polyamines during bone marrow-derived mast cell differentiation. PLoS One 2020; 15:e0229744. [PMID: 32101568 PMCID: PMC7043748 DOI: 10.1371/journal.pone.0229744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
Mast cells have secretory granules containing chemical mediators such as histamine and play important roles in the immune system. Polyamines are essential factors for cellular processes such as gene expression and translation. It has been reported that secretory granules contain both histamine and polyamines, which have similar chemical structures and are produced from the metabolism of cationic amino acids. We investigated the effect of polyamine depletion on mast cells using bone marrow-derived mast cells (BMMCs). Polyamine depletion was induced using α-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase. DFMO treatment resulted in a significant reduction of cell number and abnormal secretory granules in BMMCs. Moreover, the cells showed a 2.3-fold increase in intracellular histamine and up-regulation of histidine decarboxylase (HDC) at the transcriptional level during BMMC differentiation. Levels of the transcription factor kruppel-like factor 4 (KLF4) greatly decreased upon DFMO treatment; however, Klf4 mRNA was expressed at levels similar to controls. We determined the translational regulation of KLF4 using reporter genes encoding Klf4-luc2 fusion mRNA, for transfecting NIH3T3 cells, and performed in vitro translation. We found that the efficiency of KLF4 synthesis in response to DFMO treatment was enhanced by the existence of a GC-rich 5'-untranslated region (5'-UTR) on Klf4 mRNA, regardless of the recognition of the initiation codon. Taken together, these results indicate that the enhancement of histamine synthesis by DFMO depends on the up-regulation of Hdc expression, achieved by removal of transcriptional suppression of KLF4, during differentiation.
Collapse
|
283
|
Haehling MB, Cruvinel GG, Toscano JHB, Giraldelo LA, Santos IB, Esteves SN, Benavides MV, Barioni Júnior W, Niciura SCM, Chagas ACS. Four single nucleotide polymorphisms (SNPs) are associated with resistance and resilience to Haemonchus contortus in Brazilian Morada Nova sheep. Vet Parasitol 2020; 279:109053. [PMID: 32109653 DOI: 10.1016/j.vetpar.2020.109053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal nematodes are a major constraint in sheep production. Breeding for resistance has proven to be an effective and feasible approach to address this problem. The use and investigation of genetic markers for resistance traits could accelerate genetic progress and lead to a better understanding of underlying molecular mechanisms. Thus, the aim of this study was to evaluate if five single nucleotide polymorphisms SNPs OAR2_14765360, OAR6_81718546, OAR11_62887032, OAR12_69606944 and OAR15_59871543 are associated with resistance and resilience traits in a flock of the Morada Nova sheep breed. Lambs were submitted to two consecutive parasite challenges by oral infection with 4000 infective larvae L3) of Haemonchus contortus. Fecal egg counts (FEC), packed cell volume (PVC) and body weight were measured every one or two weeks for 42 days in each trial. DNA samples from 287 lambs, 131 ewes and 4 rams were amplified by ARMS-PCR or PCR-RFLP and genotypes were determined. Analysis of variance (ANOVA) was used for association analyses between genotypes and phenotypes. In case of significant association, the allele substitution effect was calculated based on a linear model. OAR2_14765360 and OAR12_69606944 were associated with FEC, and OAR12_69606944 also had significant effects on PCV and weight gain, showing favourable associations of the CC genotype with all evaluated traits. Both OAR6_81718546 and OAR11_62887032 were associated with weight gain, and OAR6_81718546 had an additional effect on PCV. OAR15_59871543 was not polymorphic in the population. OAR6_81718546 and OAR12_69606944 presented significant allele substitution effects of -1.06 ± 0.52 kg for the T allele on final body weight and 0.74 ± 0.32 for the C allele in PCV of the same sampling date, respectively. This is the first report of SNPs associated with gastrointestinal nematode resistance in this sheep breed. Our findings support the existence of quantitatice trait loci (QTL) for resistance and resilience in linkage disequilibrium with the polymorphic SNPs and suggest their future use for explorations of these traits in Morada Nova sheep.
Collapse
Affiliation(s)
- Marei B Haehling
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, CEP 14884-900, Jaboticabal, SP, Brazil.
