251
|
A hyaluronan-based nanosystem enables combined anti-inflammation of mTOR gene silencing and pharmacotherapy. Carbohydr Polym 2018; 195:339-348. [PMID: 29804985 DOI: 10.1016/j.carbpol.2018.04.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/21/2018] [Accepted: 04/27/2018] [Indexed: 12/19/2022]
Abstract
Accompanied by overproduction of oxidants and reduction of pH, inflammation is closely related to many diseases such as cancer, atherosclerosis, and asthma. Besides chemotherapeutic agents, the potential regulative role of autophagy in inflammation is being actively investigated. RNA interference (RNAi)-based gene therapy is widely explored for clinical therapy but seriously restricted by lack of suitable carriers. In this study, we synthesized a hyaluronan-based ROS-sensitive polymer which was expected to release loaded chemical drugs in inflammatory environment and further developed a stable and nontoxic co-delivery nanosystem of siRNA targeting autophagy suppressive gene and chemotherapeutic agents. The in vitro transfection study of this nanosystem revealed improved intracellular accumulation of siRNA and excellent gene silencing efficacy comparable to that of conventional cationic liposome. Moreover, the mRNA expression of inflammatory cytokines was remarkably decreased by our nanosystem. Considering its biocompatibility, transfection efficacy, and anti-inflammatory capability, this co-delivery nanosystem proclaimed to be a promising combined therapeutic strategy for enhanced anti-inflammatory therapy.
Collapse
|
252
|
Kaur H, He B, Zhang C, Rodriguez E, Hage DS, Moreau R. Piperine potentiates curcumin-mediated repression of mTORC1 signaling in human intestinal epithelial cells: implications for the inhibition of protein synthesis and TNFα signaling. J Nutr Biochem 2018; 57:276-286. [PMID: 29800814 DOI: 10.1016/j.jnutbio.2018.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
Persistent activation of the mechanistic target of rapamycin complex 1 (mTORC1) is linked to sustained inflammation and progression of colorectal cancer. Widely available dietary phenolics, curcumin and piperine are purported to have antiinflammatory and anticarcinogenic activities through yet-to-be-delineated multitarget mechanisms. Piperine is also known to increase the bioavailability of dietary components, including curcumin. The objective of the study was to determine whether curcumin and piperine have individual and combined effects in the setting of gut inflammation by regulating mTORC1 in human intestinal epithelial cells. Results show that curcumin repressed (a) mTORC1 activity (measured as changes in the phosphorylation state of p70 ribosomal protein S6 kinase B1 and 40S ribosomal protein S6) in a dose-dependent manner (2.5-20 μM, P<.007) and (b) synthesis of nascent proteins. Piperine inhibited mTORC1 activity albeit at comparatively higher concentrations than curcumin. The combination of curcumin + piperine further repressed mTORC1 signaling (P<.02). Mechanistically, curcumin may repress mTORC1 by preventing TSC2 degradation, the conserved inhibitor of mTORC1. Results also show that a functional mTORC1 was required for the transcription of TNFα as Raptor knockdown abrogated TNFα gene expression. Curcumin, piperine and their combination inhibited TNFα gene expression at baseline but failed to do so under conditions of mTORC1 hyperactivation. TNF∝-induced cyclooxygenase-2 expression was repressed by curcumin or curcumin + piperine at baseline and high mTORC1 levels. We conclude that curcumin and piperine, either alone or in combination, have the potential to down-regulate mTORC1 signaling in the intestinal epithelium with implications for tumorigenesis and inflammation.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bo He
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chenhua Zhang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Elliott Rodriguez
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Régis Moreau
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
253
|
Ko JH, Yoon SO, Lee HJ, Oh JY. Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy- and p62-dependent manners. Oncotarget 2018; 8:40817-40831. [PMID: 28489580 PMCID: PMC5522223 DOI: 10.18632/oncotarget.17256] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
Excessive and prolonged activation of macrophages underlies many inflammatory and autoimmune diseases. To regulate activation and maintain homeostasis, macrophages have multiple intrinsic mechanisms, one of which is modulation through autophagy. Here we demonstrate that autophagy induction by rapamycin suppressed the production of IL-1β and IL-18 in lipopolysaccharide- and adenosine triphosphate-activated macrophages at the post-transcriptional level by eliminating mitochondrial ROS (mtROS) and pro-IL1β in a p62/SQSTM1-dependent manner. In addition, rapamycin activated Nrf2 through up-regulation of p62/SQSTM1, which further contributed to the reduction of mtROS. Reduced IL-1β subsequently diminished the activation of p38 MAPK-NFκB pathways, leading to transcriptional down-regulation of IL-6, IL-8, MCP-1, and IκBα in rapamycin-treated macrophages. Therefore, our results suggest that rapamycin negatively regulates macrophage activation by restricting a feedback loop of NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy- and p62/SQSTM1-dependent manners.
Collapse
Affiliation(s)
- Jung Hwa Ko
- Department of Ophthalmology, Seoul National University Hospital, 03080, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 03080, Seoul, Korea
| | - Sun-Ok Yoon
- R and D Laboratory, Eutilex Co., Ltd, 08594, Seoul, Korea
| | - Hyun Ju Lee
- Department of Ophthalmology, Seoul National University Hospital, 03080, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 03080, Seoul, Korea
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University Hospital, 03080, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 03080, Seoul, Korea
| |
Collapse
|
254
|
Hayama Y, Kimura T, Takeda Y, Nada S, Koyama S, Takamatsu H, Kang S, Ito D, Maeda Y, Nishide M, Nojima S, Sarashina-Kida H, Hosokawa T, Kinehara Y, Kato Y, Nakatani T, Nakanishi Y, Tsuda T, Koba T, Okada M, Kumanogoh A. Lysosomal Protein Lamtor1 Controls Innate Immune Responses via Nuclear Translocation of Transcription Factor EB. THE JOURNAL OF IMMUNOLOGY 2018; 200:3790-3800. [PMID: 29686050 DOI: 10.4049/jimmunol.1701283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/30/2018] [Indexed: 11/19/2022]
Abstract
Amino acid metabolism plays important roles in innate immune cells, including macrophages. Recently, we reported that a lysosomal adaptor protein, Lamtor1, which serves as the scaffold for amino acid-activated mechanistic target of rapamycin complex 1 (mTORC1), is critical for the polarization of M2 macrophages. However, little is known about how Lamtor1 affects the inflammatory responses that are triggered by the stimuli for TLRs. In this article, we show that Lamtor1 controls innate immune responses by regulating the phosphorylation and nuclear translocation of transcription factor EB (TFEB), which has been known as the master regulator for lysosome and autophagosome biogenesis. Furthermore, we show that nuclear translocation of TFEB occurs in alveolar macrophages of myeloid-specific Lamtor1 conditional knockout mice and that these mice are hypersensitive to intratracheal administration of LPS and bleomycin. Our observation clarified that the amino acid-sensing pathway consisting of Lamtor1, mTORC1, and TFEB is involved in the regulation of innate immune responses.
Collapse
Affiliation(s)
- Yoshitomo Hayama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Tetsuya Kimura
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; .,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Sujin Kang
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Ito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yohei Maeda
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; and
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Satoshi Nojima
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan.,Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hana Sarashina-Kida
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Hosokawa
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuhei Kinehara
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Takeshi Nakatani
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Takeshi Tsuda
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; and
| | - Taro Koba
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; .,Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| |
Collapse
|
255
|
Ma C, Wang F, Han B, Zhong X, Si F, Ye J, Hsueh EC, Robbins L, Kiefer SM, Zhang Y, Hunborg P, Varvares MA, Rauchman M, Peng G. SALL1 functions as a tumor suppressor in breast cancer by regulating cancer cell senescence and metastasis through the NuRD complex. Mol Cancer 2018; 17:78. [PMID: 29625565 PMCID: PMC5889587 DOI: 10.1186/s12943-018-0824-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/11/2018] [Indexed: 01/19/2023] Open
Abstract
Background SALL1 is a multi-zinc finger transcription factor that regulates organogenesis and stem cell development, but the role of SALL1 in tumor biology and tumorigenesis remains largely unknown. Methods We analyzed SALL1 expression levels in human and murine breast cancer cells as well as cancer tissues from different types of breast cancer patients. Using both in vitro co-culture system and in vivo breast tumor models, we investigated how SALL1 expression in breast cancer cells affects tumor cell growth and proliferation, metastasis, and cell fate. Using the gain-of function and loss-of-function strategies, we dissected the molecular mechanism responsible for SALL1 tumor suppressor functions. Results We demonstrated that SALL1 functions as a tumor suppressor in breast cancer, which is significantly down-regulated in the basal like breast cancer and in estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) triple negative breast cancer patients. SALL1 expression in human and murine breast cancer cells inhibited cancer cell growth and proliferation, metastasis, and promoted cell cycle arrest. Knockdown of SALL1 in breast cancer cells promoted cancer cell growth, proliferation, and colony formation. Our studies revealed that tumor suppression was mediated by recruitment of the Nucleosome Remodeling and Deacetylase (NuRD) complex by SALL1, which promoted cancer cell senescence. We further demonstrated that the mechanism of inhibition of breast cancer cell growth and invasion by SALL1-NuRD depends on the p38 MAPK, ERK1/2, and mTOR signaling pathways. Conclusion Our studies indicate that the developmental control gene SALL1 plays a critical role in tumor suppression by recruiting the NuRD complex and thereby inducing cell senescence in breast cancer cells. Electronic supplementary material The online version of this article (10.1186/s12943-018-0824-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunling Ma
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Laboratory Medicine, Women & Children's Hospital of Linyi, Shandong Medical College, Linyi, 276000, People's Republic of China
| | - Fang Wang
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Bing Han
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Xiaoli Zhong
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Fusheng Si
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jian Ye
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Eddy C Hsueh
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Lynn Robbins
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, 63106, USA.,Department of Medicine, Washington University, Saint. Louis, MO, 63110, USA
| | - Susan M Kiefer
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Yanping Zhang
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Pamela Hunborg
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Mark A Varvares
- Department of Otolaryngology, Saint Louis University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Michael Rauchman
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, 63106, USA. .,Department of Medicine, Washington University, Saint. Louis, MO, 63110, USA.
| | - Guangyong Peng
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| |
Collapse
|
256
|
Lee JE, Rayyan M, Liao A, Edery I, Pletcher SD. Acute Dietary Restriction Acts via TOR, PP2A, and Myc Signaling to Boost Innate Immunity in Drosophila. Cell Rep 2018; 20:479-490. [PMID: 28700947 DOI: 10.1016/j.celrep.2017.06.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/20/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
Abstract
Dietary restriction promotes health and longevity across taxa through mechanisms that are largely unknown. Here, we show that acute yeast restriction significantly improves the ability of adult female Drosophila melanogaster to resist pathogenic bacterial infections through an immune pathway involving downregulation of target of rapamycin (TOR) signaling, which stabilizes the transcription factor Myc by increasing the steady-state level of its phosphorylated forms through decreased activity of protein phosphatase 2A. Upregulation of Myc through genetic and pharmacological means mimicked the effects of yeast restriction in fully fed flies, identifying Myc as a pro-immune molecule. Short-term dietary or pharmacological interventions that modulate TOR-PP2A-Myc signaling may provide an effective method to enhance immunity in vulnerable human populations.
