251
|
Zhang H, Ye L, Mosbach K. Non-covalent molecular imprinting with emphasis on its application in separation and drug development. J Mol Recognit 2006; 19:248-59. [PMID: 16924655 DOI: 10.1002/jmr.793] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Abstract
The molecular imprinting technique can be defined as the formation of specific nano-sized cavities by means of template-directed synthesis. The resulting molecularly imprinted polymers (MIPs), which often have an affinity and a selectivity approaching those of antibody-antigen systems, have thus been coined "artificial antibodies." MIPs are characterized by their high specificity, ease of preparation, and their thermal and chemical stability. They have been widely studied in connection with many potential applications, including their use for separation and isolation purposes, as antibody mimics (biomimetic assays and sensors), as enzyme mimics, in organic synthesis, and in drug delivery. The non-covalent imprinting approach, developed mainly in Lund, has proven to be more versatile than the alternative covalent approach because of its preparation being less complicated and of the broad selection of functional monomers and possible target molecules that are available. The paper presents a review of studies of this versatile technique in the areas of separation and drug development, with emphasis being placed on work carried out in our laboratory.
Collapse
Affiliation(s)
- Huiqi Zhang
- Department of Pure and Applied Biochemistry, Chemical Center, Lund University, 221 00 Lund, Sweden
| | | | | |
Collapse
|
252
|
Abstract
Highly cross-linked 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) dimethacrylate with poly(ethylene glycol) of molecular weight 600 (PEG600DMA) were molecularly imprinted with hydrophilic templates glucose and proxyphylline using water as a solvent. Glucose-imprinted polymers showed increased recognitive capacity compared to nonimprinted polymers as well as increased glucose uptake compared to structurally similar galactose and methylglucopyranoside. Increasing glucose concentration in the imprinting mixture resulted in higher capacity and selective binding. Similar results were obtained for proxyphylline-imprinted P(HEMA-co-PEG600DMA) polymers, where the proxyphylline uptake was higher than structurally similar theophylline. Glucose-imprinted networks also showed diffusion coefficients on the order of 10(-6) cm2/s, conducive to applications in drug delivery and tissue engineering. This work showed that using pairs of hydrogen-bonding monomers and templates, selective, high-affinity sites could be created despite nonspecific binding.
Collapse
Affiliation(s)
- Ebru Oral
- Biomaterials and Drug Delivery Laboratories, School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
253
|
Boopathi M, Suryanarayana MVS, Nigam AK, Pandey P, Ganesan K, Singh B, Sekhar K. Plastic antibody for the recognition of chemical warfare agent sulphur mustard. Biosens Bioelectron 2006; 21:2339-44. [PMID: 16569501 DOI: 10.1016/j.bios.2006.01.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2005] [Revised: 12/02/2005] [Accepted: 01/11/2006] [Indexed: 11/20/2022]
Abstract
Molecularly imprinted polymers (MIPs) known as plastic antibodies (PAs) represent a new class of materials possessing high selectivity and affinity for the target molecule. Since their discovery, PAs have attracted considerable interest from bio- and chemical laboratories to pharmaceutical institutes. PAs are becoming an important class of synthetic materials mimicking molecular recognition by natural receptors. In addition, they have been utilized as catalysts, sorbents for solid-phase extraction, stationary phase for liquid chromatography and mimics of enzymes. In this paper, first time we report the preparation and characterization of a PA for the recognition of blistering chemical warfare agent sulphur mustard (SM). The SM imprinted PA exhibited more surface area when compared to the control non-imprinted polymer (NIP). In addition, SEM image showed an ordered nano-pattern for the PA of SM that is entirely different from the image of NIP. The imprinting also enhanced SM rebinding ability to the PA when compared to the NIP with an imprinting efficiency (alpha) of 1.3.