| | - Giovanna G Cruvinel
- Centro Universitário Central Paulista (UNICEP), Rua Miguel Petroni, 5111, CEP 13563-470, São Carlos, SP, Brazil
| | - João H B Toscano
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, CEP 14884-900, Jaboticabal, SP, Brazil
| | - Luciana A Giraldelo
- Centro Universitário Central Paulista (UNICEP), Rua Miguel Petroni, 5111, CEP 13563-470, São Carlos, SP, Brazil
| | - Isabella B Santos
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, CEP 14884-900, Jaboticabal, SP, Brazil
| | - Sergio N Esteves
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234 - Fazenda Canchim, CEP 13560-970, São Carlos, SP, Brazil
| | - Magda V Benavides
- Embrapa Pecuária Sul, BR 153 Km 633, Vila Industrial, Bagé, RS, Brazil
| | - Waldomiro Barioni Júnior
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234 - Fazenda Canchim, CEP 13560-970, São Carlos, SP, Brazil
| | - Simone C M Niciura
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234 - Fazenda Canchim, CEP 13560-970, São Carlos, SP, Brazil
| | - Ana Carolina S Chagas
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234 - Fazenda Canchim, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
284
|
Abdelaziz MH, Abdelwahab SF, Wan J, Cai W, Huixuan W, Jianjun C, Kumar KD, Vasudevan A, Sadek A, Su Z, Wang S, Xu H. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med 2020; 18:58. [PMID: 32024540 PMCID: PMC7003359 DOI: 10.1186/s12967-020-02251-w] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages are heterogenous phagocytic cells with an important role in the innate immunity. They are, also, significant contributors in the adaptive immune system. Macrophages are the most abundant immune cells in the lung during allergic asthma, which is the most common chronic respiratory disease of both adults and children. Macrophages activated by Th1 cells are known as M1 macrophages while those activated by IL-4 and IL-13 are called alternatively activated macrophages (AAM) or M2 cells. AAM are subdivided into four distinct subtypes (M2a, M2b, M2c and M2d), depending on the nature of inducing agent and the expressed markers. BODY: IL-4 is the major effector cytokine in both alternative activation of macrophages and pathogenesis of asthma. Thus, the role of M2a macrophages in asthma is a major concern. However, this is controversial. Therefore, further studies are required to improve our knowledge about the role of IL-4-induced macrophages in allergic asthma, through precisive elucidation of the roles of specific M2a proteins in the pathogenesis of asthma. In the current review, we try to illustrate the different functions of M2a macrophages (protective and pathogenic roles) in the pathogenesis of asthma, including explanation of how different M2a proteins and markers act during the pathogenesis of allergic asthma. These include surface markers, enzymes, secreted proteins, chemokines, cytokines, signal transduction proteins and transcription factors. CONCLUSIONS AAM is considered a double-edged sword in allergic asthma. Finally, we recommend further studies that focus on increased selective expression or suppression of protective and pathogenic M2a markers.
Collapse
Affiliation(s)
- Mohamed Hamed Abdelaziz
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Sayed F Abdelwahab
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Pharmaceutical Technology, Taif University, College of Pharmacy, Taif, 21974, Kingdom of Saudi Arabia.
| | - Jie Wan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wei Cai
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Huixuan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Jianjun
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kesavan Dinesh Kumar
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Aparna Vasudevan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ahmed Sadek
- Department of Microbiology & Immunology, School of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
285
|
Two Pioneer Transcription Factors, Krüppel-Like Transcription Factor 4 and Glucocorticoid Receptor, Cooperatively Transactivate the Bovine Herpesvirus 1 ICP0 Early Promoter and Stimulate Productive Infection. J Virol 2020; 94:JVI.01670-19. [PMID: 31776270 DOI: 10.1128/jvi.01670-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
An important site for bovine herpesvirus 1 (BoHV-1) latency is sensory neurons within trigeminal ganglia (TG). The synthetic corticosteroid dexamethasone consistently induces BoHV-1 reactivation from latency. Expression of four Krüppel-like transcription factors (KLF), i.e., KLF4, KLF6, PLZF (promyelocytic leukemia zinc finger), and KLF15, are induced in TG neurons early during dexamethasone-induced reactivation. The glucocorticoid receptor (GR) and KLF15 form a feed-forward transcription loop that cooperatively transactivates the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter that drives bovine infected cell protein 0 (bICP0) and bICP4 expression. Since the bICP0 gene also contains a separate early (E) promoter, we tested the hypothesis that GR and KLF family members transactivate the bICP0 E promoter. GR and KLF4, both pioneer transcription factors, cooperated to stimulate bICP0 E promoter activity in a ligand-independent manner in mouse neuroblastoma cells (Neuro-2A). Furthermore, GR and KLF4 stimulated productive infection. Mutating both half GR binding sites did not significantly reduce GR- and KLF4-mediated transactivation of the bICP0 E promoter, suggesting that a novel mechanism exists for transactivation. GR and KLF15 cooperatively stimulated bICP0 activity less efficiently than GR and KL4: however, KLF6, PLZF, and GR had little effect on the bICP0 E promoter. GR, KLF4, and KLF15 occupied bICP0 E promoter sequences in transfected Neuro-2A cells. GR and KLF15, but not KLF4, occupied the bICP0 E promoter at late times during productive infection of bovine cells. Collectively, these studies suggest that cooperative transactivation of the bICP0 E promoter by two pioneer transcription factors (GR and KLF4) correlates with stimulating lytic cycle viral gene expression following stressful stimuli.IMPORTANCE Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone. We predict that increased corticosteroid levels activate the glucocorticoid receptor (GR). Consequently, viral gene expression is stimulated by the activated GR. The immediate early transcription unit 1 promoter (IEtu1) drives expression of two viral transcriptional regulatory proteins, bovine infected cell protein 0 (bICP0) and bICP4. Interestingly, a separate early promoter also drives bICP0 expression. Two pioneer transcription factors, GR and Krüppel-like transcription factor 4 (KLF4), cooperatively transactivate the bICP0 early (E) promoter. GR and KLF15 cooperate to stimulate bICP0 E promoter activity but significantly less than GR and KLF4. The bICP0 E promoter contains enhancer-like domains necessary for GR- and KLF4-mediated transactivation that are distinct from those for GR and KLF15. Stress-induced pioneer transcription factors are proposed to activate key viral promoters, including the bICP0 E promoter, during early stages of reactivation from latency.
