251
|
Navarro PP, Stahlberg H, Castaño-Díez D. Protocols for Subtomogram Averaging of Membrane Proteins in the Dynamo Software Package. Front Mol Biosci 2018; 5:82. [PMID: 30234127 PMCID: PMC6131572 DOI: 10.3389/fmolb.2018.00082] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Cryo-electron tomography allows low-resolution three-dimensional (3D) viewing of cellular organelles and macromolecular complexes present as multiple copies within a tomogram. These structures are computationally extracted and averaged in order to obtain high-resolution 3D structures, and provide a map of their spatial distribution and interaction with their biological microenvironment. To do so, we apply the user-friendly Dynamo software package on a tomographic data set. Dynamo acts as a modular toolbox adaptable to different biological scenarios, allowing a custom designed pipeline for subtomogram averaging. Here, we use as a textbook example the mitochondrial docking site of the positive-strand RNA Flock house nodavirus (FHV) to describe how Dynamo coordinates several basic steps in the subtomogram averaging workflow. Our framework covers specific strategies to deal with additional issues in subtomogram averaging as tomographic data management, 3D surface visualization, automatic assignment of asymmetry and inherent loss of Fourier information in presence of preferential views.
Collapse
Affiliation(s)
- Paula P Navarro
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Daniel Castaño-Díez
- BioEM Lab, Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
252
|
Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature 2018; 561:561-564. [PMID: 30224749 PMCID: PMC6173284 DOI: 10.1038/s41586-018-0526-z] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/08/2018] [Indexed: 02/02/2023]
Abstract
Eukaryotic cells traffic proteins and lipids between different compartments using protein-coated vesicles and tubules. The retromer complex is required to generate cargo-selective tubulovesicular carriers from endosomal membranes1-3. Conserved in eukaryotes, retromer controls the cellular localization and homeostasis of hundreds of transmembrane proteins, and its disruption is associated with major neurodegenerative disorders4-7. How retromer is assembled and how it is recruited to form coated tubules is not known. Here we describe the structure of the retromer complex (Vps26-Vps29-Vps35) assembled on membrane tubules with the bin/amphiphysin/rvs-domain-containing sorting nexin protein Vps5, using cryo-electron tomography and subtomogram averaging. This reveals a membrane-associated Vps5 array, from which arches of retromer extend away from the membrane surface. Vps35 forms the 'legs' of these arches, and Vps29 resides at the apex where it is free to interact with regulatory factors. The bases of the arches connect to each other and to Vps5 through Vps26, and the presence of the same arches on coated tubules within cells confirms their functional importance. Vps5 binds to Vps26 at a position analogous to the previously described cargo- and Snx3-binding site, which suggests the existence of distinct retromer-sorting nexin assemblies. The structure provides insight into the architecture of the coat and its mechanism of assembly, and suggests that retromer promotes tubule formation by directing the distribution of sorting nexin proteins on the membrane surface while providing a scaffold for regulatory-protein interactions.
Collapse
|
253
|
Fine details in complex environments: the power of cryo-electron tomography. Biochem Soc Trans 2018; 46:807-816. [PMID: 29934301 PMCID: PMC6103461 DOI: 10.1042/bst20170351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 01/10/2023]
Abstract
Cryo-electron tomography (CET) is uniquely suited to obtain structural information from a wide range of biological scales, integrating and bridging knowledge from molecules to cells. In particular, CET can be used to visualise molecular structures in their native environment. Depending on the experiment, a varying degree of resolutions can be achieved, with the first near-atomic molecular structures becoming recently available. The power of CET has increased significantly in the last 5 years, in parallel with improvements in cryo-EM hardware and software that have also benefited single-particle reconstruction techniques. In this review, we cover the typical CET pipeline, starting from sample preparation, to data collection and processing, and highlight in particular the recent developments that support structural biology in situ. We provide some examples that highlight the importance of structure determination of molecules embedded within their native environment, and propose future directions to improve CET performance and accessibility.
Collapse
|
254
|
Rossmann FM, Beeby M. Insights into the evolution of bacterial flagellar motors from high-throughput in situ electron cryotomography and subtomogram averaging. Acta Crystallogr D Struct Biol 2018; 74:585-594. [PMID: 29872008 PMCID: PMC6096493 DOI: 10.1107/s2059798318007945] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/29/2018] [Indexed: 12/29/2022] Open
Abstract
In situ structural information on molecular machines can be invaluable in understanding their assembly, mechanism and evolution. Here, the use of electron cryotomography (ECT) to obtain significant insights into how an archetypal molecular machine, the bacterial flagellar motor, functions and how it has evolved is described. Over the last decade, studies using a high-throughput, medium-resolution ECT approach combined with genetics, phylogenetic reconstruction and phenotypic analysis have revealed surprising structural diversity in flagellar motors. Variations in the size and the number of torque-generating proteins in the motor visualized for the first time using ECT has shown that these variations have enabled bacteria to adapt their swimming torque to the environment. Much of the structural diversity can be explained in terms of scaffold structures that facilitate the incorporation of additional motor proteins, and more recent studies have begun to infer evolutionary pathways to higher torque-producing motors. This review seeks to highlight how the emerging power of ECT has enabled the inference of ancestral states from various bacterial species towards understanding how, and `why', flagellar motors have evolved from an ancestral motor to a diversity of variants with adapted or modified functions.
Collapse
Affiliation(s)
- Florian M. Rossmann
- Department of Life Sciences, Imperial College London, London SW7 2AZ, England
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, England
| |
Collapse
|
255
|
Noble AJ, Dandey VP, Wei H, Brasch J, Chase J, Acharya P, Tan YZ, Zhang Z, Kim LY, Scapin G, Rapp M, Eng ET, Rice WJ, Cheng A, Negro CJ, Shapiro L, Kwong PD, Jeruzalmi D, des Georges A, Potter CS, Carragher B. Routine single particle CryoEM sample and grid characterization by tomography. eLife 2018; 7:e34257. [PMID: 29809143 PMCID: PMC5999397 DOI: 10.7554/elife.34257] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Single particle cryo-electron microscopy (cryoEM) is often performed under the assumption that particles are not adsorbed to the air-water interfaces and in thin, vitreous ice. In this study, we performed fiducial-less tomography on over 50 different cryoEM grid/sample preparations to determine the particle distribution within the ice and the overall geometry of the ice in grid holes. Surprisingly, by studying particles in holes in 3D from over 1000 tomograms, we have determined that the vast majority of particles (approximately 90%) are adsorbed to an air-water interface. The implications of this observation are wide-ranging, with potential ramifications regarding protein denaturation, conformational change, and preferred orientation. We also show that fiducial-less cryo-electron tomography on single particle grids may be used to determine ice thickness, optimal single particle collection areas and strategies, particle heterogeneity, and de novo models for template picking and single particle alignment.
Collapse
Affiliation(s)
- Alex J Noble
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Venkata P Dandey
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Hui Wei
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Julia Brasch
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Jillian Chase
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkUnited States
- Program in BiochemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
| | - Priyamvada Acharya
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthMarylandUnited States
| | - Yong Zi Tan
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Zhening Zhang
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Laura Y Kim
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Giovanna Scapin
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Structural Chemistry and Chemical BiotechnologyMerck & Co., IncNew JerseyUnited States
| | - Micah Rapp
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Edward T Eng
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - William J Rice
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Anchi Cheng
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Carl J Negro
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Peter D Kwong
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthMarylandUnited States
| | - David Jeruzalmi
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkUnited States
- Program in BiochemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
- Program in BiologyThe Graduate Center of the City University of New YorkNew YorkUnited States
- Program in ChemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
| | - Amedee des Georges
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkUnited States
- Program in BiochemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
- Program in ChemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
- Advanced Science Research CenterThe Graduate Center of the City University of New YorkNew YorkUnited States
| | - Clinton S Potter
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Bridget Carragher
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| |
Collapse
|
256
|
Weiss GL, Medeiros JM, Pilhofer M. In Situ Imaging of Bacterial Secretion Systems by Electron Cryotomography. Methods Mol Biol 2018; 1615:353-375. [PMID: 28667625 DOI: 10.1007/978-1-4939-7033-9_27] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The unique property of electron cryotomography (ECT) is its capability to resolve the structure of macromolecular machines in their cellular context. The integration of ECT data with high-resolution structures of purified subcomplexes and live-cell fluorescence light microscopy can generate pseudo-atomic models that lead to a mechanistic understanding across size and time scales. Recent advances in electron detection, sample thinning, data acquisition, and data processing have significantly enhanced the applicability and performance of ECT. Here we describe a detailed workflow for an ECT experiment, including cell culture, vitrification, data acquisition, data reconstruction, tomogram analysis, and subtomogram averaging. This protocol provides an entry point to the technique for students and researchers and indicates the many possible variations arising from specific target properties and the available instrumentation.