Collapse
Affiliation(s)
- Jung-Eun Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Morsi Rayyan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allison Liao
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isaac Edery
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
257
|
Wang Z, Valera JC, Zhao X, Chen Q, Gutkind JS. mTOR co-targeting strategies for head and neck cancer therapy. Cancer Metastasis Rev 2018; 36:491-502. [PMID: 28822012 PMCID: PMC5613059 DOI: 10.1007/s10555-017-9688-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. There is an urgent need to develop effective therapeutic approaches to prevent and treat HNSCC. Recent deep sequencing of the HNSCC genomic landscape revealed a multiplicity and diversity of genetic alterations in this malignancy. Although a large variety of specific molecules were found altered in each individual tumor, they all participate in only a handful of driver signaling pathways. Among them, the PI3K/mTOR pathway is the most frequently activated, which plays a central role in cancer initiation and progression. In turn, targeting of mTOR may represent a precision therapeutic approach for HNSCC. Indeed, mTOR inhibition exerts potent anti-tumor activity in HNSCC experimental systems, and mTOR targeting clinical trials show encouraging results. However, advanced HNSCC patients may exhibit unpredictable drug resistance, and the analysis of its molecular basis suggests that co-targeting strategies may provide a more effective option. In addition, although counterintuitive, emerging evidence suggests that mTOR inhibition may enhance the anti-tumor immune response. These new findings raise the possibility that the combination of mTOR inhibitors and immune oncology agents may provide novel precision therapeutic options for HNSCC.
Collapse
Affiliation(s)
- Zhiyong Wang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | | | - Xuefeng Zhao
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
258
|
Hu W, Lv J, Han M, Yang Z, Li T, Jiang S, Yang Y. STAT3: The art of multi-tasking of metabolic and immune functions in obesity. Prog Lipid Res 2018; 70:17-28. [DOI: 10.1016/j.plipres.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023]
|
259
|
Zhao T, Yan C, Du H. Lysosomal acid lipase in mesenchymal stem cell stimulation of tumor growth and metastasis. Oncotarget 2018; 7:61121-61135. [PMID: 27531897 PMCID: PMC5308640 DOI: 10.18632/oncotarget.11244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/27/2016] [Indexed: 12/29/2022] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) are an important participant in the tumor microenvironment, in which they promote tumor growth and progression. Here we report for the first time that depletion of lysosomal acid lipase (LAL) in MSCs impairs their abilities to stimulate tumor growth and metastasis both in allogeneic and syngeneic mouse models. Reduced cell viability was observed in LAL-deficient (lal−/−) MSCs, which was a result of both increased apoptosis and decreased proliferation due to cell cycle arrest. The synthesis and secretion of cytokines and chemokines that are known to mediate MSCs' tumor-stimulating and immunosuppressive effects, i.e., IL-6, MCP-1 and IL-10, were down-regulated in lal−/− MSCs. When tumor cells were treated with the conditioned medium from lal−/− MSCs, decreased proliferation was observed, accompanied by reduced activation of oncogenic intracellular signaling molecules in tumor cells. Co-injection of lal−/− MSCs and B16 melanoma cells into wild type mice not only induced CD8+ cytotoxic T cells, but also decreased accumulation of tumor-promoting Ly6G+CD11b+ myeloid-derived suppressor cells (MDSCs), which may synergistically contribute to the impairment of tumor progression. Furthermore, lal−/− MSCs showed impaired differentiation towards tumor-associated fibroblasts. In addition, MDSCs facilitated MSC proliferation, which was mediated by MDSC-secreted cytokines and chemokines. Our results indicate that LAL plays a critical role in regulating MSCs' ability to stimulate tumor growth and metastasis, which provides a mechanistic basis for targeting LAL in MSCs to reduce the risk of cancer metastasis.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
260
|
He S, Guo W, Deng F, Chen K, Jiang Y, Dong M, Peng L, Chen X. Targeted delivery of microRNA 146b mimic to hepatocytes by lactosylated PDMAEMA nanoparticles for the treatment of NAFLD. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:217-228. [PMID: 29560749 DOI: 10.1080/21691401.2018.1453830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide, and precision therapeutic will be a benefit for the NAFLD regression. In this study, we observed low microRNA 146 b (miR-146 b) expression in NAFLD mice model induced by methionine-choline-deficient diet (MCD) compared with control group. Furthermore, miR-146b-/- mice induced MCD exhibited severe liver steatosis and hepatitis. A bio-distribution study showed that novel Lactosylated PDMAEMA nanoparticles effectively targeted hepatocytes Lac-PDMAEMA. We coupled miR-146b mimic with Lac-PDMAEMA and then were administrated to NAFLD mice model, which could obviously alleviate the hepatic steatosis. Lac-PDMAEMA effectively delivered miR-146b mimic to hepatocytes with a ∼8-fold upregulation of miR-146b mimic targeting MyD88 and IRAK1, and in turn suppressed the expression of PPARγ. Meanwhile, TNF-α and IL-6 mRNA levels were decreased after administration of Lac-PDMAEMA/miR-146b mimic. So, we made a conclusion that targeted delivering miR-146b mimic to the hepatocytes by, coupling Lac-PDMAEMA nanoparticles could effectively alleviate the hepatic steatosis in NAFLD mice, which maybe bring a new and effective way to intervene and therapy the NAFLD.
Collapse
Affiliation(s)
- Shuying He
- a Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology , Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Weihong Guo
- b Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Feihong Deng
- a Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology , Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Kequan Chen
- c Department of Gastroenterology , First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University , Guangzhou , China
| | - Yonghong Jiang
- c Department of Gastroenterology , First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University , Guangzhou , China
| | - Minyu Dong
- c Department of Gastroenterology , First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University , Guangzhou , China
| | - Liang Peng
- c Department of Gastroenterology , First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University , Guangzhou , China
| | - Xueqing Chen
- c Department of Gastroenterology , First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University , Guangzhou , China
| |
Collapse
|
261
|
Lee DK, Kim JH, Kim J, Choi S, Park M, Park W, Kim S, Lee KS, Kim T, Jung J, Choi YK, Ha KS, Won MH, Billiar TR, Kwon YG, Kim YM. REDD-1 aggravates endotoxin-induced inflammation via atypical NF-κB activation. FASEB J 2018; 32:4585-4599. [PMID: 29547704 DOI: 10.1096/fj.201701436r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regulated in development and DNA damage responses 1 (REDD-1), an inhibitor of mammalian target of rapamycin (mTOR), is induced by various cell stressors, including LPS, a major player in the pathogenesis of endotoxemic shock. However, the pathologic role of REDD-1 in endotoxemia is largely unknown. We found that LPS increased REDD-1 expression, nuclear transcription factor-κB (NF-κB) activation, and inflammation and that these responses were suppressed by REDD-1 knockdown and in REDD-1+/- macrophages. REDD-1 overexpression stimulated NF-κB-dependent inflammation without additional LPS stimulation. REDD-1-induced NF-κB activation was independent of 2 classic IKK-dependent NF-κB pathways and the mTOR signaling pathway; however, REDD-1, particularly its C-terminal region (178-229), interacted with and sequestered IκBα, to elicit atypical NF-κB activation during the delayed and persistent phases of inflammation after stimulation. Moreover, REDD-1 knockdown mitigated vascular inflammation and permeability in endotoxemic mice, resulting in decreases in immune cell infiltration, systemic inflammation, caspase-3 activation, apoptosis, and consequent mortality. We further confirmed the inflammatory and cytotoxic effects of REDD-1 in endotoxemic REDD-1+/- mice. Our data support the likelihood that REDD-1 exacerbates endotoxemic inflammation via atypical NF-κB activation by sequestering IκBα.-Lee, D.-K., Kim, J.-H., Kim, J., Choi, S., Park, M., Park, W., Kim, S., Lee, K.-S., Kim, T., Jung, J., Choi, Y. K., Ha, K.-S., Won, M.-H., Billiar, T. R., Kwon, Y.-G., Kim, Y.-M. REDD-1 aggravates endotoxin-induced inflammation via atypical NF-κB activation.
Collapse
Affiliation(s)
- Dong-Keon Lee
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ji-Hee Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Joohwan Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Seunghwan Choi
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - MinSik Park
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Wonjin Park
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Suji Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Kyu-Sun Lee
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Taesam Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jiwon Jung
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
262
|
RostamiRad A, Ebrahimi SSS, Sadeghi A, Taghikhani M, Meshkani R. Palmitate-induced impairment of autophagy turnover leads to increased apoptosis and inflammation in peripheral blood mononuclear cells. Immunobiology 2018; 223:269-278. [DOI: 10.1016/j.imbio.2017.10.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/14/2017] [Indexed: 12/20/2022]
|
263
|
Leal R, Tsapepas D, Crew RJ, Dube GK, Ratner L, Batal I. Pathology of Calcineurin and Mammalian Target of Rapamycin Inhibitors in Kidney Transplantation. Kidney Int Rep 2018; 3:281-290. [PMID: 30276344 PMCID: PMC6161639 DOI: 10.1016/j.ekir.2017.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/15/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022] Open
Abstract
The recent evolution in immunosuppression therapy has led to significant improvement in short-term kidney allograft outcomes; however, this progress did not translate into similar improvement in long-term graft survival. The latter, at least in part, is likely to be attributed to immunosuppressant side effects. In this review, we focus on the histologic manifestations of calcineurin inhibitor and mammalian target of rapamycin inhibitor toxicity. We discuss the pathologic features attributed to such toxicity and allude to the lack of highly specific pathognomonic lesions. Finally, we highlight the importance of clinicopathologic correlation to achieve a meaningful pathologic interpretation.