Collapse
|
286
|
Yaparla A, Reeves P, Grayfer L. Myelopoiesis of the Amphibian Xenopus laevis Is Segregated to the Bone Marrow, Away From Their Hematopoietic Peripheral Liver. Front Immunol 2020; 10:3015. [PMID: 32038608 PMCID: PMC6987381 DOI: 10.3389/fimmu.2019.03015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/09/2019] [Indexed: 01/21/2023] Open
Abstract
Across vertebrates, hematopoiesis takes place within designated tissues, wherein committed myeloid progenitors further differentiate toward cells with megakaryocyte/erythroid potential (MEP) or those with granulocyte/macrophage potential (GMP). While the liver periphery (LP) of the Xenopus laevis amphibian functions as a principal site of hematopoiesis and contains MEPs, cells with GMP potential are instead segregated to the bone marrow (BM) of this animal. Presently, using gene expression and western blot analyses of blood cell lineage-specific transcription factors, we confirmed that while the X. laevis LP hosts hematopoietic stem cells and MEPs, their BM contains GMPs. In support of our hypothesis that cells bearing GMP potential originate from the frog LP and migrate through blood circulation to the BM in response to chemical cues; we demonstrated that medium conditioned by the X. laevis BM chemoattracts LP and peripheral blood cells. Compared to LP and by examining a comprehensive panel of chemokine genes, we showed that the X. laevis BM possessed greater expression of a single chemokine, CXCL12, the recombinant form of which was chemotactic to LP and peripheral blood cells and appeared to be a major chemotactic component within BM-conditioned medium. In confirmation of the hepatic origin of the cells that give rise to these frogs' GMPs, we also demonstrated that the X. laevis BM supported the growth of their LP-derived cells.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Phillip Reeves
- School Without Walls High School, Washington, DC, United States
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
287
|
Ye S, Hu X, Ni C, Jin W, Xu Y, Chang L, Zhou H, Jiang J, Yang L. KLF4 p.A472D Mutation Contributes to Acquired Resistance to Cetuximab in Colorectal Cancer. Mol Cancer Ther 2020; 19:956-965. [PMID: 31924740 DOI: 10.1158/1535-7163.mct-18-1385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/22/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022]
Abstract
With the increase of treatment course, resistance to EGFR blockade is inevitable in patients with metastatic colorectal cancer (mCRC). KRAS mutations have been considered to be primary drivers of this resistance; however, the potential function of other genes has not been extensively investigated. This study collected 17 plasma samples from patients with mCRC with cetuximab resistance, and target-capture deep sequencing was used to identify mutations in circulating tumor DNA (ctDNA). Analysis of mutational prevalence in ctDNA was performed from three colorectal cancer tissue-based datasets and one ctDNA dataset. The prevalence of mutations identified in ctDNA was consistent with both colorectal cancer tissue-based and ctDNA datasets. Clonal analysis revealed that 41.2% of patients were positive for at least one subclone. Multiple mechanisms of cetuximab resistance were coexisted in individual patients, and one of the patients even harbored nine distinct mutations. In particular, functional study of Krüppel-like factor 4 (KLF4) p.A472D revealed increased cetuximab resistance in colorectal cancer cells, which was associated with the increased phosphorylation of downstream EGFR signaling proteins. These results suggest that KLF4 p.A472D may contribute to cetuximab resistance in patients with mCRC and thus may serve as a new biomarker in clinical application. Monitoring somatic mutations related to cetuximab resistance in patients with mCRC through ctDNA may provide real-time insights for clinical reference and treatment planning.
Collapse
Affiliation(s)
- Song Ye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoge Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chao Ni
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.,Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiwei Jin
- Department of Gastroenterology & Pancreatic Surgery, Key Laboratory of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - Yaping Xu
- Geneplus-Beijing Institute, Beijing, China
| | | | - Huaixiang Zhou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiahong Jiang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
288
|
Chen K, Long Q, Xing G, Wang T, Wu Y, Li L, Qi J, Zhou Y, Ma B, Schöler HR, Nie J, Pei D, Liu X. Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming. EMBO J 2020; 39:e99165. [PMID: 31571238 PMCID: PMC6939195 DOI: 10.15252/embj.201899165] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/13/2023] Open
Abstract
The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor-dependent chromatin opening occurs remains unclear. Using FRAP and ATAC-seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal-to-epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4-L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4-L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination.