Collapse
Affiliation(s)
- Gregor L Weiss
- Department of Biology, ETH Zürich, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - João M Medeiros
- Department of Biology, ETH Zürich, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Martin Pilhofer
- Department of Biology, ETH Zürich, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093, Zürich, Switzerland.
| |
Collapse
|
257
|
Erdmann PS, Plitzko JM, Baumeister W. Addressing cellular compartmentalization by in situ cryo-electron tomography. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
258
|
Ultee E, Schenkel F, Yang W, Brenzinger S, Depelteau JS, Briegel A. An Open-Source Storage Solution for Cryo-Electron Microscopy Samples. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:60-63. [PMID: 29345600 DOI: 10.1017/s143192761701279x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cryo-electron microscopy (cryo-EM) enables the study of biological structures in situ in great detail and to solve protein structures at Ångstrom level resolution. Due to recent advances in instrumentation and data processing, the field of cryo-EM is a rapidly growing. Access to facilities and national centers that house the state-of-the-art microscopes is limited due to the ever-rising demand, resulting in long wait times between sample preparation and data acquisition. To improve sample storage, we have developed a cryo-storage system with an efficient, high storage capacity that enables sample storage in a highly organized manner. This system is simple to use, cost-effective and easily adaptable for any type of grid storage box and dewar and any size cryo-EM laboratory.
Collapse
Affiliation(s)
- Eveline Ultee
- 1Institute of Biology,Leiden University of Leiden,2333 BE Leiden,The Netherlands
| | - Fred Schenkel
- 2Fine Mechanical Department,University of Leiden,2333 CA Leiden,The Netherlands
| | - Wen Yang
- 1Institute of Biology,Leiden University of Leiden,2333 BE Leiden,The Netherlands
| | - Susanne Brenzinger
- 1Institute of Biology,Leiden University of Leiden,2333 BE Leiden,The Netherlands
| | - Jamie S Depelteau
- 1Institute of Biology,Leiden University of Leiden,2333 BE Leiden,The Netherlands
| | - Ariane Briegel
- 1Institute of Biology,Leiden University of Leiden,2333 BE Leiden,The Netherlands
| |
Collapse
|
259
|
Halldorsson S, Li S, Li M, Harlos K, Bowden TA, Huiskonen JT. Shielding and activation of a viral membrane fusion protein. Nat Commun 2018; 9:349. [PMID: 29367607 PMCID: PMC5783950 DOI: 10.1038/s41467-017-02789-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/28/2017] [Indexed: 11/23/2022] Open
Abstract
Entry of enveloped viruses relies on insertion of hydrophobic residues of the viral fusion protein into the host cell membrane. However, the intermediate conformations during fusion remain unknown. Here, we address the fusion mechanism of Rift Valley fever virus. We determine the crystal structure of the Gn glycoprotein and fit it with the Gc fusion protein into cryo-electron microscopy reconstructions of the virion. Our analysis reveals how the Gn shields the hydrophobic fusion loops of the Gc, preventing premature fusion. Electron cryotomography of virions interacting with membranes under acidic conditions reveals how the fusogenic Gc is activated upon removal of the Gn shield. Repositioning of the Gn allows extension of Gc and insertion of fusion loops in the outer leaflet of the target membrane. These data show early structural transitions that enveloped viruses undergo during host cell entry and indicate that analogous shielding mechanisms are utilized across diverse virus families. Viral fusion proteins undergo extensive conformational changes during entry but intermediate conformations often remain unknown. Here, the authors show how Gn of Rift Valley fever virus fusion protein shields hydrophobic fusion loops of Gc and how these loops embed in the target membrane at acidic conditions.
Collapse
Affiliation(s)
- Steinar Halldorsson
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Sai Li
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Mengqiu Li
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK. .,Helsinki Institute of Life Science and Faculty of Environmental and Biological Sciences, University of Helsinki, Viikinkaari 1, Helsinki, 00014, Finland.
| |
Collapse
|
260
|
|
261
|
|
262
|
Wang Z, Chen Y, Zhang J, Li L, Wan X, Liu Z, Sun F, Zhang F. ICON-MIC: Implementing a CPU/MIC Collaboration Parallel Framework for ICON on Tianhe-2 Supercomputer. J Comput Biol 2017; 25:270-281. [PMID: 29185807 DOI: 10.1089/cmb.2017.0151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Electron tomography (ET) is an important technique for studying the three-dimensional structures of the biological ultrastructure. Recently, ET has reached sub-nanometer resolution for investigating the native and conformational dynamics of macromolecular complexes by combining with the sub-tomogram averaging approach. Due to the limited sampling angles, ET reconstruction typically suffers from the "missing wedge" problem. Using a validation procedure, iterative compressed-sensing optimized nonuniform fast Fourier transform (NUFFT) reconstruction (ICON) demonstrates its power in restoring validated missing information for a low-signal-to-noise ratio biological ET dataset. However, the huge computational demand has become a bottleneck for the application of ICON. In this work, we implemented a parallel acceleration technology ICON-many integrated core (MIC) on Xeon Phi cards to address the huge computational demand of ICON. During this step, we parallelize the element-wise matrix operations and use the efficient summation of a matrix to reduce the cost of matrix computation. We also developed parallel versions of NUFFT on MIC to achieve a high acceleration of ICON by using more efficient fast Fourier transform (FFT) calculation. We then proposed a hybrid task allocation strategy (two-level load balancing) to improve the overall performance of ICON-MIC by making full use of the idle resources on Tianhe-2 supercomputer. Experimental results using two different datasets show that ICON-MIC has high accuracy in biological specimens under different noise levels and a significant acceleration, up to 13.3 × , compared with the CPU version. Further, ICON-MIC has good scalability efficiency and overall performance on Tianhe-2 supercomputer.
Collapse
Affiliation(s)
- Zihao Wang
- 1 High Performance Computer Research Center, Institute of Computing Technology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China .,6 These authors contributed equally to this work
| | - Yu Chen
- 1 High Performance Computer Research Center, Institute of Computing Technology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China .,6 These authors contributed equally to this work
| | - Jingrong Zhang
- 1 High Performance Computer Research Center, Institute of Computing Technology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Lun Li
- 1 High Performance Computer Research Center, Institute of Computing Technology , Chinese Academy of Sciences, Beijing, China .,3 School of Mathematical Sciences, University of Chinese Academy of Sciences , Beijing, China
| | - Xiaohua Wan
- 1 High Performance Computer Research Center, Institute of Computing Technology , Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- 1 High Performance Computer Research Center, Institute of Computing Technology , Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- 2 University of Chinese Academy of Sciences , Beijing, China .,4 National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences, Beijing, China .,5 Center for Biological Imaging, Institute of Biophysics , Chinese Academy of Sciences, Beijing, China
| | - Fa Zhang
- 1 High Performance Computer Research Center, Institute of Computing Technology , Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
263
|
Wan W, Kolesnikova L, Clarke M, Koehler A, Noda T, Becker S, Briggs JAG. Structure and assembly of the Ebola virus nucleocapsid. Nature 2017; 551:394-397. [PMID: 29144446 PMCID: PMC5714281 DOI: 10.1038/nature24490] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/04/2017] [Indexed: 12/11/2022]
Abstract
Ebola and Marburg viruses are filoviruses: filamentous, enveloped viruses that cause haemorrhagic fever. Filoviruses are within the order Mononegavirales, which also includes rabies virus, measles virus, and respiratory syncytial virus. Mononegaviruses have non-segmented, single-stranded negative-sense RNA genomes that are encapsidated by nucleoprotein and other viral proteins to form a helical nucleocapsid. The nucleocapsid acts as a scaffold for virus assembly and as a template for genome transcription and replication. Insights into nucleoprotein-nucleoprotein interactions have been derived from structural studies of oligomerized, RNA-encapsidating nucleoprotein, and cryo-electron microscopy of nucleocapsid or nucleocapsid-like structures. There have been no high-resolution reconstructions of complete mononegavirus nucleocapsids. Here we apply cryo-electron tomography and subtomogram averaging to determine the structure of Ebola virus nucleocapsid within intact viruses and recombinant nucleocapsid-like assemblies. These structures reveal the identity and arrangement of the nucleocapsid components, and suggest that the formation of an extended α-helix from the disordered carboxy-terminal region of nucleoprotein-core links nucleoprotein oligomerization, nucleocapsid condensation, RNA encapsidation, and accessory protein recruitment.