Collapse
Affiliation(s)
- Rita Leal
- Department of Nephrology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Demetra Tsapepas
- Department of Pharmacy, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Russell J. Crew
- Department of Medicine, Division of Nephrology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Geoffrey K. Dube
- Department of Medicine, Division of Nephrology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Lloyd Ratner
- Department of Surgery, Division of Transplantation, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Ibrahim Batal
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
264
|
Wu P, Pan FY, Feng L, Jiang WD, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Methionine hydroxy analogue supplementation modulates gill immunological and barrier health status of grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 74:637-648. [PMID: 29360541 DOI: 10.1016/j.fsi.2018.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
This study was conducted to investigate the effects of methionine hydroxy analogue (MHA) on the physical barrier and immune defence in the gill of young grass carp (Ctenopharyngodon idella). A total 630 young grass carp with an average initial weight of 259.70 ± 0.47 g were fed graded levels of MHA (0, 2.4, 4.4, 6.4, 8.5 and 10.5 g/kg diet) and one DL-methionine (DLM) group (6.4 g/kg diet) for 8 weeks. After feeding trial, 15 fish from each treatment were challenged with Flavobacterium columnare. Compared to the basal diet, optimal MHA improved cellular structure integrity of gill via repressing death receptor and mitochondria pathways induced apoptosis, which might be related to the down-regulation of c-Jun-N-terminal kinase mRNA levels (P < .05). Simultaneously, optimal MHA supplementation improved cellular structure integrity of gill via elevating glutathione contents, antioxidant enzymes activities and corresponding isoforms mRNA levels to attenuate oxidative damage, which might be to the up-regulation of NF-E2-related factor 2 mRNA levels and down-regulation of Kelch-like ECH-associating protein 1a mRNA levels (P < .05). Besides, optimal MHA improved intercellular structure integrity of immune organs via up-regulating the mRNA levels of intercellular tight junctions-related genes, which might be owing to the down-regulation of myosin light chain kinase (MLCK) mRNA levels (P < .05). Summarily, MHA could improve the physical barrier of fish gill. In addition, optimal MHA supplementation increased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M contents and up-regulated mRNA levels of liver-expressed antimicrobial peptide 2, hepcidin and β-defensin, suggesting that MHA could enhance antimicrobial ability of fish gill. Meanwhile, optimal MHA supplementation enhanced the immune defence of gill via down-regulating pro-inflammatory cytokines mRNA levels and up-regulated anti-inflammatory cytokines mRNA levels, which might be attributed to the down-regulation of nuclear factor κB p65, c-Rel, IκB kinase β, p38 mitogen activated protein kinase, eIF4E-binding protein1 (4E-BP1) and 4E-BP2 mRNA levels and up-regulation of inhibitor of κBα, ribosomal protein S6 kinase 1 and target of rapamycin mRNA levels (P < .05). In conclusion, the positive effect of MHA on gill health is associated with the improvement of the defence against apoptosis, antioxidant status, tight junctions and immune defence of fish gill. Meanwhile, MHA was superior to DLM on improving the physical barrier of fish gill. For the direction to healthy breeding of young grass carp, the optimal MHA supplementation levels on the premise of 4.01 g/kg methionine basal were estimated by quadratic regression curve, such as 5.49, 6.17 and 6.02 g/kg diet bases on the defence against gill-rot, malondialdehyde content and LZ activity in the gill, respectively.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei-Yu Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
265
|
Alvarez RH, Bechara RI, Naughton MJ, Adachi JA, Reuben JM. Emerging Perspectives on mTOR Inhibitor-Associated Pneumonitis in Breast Cancer. Oncologist 2018; 23:660-669. [PMID: 29487226 DOI: 10.1634/theoncologist.2017-0343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/03/2018] [Indexed: 01/14/2023] Open
Abstract
Substantial improvements in the early detection and treatment of breast cancer have led to improvements in survival, but breast cancer remains a significant cause of morbidity and mortality in women. In 2012, the mammalian target of rapamycin (mTOR) inhibitor everolimus was approved by the U.S. Food and Drug Administration for the treatment of advanced breast cancer in patients resistant to endocrine therapy. Although everolimus is generally well tolerated, mTOR inhibitor-associated pneumonitis is one of the most common adverse drug events leading to treatment discontinuation. To date, the underlying pathophysiology of this toxicity is unclear, and this uncertainty may hinder the optimization of management strategies. However, experiences from breast cancer and renal cell carcinoma clinical trials indicate that mTOR inhibitor-associated pneumonitis can be effectively managed by early detection, accurate diagnosis, and prompt intervention that generally involves everolimus dose reductions, interruptions, or discontinuation. Management can be achieved by a multidisciplinary approach that involves the collaborative efforts of nurses, oncologists, radiologists, infectious disease specialists, pulmonologists, clinical pharmacists, and pathologists. Comprehensive education must be provided to all health care professionals involved in managing patients receiving everolimus therapy. Although general recommendations on the management of mTOR inhibitor-associated pneumonitis have been published, there is a lack of consensus on the optimal management of this potentially serious complication. This article provides an overview of mTOR inhibitor-associated pneumonitis, with a focus on the detection, accurate diagnosis, and optimal management of this class-related complication of mTOR inhibitor therapy. IMPLICATIONS FOR PRACTICE This article summarizes the pathogenesis, clinical presentation, incidence, detection, and optimal management of everolimus-related noninfectious pneumonitis in breast cancer. In particular, this article provides a detailed overview of the important aspects of the detection, accurate diagnosis, and appropriate management of mammalian target of rapamycin inhibitor-associated pneumonitis. In addition, this article emphasizes that effective management of this adverse drug event in patients with breast cancer will require a multidisciplinary approach and collaboration among various health care professionals.
Collapse
Affiliation(s)
| | | | - Michael J Naughton
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Javier A Adachi
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James M Reuben
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
266
|
Rojas Márquez JD, Ana Y, Baigorrí RE, Stempin CC, Cerban FM. Mammalian Target of Rapamycin Inhibition in Trypanosoma cruzi-Infected Macrophages Leads to an Intracellular Profile That Is Detrimental for Infection. Front Immunol 2018. [PMID: 29515594 PMCID: PMC5826284 DOI: 10.3389/fimmu.2018.00313] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The causative agent of Chagas’ disease, Trypanosoma cruzi, affects approximately 10 million people living mainly in Latin America, with macrophages being one of the first cellular actors confronting the invasion during T. cruzi infection and their function depending on their proper activation and polarization into distinct M1 and M2 subtypes. Macrophage polarization is thought to be regulated not only by cytokines and growth factors but also by environmental signals. The metabolic checkpoint kinase mammalian target of rapamycin (mTOR)-mediated sensing of environmental and metabolic cues influences macrophage polarization in a complex and as of yet incompletely understood manner. Here, we studied the role of the mTOR pathway in macrophages during T. cruzi infection. We demonstrated that the parasite activated mTOR, which was beneficial for its replication since inhibition of mTOR in macrophages by different inhibitors decreased parasite replication. Moreover, in rapamycin pretreated and infected macrophages, we observed a decreased arginase activity and expression, reduced IL-10 and increased interleukin-12 production, compared to control infected macrophages treated with DMSO. Surprisingly, we also found a reduced iNOS activity and expression in these macrophages. Therefore, we investigated possible alternative mechanisms involved in controlling parasite replication in rapamycin pretreated and infected macrophages. Although, cytoplasmic ROS and the enzyme indoleamine 2, 3-dioxygenase (IDO) were not involved, we observed a significant increase in IL-6, TNF-α, and IL-1β production. Taking into account that IL-1β is produced by activation of the cytoplasmic receptor NLRP3, which is one of the main components of the inflammasome, we evaluated NLRP3 expression during mTOR inhibition and T. cruzi infection. We observed that rapamycin-pretreated and infected macrophages showed a significant increase in NLRP3 expression and produced higher levels of mitochondrial ROS (mtROS) compared with control cells. Moreover, inhibition of mtROS production partially reversed the effect of rapamycin on parasite replication, with there being a significant increase in parasite load in rapamycin pretreated and infected macrophages from NLRP3 KO mice compared to wild-type control cells. Our findings strongly suggest that mTOR inhibition during T. cruzi infection induces NLRP3 inflammasome activation and mtROS production, resulting in an inflammatory-like macrophage profile that controls T. cruzi replication.
Collapse
Affiliation(s)
- Jorge David Rojas Márquez
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Yamile Ana
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ruth Eliana Baigorrí
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Cinthia Carolina Stempin
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Fabio Marcelo Cerban
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
267
|
Lee K, Kwak JH, Pyo S. Inhibition of LPS-induced inflammatory mediators by 3-hydroxyanthranilic acid in macrophages through suppression of PI3K/NF-κB signaling pathways. Food Funct 2018; 7:3073-82. [PMID: 27264984 DOI: 10.1039/c6fo00187d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many tryptophan metabolites have immunomodulatory effects on various immune cells. 3-Hydroxyanthranilic Acid (3-HAA) is a tryptophan metabolite reported to have anti-inflammatory activity. The mechanism of this activity is unclear. The present study examined the immunomodulatory effects and molecular mechanisms of 3-HAA on macrophages. Pretreatment of 3-HAA (0.1-10 μg mL(-1)) for 2 h markedly inhibited NO and cytokine production in LPS-stimulated Raw 264.7 cells. Moreover, translocation and activation of NF-κB by LPS in the nucleus were abrogated through the prevention of IκB degradation by 3-HAA treatment. 3-HAA significantly suppressed LPS-induced PI3K/Akt/mTOR activation, whereas MAPKs were not affected by 3-HAA treatment. Furthermore, the inhibition of mTOR by 3-HAA resulted in decreased production of inflammatory mediators and NF-κB activity. Similar results were also observed in primary peritoneal macrophages. Furthermore, 3-HAA modulated macrophage polarization. Collectively, the results suggest that 3-HAA has an immunomodulatory effect that may result from inhibition of PI3K/Akt/mTOR and NF-κB activation, thereby decreasing the production of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Kyoungran Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea.
| | - Jong-Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea.
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
268
|
|
269
|
Liang Z, Zhang L, Su H, Luan R, Na N, Sun L, Zhao Y, Zhang X, Zhang Q, Li J, Zhang L, Zhao Y. MTOR signaling is essential for the development of thymic epithelial cells and the induction of central immune tolerance. Autophagy 2018; 14:505-517. [PMID: 29099279 DOI: 10.1080/15548627.2017.1376161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Thymic epithelial cells (TECs) are critical for the establishment and maintenance of appropriate microenvironment for the positive and negative selection of thymocytes and the induction of central immune tolerance. Yet, little about the molecular regulatory network on TEC development and function is understood. Here, we demonstrate that MTOR (mechanistic target of rapamycin [serine/threonine kinase]) is essential for proper development and functional maturation of TECs. Pharmacological inhibition of MTOR activity by rapamycin (RPM) causes severe thymic atrophy and reduction of TECs. TEC-specific deletion of Mtor causes the severe reduction of mTECs, the blockage of thymocyte differentiation and output, the reduced generation of thymic regulatory T (Treg) cells and the impaired expression of tissue-restricted antigens (TRAs) including Fabp2, Ins1, Tff3 and Chrna1 molecules. Importantly, specific deletion of Mtor in TECs causes autoimmune diseases characterized by enhanced tissue immune cell infiltration and the presence of autoreactive antibodies. Mechanistically, Mtor deletion causes overdegradation of CTNNB1/Beta-Catenin due to excessive autophagy and the attenuation of WNT (wingless-type MMTV integration site family) signaling in TECs. Selective inhibition of autophagy significantly rescued the poor mTEC development caused by Mtor deficiency. Altogether, MTOR is essential for TEC development and maturation by regulating proliferation and WNT signaling activity through autophagy. The present study also implies that long-term usage of RPM might increase the risk of autoimmunity by impairing TEC maturation and function.