Collapse
Affiliation(s)
- Keshi Chen
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Qi Long
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Guangsuo Xing
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
- Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Yi Wu
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Linpeng Li
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Juntao Qi
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Yanshuang Zhou
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Bochao Ma
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Hans R Schöler
- Department for Cell and Developmental BiologyMax Planck Institute for Molecular BiomedicineMünsterGermany
| | - Jinfu Nie
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
289
|
Weidle UH, Schmid D, Birzele F, Brinkmann U. MicroRNAs Involved in Metastasis of Hepatocellular Carcinoma: Target Candidates, Functionality and Efficacy in Animal Models and Prognostic Relevance. Cancer Genomics Proteomics 2020; 17:1-21. [PMID: 31882547 PMCID: PMC6937123 DOI: 10.21873/cgp.20163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is responsible for the second-leading cancer-related death toll worldwide. Although sorafenib and levantinib as frontline therapy and regorafenib, cabazantinib and ramicurimab have now been approved for second-line therapy, the therapeutic benefit is in the range of only a few months with respect to prolongation of survival. Aggressiveness of HCC is mediated by metastasis. Intrahepatic metastases and distant metastasis to the lungs, lymph nodes, bones, omentum, adrenal gland and brain have been observed. Therefore, the identification of metastasis-related new targets and treatment modalities is of paramount importance. In this review, we focus on metastasis-related microRNAs (miRs) as therapeutic targets for HCC. We describe miRs which mediate or repress HCC metastasis in mouse xenograft models. We discuss 18 metastasis-promoting miRs and 35 metastasis-inhibiting miRs according to the criteria as outlined. Six of the metastasis-promoting miRs (miR-29a, -219-5p, -331-3p, 425-5p, -487a and -1247-3p) are associated with unfavourable clinical prognosis. Another set of six down-regulated miRs (miR-101, -129-3p, -137, -149, -503, and -630) correlate with a worse clinical prognosis. We discuss the corresponding metastasis-related targets as well as their potential as therapeutic modalities for treatment of HCC-related metastasis. A subset of up-regulated miRs -29a, -219-5p and -425-5p and down-regulated miRs -129-3p and -630 were evaluated in orthotopic metastasis-related models which are suitable to mimic HCC-related metastasis. Those miRNAs may represent prioritized targets emerging from our survey.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Daniela Schmid
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
290
|
A Three-Gene Expression Signature Identifies a Cluster of Patients with Short Survival in Chronic Lymphocytic Leukemia. JOURNAL OF ONCOLOGY 2019; 2019:9453539. [PMID: 31827514 PMCID: PMC6885206 DOI: 10.1155/2019/9453539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/04/2019] [Accepted: 08/06/2019] [Indexed: 11/17/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disorder characterized by its heterogeneous clinical evolution. Despite the discovery of the most frequent cytogenomic drivers of disease during the last decade, new efforts are needed in order to improve prognostication. In this study, we used gene expression data of CLL samples in order to discover novel transcriptomic patterns associated with patient survival. We observed that a 3-gene expression signature composed of SCGB2A1, KLF4, and PPP1R14B differentiate a group of circa 5% of cases with short survival. This effect was independent of the main cytogenetic markers of adverse prognosis. Finally, this finding was reproduced in an independent retrospective cohort. We believe that this small gene expression pattern will be useful for CLL prognostication and its association with CLL response to novel drugs should be explored in the future.
Collapse
|
291
|
Wang C, Cao H, Gu S, Shi C, Chen X, Han X. Expression analysis of microRNAs and mRNAs in myofibroblast differentiation of lung resident mesenchymal stem cells. Differentiation 2019; 112:10-16. [PMID: 31838455 DOI: 10.1016/j.diff.2019.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/17/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious lung disease that involved the myofibroblast differentiation of lung resident mesenchymal stem cells (LR-MSCs). However, the specific molecular mechanisms of myofibroblast differentiation of LR-MSCs still remain a mystery. In this study, a comprehensive analysis of miRNAs and mRNAs changes in LR-MSCs treated with TGF-β1 was performed. Through computational approaches, the pivotal roles of differentially expressed miRNAs that were associated with tight junction, pathways in cancer, focal adhesion, and cytokine-cytokine receptor interaction were shown. Kruppel-like factor 4 (Klf4) and inhibitor of growth family, member 5 (Ing5) may be the targets for the therapy of pulmonary fibrosis by inhibiting myofibroblast differentiation of LR-MSCs and EMT. Collectively, a molecular paradigm for understanding myofibroblast differentiation of LR-MSCs in IPF was provided by the integrated miRNA/mRNA analyses.