Collapse
Affiliation(s)
- William Wan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Larissa Kolesnikova
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Mairi Clarke
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Alexander Koehler
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Takeshi Noda
- Laboratory of Ultrastructural virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - John A. G. Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
264
|
Ali RA, Mehdi AM, Rothnagel R, Hamilton NA, Gerle C, Landsberg MJ, Hankamer B. RAZA: A Rapid 3D z-crossings algorithm to segment electron tomograms and extract organelles and macromolecules. J Struct Biol 2017; 200:73-86. [PMID: 29032142 DOI: 10.1016/j.jsb.2017.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022]
Abstract
Resolving the 3D architecture of cells to atomic resolution is one of the most ambitious challenges of cellular and structural biology. Central to this process is the ability to automate tomogram segmentation to identify sub-cellular components, facilitate molecular docking and annotate detected objects with associated metadata. Here we demonstrate that RAZA (Rapid 3D z-crossings algorithm) provides a robust, accurate, intuitive, fast, and generally applicable segmentation algorithm capable of detecting organelles, membranes, macromolecular assemblies and extrinsic membrane protein domains. RAZA defines each continuous contour within a tomogram as a discrete object and extracts a set of 3D structural fingerprints (major, middle and minor axes, surface area and volume), enabling selective, semi-automated segmentation and object extraction. RAZA takes advantage of the fact that the underlying algorithm is a true 3D edge detector, allowing the axes of a detected object to be defined, independent of its random orientation within a cellular tomogram. The selectivity of object segmentation and extraction can be controlled by specifying a user-defined detection tolerance threshold for each fingerprint parameter, within which segmented objects must fall and/or by altering the number of search parameters, to define morphologically similar structures. We demonstrate the capability of RAZA to selectively extract subgroups of organelles (mitochondria) and macromolecular assemblies (ribosomes) from cellular tomograms. Furthermore, the ability of RAZA to define objects and their contours, provides a basis for molecular docking and rapid tomogram annotation.
Collapse
Affiliation(s)
- Rubbiya A Ali
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ahmed M Mehdi
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia; Department of Electrical Engineering, University of Engineering and Technology, Lahore, Punjab, Pakistan
| | - Rosalba Rothnagel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas A Hamilton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Christoph Gerle
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Michael J Landsberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
265
|
Cryo-EM structure of the extended type VI secretion system sheath–tube complex. Nat Microbiol 2017; 2:1507-1512. [DOI: 10.1038/s41564-017-0020-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/02/2017] [Indexed: 11/08/2022]
|
266
|
Mattei S, Glass B, Hagen WJH, Kräusslich HG, Briggs JAG. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 2017; 354:1434-1437. [PMID: 27980210 DOI: 10.1126/science.aah4972] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/18/2016] [Indexed: 12/30/2022]
Abstract
HIV-1 contains a cone-shaped capsid encasing the viral genome. This capsid is thought to follow fullerene geometry-a curved hexameric lattice of the capsid protein, CA, closed by incorporating 12 CA pentamers. Current models for core structure are based on crystallography of hexameric and cross-linked pentameric CA, electron microscopy of tubular CA arrays, and simulations. Here, we report subnanometer-resolution cryo-electron tomography structures of hexameric and pentameric CA within intact HIV-1 particles. Whereas the hexamer structure is compatible with crystallography studies, the pentamer forms using different interfaces. Determining multiple structures revealed how CA flexes to form the variably curved core shell. We show that HIV-1 CA assembles both aberrant and perfect fullerene cones, supporting models in which conical cores assemble de novo after maturation.
Collapse
Affiliation(s)
- Simone Mattei
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Bärbel Glass
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. .,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
267
|
Chen Y, Wang Z, Zhang J, Li L, Wan X, Sun F, Zhang F. Accelerating electron tomography reconstruction algorithm ICON with GPU. BIOPHYSICS REPORTS 2017; 3:36-42. [PMID: 28781999 PMCID: PMC5516007 DOI: 10.1007/s41048-017-0041-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/07/2017] [Indexed: 10/30/2022] Open
Abstract
Electron tomography (ET) plays an important role in studying in situ cell ultrastructure in three-dimensional space. Due to limited tilt angles, ET reconstruction always suffers from the "missing wedge" problem. With a validation procedure, iterative compressed-sensing optimized NUFFT reconstruction (ICON) demonstrates its power in the restoration of validated missing information for low SNR biological ET dataset. However, the huge computational demand has become a major problem for the application of ICON. In this work, we analyzed the framework of ICON and classified the operations of major steps of ICON reconstruction into three types. Accordingly, we designed parallel strategies and implemented them on graphics processing units (GPU) to generate a parallel program ICON-GPU. With high accuracy, ICON-GPU has a great acceleration compared to its CPU version, up to 83.7×, greatly relieving ICON's dependence on computing resource.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zihao Wang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jingrong Zhang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lun Li
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaohua Wan
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fei Sun
- University of Chinese Academy of Sciences, Beijing, 100049 China.,National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Fa Zhang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
268
|
Ertel KJ, Benefield D, Castaño-Diez D, Pennington JG, Horswill M, den Boon JA, Otegui MS, Ahlquist P. Cryo-electron tomography reveals novel features of a viral RNA replication compartment. eLife 2017; 6. [PMID: 28653620 PMCID: PMC5515581 DOI: 10.7554/elife.25940] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Positive-strand RNA viruses, the largest genetic class of viruses, include numerous important pathogens such as Zika virus. These viruses replicate their RNA genomes in novel, membrane-bounded mini-organelles, but the organization of viral proteins and RNAs in these compartments has been largely unknown. We used cryo-electron tomography to reveal many previously unrecognized features of Flock house nodavirus (FHV) RNA replication compartments. These spherular invaginations of outer mitochondrial membranes are packed with electron-dense RNA fibrils and their volumes are closely correlated with RNA replication template length. Each spherule’s necked aperture is crowned by a striking cupped ring structure containing multifunctional FHV RNA replication protein A. Subtomogram averaging of these crowns revealed twelve-fold symmetry, concentric flanking protrusions, and a central electron density. Many crowns were associated with long cytoplasmic fibrils, likely to be exported progeny RNA. These results provide new mechanistic insights into positive-strand RNA virus replication compartment structure, assembly, function and control. DOI:http://dx.doi.org/10.7554/eLife.25940.001
Collapse
Affiliation(s)
- Kenneth J Ertel
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
| | - Desirée Benefield
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, United States
| | | | - Janice G Pennington
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
| | - Mark Horswill
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, United States
| | - Johan A den Boon
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, United States
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, United States.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, United States
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, United States.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
269
|
Dodonova SO, Aderhold P, Kopp J, Ganeva I, Röhling S, Hagen WJH, Sinning I, Wieland F, Briggs JAG. 9Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments. eLife 2017. [PMID: 28621666 PMCID: PMC5482573 DOI: 10.7554/elife.26691] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
COPI coated vesicles mediate trafficking within the Golgi apparatus and between the Golgi and the endoplasmic reticulum. Assembly of a COPI coated vesicle is initiated by the small GTPase Arf1 that recruits the coatomer complex to the membrane, triggering polymerization and budding. The vesicle uncoats before fusion with a target membrane. Coat components are structurally conserved between COPI and clathrin/adaptor proteins. Using cryo-electron tomography and subtomogram averaging, we determined the structure of the COPI coat assembled on membranes in vitro at 9 Å resolution. We also obtained a 2.57 Å resolution crystal structure of βδ-COP. By combining these structures we built a molecular model of the coat. We additionally determined the coat structure in the presence of ArfGAP proteins that regulate coat dissociation. We found that Arf1 occupies contrasting molecular environments within the coat, leading us to hypothesize that some Arf1 molecules may regulate vesicle assembly while others regulate coat disassembly. DOI:http://dx.doi.org/10.7554/eLife.26691.001
Collapse
Affiliation(s)
- Svetlana O Dodonova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Molecular Biology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Aderhold
- Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Juergen Kopp
- Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Iva Ganeva
- Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Simone Röhling
- Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Felix Wieland
- Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
270
|
Castaño-Díez D. The Dynamo package for tomography and subtomogram averaging: components for MATLAB, GPU computing and EC2 Amazon Web Services. Acta Crystallogr D Struct Biol 2017; 73:478-487. [PMID: 28580909 PMCID: PMC5458489 DOI: 10.1107/s2059798317003369] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/28/2017] [Indexed: 11/10/2022] Open
Abstract
Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance.