Collapse
Affiliation(s)
- Zhanfeng Liang
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Lianjun Zhang
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Huiting Su
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Rong Luan
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Ning Na
- c Department of Kidney Transplantation , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong , China
| | - Lina Sun
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Yang Zhao
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Xiaodong Zhang
- d Department of Urology , Beijing Chaoyang Hospital, Capital Medical University , Chaoyang District, Beijing , China
| | - Qian Zhang
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Juan Li
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Lianfeng Zhang
- e Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Yong Zhao
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
270
|
Jahrling JB, Lin AL, DeRosa N, Hussong SA, Van Skike CE, Girotti M, Javors M, Zhao Q, Maslin LA, Asmis R, Galvan V. mTOR drives cerebral blood flow and memory deficits in LDLR -/- mice modeling atherosclerosis and vascular cognitive impairment. J Cereb Blood Flow Metab 2018; 38:58-74. [PMID: 28511572 PMCID: PMC5757441 DOI: 10.1177/0271678x17705973] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
We recently showed that mTOR attenuation blocks progression and abrogates established cognitive deficits in Alzheimer's disease (AD) mouse models. These outcomes were associated with the restoration of cerebral blood flow (CBF) and brain vascular density (BVD) resulting from relief of mTOR inhibition of NO release. Recent reports suggested a role of mTOR in atherosclerosis. Because mTOR drives aging and vascular dysfunction is a universal feature of aging, we hypothesized that mTOR may contribute to brain vascular and cognitive dysfunction associated with atherosclerosis. We measured CBF, BVD, cognitive function, markers of inflammation, and parameters of cardiovascular disease in LDLR-/- mice fed maintenance or high-fat diet ± rapamycin. Cardiovascular pathologies were proportional to severity of brain vascular dysfunction. Aortic atheromas were reduced, CBF and BVD were restored, and cognitive dysfunction was attenuated potentially through reduction in systemic and brain inflammation following chronic mTOR attenuation. Our studies suggest that mTOR regulates vascular integrity and function and that mTOR attenuation may restore neurovascular function and cardiovascular health. Together with our previous studies in AD models, our data suggest mTOR-driven vascular damage may be a mechanism shared by age-associated neurological diseases. Therefore, mTOR attenuation may have promise for treatment of cognitive impairment in atherosclerosis.
Collapse
Affiliation(s)
- Jordan B Jahrling
- Department of Cellular and Integrative
Physiology and The Barshop Institute for Longevity and Aging Studies, University of
Texas Health Science Center at San Antonio, TX, USA
| | - Ai-Ling Lin
- Sanders-Brown Center on Aging,
Department of Pharmacology and Nutritional Sciences and Department of Biomedical
Engineering, University of Kentucky, KY, USA
| | - Nicholas DeRosa
- Department of Cellular and Integrative
Physiology and The Barshop Institute for Longevity and Aging Studies, University of
Texas Health Science Center at San Antonio, TX, USA
| | - Stacy A Hussong
- Department of Cellular and Integrative
Physiology and The Barshop Institute for Longevity and Aging Studies, University of
Texas Health Science Center at San Antonio, TX, USA
| | - Candice E Van Skike
- Department of Cellular and Integrative
Physiology and The Barshop Institute for Longevity and Aging Studies, University of
Texas Health Science Center at San Antonio, TX, USA
| | - Milena Girotti
- Department of Pharmacology, University
of Texas Health Science Center at San Antonio, TX, USA
| | - Martin Javors
- Department of Psychiatry, University of
Texas Health Science Center at San Antonio, TX, USA
| | - Qingwei Zhao
- Department of Medicine, University of
Texas Health Science Center at San Antonio, TX, USA
| | - Leigh Ann Maslin
- Department of Clinical Laboratory
Sciences, University of Texas Health Science Center at San Antonio, TX, USA
| | - Reto Asmis
- Department of Clinical Laboratory
Sciences, University of Texas Health Science Center at San Antonio, TX, USA
- Department of Biochemistry, University
of Texas Health Science Center at San Antonio, TX, USA
| | - Veronica Galvan
- Department of Cellular and Integrative
Physiology and The Barshop Institute for Longevity and Aging Studies, University of
Texas Health Science Center at San Antonio, TX, USA
| |
Collapse
|
271
|
Wang B, Lin Y, Hu Y, Shan W, Liu S, Xu Y, Zhang H, Cai S, Yu X, Cai Z, Huang H. mTOR inhibition improves the immunomodulatory properties of human bone marrow mesenchymal stem cells by inducing COX-2 and PGE 2. Stem Cell Res Ther 2017; 8:292. [PMID: 29287601 PMCID: PMC5747167 DOI: 10.1186/s13287-017-0744-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 01/20/2023] Open
Abstract
Background Bone marrow mesenchymal stem cells (MSCs) are promising candidates for the treatment of various inflammatory disorders due to their profound immunomodulatory properties. However, the immunosuppressive capacity of MSCs needs activation by an inflammatory microenvironment, which may negatively impact the therapeutic effect because of increased immunogenicity. Here we explore the role of mammalian target of rapamycin (mTOR) signaling on the immunosuppressive capacity of MSCs, and its impact on immunogenicity in the inflammatory microenvironment. Methods Human bone marrow MSCs were cocultured with activated human peripheral blood mononuclear cells, CD4+ T cells, and mouse splenocytes to evaluate the immunosuppressive function. Immunosuppressive factors were assessed by quantitative real-time polymerase chain reaction (PCR), Western blot, and enzyme-linked immunosorbent assay (ELISA). The expression of major histocompatibility complex (MHC) was detected by flow cytometry. Short hairpin (sh)RNA was used to downregulate tuberous sclerosis complex (TSC)2, TSC1, and cyclooxygenase (COX)-2 in MSCs. Results Inhibition of mTOR signaling using rapamycin enhanced the immunosuppressive functions of MSCs, while prolonged exposure to rapamycin did not. The enhancement of the immunosuppressive function was independent of the inflammatory microenvironment, and occurred mainly through the upregulation of COX-2 and prostaglandin-E2 (PGE2) expression. Furthermore, mTOR inhibition did not impact the immunogenicity of MSCs. However, the upregulated expression of MHC class II molecules by interferon (IFN)-γ was attenuated by mTOR inhibition, whereas TSC2 knockdown had the opposite effect. Conclusions These results reveal that the mTOR signaling pathway regulates MSC immunobiology, and short-term exposure to rapamycin could be a novel approach to improve the MSC-based therapeutic effect. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0744-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Yu Lin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Senquan Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Hao Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Xiaohong Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China. .,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
272
|
Soltani A, Bahreyni A, Boroumand N, Roshan MK, Khazaei M, Ryzhikov M, Soleimanpour S, Avan A, Hassanian SM. Therapeutic potency of mTOR signaling pharmacological inhibitors in the treatment of proinflammatory diseases, current status, and perspectives. J Cell Physiol 2017; 233:4783-4790. [PMID: 29165795 DOI: 10.1002/jcp.26276] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/14/2017] [Accepted: 11/14/2017] [Indexed: 12/26/2022]
Abstract
Mammalian target of rapamycin (mTOR) signaling pathway controls cell energy metabolism. There is an interplay between mTOR and proinflammatory signaling pathways, supporting the role of the pathway in the pathogenesis of inflammatory diseases. Inhibition of mTOR signaling using specific pharmacological inhibitors could offer therapeutic promise in several inflammatory-associated diseases. In this review, we summarize recent findings on the regulatory effects of mTOR signaling on inflammation and the therapeutic potency of mTOR pharmacological inhibitors in the treatment of inflammatory diseases including cancer, neurodegenerative diseases, atherosclerosis, sepsis, and rheumatoid arthritis for a better understanding and hence a better management of these diseases.
Collapse
Affiliation(s)
- Arash Soltani
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Bahreyni
- Department of Clinical Biochemistry and Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Nadia Boroumand
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Karimi Roshan
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Faculty of Medicine, Department of Medical Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology, St. Louis University, School of Medicine, Saint Louis, Missouri
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
273
|
Leucine alters immunoglobulin a secretion and inflammatory cytokine expression induced by lipopolysaccharide via the nuclear factor-κB pathway in intestine of chicken embryos. Animal 2017; 12:1903-1911. [PMID: 29271330 DOI: 10.1017/s1751731117003342] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) has been shown to be involved in lipopolysaccharide (LPS)-induced immune responses in many mammal cells. Here, we suggest that the mTOR pathway is involved in the intestinal inflammatory responses evoked by LPS treatment in chicken embryos. The intestinal tissue from Specific pathogen free chick embryos was cultured in the presence of LPS for 2 h. Secretory immunoglobulin A (sIgA) concentrations, messenger RNA (mRNA) expression of cytokines, and protein levels of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), mTOR and p70 ribosomal S6 kinase (p70S6K) were determined. The results showed that LPS treatment increased sIgA concentrations in a dose-dependent manner. The mRNA levels of interleukine (IL)-6, IL-8, IL-10, tumor necrosis factor-α and Toll-like receptor (TLR) 4 were upregulated by LPS treatment (P<0.05). Lipopolysaccharide increased the phosphorylation of Jun N-terminal kinase (JNK), p38 MAPK and NF-κB (P<0.05) while decreasing the phosphorylation level of mTOR (P<0.05). Supplementation of leucine at doses of 10, 20 and 40 mM dose-dependently decreased sIgA production. Leucine supplementation at 40 mM restored the phosphorylation level of mTOR and p70S6K while suppressing the phosphorylation levels of NF-κB (P<0.05) and partially down-regulating the phosphorylation of p38 MAPK and JNK. The transcription of IL-6 was significantly decreased by leucine supplementation. These results suggested that leucine could alleviate LPS-induced inflammatory responses by down-regulating NF-κB signaling pathway and evoking mTOR/p70S6K signaling pathway, which may involve in the regulation of the intestinal immune system in chicken embryos.
Collapse
|
274
|
Li H, Jin F, Jiang K, Ji S, Wang L, Ni Z, Chen X, Hu Z, Zhang H, Liu Y, Qin Y, Zha X. mTORC1-mediated downregulation of COX2 restrains tumor growth caused by TSC2 deficiency. Oncotarget 2017; 7:28435-47. [PMID: 27078846 PMCID: PMC5053737 DOI: 10.18632/oncotarget.8633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Tuberous sclerosis complex (TSC), caused by loss-of-function mutations in the TSC1 or TSC2 gene, is characterized by benign tumor formation in multiple organs. Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) is the primary alteration underlying TSC tumors. By analyzing Tsc2-null mouse embryonic fibroblasts (MEFs) and rat uterine leiomyoma-derived Tsc2-null ELT3 cells, we detected evidence for the involvement of cyclooxygenase 2 (COX2) as a downstream target of mTORC1 in the development of TSC tumors. We showed that loss of TSC2 led to decreased COX2 expression through activation of an mTORC1/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Overexpression of COX2 promoted proliferation and tumoral growth of Tsc2-null cells. COX2 knockdown inhibited the proliferation of the control cells. COX2 enhanced Tsc2-null cell growth through upregulation of interleukin-6 (IL-6). In addition, rapamycin in combination with celecoxib, a COX2 inhibitor, strongly inhibited Tsc2-deficient cell growth. We conclude that downregulation of COX2 exerts a protective effect against hyperactivated mTORC1-mediated tumorigenesis caused by the loss of TSC2, and the combination of rapamycin and celecoxib may be an effective new approach to treating TSC.