Collapse
Affiliation(s)
- M Boopathi
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | | | | | | | | | | | | |
Collapse
|
254
|
Alvarez-Lorenzo C, Yañez F, Barreiro-Iglesias R, Concheiro A. Imprinted soft contact lenses as norfloxacin delivery systems. J Control Release 2006; 113:236-44. [PMID: 16777254 DOI: 10.1016/j.jconrel.2006.05.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2006] [Revised: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 11/25/2022]
Abstract
Soft contact lenses are receiving an increasing attention not only for correcting mild ametropia but also as drug delivery devices. To provide poly(hydroxyethyl methacrylate), PHEMA, lenses with the ability to load norfloxacin (NRF) and to control its release, functional monomers were carefully chosen and then spatially ordered applying the molecular imprinting technology. Isothermal titration calorimetry (ITC) studies revealed that maximum binding interaction between NRF and acrylic acid (AA) occurs at a 1:1, and that the process saturates at 1:4 molar ratio. Hydrogels were synthesized using different NRF:AA molar ratios (1:2 to 1:16), at two fix AA total concentrations (100 and 200 mM), and using moulds of different thicknesses (0.4 and 0.9 mm). The cross-linker molar concentration was 1.6 times that of AA. Control (non-imprinted) hydrogels were prepared similarly but with the omission of NRF. All hydrogels showed a similar degree of swelling (55%) and, once hydrated, presented adequate optical and viscoelastic properties. After immersion in 0.025, 0.050 and 0.10 mM drug solutions, imprinted hydrogels loaded greater amounts of NRF than the non-imprinted ones. Imprinted hydrogels synthesized using NRF:AA 1:3 and 1:4 molar ratios showed the greatest ability to control the release process, sustaining it for more than 24 h. These results prove that ITC is a useful tool for the optimization of the structure of the imprinted cavities in order to obtain efficient therapeutic soft contact lenses.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
255
|
Siemoneit U, Schmitt C, Alvarez-Lorenzo C, Luzardo A, Otero-Espinar F, Concheiro A, Blanco-Méndez J. Acrylic/cyclodextrin hydrogels with enhanced drug loading and sustained release capability. Int J Pharm 2006; 312:66-74. [PMID: 16464549 DOI: 10.1016/j.ijpharm.2005.12.046] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2005] [Revised: 11/28/2005] [Accepted: 12/28/2005] [Indexed: 11/16/2022]
Abstract
The influence of the proportion of acrylamidomethyl-gamma-cyclodextrin (gamma-CD-NMA) on loading and release of the hydrophobic triamcinolone acetonide (TA) and the hydrophilic propranolol (PR) by acrylic acid hydrogels was evaluated. gamma-CD-NMA was synthesized by condensation of gamma-cyclodextrin (gamma-CD) with N-(hydroxymethyl) acrylamide. Hydrogels were prepared with gamma-CD-NMA and sodium acrylate (3 M or 4 M), using N,N'-methylen(bisacrylamide) (BIS) as cross-linker, by free radical polymerization into glass moulds of 2 mm wide and were cut as discs (10 mm diameter). gamma-CD-NMA did not modify the pH-dependent swelling of the hydrogels, but significantly increased the swelling degree in the 40:60 ethanol:water, medium in which TA can be dissolved. Hydrogels prepared with gamma-CD-NMA above 5% (w/w of total monomers) showed a remarkably higher capacity to load TA, e.g., 33 mg/g dry hydrogel versus 0.6 mg/g dry hydrogel without gamma-CD-NMA. This is explained by the formation of 1:1 inclusion complexes of TA with gamma-CD mers that overcomes the lack of interactions with the acrylic groups of the network. The release of TA in water, 0.1 N HCl, or pH 6.8 phosphate buffer was sustained for at least 24 h, whatever the pH and the composition of the medium used. In contrast, loading of PR from the water solutions was greater for hydrogels prepared with 3 M acrylate than with 4 M acrylate, irrespective to their content in gamma-CD-NMA, and in less than 2 h ca. 80% PR was released. The lower affinity of PR for the gamma-CD cavities, compared to the strong intensity of the electrostatic interactions with the acrylic acid groups, explains why the incorporation of gamma-CD-NMA did not increased the loading and control release capacity of the hydrogels of this hydrophilic drug. In summary, the copolymerisation of CD with acrylic monomers can provide highly hydrophilic pH-sensitive networks which load large amounts of hydrophobic drugs and release them in a sustained way.