Collapse
Affiliation(s)
- Daniel Castaño-Díez
- BioEM Lab at C-CINA, Biozentrum, University of Basel, Matenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
271
|
Galaz-Montoya JG, Ludtke SJ. The advent of structural biology in situ by single particle cryo-electron tomography. BIOPHYSICS REPORTS 2017; 3:17-35. [PMID: 28781998 PMCID: PMC5516000 DOI: 10.1007/s41048-017-0040-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/30/2017] [Indexed: 01/06/2023] Open
Abstract
Single particle tomography (SPT), also known as subtomogram averaging, is a powerful technique uniquely poised to address questions in structural biology that are not amenable to more traditional approaches like X-ray crystallography, nuclear magnetic resonance, and conventional cryoEM single particle analysis. Owing to its potential for in situ structural biology at subnanometer resolution, SPT has been gaining enormous momentum in the last five years and is becoming a prominent, widely used technique. This method can be applied to unambiguously determine the structures of macromolecular complexes that exhibit compositional and conformational heterogeneity, both in vitro and in situ. Here we review the development of SPT, highlighting its applications and identifying areas of ongoing development.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Steven J. Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
272
|
Frazier Z, Xu M, Alber F. TomoMiner and TomoMinerCloud: A Software Platform for Large-Scale Subtomogram Structural Analysis. Structure 2017; 25:951-961.e2. [PMID: 28552576 DOI: 10.1016/j.str.2017.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/17/2016] [Accepted: 04/28/2017] [Indexed: 11/19/2022]
Abstract
Cryo-electron tomography (cryo-ET) captures the 3D electron density distribution of macromolecular complexes in close to native state. With the rapid advance of cryo-ET acquisition technologies, it is possible to generate large numbers (>100,000) of subtomograms, each containing a macromolecular complex. Often, these subtomograms represent a heterogeneous sample due to variations in the structure and composition of a complex in situ form or because particles are a mixture of different complexes. In this case subtomograms must be classified. However, classification of large numbers of subtomograms is a time-intensive task and often a limiting bottleneck. This paper introduces an open source software platform, TomoMiner, for large-scale subtomogram classification, template matching, subtomogram averaging, and alignment. Its scalable and robust parallel processing allows efficient classification of tens to hundreds of thousands of subtomograms. In addition, TomoMiner provides a pre-configured TomoMinerCloud computing service permitting users without sufficient computing resources instant access to TomoMiners high-performance features.
Collapse
Affiliation(s)
- Zachary Frazier
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Min Xu
- Computational Biology Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
| | - Frank Alber
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
273
|
Earnest TM, Watanabe R, Stone JE, Mahamid J, Baumeister W, Villa E, Luthey-Schulten Z. Challenges of Integrating Stochastic Dynamics and Cryo-Electron Tomograms in Whole-Cell Simulations. J Phys Chem B 2017; 121:3871-3881. [PMID: 28291359 DOI: 10.1021/acs.jpcb.7b00672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cryo-electron tomography (cryo-ET) has rapidly emerged as a powerful tool to investigate the internal, three-dimensional spatial organization of the cell. In parallel, the GPU-based technology to perform spatially resolved stochastic simulations of whole cells has arisen, allowing the simulation of complex biochemical networks over cell cycle time scales using data taken from -omics, single molecule experiments, and in vitro kinetics. By using real cell geometry derived from cryo-ET data, we have the opportunity to imbue these highly detailed structural data-frozen in time-with realistic biochemical dynamics and investigate how cell structure affects the behavior of the embedded chemical reaction network. Here we present two examples to illustrate the challenges and techniques involved in integrating structural data into stochastic simulations. First, a tomographic reconstruction of Saccharomyces cerevisiae is used to construct the geometry of an entire cell through which a simple stochastic model of an inducible genetic switch is studied. Second, a tomogram of the nuclear periphery in a HeLa cell is converted directly to the simulation geometry through which we study the effects of cellular substructure on the stochastic dynamics of gene repression. These simple chemical models allow us to illustrate how to build whole-cell simulations using cryo-ET derived geometry and the challenges involved in such a process.
Collapse
Affiliation(s)
- Tyler M Earnest
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States
| | - Reika Watanabe
- Department of Chemistry and Biochemistry, University of California , San Diego, California, United States
| | - John E Stone
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States
| | - Julia Mahamid
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry , Munich, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry , Munich, Germany
| | - Elizabeth Villa
- Department of Chemistry and Biochemistry, University of California , San Diego, California, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States
| |
Collapse
|
274
|
Biyani N, Righetto RD, McLeod R, Caujolle-Bert D, Castano-Diez D, Goldie KN, Stahlberg H. Focus: The interface between data collection and data processing in cryo-EM. J Struct Biol 2017; 198:124-133. [PMID: 28344036 DOI: 10.1016/j.jsb.2017.03.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/15/2022]
Abstract
We present a new software package called Focus that interfaces cryo-transmission electron microscopy (cryo-EM) data collection with computer image processing. Focus creates a user-friendly environment to import and manage data recorded by direct electron detectors and perform elemental image processing tasks in a high-throughput manner while new data is being acquired at the microscope. It provides the functionality required to remotely monitor the progress of data collection and data processing, which is essential now that automation in cryo-EM allows a steady flow of images of single particles, two-dimensional crystals, or electron tomography data to be recorded in overnight sessions. The rapid detection of any errors that may occur greatly increases the productivity of recording sessions at the electron microscope.
Collapse
Affiliation(s)
- Nikhil Biyani
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Ricardo D Righetto
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Robert McLeod
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Kenneth N Goldie
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
275
|
Cell-free reconstitution reveals centriole cartwheel assembly mechanisms. Nat Commun 2017; 8:14813. [PMID: 28332496 PMCID: PMC5376648 DOI: 10.1038/ncomms14813] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/27/2017] [Indexed: 11/08/2022] Open
Abstract
How cellular organelles assemble is a fundamental question in biology. The centriole organelle organizes around a nine-fold symmetrical cartwheel structure typically ∼100 nm high comprising a stack of rings that each accommodates nine homodimers of SAS-6 proteins. Whether nine-fold symmetrical ring-like assemblies of SAS-6 proteins harbour more peripheral cartwheel elements is unclear. Furthermore, the mechanisms governing ring stacking are not known. Here we develop a cell-free reconstitution system for core cartwheel assembly. Using cryo-electron tomography, we uncover that the Chlamydomonas reinhardtii proteins CrSAS-6 and Bld10p together drive assembly of the core cartwheel. Moreover, we discover that CrSAS-6 possesses autonomous properties that ensure self-organized ring stacking. Mathematical fitting of reconstituted cartwheel height distribution suggests a mechanism whereby preferential addition of pairs of SAS-6 rings governs cartwheel growth. In conclusion, we have developed a cell-free reconstitution system that reveals fundamental assembly principles at the root of centriole biogenesis. The centriole is an organelle composed of rings of SAS-6 proteins that form a cartwheel structure. Here the authors develop a cell-free system to examine core cartwheel assembly of C. reinhardtii proteins and discover that CrSAS-6 has autonomous properties that facilitates self-organized stacking of pairs of rings.