Collapse
Affiliation(s)
- Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Otorhinolaryngology, Head & Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fuquan Jin
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China
| | - Keguo Jiang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Nephrology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuang Ji
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Li Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhaofei Ni
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology & Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yide Qin
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, China
| |
Collapse
|
275
|
Cao W, Wu X, Jia G, Zhao H, Chen X, Wu C, Tang J, Wang J, Cai J, Liu G. New insights into the role of dietary spermine on inflammation, immune function and related-signalling molecules in the thymus and spleen of piglets. Arch Anim Nutr 2017; 71:175-191. [PMID: 28429995 DOI: 10.1080/1745039x.2017.1314610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to determine the effects of dietary spermine supplementation on the inflammatory response and immune function of the thymus and spleen in piglets. Eighty suckling piglets were randomly assigned to receive adequate nutrients supplemented with spermine (0.4 mmol/kg body weight) or restricted nutrient intake supplemented with normal saline for 7 h or 3, 6 and 9 days in pairs. Regardless of treatment time, spermine supplementation decreased (p < 0.05, compared with the controls) the following: (1) tumour necrosis factor α (TNF-α), interleukin (IL)-1β, 2 and 6, and interferon (IFN)-γ levels in serum; (2) gene expression of cluster of differentiation 8 and integrin beta-2 in the thymus and spleen and the lymphocyte function-associated antigen 1 in the thymus; (3) mRNA levels of TNF-α, IL 1β, 2, 6, and 12, IFN-γ and inducible nitric oxide synthase in the thymus and spleen, as well as IL-8 in the spleen; and (4) eukaryotic IF4E-binding protein 1, Janus kinase 2, signal transducer and activator of transcription 3, and nuclear factor-kappa B P65 gene transcriptions in the thymus and spleen. By contrast, spermine supplementation increased (p < 0.05) the following: (1) immunoglobulin M, IL-10, and transforming growth factor β1 gene expression, as well as (2) relative mRNA levels of mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 in the thymus and spleen. These effects were also observed upon prolonged spermine administration (p < 0.05). In summary, dietary spermine supplementation can alleviate inflammatory response, enhance the immune function and regulate the gene expression of signalling molecules related to inflammation.
Collapse
Affiliation(s)
- Wei Cao
- a Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , China.,b Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Sichuan Agricultural University , Chengdu , China
| | - Xianjian Wu
- a Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , China.,b Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Sichuan Agricultural University , Chengdu , China
| | - Gang Jia
- a Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , China.,b Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Sichuan Agricultural University , Chengdu , China
| | - Hua Zhao
- a Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , China.,b Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Sichuan Agricultural University , Chengdu , China
| | - Xiaoling Chen
- a Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , China.,b Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Sichuan Agricultural University , Chengdu , China
| | - Caimei Wu
- a Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , China.,b Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Sichuan Agricultural University , Chengdu , China
| | - Jiayong Tang
- a Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , China.,b Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Sichuan Agricultural University , Chengdu , China
| | - Jing Wang
- c Maize Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jingyi Cai
- a Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , China.,b Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Sichuan Agricultural University , Chengdu , China
| | - Guangmang Liu
- a Institute of Animal Nutrition , Sichuan Agricultural University , Chengdu , China.,b Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education , Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
276
|
Novák J, Fabrik I, Linhartová I, Link M, Černý O, Stulík J, Šebo P. Phosphoproteomics of cAMP signaling of Bordetella adenylate cyclase toxin in mouse dendritic cells. Sci Rep 2017; 7:16298. [PMID: 29176673 PMCID: PMC5701129 DOI: 10.1038/s41598-017-14501-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/11/2017] [Indexed: 01/04/2023] Open
Abstract
The adenylate cyclase toxin (CyaA) of the whooping cough agent Bordetella pertussis subverts immune functions of host myeloid cells expressing the αMβ2 integrin (CD11b/CD18, CR3 or Mac-1). CyaA delivers into cytosol of cells an extremely catalytically active adenylyl cyclase enzyme, which disrupts the innate and adaptive immune functions of phagocytes through unregulated production of the key signaling molecule cAMP. We have used phosphoproteomics to analyze cAMP signaling of CyaA in murine bone marrow-derived dendritic cells. CyaA action resulted in alterations of phosphorylation state of a number of proteins that regulate actin cytoskeleton homeostasis, including Mena, Talin-1 and VASP. CyaA action repressed mTOR signaling through activation of mTORC1 inhibitors TSC2 and PRAS40 and altered phosphorylation of multiple chromatin remodelers, including the class II histone deacetylase HDAC5. CyaA toxin action further elicited inhibitory phosphorylation of SIK family kinases involved in modulation of immune response and provoked dephosphorylation of the transcriptional coactivator CRTC3, indicating that CyaA-promoted nuclear translocation of CRTC3 may account for CyaA-induced IL-10 production. These findings document the complexity of subversive physiological manipulation of myeloid phagocytes by the CyaA toxin, serving in immune evasion of the pertussis agent.
Collapse
Affiliation(s)
- Jakub Novák
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Ivo Fabrik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Irena Linhartová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Ondřej Černý
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Jiří Stulík
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Peter Šebo
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic.
| |
Collapse
|
277
|
Quek H, Lim YC, Lavin MF, Roberts TL. PIKKing a way to regulate inflammation. Immunol Cell Biol 2017; 96:8-20. [DOI: 10.1111/imcb.1001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Hazel Quek
- The University of Queensland Centre for Clinical Research; Herston Qld Australia
- QIMR Berghofer Medical Research Institute; Herston Qld Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute; Herston Qld Australia
| | - Martin F Lavin
- The University of Queensland Centre for Clinical Research; Herston Qld Australia
| | - Tara L Roberts
- The University of Queensland Centre for Clinical Research; Herston Qld Australia
- The Ingham Institute for Applied Medical Research and School of Medicine; Western Sydney University; Liverpool New South Wales Australia
- South West Sydney Clinical School; Sydney UNSW Australia
| |
Collapse
|
278
|
Sintes J, Gentile M, Zhang S, Garcia-Carmona Y, Magri G, Cassis L, Segura-Garzón D, Ciociola A, Grasset EK, Bascones S, Comerma L, Pybus M, Lligé D, Puga I, Gutzeit C, He B, DuBois W, Crespo M, Pascual J, Mensa A, Aróstegui JI, Juan M, Yagüe J, Serrano S, Lloreta J, Meffre E, Hahne M, Cunningham-Rundles C, Mock BA, Cerutti A. mTOR intersects antibody-inducing signals from TACI in marginal zone B cells. Nat Commun 2017; 8:1462. [PMID: 29133782 PMCID: PMC5684130 DOI: 10.1038/s41467-017-01602-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) enhances immunity in addition to orchestrating metabolism. Here we show that mTOR coordinates immunometabolic reconfiguration of marginal zone (MZ) B cells, a pre-activated lymphocyte subset that mounts antibody responses to T-cell-independent antigens through a Toll-like receptor (TLR)-amplified pathway involving transmembrane activator and CAML interactor (TACI). This receptor interacts with mTOR via the TLR adapter MyD88. The resulting mTOR activation instigates MZ B-cell proliferation, immunoglobulin G (IgG) class switching, and plasmablast differentiation through a rapamycin-sensitive pathway that integrates metabolic and antibody-inducing transcription programs, including NF-κB. Disruption of TACI-mTOR interaction by rapamycin, truncation of the MyD88-binding domain of TACI, or B-cell-conditional mTOR deficiency interrupts TACI signaling via NF-κB and cooperation with TLRs, thereby hampering IgG production to T-cell-independent antigens but not B-cell survival. Thus, mTOR drives innate-like antibody responses by linking proximal TACI signaling events with distal immunometabolic transcription programs.
Collapse
Affiliation(s)
- Jordi Sintes
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain.
| | - Maurizio Gentile
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yolanda Garcia-Carmona
- Department of Medicine and Pediatrics, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Giuliana Magri
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Linda Cassis
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Daniel Segura-Garzón
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Alessandra Ciociola
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Emilie K Grasset
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institutet, Stockholm, 171 76, Sweden
| | - Sabrina Bascones
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Laura Comerma
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Marc Pybus
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - David Lligé
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Irene Puga
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Cindy Gutzeit
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bing He
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wendy DuBois
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marta Crespo
- Department of Nephrology, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Julio Pascual
- Department of Nephrology, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain
| | - Anna Mensa
- Immunology Service, Hospital Clínic of Barcelona, Barcelona, 08036, Spain
| | | | - Manel Juan
- Immunology Service, Hospital Clínic of Barcelona, Barcelona, 08036, Spain
| | - Jordi Yagüe
- Immunology Service, Hospital Clínic of Barcelona, Barcelona, 08036, Spain
| | - Sergi Serrano
- Department of Pathology, Hospital del Mar, Barcelona, 08003, Spain
- Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Josep Lloreta
- Department of Pathology, Hospital del Mar, Barcelona, 08003, Spain
- Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Eric Meffre
- Department of Immunobiology, Yale University, New Haven, CT, 06511, USA
| | - Michael Hahne
- Molecular Genetics Institute of Montpellier, Montpellier, 34293, France
| | - Charlotte Cunningham-Rundles
- Department of Medicine and Pediatrics, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Cerutti
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, 08003, Spain.
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, 08003, Spain.
| |
Collapse
|
279
|
Amici SA, Dong J, Guerau-de-Arellano M. Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia. Front Immunol 2017; 8:1520. [PMID: 29176977 PMCID: PMC5686097 DOI: 10.3389/fimmu.2017.01520] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022] Open
Abstract
Macrophages and microglia play crucial roles during central nervous system development, homeostasis and acute events such as infection or injury. The diverse functions of tissue macrophages and microglia are mirrored by equally diverse phenotypes. A model of inflammatory/M1 versus a resolution phase/M2 macrophages has been widely used. However, the complexity of macrophage function can only be achieved by the existence of varied, plastic and tridimensional macrophage phenotypes. Understanding how tissue macrophages integrate environmental signals via molecular programs to define pathogen/injury inflammatory responses provides an opportunity to better understand the multilayered nature of macrophages, as well as target and modulate cellular programs to control excessive inflammation. This is particularly important in MS and other neuroinflammatory diseases, where chronic inflammatory macrophage and microglial responses may contribute to pathology. Here, we perform a comprehensive review of our current understanding of how molecular pathways modulate tissue macrophage phenotype, covering both classic pathways and the emerging role of microRNAs, receptor-tyrosine kinases and metabolism in macrophage phenotype. In addition, we discuss pathway parallels in microglia, novel markers helpful in the identification of peripheral macrophages versus microglia and markers linked to their phenotype.