Collapse
Affiliation(s)
- Cong Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Shen Gu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Chaowen Shi
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
292
|
Lorenz DR, Misra V, Gabuzda D. Transcriptomic analysis of monocytes from HIV-positive men on antiretroviral therapy reveals effects of tobacco smoking on interferon and stress response systems associated with depressive symptoms. Hum Genomics 2019; 13:59. [PMID: 31779701 PMCID: PMC6883692 DOI: 10.1186/s40246-019-0247-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tobacco smoking induces immunomodulatory and pro-inflammatory effects associated with transcriptome changes in monocytes and other immune cell types. While smoking is prevalent in HIV-infected (HIV+) individuals, few studies have investigated its effects on gene expression in this population. Here, we report whole-transcriptome analyses of 125 peripheral blood monocyte samples from ART-treated HIV+ and uninfected (HIV−) men enrolled in the Multicenter AIDS Cohort Study (MACS) (n = 25 HIV+ smokers, n = 60 HIV+ non-smokers, n = 40 HIV− non-smoking controls). Gene expression profiling was performed using Illumina HumanHT-12 Expression BeadChip microarrays. Differential expression analysis was performed with weighted linear regression models using the R limma package, followed by functional enrichment and Ingenuity Pathway analyses. Results A total of 286 genes were differentially expressed in monocytes from HIV+ smokers compared with HIV− non-smokers; upregulated genes (n = 180) were enriched for immune and interferon response, chemical/stress response, mitochondria, and extracellular vesicle gene ontology (GO) terms. Expression of genes related to immune/interferon responses (AIM2, FCGR1A-B, IFI16, SP100), stress/chemical responses (APAF1, HSPD1, KLF4), and mitochondrial function (CISD1, MTHFD2, SQOR) was upregulated in HIV+ non-smokers and further increased in HIV+ smokers. Gene expression changes associated with smoking in previous studies of human monocytes were also observed (SASH1, STAB1, PID1, MMP25). Depressive symptoms (CES-D scores ≥ 16) were more prevalent in HIV+ tobacco smokers compared with HIV+ and HIV− non-smokers (50% vs. 26% and 13%, respectively; p = 0.007), and upregulation of immune/interferon response genes, including IFI35, IFNAR1, OAS1-2, STAT1, and SP100, was associated with depressive symptoms in logistic regression models adjusted for HIV status and smoking (p < 0.05). Network models linked the Stat1-mediated interferon pathway to transcriptional regulator Klf4 and smoking-associated toll-like receptor scaffolding protein Sash1, suggesting inter-relationships between smoking-associated genes, control of monocyte differentiation, and interferon-mediated inflammatory responses. Conclusions This study characterizes immune, interferon, stress response, and mitochondrial-associated gene expression changes in monocytes from HIV+ tobacco smokers, and identifies augmented interferon and stress responses associated with depressive symptoms. These findings help to explain complex interrelationships between pro-inflammatory effects of HIV and smoking, and their combined impact on comorbidities prevalent in HIV+ individuals.
Collapse
Affiliation(s)
- David R Lorenz
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Center for Life Science 1010, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Vikas Misra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Center for Life Science 1010, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Center for Life Science 1010, 450 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
293
|
Agbo KC, Huang JZ, Ghaleb AM, Williams JL, Shroyer KR, Bialkowska AB, Yang VW. Loss of the Krüppel-like factor 4 tumor suppressor is associated with epithelial-mesenchymal transition in colorectal cancer. ACTA ACUST UNITED AC 2019; 5. [PMID: 32566755 PMCID: PMC7304562 DOI: 10.20517/2394-4722.2019.35] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aim: Colorectal cancer (CRC) is the third leading cancer-related cause of death due to its propensity to metastasize. Epithelial-mesenchymal transition (EMT) is a multistep process important for invasion and metastasis of CRC. Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor highly expressed in differentiated cells of the intestinal epithelium. KLF4 has been shown to play a tumor suppressor role during CRC tumorigenesis - its loss accelerates development and progression of cancer. The present study examined the relationship between KLF4 and markers of EMT in CRC. Methods: Immunofluorescence staining for KLF4 and EMT markers was performed on archived patient samples after colorectal cancer resection and on colonic tissues of mice with colitis-associated cancer. Results: We found that KLF4 expression is lost in tumor sections obtained from CRC patients and in those of mouse colon following azoxymethane and dextran sodium sulfate (AOM/DSS) treatment when compared to their respective normal appearing mucosa. Importantly, in CRC patient tumor sections, we observed a negative correlation between KLF4 levels and mesenchymal markers including TWIST, β-catenin, claudin-1, N-cadherin, and vimentin. Similarly, in tumor tissues from AOM/DSS-treated mice, KLF4 levels were negatively correlated with mesenchymal markers including SNAI2, β-catenin, and vimentin and positively correlated with the epithelial marker E-cadherin. Conclusion: These findings suggest that the loss of KLF4 expression is a potentially significant indicator of EMT in CRC.