Collapse
|
276
|
Castaño-Díez D, Kudryashev M, Stahlberg H. Dynamo Catalogue: Geometrical tools and data management for particle picking in subtomogram averaging of cryo-electron tomograms. J Struct Biol 2017; 197:135-144. [DOI: 10.1016/j.jsb.2016.06.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 01/04/2023]
|
277
|
Chaikeeratisak V, Nguyen K, Khanna K, Brilot AF, Erb ML, Coker JKC, Vavilina A, Newton GL, Buschauer R, Pogliano K, Villa E, Agard DA, Pogliano J. Assembly of a nucleus-like structure during viral replication in bacteria. Science 2017; 355:194-197. [PMID: 28082593 PMCID: PMC6028185 DOI: 10.1126/science.aal2130] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/15/2016] [Indexed: 01/01/2023]
Abstract
We observed the assembly of a nucleus-like structure in bacteria during viral infection. Using fluorescence microscopy and cryo-electron tomography, we showed that Pseudomonas chlororaphis phage 201φ2-1 assembled a compartment that separated viral DNA from the cytoplasm. The phage compartment was centered by a bipolar tubulin-based spindle, and it segregated phage and bacterial proteins according to function. Proteins involved in DNA replication and transcription localized inside the compartment, whereas proteins involved in translation and nucleotide synthesis localized outside. Later during infection, viral capsids assembled on the cytoplasmic membrane and moved to the surface of the compartment for DNA packaging. Ultimately, viral particles were released from the compartment and the cell lysed. These results demonstrate that phages have evolved a specialized structure to compartmentalize viral replication.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Katrina Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kanika Khanna
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Axel F Brilot
- Howard Hughes Medical Institute (HHMI) and the Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marcella L Erb
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joanna K C Coker
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anastasia Vavilina
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gerald L Newton
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert Buschauer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - David A Agard
- Howard Hughes Medical Institute (HHMI) and the Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
278
|
Hampton CM, Strauss JD, Ke Z, Dillard RS, Hammonds JE, Alonas E, Desai TM, Marin M, Storms RE, Leon F, Melikyan GB, Santangelo PJ, Spearman PW, Wright ER. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells. Nat Protoc 2016; 12:150-167. [PMID: 27977021 DOI: 10.1038/nprot.2016.168] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Correlative light and electron microscopy (CLEM) combines spatiotemporal information from fluorescence light microscopy (fLM) with high-resolution structural data from cryo-electron tomography (cryo-ET). These technologies provide opportunities to bridge knowledge gaps between cell and structural biology. Here we describe our protocol for correlated cryo-fLM, cryo-electron microscopy (cryo-EM), and cryo-ET (i.e., cryo-CLEM) of virus-infected or transfected mammalian cells. Mammalian-derived cells are cultured on EM substrates, using optimized conditions that ensure that the cells are spread thinly across the substrate and are not physically disrupted. The cells are then screened by fLM and vitrified before acquisition of cryo-fLM and cryo-ET images, which is followed by data processing. A complete session from grid preparation through data collection and processing takes 5-15 d for an individual experienced in cryo-EM.
Collapse
Affiliation(s)
- Cheri M Hampton
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Joshua D Strauss
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Zunlong Ke
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rebecca S Dillard
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jason E Hammonds
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Eric Alonas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Tanay M Desai
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mariana Marin
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Rachel E Storms
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Fredrick Leon
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Gregory B Melikyan
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Paul W Spearman
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Elizabeth R Wright
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
279
|
Makino F, Shen D, Kajimura N, Kawamoto A, Pissaridou P, Oswin H, Pain M, Murillo I, Namba K, Blocker AJ. The Architecture of the Cytoplasmic Region of Type III Secretion Systems. Sci Rep 2016; 6:33341. [PMID: 27686865 PMCID: PMC5043178 DOI: 10.1038/srep33341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/22/2016] [Indexed: 11/09/2022] Open
Abstract
Type III secretion systems (T3SSs) are essential devices in the virulence of many Gram-negative bacterial pathogens. They mediate injection of protein effectors of virulence from bacteria into eukaryotic host cells to manipulate them during infection. T3SSs involved in virulence (vT3SSs) are evolutionarily related to bacterial flagellar protein export apparatuses (fT3SSs), which are essential for flagellar assembly and cell motility. The structure of the external and transmembrane parts of both fT3SS and vT3SS is increasingly well-defined. However, the arrangement of their cytoplasmic and inner membrane export apparatuses is much less clear. Here we compare the architecture of the cytoplasmic regions of the vT3SSs of Shigella flexneri and the vT3SS and fT3SS of Salmonella enterica serovar Typhimurium at ~5 and ~4 nm resolution using electron cryotomography and subtomogram averaging. We show that the cytoplasmic regions of vT3SSs display conserved six-fold symmetric features including pods, linkers and an ATPase complex, while fT3SSs probably only display six-fold symmetry in their ATPase region. We also identify other morphological differences between vT3SSs and fT3SSs, such as relative disposition of their inner membrane-attached export platform, C-ring/pods and ATPase complex. Finally, using classification, we find that both types of apparatuses can loose elements of their cytoplasmic region, which may therefore be dynamic.
Collapse
Affiliation(s)
- Fumiaki Makino
- Schools of Cellular &Molecular Medicine and Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom.,Graduate School of Frontier Biosciences, Osaka University, Japan
| | - Dakang Shen
- Schools of Cellular &Molecular Medicine and Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom
| | - Naoko Kajimura
- Schools of Cellular &Molecular Medicine and Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom.,Graduate School of Frontier Biosciences, Osaka University, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, Japan
| | - Panayiota Pissaridou
- Schools of Cellular &Molecular Medicine and Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom
| | - Henry Oswin
- Schools of Cellular &Molecular Medicine and Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom
| | - Maria Pain
- Schools of Cellular &Molecular Medicine and Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom
| | - Isabel Murillo
- Schools of Cellular &Molecular Medicine and Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Japan
| | - Ariel J Blocker
- Schools of Cellular &Molecular Medicine and Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom
| |
Collapse
|
280
|
Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat Protoc 2016; 11:2054-65. [PMID: 27685097 DOI: 10.1038/nprot.2016.124] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electron cryo-tomography (cryo-ET) is a technique that is used to produce 3D pictures (tomograms) of complex objects such as asymmetric viruses, cellular organelles or whole cells from a series of tilted electron cryo-microscopy (cryo-EM) images. Averaging of macromolecular complexes found within tomograms is known as subtomogram averaging, and this technique allows structure determination of macromolecular complexes in situ. Subtomogram averaging is also gaining in popularity for the calculation of initial models for single-particle analysis. We describe herein a protocol for subtomogram averaging from cryo-ET data using the RELION software (http://www2.mrc-lmb.cam.ac.uk/relion). RELION was originally developed for cryo-EM single-particle analysis, and the subtomogram averaging approach presented in this protocol has been implemented in the existing workflow for single-particle analysis so that users may conveniently tap into existing capabilities of the RELION software. We describe how to calculate 3D models for the contrast transfer function (CTF) that describe the transfer of information in the imaging process, and we illustrate the results of classification and subtomogram averaging refinement for cryo-ET data of purified hepatitis B capsid particles and Saccharomyces cerevisiae 80S ribosomes. Using the steps described in this protocol, along with the troubleshooting and optimization guidelines, high-resolution maps can be obtained in which secondary structure elements are resolved subtomogram.
Collapse
|
281
|
Schur FKM, Obr M, Hagen WJH, Wan W, Jakobi AJ, Kirkpatrick JM, Sachse C, Kräusslich HG, Briggs JAG. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 2016; 353:506-8. [PMID: 27417497 DOI: 10.1126/science.aaf9620] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/29/2016] [Indexed: 12/28/2022]
Abstract
Immature HIV-1 assembles at and buds from the plasma membrane before proteolytic cleavage of the viral Gag polyprotein induces structural maturation. Maturation can be blocked by maturation inhibitors (MIs), thereby abolishing infectivity. The CA (capsid) and SP1 (spacer peptide 1) region of Gag is the key regulator of assembly and maturation and is the target of MIs. We applied optimized cryo-electron tomography and subtomogram averaging to resolve this region within assembled immature HIV-1 particles at 3.9 angstrom resolution and built an atomic model. The structure reveals a network of intra- and intermolecular interactions mediating immature HIV-1 assembly. The proteolytic cleavage site between CA and SP1 is inaccessible to protease. We suggest that MIs prevent CA-SP1 cleavage by stabilizing the structure, and MI resistance develops by destabilizing CA-SP1.
