251
|
Alzheimer disease-related presenilin-1 variants exert distinct effects on monoamine oxidase-A activity in vitro. J Neural Transm (Vienna) 2011; 118:987-95. [PMID: 21373759 DOI: 10.1007/s00702-011-0616-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
Monoamine oxidase-A (MAO-A) has been associated with both depression and Alzheimer disease (AD). Recently, carriers of AD-related presenilin-1 (PS-1) alleles have been found to be at higher risk for developing clinical depression. We chose to examine whether PS-1 could influence MAO-A function in vitro. Overexpression of selected AD-related PS-1 variants (wildtype, Y115H, ΔEx9 and M146V) in mouse hippocampal HT-22 cells affects MAO-A catalytic activity in a variant-specific manner. The ability of the PS-1 substrate-competitor DAPT to induce MAO-A activity in cells expressing either PS-1 wildtype or PS-1(M146V) suggests the potential for a direct influence of PS-1 on MAO-A function. In support of this, we were able to co-immunoprecipitate MAO-A with FLAG-tagged PS-1 wildtype and M146V proteins. This potential for a direct protein-protein interaction between PS-1 and MAO-A is not specific for HT-22 cells as we were also able to co-immunoprecipitate MAO-A with FLAG-PS-1 variants in N2a mouse neuroblastoma cells and in HEK293 human embryonic kidney cells. Finally, we demonstrate that the two PS-1 variants reported to be associated with an increased incidence of clinical depression [e.g., A431E and L235V] both induce MAO-A activity in HT-22 cells. A direct influence of PS-1 variants on MAO-A function could provide an explanation for the changes in monoaminergic tone observed in several neurodegenerative processes including AD. The ability to induce MAO-A catalytic activity with a PS-1/γ-secretase inhibitor should also be considered when designing secretase inhibitor-based therapeutics.
Collapse
|
252
|
Braak H, Del Tredici K. The pathological process underlying Alzheimer's disease in individuals under thirty. Acta Neuropathol 2011; 121:171-81. [PMID: 21170538 DOI: 10.1007/s00401-010-0789-4] [Citation(s) in RCA: 555] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/07/2010] [Accepted: 12/07/2010] [Indexed: 12/15/2022]
Abstract
Brains of 42 individuals between the ages of 4 and 29 were examined with antibodies (AT8, 4G8) and silver stains for the presence of intraneuronal and extracellular protein aggregates associated with Alzheimer's disease. Thirty-eight of 42 (38/42) cases displayed abnormally phosphorylated tau protein (pretangle material) in nerve cells or in portions of their cellular processes, and 41/42 individuals showed no extracellular amyloid-β protein deposition or neuritic plaques-an individual with Down syndrome was the only exception. In 16/42 cases abnormal tau was found in the transentorhinal region, and in 3/42 cases this site was Gallyas-positive for isolated NFTs (NFT stage I). Of 26 cases that lacked abnormal tau in the transentorhinal region, 4 did not show pretangle material at subcortical sites. The remaining 22 of these same 26 cases, however, had subcortical lesions confined to non-thalamic nuclei with diffuse projections to the cerebral cortex, and, remarkably, in 19/22 individuals the pretangle material was confined to the noradrenergic coeruleus/subcoeruleus complex. Assuming the pretangle alterations are not transient and do not regress, these findings may indicate that the Alzheimer's disease-related pathological process leading to neurofibrillary tangle formation does not begin in the cerebral cortex but, rather, in select subcortical nuclei, and it may start quite early, i.e., before puberty or in early young adulthood.
Collapse
Affiliation(s)
- Heiko Braak
- Department of Neurology, Center for Clinical Research, University of Ulm, Germany.
| | | |
Collapse
|
253
|
Scullion G, Kendall D, Marsden C, Sunter D, Pardon MC. Chronic treatment with the α2-adrenoceptor antagonist fluparoxan prevents age-related deficits in spatial working memory in APP×PS1 transgenic mice without altering β-amyloid plaque load or astrocytosis. Neuropharmacology 2011; 60:223-34. [DOI: 10.1016/j.neuropharm.2010.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/16/2010] [Accepted: 09/03/2010] [Indexed: 12/12/2022]
|
254
|
Long-term social isolation exacerbates the impairment of spatial working memory in APP/PS1 transgenic mice. Brain Res 2011; 1371:150-60. [DOI: 10.1016/j.brainres.2010.11.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/08/2010] [Accepted: 11/10/2010] [Indexed: 11/20/2022]
|
255
|
Kovacs GG, Seguin J, Quadrio I, Höftberger R, Kapás I, Streichenberger N, Biacabe AG, Meyronet D, Sciot R, Vandenberghe R, Majtenyi K, László L, Ströbel T, Budka H, Perret-Liaudet A. Genetic Creutzfeldt-Jakob disease associated with the E200K mutation: characterization of a complex proteinopathy. Acta Neuropathol 2011; 121:39-57. [PMID: 20593190 DOI: 10.1007/s00401-010-0713-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/10/2010] [Accepted: 06/20/2010] [Indexed: 01/15/2023]
Abstract