Collapse
Affiliation(s)
- Stephanie A Amici
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Joycelyn Dong
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,McCormick School of Engineering, Division of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
280
|
mTOR signaling in immune cells and its implications for cancer immunotherapy. Cancer Lett 2017; 408:182-189. [DOI: 10.1016/j.canlet.2017.08.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
|
281
|
Zheng X, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Dietary pyridoxine deficiency reduced growth performance and impaired intestinal immune function associated with TOR and NF-κB signalling of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 70:682-700. [PMID: 28951222 DOI: 10.1016/j.fsi.2017.09.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to evaluate the effects of dietary pyridoxine (PN) deficiency on growth performance, intestinal immune function and the potential regulation mechanisms in young grass carp (Ctenopharyngodon idella). Fish were fed six diets containing graded levels of PN (0.12-7.48 mg/kg) for 70 days. After that, a challenge test was conducted by infection of Aeromonas hydrophila for 14 days. The results showed that compared with the optimal PN level, PN deficiency: (1) reduced the production of innate immune components such as lysozyme (LZ), acid phosphatase (ACP), complements and antimicrobial peptides and adaptive immune components such as immunoglobulins in three intestinal segments of young grass carp (P < 0.05); (2) down-regulated the mRNA levels of anti-inflammatory cytokines such as transforming growth factor β (TGF-β), interleukin 4/13A (IL-4/13A) (rather than IL-4/13B), IL-10 and IL-11 partly relating to target of rapamycin (TOR) signalling [TOR/ribosomal protein S6 kinases 1 (S6K1) and eIF4E-binding proteins (4E-BP)] in three intestinal segments of young grass carp; (3) up-regulated the mRNA levels of pro-inflammatory cytokines such as tumour necrosis factor α (TNF-α) [not in the proximal intestine (PI) and distal intestine (DI)], IL-1β, IL-6, IL-8, IL-12p35, IL-12p40, IL-15 and IL-17D [(rather than interferon γ2 (IFN-γ2)] partly relating to nuclear factor kappa B (NF-κB) signalling [IκB kinase β (IKKβ) and IKKγ/inhibitor of κBα (IκBα)/NF-κB (p65 and c-Rel)] in three intestinal segments of young grass carp. These results suggest that PN deficiency could impair the intestinal immune function, and the potential regulation mechanisms were partly associated with TOR and NF-κB signalling pathways. In addition, based on percent weight gain (PWG), the ability against enteritis and LZ activity, the dietary PN requirements for young grass carp were estimated to be 4.43, 4.75 and 5.07 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Xin Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
282
|
Tan X, Sun Z, Huang Z, Zhou C, Lin H, Tan L, Xun P, Huang Q. Effects of dietary hawthorn extract on growth performance, immune responses, growth- and immune-related genes expression of juvenile golden pompano (Trachinotus ovatus) and its susceptibility to Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2017; 70:656-664. [PMID: 28927688 DOI: 10.1016/j.fsi.2017.09.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/06/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
The present study was conducted to investigate the effects of dietary hawthorn extract (HTE) supplementation on growth performance, immune responses, hepatic antioxidant abilities, growth- and immune-related and heat shock protein genes expression and resistance to the pathogen Vibrio harveyi in Trachinotus ovatus. A basal diet supplemented with HTE at 0 (Diet 1), 0.50 (Diet 2), 1.00 (Diet 3), 2.00 (Diet 4), 4.00 (Diet 5) and 10.00 (Diet 6) g kg-1 were fed to golden pompano for 8 weeks. The highest final body weight, weight gain rate, specific growth rate, feed efficiency ratio and protein efficiency rate were observed in fish fed Diet 2 (P < 0.05). Dietary HTE significantly increased plasma complement 3, complement 4 and immunoglobulin M content (P < 0.05). Hepatic antioxidant enzymes (SOD, T-AOC, CAT, GPx, GR) significantly increased (P < 0.05), whereas MDA content decreased first and then increased in fish fed HTE supplement. After challenge with Vibrio harveyi, significant higher post-challenge survival was observed in fish fed Diet 2 and Diet 3 than the control group (P < 0.05). Transcription levels of growth-related genes (IGF-I and IGF-II) were significantly up-regulated in fish fed HTE supplement (P < 0.05), whereas HSP70 and HSP90 mRNA levels were significantly down-regulated (P < 0.05). With respect to immune-related genes, such as tumour necrosis factor-alpha (TNF-α), interleukin-8 (IL-8) and inhibitor protein κBα (IκB-α), upregulation was observed in the liver of fish fed with the diet supplemented with HTE. In contrast, the expression of antioxidant enzyme genes (CAT, GPx, MnSOD and Keap1) and cytokines (IL-10, TGF-β1 and TOR) was downregulated. These results indicated that golden pompano fed a diet supplemented with 0.50 g kg-1 HTE could significantly promote growth performance and growth-related genes expression, strengthen immunity, and improve hepatic antioxidative abilities and resistance to Vibrio harveyi infection.
Collapse
Affiliation(s)
- Xiaohong Tan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Zhenzhu Sun
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Zhong Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518116, PR China
| | - Chuanpeng Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518116, PR China.
| | - Lianjie Tan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Pengwei Xun
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Qian Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| |
Collapse
|
283
|
Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins (Basel) 2017; 9:toxins9100300. [PMID: 28946636 PMCID: PMC5666347 DOI: 10.3390/toxins9100300] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/18/2023] Open
Abstract
Bordetellae, pathogenic to mammals, produce an immunomodulatory adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) that enables them to overcome the innate immune defense of the host. CyaA subverts host phagocytic cells by an orchestrated action of its functional domains, where an extremely catalytically active adenylyl cyclase enzyme is delivered into phagocyte cytosol by a pore-forming repeat-in-toxin (RTX) cytolysin moiety. By targeting sentinel cells expressing the complement receptor 3, known as the CD11b/CD18 (αMβ₂) integrin, CyaA compromises the bactericidal functions of host phagocytes and supports infection of host airways by Bordetellae. Here, we review the state of knowledge on structural and functional aspects of CyaA toxin action, placing particular emphasis on signaling mechanisms by which the toxin-produced 3',5'-cyclic adenosine monophosphate (cAMP) subverts the physiology of phagocytic cells.
Collapse
|
284
|
Aloperine Protects Mice against DSS-Induced Colitis by PP2A-Mediated PI3K/Akt/mTOR Signaling Suppression. Mediators Inflamm 2017; 2017:5706152. [PMID: 29056830 PMCID: PMC5625759 DOI: 10.1155/2017/5706152] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/27/2017] [Accepted: 07/30/2017] [Indexed: 02/06/2023] Open
Abstract
Colitis is a major form of inflammatory bowel disease which involved mucosal immune dysfunction. Aloperine is an alkaloid isolated from the shrub Sophora alopecuroides L. and has been recognized as an effective treatment for inflammatory and allergic diseases. The present study aimed to examine the molecular mechanisms underlying aloperine-mediated colitis protection. We found that aloperine treatment improved colitis induced by dextran sodium sulfate (DSS) based on body weight, disease activity index, colonic length, and spleen index. Aloperine also effectively attenuated DSS-induced intestinal inflammation based on the pathological score and myeloperoxidase expression and activity in colon tissues. In addition, aloperine regulated T-cell proportions and promoted Foxp3 expression in the spleens and mesenteric lymph nodes of DSS-induced colitis mice and in the spleens of the Foxp3GFP mice. Aloperine inhibited Jurkat and mouse naïve T-cell apoptosis. Furthermore, aloperine inhibited PI3K/Akt/mTOR signaling and upregulated PP2A expression in the DSS-induced colitis mice and in Jurkat cells, but LB-100 (PP2A inhibitor) resulted in an elevated Akt activity in Jurkat cells, activated T-cells, and human splenic mononuclear cells. Aloperine inhibited T-cell and lymphocyte proliferation, but LB-100 reverse these effects. In conclusion, aloperine regulates inflammatory responses in colitis by inhibiting the PI3K/Akt/mTOR signaling in a PP2A-dependent manner.
Collapse
|
285
|
Jones RG, Pearce EJ. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells. Immunity 2017; 46:730-742. [PMID: 28514674 DOI: 10.1016/j.immuni.2017.04.028] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022]
Abstract
Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts.
Collapse
Affiliation(s)
- Russell G Jones
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada.
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
286
|
Schülke S, Fiedler AH, Junker AC, Flaczyk A, Wolfheimer S, Wangorsch A, Heinz A, Beckert H, Nagl B, Bohle B, Vieths S, Toda M, Scheurer S. Critical role of mammalian target of rapamycin for IL-10 dendritic cell induction by a flagellin A conjugate in preventing allergic sensitization. J Allergy Clin Immunol 2017; 141:1786-1798.e11. [PMID: 28886863 DOI: 10.1016/j.jaci.2017.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/30/2017] [Accepted: 07/13/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fusion proteins incorporating the Toll-like receptor 5 ligand flagellin are currently undergoing clinical trials as vaccine candidates for many diseases. OBJECTIVE We studied the mechanisms of immune modulation by a flagellin:allergen fusion protein containing the Toll-like receptor 5 ligand flagellin A from Listeria monocytogenes and the birch pollen allergen Bet v 1 (recombinant flagellin A [rFlaA]:Betv1). METHODS BALB/c mice were vaccinated with rFlaA:Betv1 in an experimental Bet v 1 sensitization model. Myeloid dendritic cells (mDCs) were differentiated from mouse bone marrow, and PBMCs were isolated from subjects with birch pollen allergy. Cells were stimulated with equimolar amounts of rFlaA, rBet v 1, rFlaA plus rBet v 1, or the rFlaA:Betv1 conjugate and analyzed for cell activation, cytokine secretion, and metabolic state. RESULTS rFlaA:Betv1 displayed strong immune-modulating properties both in vivo and in vitro, as characterized by secretion of both proinflammatory and anti-inflammatory cytokines from murine mDCs and PBMCs from patients with birch allergy. rFlaA:Betv1 suppressed TH2 responses from Bet v 1-specific CD4+ T cells and prevented allergic sensitization in a mouse allergy model. Aggregation of rFlaA:Betv1 resulted in stronger protein uptake accompanied by an increased resistance to microsomal digestion. Remarkably, rFlaA:Betv1 induced activation of mammalian target of rapamycin, which increased the metabolic activity of the stimulated mDCs. rFlaA:Betv1-mediated IL-10 secretion, but not proinflammatory cytokine secretion, was inhibited by rapamycin in mDCs. CONCLUSION These results provide evidence that mammalian target of rapamycin is a key player involved in prevention of TH2 responses by flagellin A conjugate vaccines.