Collapse
Affiliation(s)
- Florian K M Schur
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany. Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Martin Obr
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany. Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - William Wan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Arjen J Jakobi
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany. Hamburg Unit c/o DESY (Deutsches Elektronen-Synchrotron), European Molecular Biology Laboratory, Notkestraße 85, 22607 Hamburg, Germany
| | - Joanna M Kirkpatrick
- Proteomics Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Carsten Sachse
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany. Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany. Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany.
| |
Collapse
|
282
|
Chen Y, Zhang Y, Zhang K, Deng Y, Wang S, Zhang F, Sun F. FIRT: Filtered iterative reconstruction technique with information restoration. J Struct Biol 2016; 195:49-61. [DOI: 10.1016/j.jsb.2016.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/31/2022]
|
283
|
Abstract
Cryo-electron tomography (cryo-ET) allows 3D volumes to be reconstructed from a set of 2D projection images of a tilted biological sample. It allows densities to be resolved in 3D that would otherwise overlap in 2D projection images. Cryo-ET can be applied to resolve structural features in complex native environments, such as within the cell. Analogous to single-particle reconstruction in cryo-electron microscopy, structures present in multiple copies within tomograms can be extracted, aligned, and averaged, thus increasing the signal-to-noise ratio and resolution. This reconstruction approach, termed subtomogram averaging, can be used to determine protein structures in situ. It can also be applied to facilitate more conventional 2D image analysis approaches. In this chapter, we provide an introduction to cryo-ET and subtomogram averaging. We describe the overall workflow, including tomographic data collection, preprocessing, tomogram reconstruction, subtomogram alignment and averaging, classification, and postprocessing. We consider theoretical issues and practical considerations for each step in the workflow, along with descriptions of recent methodological advances and remaining limitations.
Collapse
Affiliation(s)
- W Wan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - J A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
284
|
Li S, Rissanen I, Zeltina A, Hepojoki J, Raghwani J, Harlos K, Pybus OG, Huiskonen JT, Bowden TA. A Molecular-Level Account of the Antigenic Hantaviral Surface. Cell Rep 2016; 15:959-967. [PMID: 27117403 PMCID: PMC4858563 DOI: 10.1016/j.celrep.2016.03.082] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/29/2016] [Accepted: 03/22/2016] [Indexed: 11/26/2022] Open
Abstract
Hantaviruses, a geographically diverse group of zoonotic pathogens, initiate cell infection through the concerted action of Gn and Gc viral surface glycoproteins. Here, we describe the high-resolution crystal structure of the antigenic ectodomain of Gn from Puumala hantavirus (PUUV), a causative agent of hemorrhagic fever with renal syndrome. Fitting of PUUV Gn into an electron cryomicroscopy reconstruction of intact Gn-Gc spike complexes from the closely related but non-pathogenic Tula hantavirus localized Gn tetramers to the membrane-distal surface of the virion. The accuracy of the fitting was corroborated by epitope mapping and genetic analysis of available PUUV sequences. Interestingly, Gn exhibits greater non-synonymous sequence diversity than the less accessible Gc, supporting a role of the host humoral immune response in exerting selective pressure on the virus surface. The fold of PUUV Gn is likely to be widely conserved across hantaviruses. We describe the high-resolution crystal structure of a hantaviral Gn ectodomain Electron cryotomography analysis reveals the ultrastructure of Gn-Gc assembly X-ray fitting and mapping analysis reveals the antigenic hantavirus surface The Gn fold is likely to be widely conserved across this group of viruses
Collapse
Affiliation(s)
- Sai Li
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ilona Rissanen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Antra Zeltina
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jussi Hepojoki
- Department of Virology, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
285
|
Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging. J Virol 2016; 90:4593-4603. [PMID: 26912613 DOI: 10.1128/jvi.03197-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle. IMPORTANCE Assembly of retrovirus particles is driven by the Gag polyprotein, which can self-assemble to form virus particles and interact with RNA to recruit the viral genome into the particles. Generally, the capsid domains of Gag contribute to essential protein-protein interactions during assembly, while the nucleocapsid domain interacts with RNA. The interactions between the nucleocapsid domain and RNA are important both for identifying the genome and for self-assembly of Gag molecules. Here, we show that a region of basic residues in the capsid protein of the betaretrovirus Mason-Pfizer monkey virus (M-PMV) contributes to interaction of Gag with nucleic acid. This interaction appears to provide a critical scaffolding function that promotes assembly of virus particles in the cytoplasm. It is also crucial for packaging the viral genome and thus for infectivity. These data indicate that, surprisingly, interactions between the capsid domain and RNA play an important role in the assembly of M-PMV.
Collapse
|
286
|
Galaz-Montoya JG, Hecksel CW, Baldwin PR, Wang E, Weaver SC, Schmid MF, Ludtke SJ, Chiu W. Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography. J Struct Biol 2016; 194:383-94. [PMID: 27016284 DOI: 10.1016/j.jsb.2016.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
Single particle cryo-electron tomography (cryoSPT) extracts features from cryo-electron tomograms, followed by 3D classification, alignment and averaging to generate improved 3D density maps of such features. Robust methods to correct for the contrast transfer function (CTF) of the electron microscope are necessary for cryoSPT to reach its resolution potential. Many factors can make CTF correction for cryoSPT challenging, such as lack of eucentricity of the specimen stage, inherent low dose per image, specimen charging, beam-induced specimen motions, and defocus gradients resulting both from specimen tilting and from unpredictable ice thickness variations. Current CTF correction methods for cryoET make at least one of the following assumptions: that the defocus at the center of the image is the same across the images of a tiltseries, that the particles all lie at the same Z-height in the embedding ice, and/or that the specimen, the cryo-electron microscopy (cryoEM) grid and/or the carbon support are flat. These experimental conditions are not always met. We have developed a CTF correction algorithm for cryoSPT without making any of the aforementioned assumptions. We also introduce speed and accuracy improvements and a higher degree of automation to the subtomogram averaging algorithms available in EMAN2. Using motion-corrected images of isolated virus particles as a benchmark specimen, recorded with a DE20 direct detection camera, we show that our CTF correction and subtomogram alignment routines can yield subtomogram averages close to 4/5 Nyquist frequency of the detector under our experimental conditions.
Collapse
Affiliation(s)
- Jesús G Galaz-Montoya
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Corey W Hecksel
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Philip R Baldwin
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Eryu Wang
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
287
|
Gold V, Kudryashev M. Recent progress in structure and dynamics of dual-membrane-spanning bacterial nanomachines. Curr Opin Struct Biol 2016; 39:1-7. [PMID: 26995496 DOI: 10.1016/j.sbi.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 02/05/2023]
Abstract
Advances in hard-ware and soft-ware for electron cryo-microscopy and tomography have provided unprecedented structural insights into large protein complexes in bacterial membranes. Tomographic volumes of native complexes in situ, combined with other structural and functional data, reveal functionally important conformational changes. Here, we review recent progress in elucidating the structure and mechanism of dual-membrane-spanning nanomachines involved in bacterial motility, adhesion, pathogenesis and biofilm formation, including the type IV pilus assembly machinery and the type III and VI secretions systems. We highlight how these new structural data shed light on the assembly and action of such machines and discuss future directions for more detailed mechanistic understanding of these massive, fascinating complexes.
Collapse
Affiliation(s)
- Vicki Gold
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany.
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Str. 17, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
288
|
Li S, Sun Z, Pryce R, Parsy ML, Fehling SK, Schlie K, Siebert CA, Garten W, Bowden TA, Strecker T, Huiskonen JT. Acidic pH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike. PLoS Pathog 2016; 12:e1005418. [PMID: 26849049 PMCID: PMC4743923 DOI: 10.1371/journal.ppat.1005418] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022] Open
Abstract
Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-Å resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits.