Collapse
Affiliation(s)
- Ulf Siemoneit
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
256
|
Alvarez-Lorenzo C, Concheiro A. Molecularly imprinted materials as advanced excipients for drug delivery systems. BIOTECHNOLOGY ANNUAL REVIEW 2006; 12:225-68. [PMID: 17045196 DOI: 10.1016/s1387-2656(06)12007-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
Abstract
The application of the molecular imprinting technology in the design of new drug delivery systems (DDS) and devices useful in closely related fields, such as diagnostic sensors or biological traps, is receiving increasing attention. Molecular imprinting technology can provide polymeric materials with the ability to recognize specific bioactive molecules and with a sorption/release behaviour that can be made sensitive to the properties of the surrounding medium. In this review, an introduction to the imprinting technology presenting the different approaches in preparing selective polymers of different formats is given, and the key factors involved in obtaining of imprinted binding sites in materials useful for pharmaceutical applications are analysed. Examples of DDS based on molecularly imprinted polymers (MIPs) can be found for the three main approaches developed to control the moment at which delivery should begin and/or the drug release rate; i.e., rate-programmed, activation-modulated or feedback-regulated drug delivery. This review seeks to highlight the most remarkable advantages of the imprinting technique in the development of new efficient DDS as well as to point out some possibilities of adapting the synthesis procedures to create systems compatible with both the relative instable drug molecules, especially of peptide nature, and the sensitive physiological tissues with which MIP-based DDS would enter into contact when administered. The prospects for future development are also analysed.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| | | |
Collapse
|
257
|
|
258
|
Hiratani H, Mizutani Y, Alvarez-Lorenzo C. Controlling Drug Release from Imprinted Hydrogels by Modifying the Characteristics of the Imprinted Cavities. Macromol Biosci 2005; 5:728-33. [PMID: 16082622 DOI: 10.1002/mabi.200500065] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to analyse the influence of the template/functional monomer proportion on the achievement of molecularly imprinted hydrogels with cavities with a high enough affinity for the drug to sustain drug release. Imprinted hydrogels were prepared from N,N-dimethylacrylamide and tris(trimethylsiloxy)sililpropyl methacrylate (DMAA and TRIS; main components), methacrylic acid (MAA; functional monomer), ethylene glycol dimethacrylate (EGDMA; cross-linker), and timolol (template drug). Photo-polymerization of the monomer solutions was carried out in poly(propylene) molds (0.3 mm thickness) to obtain contact lens-like devices. Non-imprinted control hydrogels were also prepared in the same way but without the addition of timolol. The imprinted hydrogels showed a higher affinity for timolol and a slower release rate than the non-imprinted hydrogels. The release rate decreased by increasing the MAA/timolol ratio in the gel recipe. Hydrogels prepared with 400 x 10(-3) M MAA, 600 x 10(-3) M EGDMA, and a timolol/MAA mole ratio of 1:16-1:32 had drug diffusion coefficients two orders of magnitude below those of non-imprinted hydrogels. The results obtained clearly indicate that the timolol release rate is critically affected by the conditions under which the hydrogels were synthesized. These effects are discussed on the basis of the influence of drug proportion on the conformation of the imprinted cavities.
Collapse
Affiliation(s)
- Haruyuki Hiratani
- Menicon Co., Ltd. 5-1-10 Takamoridai, Kasugai, Aichi 487-0032, Japan.
| | | | | |
Collapse
|
259
|
Abstract
Molecularly imprinted polymers (MIPs) are actively being developed as a practical tool for affinity chromatographic supports. From the viewpoint of separation science, capillary electrochromatography (CEC) might be one of the more promising chromatographic techniques to be used in combination with the MIPs. However, up to the present, very little MIP work has involved CEC. This review gives a full overview of MIP including current trends in MIP, methods for the characterization of MIP, and methods for the preparation of MIP with particular emphasis on application of the resulting materials in CEC. To prepare MIPs with selectivity predetermined for a particular substance or group of structural analogues is an important factor for the development of a new format of CEC. From the fundamental research with the batch method, a better knowledge of imprint formation and imprint recognition will be helpful for expanding the application area of the combination of MIPs with CEC.