Collapse
Affiliation(s)
- Kimberley C Agbo
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Jessie Z Huang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Amr M Ghaleb
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Jennie L Williams
- Department of Family, Population and Preventive Medicine, Stony Brook, NY 11794, USA
| | - Kenneth R Shroyer
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Vincent W Yang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA.,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
294
|
Inflammation-induced colon cancer in uPA-deficient mice is associated with a deregulated expression of Notch signaling pathway components. Mol Cell Biochem 2019; 464:181-191. [PMID: 31758376 DOI: 10.1007/s11010-019-03659-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022]
Abstract
Notch is an evolutionarily conserved signaling pathway with an important role in development and cell fate determination. Deregulation of Notch signaling has been associated with several pathological conditions, including cancer. Acting as an oncogene in some types of cancers and as a tumor suppressor in other, Notch effects seem to be highly context-dependent in solid tumors. In the present study, we aimed to investigate gene expression levels of Notch pathway constituents, including ligands, receptors, and target genes, during the early stages of inflammation-associated intestinal carcinogenesis. To achieve so, we used our recently developed mouse model, in which colon cancer arises in the absence of urokinase-type plasminogen activator (uPA) due to colitis induced by dextran sodium sulfate (DSS) treatment. Among the cell surface components, ligands Jag1/Jag2 and receptors Notch1/Notch2 were found to be significantly upregulated in the uPA-deficient protumorigenic inflammatory microenvironment. Moreover, several intracellular Notch modulators, i.e. Hes1, Hey1, and Klf4, were also shown to be deregulated with inflammation, yet irrespective of uPA status. Sox9 transcription factor, however, was significantly downregulated in the uPA-deficient/DSS-treated mice that developed colon adenomas as compared to the wild-type/DSS-treated group with no neoplasia identified. The latter finding supports a tumor suppressive role of Sox9 in intestinal carcinogenesis. Our results point towards an early activation of Notch signaling pathway at the receptor-ligand level in inflammation-associated colon neoplasmatogenesis developed in the absence of uPA. Interestingly, such activation may not be accompanied by deregulation of downstream Notch-target genes, possibly due to the effects of other inter-related signaling pathways.
Collapse
|
295
|
Babaei K, Khaksar R, Zeinali T, Hemmati H, Bandegi A, Samidoust P, Ashoobi MT, Hashemian H, Delpasand K, Talebinasab F, Naebi H, Mirpour SH, Keymoradzadeh A, Norollahi SE. Epigenetic profiling of MUTYH, KLF6, WNT1 and KLF4 genes in carcinogenesis and tumorigenesis of colorectal cancer. Biomedicine (Taipei) 2019; 9:22. [PMID: 31724937 PMCID: PMC6855188 DOI: 10.1051/bmdcn/2019090422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is distinguished by epigenetic elements like DNA methylation, histone modification, histone acetylation and RNA remodeling which is related with genomic instability and tumor initiation. Correspondingly, as a main epigenetic regulation, DNA methylation has an impressive ability in order to be used in CRC targeted therapy. Meaningly, DNA methylation is identified as one of most important epigenetic regulators in gene expression and is considered as a notable potential driver in tumorigenesis and carcinogenesis through gene-silencing of tumor suppressors genes. Abnormal methylation situation, even in the level of promoter regions, does not essentially change the gene expression levels, particularly if the gene was become silenced, leaving the mechanisms of methylation without any response. According to the methylation situation which has a strong eagerness to be highly altered on CpG islands in carcinogenesis and tumorigenesis, considering its epigenetic fluctuations in finding new biomarkers is of great importance. Modifications in DNA methylation pattern and also enrichment of methylated histone signs in the promoter regions of some certain genes like MUTYH, KLF4/6 and WNT1 in different signaling pathways could be a notable key contributors to the upregulation of tumor initiation in CRC. These epigenetic alterations could be employed as a practical diagnostic biomarkers for colorectal cancer. In this review, we will be discuss these fluctuations of MUTYH, KLF4/6 and WNT1 genes in CRC.
Collapse
Affiliation(s)
- Kosar Babaei
- Department of Biology, Islamic Azad University of Tonekabon Branch, Tonekabon, Iran
| | - Roya Khaksar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Hemmati
- Razi Clinical Research Development Unit, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmadreza Bandegi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Pirouz Samidoust
- Razi Clinical Research Development Unit, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Taghi Ashoobi
- Department of Surgery, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hooman Hashemian
- Pediatric Diseases Research Center,Guilan University of Medical ciences, Rasht, Iran
| | - Kourosh Delpasand
- School of Medicine, Kurdistan University of Mdical Ciences, Sanandaj, Iran
| | - Fereshteh Talebinasab
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hoora Naebi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Hossein Mirpour
- Department of Hematology and Oncology, Razi hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzadeh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
296
|
He H, Wu Z, Li S, Chen K, Wang D, Zou H, Chen H, Li Y, Liu Z, Qu C. TRAF7 enhances ubiquitin-degradation of KLF4 to promote hepatocellular carcinoma progression. Cancer Lett 2019; 469:380-389. [PMID: 31730901 DOI: 10.1016/j.canlet.2019.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/01/2023]
Abstract
The tumor necrosis factor receptor-associated factor 7 (TRAF7) is a component of the tumor necrosis factor alpha (TNF-α)/nuclear factor kappa B (NF-κB) pathway and is a putative E3-ubiquitin ligase. Based on importance of chronic inflammation in hepatocellular carcinoma (HCC), we investigated the biological effects and the molecular mechanisms of deregulated TRAF7 signaling in HCC. Our results showed that high TRAF7 expression in HCC samples was inversely associated with Krüppel-like factor 4 (KLF4) expression and the prognosis of HCC patients. TRAF7 could degrade KLF4 protein through ubiquitin by interacting with its N-terminus. The up-regulation of TRAF7 promoted HCC cell migration and invasion in vivo and in vitro, and TRAF7 knockdown had the opposite effects. Restoration of KLF4 abrogated the motility promotion induced by TRAF7. TRAF7 promotes HCC cell motility through inducing KLF4 protein turnover.