Collapse
Affiliation(s)
- Sai Li
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Zhaoyang Sun
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rhys Pryce
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Marie-Laure Parsy
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sarah K. Fehling
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany
| | - Katrin Schlie
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany
| | - C. Alistair Siebert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Wolfgang Garten
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas Strecker
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany
| | - Juha T. Huiskonen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
289
|
Morado DR, Hu B, Liu J. Using Tomoauto: A Protocol for High-throughput Automated Cryo-electron Tomography. J Vis Exp 2016:e53608. [PMID: 26863591 DOI: 10.3791/53608] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cryo-electron tomography (Cryo-ET) is a powerful three-dimensional (3-D) imaging technique for visualizing macromolecular complexes in their native context at a molecular level. The technique involves initially preserving the sample in its native state by rapidly freezing the specimen in vitreous ice, then collecting a series of micrographs from different angles at high magnification, and finally computationally reconstructing a 3-D density map. The frozen-hydrated specimen is extremely sensitive to the electron beam and so micrographs are collected at very low electron doses to limit the radiation damage. As a result, the raw cryo-tomogram has a very low signal to noise ratio characterized by an intrinsically noisy image. To better visualize subjects of interest, conventional imaging analysis and sub-tomogram averaging in which sub-tomograms of the subject are extracted from the initial tomogram and aligned and averaged are utilized to improve both contrast and resolution. Large datasets of tilt-series are essential to understanding and resolving the complexes at different states, conditions, or mutations as well as obtaining a large enough collection of sub-tomograms for averaging and classification. Collecting and processing this data can be a major obstacle preventing further analysis. Here we describe a high-throughput cryo-ET protocol based on a computer-controlled 300kV cryo-electron microscope, a direct detection device (DDD) camera and a highly effective, semi-automated image-processing pipeline software wrapper library tomoauto developed in-house. This protocol has been effectively utilized to visualize the intact type III secretion system (T3SS) in Shigella flexneri minicells. It can be applicable to any project suitable for cryo-ET.
Collapse
Affiliation(s)
- Dustin R Morado
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston
| | - Bo Hu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston;
| |
Collapse
|
290
|
Kudryashev M, Castaño-Díez D, Deluz C, Hassaine G, Grasso L, Graf-Meyer A, Vogel H, Stahlberg H. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles. Structure 2015; 24:165-170. [PMID: 26724993 DOI: 10.1016/j.str.2015.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/05/2015] [Accepted: 11/08/2015] [Indexed: 12/19/2022]
Abstract
The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating.
Collapse
Affiliation(s)
- Mikhail Kudryashev
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland; Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| | - Daniel Castaño-Díez
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland; Scientific Computing Unit, Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany
| | - Cédric Deluz
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering (ISIC), Station 6, 1015 Lausanne, Switzerland
| | - Gherici Hassaine
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering (ISIC), Station 6, 1015 Lausanne, Switzerland
| | - Luigino Grasso
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering (ISIC), Station 6, 1015 Lausanne, Switzerland
| | - Alexandra Graf-Meyer
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Horst Vogel
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering (ISIC), Station 6, 1015 Lausanne, Switzerland.
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
291
|
Structure of a bacterial type III secretion system in contact with a host membrane in situ. Nat Commun 2015; 6:10114. [PMID: 26656452 PMCID: PMC4682100 DOI: 10.1038/ncomms10114] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/03/2015] [Indexed: 12/16/2022] Open
Abstract
Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform–ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking ‘pump-action' conformational changes that underpin effector injection. Bacterial type III secretion systems (T3SSs) inject virulence effector proteins into eukaryotic cells and are activated by host membrane contact. Here the authors report the in situ structure of the Chlamydia trachomatis T3SS in the presence or absence of host membrane, and observe compaction of the basal body embedded in the bacterial envelope.
Collapse
|
292
|
Noble AJ, Stagg SM. Automated batch fiducial-less tilt-series alignment in Appion using Protomo. J Struct Biol 2015; 192:270-8. [PMID: 26455557 PMCID: PMC4633401 DOI: 10.1016/j.jsb.2015.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 01/06/2023]
Abstract
The field of electron tomography has benefited greatly from manual and semi-automated approaches to marker-based tilt-series alignment that have allowed for the structural determination of multitudes of in situ cellular structures as well as macromolecular structures of individual protein complexes. The emergence of complementary metal-oxide semiconductor detectors capable of detecting individual electrons has enabled the collection of low dose, high contrast images, opening the door for reliable correlation-based tilt-series alignment. Here we present a set of automated, correlation-based tilt-series alignment, contrast transfer function (CTF) correction, and reconstruction workflows for use in conjunction with the Appion/Leginon package that are primarily targeted at automating structure determination with cryogenic electron microscopy.
Collapse
Affiliation(s)
- Alex J Noble
- Department of Physics, 77 Chieftan Way, Florida State University, Tallahassee, FL 32306, USA
| | - Scott M Stagg
- Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, FL 32306, USA; Institute of Molecular Biophysics, 91 Chieftan Way, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
293
|
Schur FKM, Dick RA, Hagen WJH, Vogt VM, Briggs JAG. The Structure of Immature Virus-Like Rous Sarcoma Virus Gag Particles Reveals a Structural Role for the p10 Domain in Assembly. J Virol 2015; 89:10294-302. [PMID: 26223638 PMCID: PMC4580193 DOI: 10.1128/jvi.01502-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The polyprotein Gag is the primary structural component of retroviruses. Gag consists of independently folded domains connected by flexible linkers. Interactions between the conserved capsid (CA) domains of Gag mediate formation of hexameric protein lattices that drive assembly of immature virus particles. Proteolytic cleavage of Gag by the viral protease (PR) is required for maturation of retroviruses from an immature form into an infectious form. Within the assembled Gag lattices of HIV-1 and Mason-Pfizer monkey virus (M-PMV), the C-terminal domain of CA adopts similar quaternary arrangements, while the N-terminal domain of CA is packed in very different manners. Here, we have used cryo-electron tomography and subtomogram averaging to study in vitro-assembled, immature virus-like Rous sarcoma virus (RSV) Gag particles and have determined the structure of CA and the surrounding regions to a resolution of ∼8 Å. We found that the C-terminal domain of RSV CA is arranged similarly to HIV-1 and M-PMV, whereas the N-terminal domain of CA adopts a novel arrangement in which the upstream p10 domain folds back into the CA lattice. In this position the cleavage site between CA and p10 appears to be inaccessible to PR. Below CA, an extended density is consistent with the presence of a six-helix bundle formed by the spacer-peptide region. We have also assessed the affect of lattice assembly on proteolytic processing by exogenous PR. The cleavage between p10 and CA is indeed inhibited in the assembled lattice, a finding consistent with structural regulation of proteolytic maturation. IMPORTANCE Retroviruses first assemble into immature virus particles, requiring interactions between Gag proteins that form a protein layer under the viral membrane. Subsequently, Gag is cleaved by the viral protease enzyme into separate domains, leading to rearrangement of the virus into its infectious form. It is important to understand how Gag is arranged within immature retroviruses, in order to understand how virus assembly occurs, and how maturation takes place. We used the techniques cryo-electron tomography and subtomogram averaging to obtain a detailed structural picture of the CA domains in immature assembled Rous sarcoma virus Gag particles. We found that part of Gag next to CA, called p10, folds back and interacts with CA when Gag assembles. This arrangement is different from that seen in HIV-1 and Mason-Pfizer monkey virus, illustrating further structural diversity of retroviral structures. The structure provides new information on how the virus assembles and undergoes maturation.
Collapse
Affiliation(s)
- Florian K M Schur
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Volker M Vogt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Molecular Medicine Partnership Unit, Heidelberg, Germany
| |
Collapse
|
294
|
Gil-Carton D, Jaakkola ST, Charro D, Peralta B, Castaño-Díez D, Oksanen HM, Bamford DH, Abrescia NGA. Insight into the Assembly of Viruses with Vertical Single β-barrel Major Capsid Proteins. Structure 2015; 23:1866-1877. [PMID: 26320579 DOI: 10.1016/j.str.2015.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 02/02/2023]
Abstract
Archaeal viruses constitute the least explored niche within the virosphere. Structure-based approaches have revealed close relationships between viruses infecting organisms from different domains of life. Here, using biochemical and cryo-electron microscopy techniques, we solved the structure of euryarchaeal, halophilic, internal membrane-containing Haloarcula hispanica icosahedral virus 2 (HHIV-2). We show that the density of the two major capsid proteins (MCPs) recapitulates vertical single β-barrel proteins and that disulfide bridges stabilize the capsid. Below, ordered density is visible close to the membrane and at the five-fold vertices underneath the host-interacting vertex complex underpinning membrane-protein interactions. The HHIV-2 structure exemplifies the division of conserved architectural elements of a virion, such as the capsid, from those that evolve rapidly due to selective environmental pressure such as host-recognizing structures. We propose that in viruses with two vertical single β-barrel MCPs the vesicle is indispensable, and membrane-protein interactions serve as protein-railings for guiding the assembly.