Collapse
Affiliation(s)
- Stefan Schülke
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany.
| | | | | | - Adam Flaczyk
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | - Anke Heinz
- Pulmonary Department III, Medical Clinic, University Medical Center, Mainz, Germany
| | - Hendrik Beckert
- Department of Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University Duisburg-Essen, Duisberg-Essen, Germany
| | - Birgit Nagl
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Stefan Vieths
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Masako Toda
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | |
Collapse
|
287
|
Ravanan P, Srikumar IF, Talwar P. Autophagy: The spotlight for cellular stress responses. Life Sci 2017; 188:53-67. [PMID: 28866100 DOI: 10.1016/j.lfs.2017.08.029] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/05/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Abstract
Autophagy is an essential cellular mechanism which plays "housekeeping" role in normal physiological processes including removing of long lived, aggregated and misfolded proteins, clearing damaged organelles, growth regulation and aging. Autophagy is also involved in a variety of biological functions like development, cellular differentiation, defense against pathogens and nutritional starvation. The integration of autophagy into these biological functions and other stress responses is determined by the transcriptional factors that undertake the regulatory mechanism. This review discusses the machinery of autophagy, the molecular web that connects autophagy to various stress responses like inflammation, hypoxia, ER stress, and various other pathologic conditions. Defects in autophagy regulation play a central role in number of diseases, including neurodegenerative diseases, cancer, pathogen infection and metabolic diseases. Similarly, inhibiting autophagy would contribute in the treatment of cancer. However, understanding the biology of autophagy regulation requires pharmacologically active compounds which modulate the autophagy process. Inducers of autophagy are currently receiving considerable attention as autophagy upregulation may be a therapeutic benefit for certain neurodegenerative diseases (via removal of protein aggregates) while the inhibitors are being investigated for the treatment of cancers. Both induction and inhibition of autophagy have been proven to be beneficial in the treatment of cancer. This dual role of autophagy in cancers is now getting uncovered by the advancement in the research findings and development of effective autophagy modulators.
Collapse
Affiliation(s)
- Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India.
| | - Ida Florance Srikumar
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| |
Collapse
|
288
|
Casero D, Gill K, Sridharan V, Koturbash I, Nelson G, Hauer-Jensen M, Boerma M, Braun J, Cheema AK. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome. MICROBIOME 2017; 5:105. [PMID: 28821301 PMCID: PMC5563039 DOI: 10.1186/s40168-017-0325-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/08/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. RESULTS Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host's cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. CONCLUSIONS The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects.
Collapse
Affiliation(s)
- David Casero
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kirandeep Gill
- Department of Oncology, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Gregory Nelson
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington DC, 20057, USA.
- Department of Biochemistry and Molecular and & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA.
- GCD-7N Pre-Clinical Science Building, 3900 Reservoir Road NW, Washington DC, 20057, USA.
| |
Collapse
|
289
|
Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization. THE JOURNAL OF IMMUNOLOGY 2017; 198:1006-1014. [PMID: 28115590 DOI: 10.4049/jimmunol.1601515] [Citation(s) in RCA: 694] [Impact Index Per Article: 99.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/26/2016] [Indexed: 01/05/2023]
Abstract
Macrophages become activated initiating innate immune responses. Depending on the signals, macrophages obtain an array of activation phenotypes, described by the broad terms of M1 or M2 phenotype. The PI3K/Akt/mTOR pathway mediates signals from multiple receptors including insulin receptors, pathogen-associated molecular pattern receptors, cytokine receptors, adipokine receptors, and hormones. As a result, the Akt pathway converges inflammatory and metabolic signals to regulate macrophage responses modulating their activation phenotype. Akt is a family of three serine-threonine kinases, Akt1, Akt2, and Akt3. Generation of mice lacking individual Akt, PI3K, or mTOR isoforms and utilization of RNA interference technology have revealed that Akt signaling pathway components have distinct and isoform-specific roles in macrophage biology and inflammatory disease regulation, by controlling inflammatory cytokines, miRNAs, and functions including phagocytosis, autophagy, and cell metabolism. Herein, we review the current knowledge on the role of the Akt signaling pathway in macrophages, focusing on M1/M2 polarization and highlighting Akt isoform-specific functions.
Collapse
Affiliation(s)
- Eleni Vergadi
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion 71003, Greece; and.,Laboratory of Intensive Care Medicine, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Eleftheria Ieronymaki
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion 71003, Greece; and
| | - Konstantina Lyroni
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion 71003, Greece; and
| | - Katerina Vaporidi
- Laboratory of Intensive Care Medicine, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion 71003, Greece; and
| |
Collapse
|
290
|
Sinclair C, Bommakanti G, Gardinassi L, Loebbermann J, Johnson MJ, Hakimpour P, Hagan T, Benitez L, Todor A, Machiah D, Oriss T, Ray A, Bosinger S, Ravindran R, Li S, Pulendran B. mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation. Science 2017; 357:1014-1021. [PMID: 28798047 DOI: 10.1126/science.aaj2155] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/29/2017] [Accepted: 06/22/2017] [Indexed: 12/14/2022]
Abstract
Antigen-presenting cells (APCs) occupy diverse anatomical tissues, but their tissue-restricted homeostasis remains poorly understood. Here, working with mouse models of inflammation, we found that mechanistic target of rapamycin (mTOR)-dependent metabolic adaptation was required at discrete locations. mTOR was dispensable for dendritic cell (DC) homeostasis in secondary lymphoid tissues but necessary to regulate cellular metabolism and accumulation of CD103+ DCs and alveolar macrophages in lung. Moreover, while numbers of mTOR-deficient lung CD11b+ DCs were not changed, they were metabolically reprogrammed to skew allergic inflammation from eosinophilic T helper cell 2 (TH2) to neutrophilic TH17 polarity. The mechanism for this change was independent of translational control but dependent on inflammatory DCs, which produced interleukin-23 and increased fatty acid oxidation. mTOR therefore mediates metabolic adaptation of APCs in distinct tissues, influencing the immunological character of allergic inflammation.
Collapse
Affiliation(s)
- Charles Sinclair
- Emory Vaccine Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| | - Gayathri Bommakanti
- Emory Vaccine Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| | - Luiz Gardinassi
- Department of Medicine, Emory University, Atlanta, GA 30329, USA
| | - Jens Loebbermann
- Emory Vaccine Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| | - Matthew Joseph Johnson
- Emory Vaccine Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul Hakimpour
- Emory Vaccine Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| | - Thomas Hagan
- Emory Vaccine Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| | - Lydia Benitez
- Emory Vaccine Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| | - Andrei Todor
- Department of Medicine, Emory University, Atlanta, GA 30329, USA
| | - Deepa Machiah
- Yerkes Molecular Pathology Core Laboratory, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| | - Timothy Oriss
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Immunology, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Immunology, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven Bosinger
- Primate Genomics Core, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| | - Rajesh Ravindran
- Emory Vaccine Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| | - Shuzhao Li
- Department of Medicine, Emory University, Atlanta, GA 30329, USA
| | - Bali Pulendran
- Emory Vaccine Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA. .,Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA.,Institute for Immunity, Transplantation and Infection, Department of Pathology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
291
|
Knockdown of miR-155 protects microglia against LPS-induced inflammatory injury via targeting RACK1: a novel research for intracranial infection. JOURNAL OF INFLAMMATION-LONDON 2017; 14:17. [PMID: 28804270 PMCID: PMC5549339 DOI: 10.1186/s12950-017-0162-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/05/2017] [Indexed: 11/17/2022]
Abstract
Background Intracranial infection, one of the complications of traumatic brain injury, is usually associated with inflammation. Several microRNAs (miRNAs), including miR-155, have been reported to be critical modulators in peripheral and central nervous system inflammation. In this study, we investigated the role of miR-155 in lipopolysaccharide (LPS)-induced inflammatory injury in mouse microglia BV2 cells. Results The expression level of miR-155 was significantly up-regulated after LPS stimulation in BV2 cells. LPS administration decreased BV2 cell viability, promoted apoptosis and increased the release of pro-inflammatory cytokines; while miR-155 knockdown rescued BV2 cell from LPS-induced injury. RACK1 was a directly target of miR-155. Interestingly, miR-155 knockdown did not attenuate LPS-induced inflammatory injury when RACK1 was knocked down. The mechanistic study indicated that miR-155 knockdown deactivated MAPK/NF-κB and mTOR signaling pathways under LPS-treated conditions. Conclusions Knockdown of miR-155 protected mouse microglia BV2 cells from LPS-induced inflammatory injury via targeting RACK1 and deactivating MAPK/NF-κB and mTOR signaling pathways.
Collapse
|
292
|
Abstract
Inflammatory bowel disease (IBD) after solid organ transplantation is rare. We report new-onset Crohn’s disease successfully treated with anti-tnfα therapy in a cardiac transplantation recipient. Our case highlights the importance of including IBD in the differential of chronic diarrhea despite significant immunosuppression and suggests that anti-tnf alpha therapy is effective in post-transplant IBD.
Collapse
|
293
|
He L, Zhang X, Huang Y, Yang H, Wang Y, Zhang Z. The characterization of RHEB gene and its responses to hypoxia and thermal stresses in the small abalone Haliotis diversicolor. Comp Biochem Physiol B Biochem Mol Biol 2017. [DOI: 10.1016/j.cbpb.2017.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
294
|
Kovarik JJ, Kernbauer E, Hölzl MA, Hofer J, Gualdoni GA, Schmetterer KG, Miftari F, Sobanov Y, Meshcheryakova A, Mechtcheriakova D, Witzeneder N, Greiner G, Ohradanova-Repic A, Waidhofer-Söllner P, Säemann MD, Decker T, Zlabinger GJ. Fasting metabolism modulates the interleukin-12/interleukin-10 cytokine axis. PLoS One 2017; 12:e0180900. [PMID: 28742108 PMCID: PMC5524343 DOI: 10.1371/journal.pone.0180900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/22/2017] [Indexed: 12/22/2022] Open
Abstract
A crucial role of cell metabolism in immune cell differentiation and function has been recently established. Growing evidence indicates that metabolic processes impact both, innate and adaptive immunity. Since a down-stream integrator of metabolic alterations, mammalian target of rapamycin (mTOR), is responsible for controlling the balance between pro-inflammatory interleukin (IL)-12 and anti-inflammatory IL-10, we investigated the effect of upstream interference using metabolic modulators on the production of pro- and anti-inflammatory cytokines. Cytokine release and protein expression in human and murine myeloid cells was assessed after toll-like receptor (TLR)-activation and glucose-deprivation or co-treatment with 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activators. Additionally, the impact of metabolic interference was analysed in an in-vivo mouse model. Glucose-deprivation by 2-deoxy-D-glucose (2-DG) increased the production of IL-12p40 and IL-23p19 in monocytes, but dose-dependently inhibited the release of anti-inflammatory IL-10. Similar effects have been observed using pharmacological AMPK activation. Consistently, an inhibition of the tuberous sclerosis complex-mTOR pathway was observed. In line with our in vitro observations, glycolysis inhibition with 2-DG showed significantly reduced bacterial burden in a Th2-prone Listeria monocytogenes mouse infection model. In conclusion, we showed that fasting metabolism modulates the IL-12/IL-10 cytokine balance, establishing novel targets for metabolism-based immune-modulation.