Collapse
Affiliation(s)
- Chuen-Ying Liu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | | |
Collapse
|
260
|
Hiratani H, Fujiwara A, Tamiya Y, Mizutani Y, Alvarez-Lorenzo C. Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials 2005; 26:1293-8. [PMID: 15475059 DOI: 10.1016/j.biomaterials.2004.04.030] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2004] [Accepted: 04/08/2004] [Indexed: 02/06/2023]
Abstract
The aim of this study was to evaluate "in vivo" the usefulness of molecular imprinting technology to obtain therapeutic soft contact lenses capable of prolonging the permanence of timolol in the precorneal area, compared to conventional contact lenses and eyedrops. Soft contact lenses (diameter 14 mm, center thickness 0.08 mm) consisted of N,N-diethylacrylamide (DEAA; main component of the matrix), methacrylic acid (MAA; functional monomer) and ethylene glycol dimethacrylate (EGDMA; cross-linker) were prepared by the conventional methodology (non-imprinted) or by applying a molecular imprinting technique using timolol as the template (imprinted ones). After washing and reloading, timolol release studies carried out in rabbits showed that the soft contact lenses made by the molecular imprinting method (34 microg dose) provided measurable timolol concentrations in the tear fluid for 2.0- and 3.0-fold longer than the non-imprinted contact lenses (21 microg dose) and eyedrops (doses of 34 and 125 microg), respectively. Furthermore, the area under the timolol concentration-time curve (AUC) was 3.3- and 8.7-fold greater for imprinted contact lenses than non-imprinted contact lenses and eyedrops, respectively. The timolol concentration of the eyedrops did not affect the precorneal residence time of drug significantly. On the other hand, timolol loading capacity of the contact lenses was improved by the molecular imprinting method; the sustaining of the drug levels in the tear fluid being proportional to the loading capacity of the contact lenses. These results indicate that imprinted soft contact lenses are promising drug devices able to provide greater and more sustained drug concentrations in tear fluid with lower doses than conventional eyedrops.
Collapse
Affiliation(s)
- Haruyuki Hiratani
- Menicon Co., Ltd. 5-1-10 Takamoridai, Kasugai, Aichi 487-0032, Japan.
| | | | | | | | | |
Collapse
|
261
|
Sambe H, Hoshina K, Haginaka J. Retentivity and Enantioselectivity of Uniformly-sized Molecularly Imprinted Polymers for (S)-Nilvadipine in Aqueous and Non-Aqueous Mobile Phases. ANAL SCI 2005; 21:391-5. [PMID: 15844332 DOI: 10.2116/analsci.21.391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
Abstract
Uniformly-sized molecularly imprinted polymers (MIPs) for (S)-nilvadipine have been prepared by a multi-step swelling and polymerization method using methacrylic acid or 4-vinylpyridine (4-VPY) as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, and toluene, chloroform, cyclohexanol or phenylacetonitrile as a porogen. The chiral recognition abilities of the MIPs for nilvadipine were evaluated using aqueous and non-aqueous mobile phases. Among the MIPs, the (S)-nilvadipine-imprinted 4-VPY-co-EDMA polymers prepared using toluene as a porogen showed the highest recognition ability for nilvadipine in both aqueous and non-aqueous mobile phases. In addition to molecular shape recognition, hydrogen-bonding interactions of the NH proton of nilvadipine with a pyridyl group of the (S)-nilvadipine-imprinted 4-VPY-co-EDMA polymers could play an important role in the retention and chiral recognition of nilvadipine in aqueous and non-aqueous mobile phases. Furthermore, the MIP for (S)-nilvadipine gave the highest molecular recognition ability when a porogenic solvent during polymerization was used as the mobile phase modifier.