Collapse
Affiliation(s)
- David Gil-Carton
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain
| | - Salla T Jaakkola
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 56, Viikinkaari 9, 00014 Helsinki, Finland
| | - Diego Charro
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain
| | - Bibiana Peralta
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain
| | - Daniel Castaño-Díez
- Scientific Computing Unit, Max-Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Hanna M Oksanen
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 56, Viikinkaari 9, 00014 Helsinki, Finland
| | - Dennis H Bamford
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 56, Viikinkaari 9, 00014 Helsinki, Finland
| | - Nicola G A Abrescia
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
295
|
Rosenberg MF, Bikadi Z, Hazai E, Starborg T, Kelley L, Chayen NE, Ford RC, Mao Q. Three-dimensional structure of the human breast cancer resistance protein (BCRP/ABCG2) in an inward-facing conformation. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1725-35. [PMID: 26249353 PMCID: PMC4528803 DOI: 10.1107/s1399004715010676] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/02/2015] [Indexed: 11/10/2022]
Abstract
ABCG2 is an efflux drug transporter that plays an important role in drug resistance and drug disposition. In this study, the first three-dimensional structure of human full-length ABCG2 analysed by electron crystallography from two-dimensional crystals in the absence of nucleotides and transported substrates is reported at 2 nm resolution. In this state, ABCG2 forms a symmetric homodimer with a noncrystallographic twofold axis perpendicular to the two-dimensional crystal plane, as confirmed by subtomogram averaging. This configuration suggests an inward-facing configuration similar to murine ABCB1, with the nucleotide-binding domains (NBDs) widely separated from each other. In the three-dimensional map, densities representing the long cytoplasmic extensions from the transmembrane domains that connect the NBDs are clearly visible. The structural data have allowed the atomic model of ABCG2 to be refined, in which the two arms of the V-shaped ABCG2 homodimeric complex are in a more closed and narrower conformation. The structural data and the refined model of ABCG2 are compatible with the biochemical analysis of the previously published mutagenesis studies, providing novel insight into the structure and function of the transporter.
Collapse
Affiliation(s)
- Mark F. Rosenberg
- Faculty of Life Science, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, England
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, England
| | | | - Eszter Hazai
- Faculty of Life Science, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, England
| | - Tobias Starborg
- Faculty of Life Science, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, England
| | - Lawrence Kelley
- Centre for Bioinformatics, Division of Molecular Biosciences, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, England
| | - Naomi E. Chayen
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, England
| | - Robert C. Ford
- Faculty of Life Science, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, England
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
296
|
Guichard P, Hamel V, Neves A, Gönczy P. Isolation, cryotomography, and three-dimensional reconstruction of centrioles. Methods Cell Biol 2015; 129:191-209. [PMID: 26175440 DOI: 10.1016/bs.mcb.2015.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Centrioles and basal bodies (referred to hereafter as centrioles for simplicity) are microtubule-based cylindrical organelles that are typically ∼450-nm long and ∼250nm in diameter. The centriole is composed of three distinct regions: the distal part characterized by microtubule doublets, the central core that harbors microtubule triplets, which are also present in the proximal part that also contains the cartwheel, a structure crucial for centriole assembly. The cartwheel was initially revealed by conventional electron microscopy of resin-embedded samples and is thought to impart the near universal ninefold symmetry of centrioles. Deciphering the native architecture of the cartwheel has proven challenging owing to its small dimensions and the difficulties in isolating it. Here, we present a method to purify and analyze the structure of the exceptionally long Trichonympha centriole by cryotomography and subtomogram averaging. Using this method, we revealed the native architecture of the proximal cartwheel-containing region at ∼40Å-resolution. This method can be applied as a general strategy for uncovering the structure of centrioles in other species.
Collapse
Affiliation(s)
- Paul Guichard
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Virginie Hamel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Aitana Neves
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
297
|
Single particle tomography in EMAN2. J Struct Biol 2015; 190:279-90. [PMID: 25956334 DOI: 10.1016/j.jsb.2015.04.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 11/22/2022]
Abstract
Single particle tomography (SPT or subtomogram averaging) offers a powerful alternative to traditional 2-D single particle reconstruction for studying conformationally or compositionally heterogeneous macromolecules. It can also provide direct observation (without labeling or staining) of complexes inside cells at nanometer resolution. The development of computational methods and tools for SPT remains an area of active research. Here we present the EMAN2.1 SPT toolbox, which offers a full SPT processing pipeline, from particle picking to post-alignment analysis of subtomogram averages, automating most steps. Different algorithm combinations can be applied at each step, providing versatility and allowing for procedural cross-testing and specimen-specific strategies. Alignment methods include all-vs-all, binary tree, iterative single-model refinement, multiple-model refinement, and self-symmetry alignment. An efficient angular search, Graphic Processing Unit (GPU) acceleration and both threaded and distributed parallelism are provided to speed up processing. Finally, automated simulations, per particle reconstruction of subtiltseries, and per-particle Contrast Transfer Function (CTF) correction have been implemented. Processing examples using both real and simulated data are shown for several structures.
Collapse
|
298
|
Hrabe T. Localize.pytom: a modern webserver for cryo-electron tomography. Nucleic Acids Res 2015; 43:W231-6. [PMID: 25934806 PMCID: PMC4489234 DOI: 10.1093/nar/gkv400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/15/2015] [Indexed: 11/28/2022] Open
Abstract
Localize.pytom, available through http://localize.pytom.org is a webserver for the localize module in the PyTom package. It is a free website and open to all users and there is no login requirement. The server accepts tomograms as they are imaged and reconstructed by Cryo-Electron Tomography (CET) and returns densities and coordinates of candidate-macromolecules in the tomogram. Localization of macromolecules in cryo-electron tomograms is one of the key procedures to unravel structural features of imaged macromolecules. Positions of localized molecules are further used for structural analysis by single particle procedures such as fine alignment, averaging and classification. Accurate localization can be furthermore used to generate molecular atlases of whole cells. Localization uses a cross-correlation-based score and requires a reference volume as input. A reference can either be a previously detected macromolecular structure or extrapolated on the server from a specific PDB chain. Users have the option to use either coarse or fine angular sampling strategies based on uniformly distributed rotations and to accurately compensate for the CET common ‘Missing Wedge’ artefact during sampling. After completion, all candidate macromolecules cut out from the tomogram are available for download. Their coordinates are stored and available in XML format, which can be easily integrated into successive analysis steps in other software. A pre-computed average of the first one hundred macromolecules is also available for immediate download, and the user has the option to further analyse the average, based on the detected score distribution in a novel web-density viewer.
Collapse
Affiliation(s)
- Thomas Hrabe
- Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
299
|
Kudryashev M, Wang RYR, Brackmann M, Scherer S, Maier T, Baker D, DiMaio F, Stahlberg H, Egelman EH, Basler M. Structure of the type VI secretion system contractile sheath. Cell 2015; 160:952-962. [PMID: 25723169 DOI: 10.1016/j.cell.2015.01.037] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/17/2014] [Accepted: 01/20/2015] [Indexed: 12/15/2022]
Abstract
Bacteria use rapid contraction of a long sheath of the type VI secretion system (T6SS) to deliver effectors into a target cell. Here, we present an atomic-resolution structure of a native contracted Vibrio cholerae sheath determined by cryo-electron microscopy. The sheath subunits, composed of tightly interacting proteins VipA and VipB, assemble into a six-start helix. The helix is stabilized by a core domain assembled from four β strands donated by one VipA and two VipB molecules. The fold of inner and middle layers is conserved between T6SS and phage sheaths. However, the structure of the outer layer is distinct and suggests a mechanism of interaction of the bacterial sheath with an accessory ATPase, ClpV, that facilitates multiple rounds of effector delivery. Our results provide a mechanistic insight into assembly of contractile nanomachines that bacteria and phages use to translocate macromolecules across membranes.
Collapse
Affiliation(s)
- Mikhail Kudryashev
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland; Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Ray Yu-Ruei Wang
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA; Graduate Program in Biological Physics, Structure and Design, University of Washington, Box 357350, Seattle, WA 98195, USA
| | - Maximilian Brackmann
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Sebastian Scherer
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Timm Maier
- Focal Area Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - David Baker
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
| | - Marek Basler
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| |
Collapse
|
300
|
Cryo-EM Structure of Influenza Virus RNA Polymerase Complex at 4.3 Å Resolution. Mol Cell 2015; 57:925-935. [DOI: 10.1016/j.molcel.2014.12.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 12/26/2022]
|