Collapse
Affiliation(s)
- Huan He
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiyuan Wu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sheng Li
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Center for Molecular and Translational Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Kun Chen
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongmei Wang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haojing Zou
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongyan Chen
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Chunfeng Qu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
297
|
DDX17 promotes hepatocellular carcinoma progression via inhibiting Klf4 transcriptional activity. Cell Death Dis 2019; 10:814. [PMID: 31653828 PMCID: PMC6814716 DOI: 10.1038/s41419-019-2044-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 01/08/2023]
Abstract
DEAD box RNA helicase 17 (DDX17) is a transcriptional regulator of several transcription factors, which is more appreciated than its role in RNA metabolism. However, prognostic value and biofunction of DDX17 in HCC remain unclear. Illuminating the mechanism underlying the regulating HCC progression by DDX17 may contribute to therapeutic strategies. In our study, we report for the first time that DDX17 was overexpressed in HCC specimens by using The Cancer Genome Atlas (TCGA) and immunohistochemistry (IHC) and correlated to clinical pathological characteristics and patients' survival. In vitro, DDX17 was ascertained to alter HCC migratory and invasive capacities after overexpression and knockdown in HCC cell lines. Moreover, by performing co-immunoprecipitation (Co-IP) and GST-pull down assay, the physical association between DDX17 and Klf4 was discovered and validated. Additionally, DDX17 could modulate expressions of Klf4 target genes including E-cadherin, MMP2 by inhibiting the promoter activity. The potent correlation between DDX17 and Klf4 target gene expressions was further appraised by a same set of 30 HCC tissues. Besides, we discovered that DDX17 could not deploy its function in regulating Klf4 target gene expressions and HCC progression in Klf4-depletion condition. Intriguingly, DDX17 failed to interact with Klf4 once the zinc-finger domain was deleted and inhibited the binding of Klf4 on MMP-2 promoter. Collectively, our study enucleates novel mechanism of DDX17-mediated oncogenesis by suppressing the transcriptional activity of Klf4 thus is likely to be a therapeutic target in HCC.
Collapse
|
298
|
Fortunel NO, Chadli L, Coutier J, Lemaître G, Auvré F, Domingues S, Bouissou-Cadio E, Vaigot P, Cavallero S, Deleuze JF, Roméo PH, Martin MT. KLF4 inhibition promotes the expansion of keratinocyte precursors from adult human skin and of embryonic-stem-cell-derived keratinocytes. Nat Biomed Eng 2019; 3:985-997. [PMID: 31636412 DOI: 10.1038/s41551-019-0464-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/13/2019] [Indexed: 01/01/2023]
Abstract
Expanded autologous skin keratinocytes are currently used in cutaneous cell therapy, and embryonic-stem-cell-derived keratinocytes could become a complementary alternative. Regardless of keratinocyte provenance, for efficient therapy it is necessary to preserve immature keratinocyte precursors during cell expansion and graft processing. Here, we show that stable and transient downregulation of the transcription factor Krüppel-like factor 4 (KLF4) in keratinocyte precursors from adult skin, using anti-KLF4 RNA interference or kenpaullone, promotes keratinocyte immaturity and keratinocyte self-renewal in vitro, and enhances the capacity for epidermal regeneration in mice. Both stable and transient KLF4 downregulation had no impact on the genomic integrity of adult keratinocytes. Moreover, transient KLF4 downregulation in human-embryonic-stem-cell-derived keratinocytes increased the efficiency of skin-orientated differentiation and of keratinocyte immaturity, and was associated with improved generation of epidermis. As a regulator of the cell fate of keratinocyte precursors, KLF4 could be used for promoting the ex vivo expansion and maintenance of functional immature keratinocyte precursors.