Collapse
Affiliation(s)
- Johannes J. Kovarik
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Elisabeth Kernbauer
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University of Vienna, Vienna, Austria
| | - Markus A. Hölzl
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes Hofer
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Guido A. Gualdoni
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Klaus G. Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Fitore Miftari
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yury Sobanov
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anastasia Meshcheryakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nadine Witzeneder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Anna Ohradanova-Repic
- Institute of Hygiene and Applied Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marcus D. Säemann
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University of Vienna, Vienna, Austria
| | - Gerhard J. Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
295
|
Xie DL, Zheng MM, Zheng Y, Gao H, Zhang J, Zhang T, Guo JC, Yang XF, Zhong XP, Lou YL. Vibrio vulnificus induces mTOR activation and inflammatory responses in macrophages. PLoS One 2017; 12:e0181454. [PMID: 28719654 PMCID: PMC5515453 DOI: 10.1371/journal.pone.0181454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/01/2017] [Indexed: 12/18/2022] Open
Abstract
Vibrio vulnificus (V. vulnificus), a Gram-negative marine bacterium, can cause life-threatening primary septicemia, especially in patients with liver diseases. How V. vulnificus affects the liver and how it acts on macrophages are not well understood. In this report, we demonstrated that V. vulnificus infection causes a strong inflammatory response, marked expansion of liver-resident macrophages, and liver damage in mice. We demonstrated further that V. vulnificus activates mTOR in macrophages and inhibition of mTOR differentially regulates V. vulnificus induced inflammatory responses, suggesting the possibility of targeting mTOR as a strategy to modulate V. vulnificus induced inflammatory responses.
Collapse
Affiliation(s)
- Dan-Li Xie
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- China Ministry of Education Key Lab of Laboratory Medicine, Wenzhou, Zhejiang, China
| | - Meng-Meng Zheng
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Zheng
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- China Ministry of Education Key Lab of Laboratory Medicine, Wenzhou, Zhejiang, China
| | - Hui Gao
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Zhang
- Department of Clinical Laboratory Medicine, Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Ting Zhang
- Department of Laboratory Medicine, Jinshan Hospital of Fudan University, Jinshan, Shanghai, China
| | - Jian-Chun Guo
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiao-Ping Zhong
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- China Ministry of Education Key Lab of Laboratory Medicine, Wenzhou, Zhejiang, China
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC, United States of America
- * E-mail: (YLL); (XPZ)
| | - Yong-Liang Lou
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- China Ministry of Education Key Lab of Laboratory Medicine, Wenzhou, Zhejiang, China
- * E-mail: (YLL); (XPZ)
| |
Collapse
|
296
|
Song ZX, Jiang WD, Liu Y, Wu P, Jiang J, Zhou XQ, Kuang SY, Tang L, Tang WN, Zhang YA, Feng L. Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 66:497-523. [PMID: 28549941 DOI: 10.1016/j.fsi.2017.05.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Our study investigated the effects of dietary zinc (Zn) deficiency on growth performance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (244.14 ± 0.40 g) were fed graded levels of zinc lactate (10.71, 30.21, 49.84, 72.31, 92.56, 110.78 mg Zn/kg diet) and one zinc sulfate group (56.9 mg Zn/kg diet) for 60 days. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. These results indicated that compared with optimal dietary Zn level, dietary Zn deficiency (10.71 mg/kg diet) decreased the production of antibacterial compounds, up-regulated pro-inflammatory cytokines related to nuclear factor kappa B (NF-κB) and down-regulated anti-inflammatory cytokines related to target of rapamycin (TOR) in three intestinal segments of young grass carp (P < 0.05), suggesting that dietary Zn deficiency could impair intestinal immune barrier of fish; decreased the activities and mRNA levels of antioxidant enzymes related to NF-E2-related factor 2 (Nrf2), up-regulated the mRNA levels of caspase-3, -7, -8, -9 related to p38 mitogen activated protein (p38 MAPK) and c-Jun N-terminal protein kinase (JNK), down-regulated the mRNA levels of tight junction complexes (TJs) related to myosin light chain kinase (MLCK) in three intestinal segments of young grass carp (P < 0.05), demonstrating that dietary Zn deficiency could injury intestinal physical barrier of fish. Besides, the Zn requirements (zinc lactate as Zn source) based on percent weight gain (PWG), against enteritis morbidity, acid phosphatase (ACP) activity in the proximal intestine (PI) and malondialdehyde (MDA) content in the PI of young grass carp was estimated to be 61.2, 61.4, 69.2 and 69.5 mg/kg diet, respectively. Finally, based on specific growth rate (SGR), feed efficiency (FE) and against enteritis morbidity of young grass carp, the efficacy of zinc lactate relative to zinc sulfate were 132.59%, 135.27% and 154.04%, respectively.
Collapse
Affiliation(s)
- Zheng-Xing Song
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
297
|
Linke M, Fritsch SD, Sukhbaatar N, Hengstschläger M, Weichhart T. mTORC1 and mTORC2 as regulators of cell metabolism in immunity. FEBS Lett 2017; 591:3089-3103. [PMID: 28600802 DOI: 10.1002/1873-3468.12711] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/24/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022]
Abstract
The mechanistic target of rapamycin (mTOR) pathway is an evolutionarily conserved signaling pathway that senses intra- and extracellular nutrients, growth factors, and pathogen-associated molecular patterns to regulate the function of innate and adaptive immune cell populations. In this review, we focus on the role of the mTOR complex 1 (mTORC1) and mTORC2 in the regulation of the cellular energy metabolism of these immune cells to regulate and support immune responses. In this regard, mTORC1 and mTORC2 generally promote an anabolic response by stimulating protein synthesis, glycolysis, mitochondrial functions, and lipid synthesis to influence proliferation and survival, effector and memory responses, innate training and tolerance as well as hematopoietic stem cell maintenance and differentiation. Deactivation of mTOR restores cell homeostasis after immune activation and optimizes antigen presentation and memory T-cell generation. These findings show that the mTOR pathway integrates spatiotemporal information of the environmental and cellular energy status by regulating cellular metabolic responses to guide immune cell activation. Elucidation of the metabolic control mechanisms of immune responses will help to generate a systemic understanding of the immune system.
Collapse
Affiliation(s)
- Monika Linke
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Austria
| | - Stephanie Deborah Fritsch
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Austria
| | - Nyamdelger Sukhbaatar
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Austria
| | - Markus Hengstschläger
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Austria
| |
Collapse
|
298
|
Abstract
Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver ischemia-reperfusion injury involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver ischemia-reperfusion injury in patients.
Collapse
|
299
|
Lawless SJ, Kedia-Mehta N, Walls JF, McGarrigle R, Convery O, Sinclair LV, Navarro MN, Murray J, Finlay DK. Glucose represses dendritic cell-induced T cell responses. Nat Commun 2017; 8:15620. [PMID: 28555668 PMCID: PMC5459989 DOI: 10.1038/ncomms15620] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/13/2017] [Indexed: 01/17/2023] Open
Abstract
Glucose and glycolysis are important for the proinflammatory functions of many immune cells, and depletion of glucose in pathological microenvironments is associated with defective immune responses. Here we show a contrasting function for glucose in dendritic cells (DCs), as glucose represses the proinflammatory output of LPS-stimulated DCs and inhibits DC-induced T-cell responses. A glucose-sensitive signal transduction circuit involving the mTOR complex 1 (mTORC1), HIF1α and inducible nitric oxide synthase (iNOS) coordinates DC metabolism and function to limit DC-stimulated T-cell responses. When multiple T cells interact with a DC, they compete for nutrients, which can limit glucose availability to the DCs. In such DCs, glucose-dependent signalling is inhibited, altering DC outputs and enhancing T-cell responses. These data reveal a mechanism by which T cells regulate the DC microenvironment to control DC-induced T-cell responses and indicate that glucose is an important signal for shaping immune responses.
Collapse
Affiliation(s)
- Simon J Lawless
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| | - Nidhi Kedia-Mehta
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| | - Jessica F Walls
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| | - Ryan McGarrigle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| | - Orla Convery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| | - Linda V Sinclair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Maria N Navarro
- Departamento Medicina/Universidad Autónoma de Madrid, Instituto Investigación Sanitaria/Hospital Universitario de la Princesa, C/Diego de Léon, 62, Madrid 28006, Spain
| | - James Murray
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin 2, Ireland
| |
Collapse
|
300
|
Lee PY, Sykes DB, Ameri S, Kalaitzidis D, Charles JF, Nelson-Maney N, Wei K, Cunin P, Morris A, Cardona AE, Root DE, Scadden DT, Nigrovic PA. The metabolic regulator mTORC1 controls terminal myeloid differentiation. Sci Immunol 2017; 2:2/11/eaam6641. [PMID: 28763796 DOI: 10.1126/sciimmunol.aam6641] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
Abstract
Monocytes are derived from hematopoietic stem cells through a series of intermediate progenitor stages, but the factors that regulate this process are incompletely defined. Using a Ccr2/Cx3cr1 dual-reporter system to model murine monocyte ontogeny, we conducted a small-molecule screen that identified an essential role of mechanistic target of rapamycin complex 1 (mTORC1) in the development of monocytes and other myeloid cells. Confirmatory studies using mice with inducible deletion of the mTORC1 component Raptor demonstrated absence of mature circulating monocytes, as well as disruption in neutrophil and dendritic cell development, reflecting arrest of terminal differentiation at the granulocyte-monocyte progenitor stage. Conversely, excess activation of mTORC1 through deletion of the mTORC1 inhibitor tuberous sclerosis complex 2 promoted spontaneous myeloid cell development and maturation. Inhibitor studies and stage-specific expression profiling identified failure to down-regulate the transcription factor Myc by the mTORC1 target ribosomal S6 kinase 1 (S6K1) as the mechanistic basis for disrupted myelopoiesis. Together, these findings define the mTORC1-S6K1-Myc pathway as a key checkpoint in terminal myeloid development.
Collapse
Affiliation(s)
- Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Sarah Ameri
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Demetrios Kalaitzidis
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Julia F Charles
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nathan Nelson-Maney
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kevin Wei
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pierre Cunin
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Allyn Morris
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Astrid E Cardona
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - David E Root
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. .,Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|