Collapse
Affiliation(s)
- Haruyo Sambe
- Laboratory of Intellectual Fundamentals for Environmental Studies, National Institute for Environmental Studies, 16-2, Onogawa, Tukuba, Ibaraki 305-8506, Japan
| | | | | |
Collapse
|
262
|
Barreiro-Iglesias R, Coronilla R, Concheiro A, Alvarez-Lorenzo C. Preparation of chitosan beads by simultaneous cross-linking/insolubilisation in basic pH. Eur J Pharm Sci 2005; 24:77-84. [PMID: 15626580 DOI: 10.1016/j.ejps.2004.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2004] [Revised: 09/27/2004] [Accepted: 09/29/2004] [Indexed: 10/26/2022]
Abstract
A one-step procedure to prepare chitosan beads by simultaneous cross-linking with glutaraldehyde and insolubilisation in 1.5 M NaOH solution has been developed. The optimisation of the procedure was carried out by monitoring the evolution of the loss and storage moduli of chitosan solutions (1.5% (w/v), in acetic acid 0.2 M) in the presence of different proportions of glutaraldehyde. Increasing the chitosan molecular weight, glutaraldehyde concentration and/or process temperature from 20 to 37 degrees C, a reduction of time to reach the gel point was observed. The diameter of freshly prepared swollen beads was 3.2+/-0.4 mm and, after drying 0.48+/-0.18 mm. Swollen or previously dried beads were loaded with metronidazole by immersion in 0.1% (w/v), drug solution in a phosphate buffer pH 7.5, purified water, 0.2 M acetic acid or 0.1 M HCl. Beads synthesised at 37 degrees C experimented faster swelling than the ones prepared at 20 degrees C and even disintegrated in acetic acid. The amounts of metronidazole loaded (ranging from 1 to 286 mg/g dried beads) increased with swelling capacity of beads. The release studies carried out in 0.1 M HCl indicated that, regardless of the medium used to load the beads, all of them released the dose in less than 30 min. In summary, applying this one-step procedure and choosing the adequate glutaraldehyde proportion, it is possible to obtain particles of chitosan cross-linked with itself, which exhibit pH-sensitive swelling and which are able to release all the drug quickly into an acidic environment such as the stomach. The results obtained also highlight the importance of the pH of the medium for modulating the amount of drug loaded (it is remarkably greater at lower pHs) and the influence of temperature at which the beads are prepared on their tendency to disintegrate.
Collapse
Affiliation(s)
- R Barreiro-Iglesias
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872-Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
263
|
Hilt JZ, Byrne ME. Configurational biomimesis in drug delivery: molecular imprinting of biologically significant molecules. Adv Drug Deliv Rev 2004; 56:1599-620. [PMID: 15350291 DOI: 10.1016/j.addr.2004.04.002] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2004] [Accepted: 05/15/2004] [Indexed: 01/16/2023]
Abstract
This review focuses on trends in the macromolecular recognition of biologically significant molecules (e.g., drugs, amino acids, steroids, nucleotide bases, carbohydrates, etc.) via molecular imprinting methods. An extensive list of prior art including type of functional monomers and crosslinkers for each biomolecule imprinted polymer is presented. Representative samples of receptor-ligand dissociation constants and polymer capacities are presented as well as typical values that occur in classes of biological recognition systems. Imprinting technology has direct impact in enhanced drug loading of controlled-release carriers for the sustained release of therapeutic agents as well as robust biosensors for novel therapeutic and diagnostic devices. This review also discusses the future of designed recognition, configurational biomimesis within polymeric gels, and highlights recent efforts toward integrating imprinted polymers in controlled drug delivery systems and sensing devices. In particular, the application of imprinted polymers for sustained release, enhanced loading capacity, and enantioselective loading or release are discussed. This article also highlights the most important problems to be solved in the design of synthetic recognition-based networks for biological molecules.
Collapse
Affiliation(s)
- J Zachary Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, USA
| | | |
Collapse
|
264
|
Abstract
Molecularly imprinted polymers hold great promise for the separation of chiral compounds. A non-covalent approach to the synthesis of MIPs relies on the presence of specific and non-specific interactions, which lead to the formation of a molecular imprint. The structural differences between 17-alpha-estradiol and 17-beta-estradiol are too small to permit their efficient separation on a MIP prepared with beta-estradiol as a template. Molecular modeling revealed the presence of only one hydrogen bond that differentiates the two isomers.
Collapse
Affiliation(s)
- Michał Szumski
- Department of Environmental Chemistry and Ecoanalytics, Faculty of Chemistry, Nicolas Copernicus University, ul Gagarina 7, 87-100 Toruri, Poland
| | | |
Collapse
|