Collapse
Affiliation(s)
- Nicolas O Fortunel
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France. .,INSERM U967, Université Paris-Diderot, Paris, France. .,Université Paris-Saclay, Paris, France.
| | - Loubna Chadli
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France
| | - Julien Coutier
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France
| | - Gilles Lemaître
- Université d'Evry Val d'Essonne, Université Paris-Saclay, INSERM U861, Institut des Cellules Souches pour le Traitement et l'Etude des Maladies Monogéniques, Corbeil Essonne, France
| | - Frédéric Auvré
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France
| | - Sophie Domingues
- Centre d'Etude des Cellules Souches, Institut des Cellules Souches pour le Traitement et l'Etude des Maladies Monogéniques, Corbeil Essonne, France
| | - Emmanuelle Bouissou-Cadio
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France
| | - Pierre Vaigot
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France
| | - Sophie Cavallero
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France.,INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France
| | | | - Paul-Henri Roméo
- INSERM U967, Université Paris-Diderot, Paris, France.,Université Paris-Saclay, Paris, France.,Laboratoire de Recherche sur la Réparation et la Transcription dans les Cellules Souches, CEA/DRF/IBFJ/IRCM, Fontenay-aux-Roses, France
| | - Michèle T Martin
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Evry, France. .,INSERM U967, Université Paris-Diderot, Paris, France. .,Université Paris-Saclay, Paris, France.
| |
Collapse
|
299
|
Zhu L, Zhang N, Yan R, Yang W, Cong G, Yan N, Ma W, Hou J, Yang L, Jia S. Hyperhomocysteinemia induces vascular calcification by activating the transcription factor RUNX2 via Krüppel-like factor 4 up-regulation in mice. J Biol Chem 2019; 294:19465-19474. [PMID: 31628194 DOI: 10.1074/jbc.ra119.009758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/16/2019] [Indexed: 01/09/2023] Open
Abstract
One of the main characteristics of atherosclerosis is vascular calcification, which is linked to adverse cardiovascular events. Increased homocysteine (Hcy), a feature of hyperhomocysteinemia, is correlated with advanced vascular calcification and phenotypic switching of vascular smooth muscle cells (VSMCs). Oxidative stress and high phosphate levels also induce VSMC calcification, suggesting that the Krüppel-like factor 4 (KLF4) signaling pathway may also contribute to vascular calcification. In this study, we investigated this possibility and the role and mechanisms of Hcy in vascular calcification. We found that in atherosclerotic apolipoprotein E-deficient (ApoE-/-) mice, Hcy significantly increases vascular calcification in vivo, as well as VSMC calcification in vitro Of note, the Hcy-induced VSMC calcification was correlated with elevated KLF4 levels. Hcy promoted KLF4 expression in calcified atherosclerotic lesions in vivo and in calcified VSMCs in vitro shRNA-mediated KLF4 knockdown blocked the Hcy-induced up-regulation of runt-related transcription factor 2 (RUNX2) and VSMC calcification. RUNX2 inhibition abolished Hcy-induced VSMC calcification. Using ChIP analysis, we demonstrate that KLF4 interacts with RUNX2, an interaction promoted by Hcy stimulation. Our experiments also revealed that the KLF4 knockdown attenuates Hcy-induced RUNX2 transactivity, indicating that KLF4 is important in modulating RUNX2 transactivity. These findings support a role for Hcy in regulating vascular calcification through a KLF4-RUNX2 interaction and indicate that Hcy-induced, enhanced RUNX2 transactivity increases VSMC calcification. These insights reveal possible opportunities for developing interventions that prevent or manage vascular calcification.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, China.,Institute of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Na Zhang
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Ru Yan
- Institute of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Wenjuan Yang
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Guangzhi Cong
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Ning Yan
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Wanrui Ma
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Jianjun Hou
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Libo Yang
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Shaobin Jia
- Institute of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China .,Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| |
Collapse
|
300
|
Hodges AJ, Hudson NO, Buck-Koehntop BA. Cys 2His 2 Zinc Finger Methyl-CpG Binding Proteins: Getting a Handle on Methylated DNA. J Mol Biol 2019:S0022-2836(19)30567-4. [PMID: 31628952 DOI: 10.1016/j.jmb.2019.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation is an essential epigenetic modification involved in the maintenance of genomic stability, preservation of cellular identity, and regulation of the transcriptional landscape needed to maintain cellular function. In an increasing number of disease conditions, DNA methylation patterns are inappropriately distributed in a manner that supports the disease phenotype. Methyl-CpG binding proteins (MBPs) are specialized transcription factors that read and translate methylated DNA signals into recruitment of protein assemblies that can alter local chromatin architecture and transcription. MBPs thus play a key intermediary role in gene regulation for both normal and diseased cells. Here, we highlight established and potential structure-function relationships for the best characterized members of the zinc finger (ZF) family of MBPs in propagating DNA methylation signals into downstream cellular responses. Current and future investigations aimed toward expanding our understanding of ZF MBP cellular roles will provide needed mechanistic insight into normal and disease state functions, as well as afford evaluation for the potential of these proteins as epigenetic-based therapeutic targets.
Collapse
Affiliation(s)
- Amelia J Hodges
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Nicholas O Hudson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Bethany A Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|