The E200K mutation is the most frequent prion protein gene (PRNP) mutation detected worldwide that is associated with Creutzfeldt-Jakob disease (CJD) and thought to have overlapping features with sporadic CJD, yet detailed neuropathological studies have not been reported. In addition to the prion protein, deposition of tau, α-synuclein, and amyloid-β has been reported in human prion disease. To describe the salient and concomitant neuropathological alterations, we performed a systematic clinical, neuropathological, and biochemical study of 39 individuals carrying the E200K PRNP mutation originating from different European countries. The most frequent clinical symptoms were dementia and ataxia followed by myoclonus and various combinations of further symptoms, including vertical gaze palsy and polyneuropathy. Neuropathological examination revealed relatively uniform anatomical pattern of tissue lesioning, predominating in the basal ganglia and thalamus, and also substantia nigra, while the deposition of disease-associated PrP was more influenced by the codon 129 constellation, including different or mixed types of PrP(res) detected by immunoblotting. Unique and prominent intraneuronal PrP deposition involving brainstem nuclei was also noted. Systematic examination of protein depositions revealed parenchymal amyloid-β in 53.8%, amyloid angiopathy (Aβ) in 23.1%, phospho-tau immunoreactive neuritic profiles in 92.3%, neurofibrillary degeneration in 38.4%, new types of tau pathology in 33.3%, and Lewy-type α-synuclein pathology in 15.4%. TDP-43 and FUS immunoreactive protein deposits were not observed. This is the first demonstration of intensified and combined neurodegeneration in a genetic prion disease due to a single point mutation, which might become an important model to decipher the molecular interplay between neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Norepinephrine promotes microglia to uptake and degrade amyloid beta peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J Neurosci 2010; 30:11848-57. [PMID: 20810904 DOI: 10.1523/jneurosci.2985-10.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Locus ceruleus (LC) is the main subcortical site of norepinephrine synthesis. In Alzheimer's disease (AD) patients and rodent models, degeneration of LC neurons and reduced levels of norepinephrine in LC projection areas are significantly correlated with the increase in amyloid plaques, neurofibrillary tangles, and severity of dementia. Activated microglia play a pivotal role in the progression of AD by either clearing amyloid beta peptide (Abeta) deposits through uptake of Abeta or releasing cytotoxic substances and proinflammatory cytokines. Here, we investigated the effect of norepinephrine on Abeta uptake and clearance by murine microglia and explored the underlying mechanisms. We found that murine microglia cell line N9 and primary microglia expressed beta(2) adrenergic receptor (AR) but not beta(1) and beta(3)AR. Norepinephrine and isoproterenol upregulated the expression of Abeta receptor mFPR2, a mouse homolog of human formyl peptide receptor FPR2, through activation of beta(2)AR in microglia. Norepinephrine also induced mFPR2 expression in mouse brain. Activation of beta(2)AR in microglia promoted Abeta(42) uptake through upregulation of mFPR2 and enhanced spontaneous cell migration but had no effect on cell migration in response to mFPR2 agonists. Furthermore, activation of beta(2)AR on microglia induced the expression of insulin-degrading enzyme and increased the degradation of Abeta(42). Mechanistic studies showed that isoproterenol induced mFPR2 expression through ERK1/2-NF-kappaB and p38-NF-kappaB signaling pathways. These findings suggest that noradrenergic innervation from LC is needed to maintain adequate Abeta uptake and clearance by microglia, and norepinephrine is a link between neuron and microglia to orchestrate the host response to Abeta in AD.
Collapse
|
257
|
Abstract
Mild cognitive impairment (MCI), the earliest clinically detectable phase of the trajectory toward dementia and Alzheimer's disease (AD), led to the need for even earlier detection and prevention of AD. Although it is a clinical diagnosis, its underlying neuropathological findings are just being defined. MCI is best studied in longitudinally followed patients in centers that are experienced in dementing disorders. In this review of the few major clinical-pathological reports of longitudinally followed patients, it appears that most autopsied amnestic MCI (aMCI) patients are on a pathway toward AD. Neurofibrillary pathology in entorhinal cortex, hippocampus, and amygdala--not amyloid plaques--is the major substrate for aMCI and for memory decline. In addition, many MCI patients have other concomitant pathological alterations, the most common of which are strokes, but also include argyrophilic grains and Lewy bodies. These findings are not surprising because most MCI autopsied cases have been in the older (80 to 90 year) range where these findings are common. In early AD, the phase following MCI, the significant change is an increase in neurofibrillary tangles in the neocortex that correlates with an increase in Braak score and the observed clinical progression.
Collapse
Affiliation(s)
- William R Markesbery
- Department of Pathology and Laboratory Medicine, Sanders-Brown Center on Aging, and Alzheimer's Disease Center, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0230, USA.
| |
Collapse
|
258
|
Heneka MT, O'Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer's disease. J Neural Transm (Vienna) 2010; 117:919-47. [PMID: 20632195 DOI: 10.1007/s00702-010-0438-z] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 12/12/2022]
Abstract
Generation of neurotoxic amyloid beta peptides and their deposition along with neurofibrillary tangle formation represent key pathological hallmarks in Alzheimer's disease (AD). Recent evidence suggests that inflammation may be a third important component which, once initiated in response to neurodegeneration or dysfunction, may actively contribute to disease progression and chronicity. Various neuroinflammatory mediators including complement activators and inhibitors, chemokines, cytokines, radical oxygen species and inflammatory enzyme systems are expressed and released by microglia, astrocytes and neurons in the AD brain. Degeneration of aminergic brain stem nuclei including the locus ceruleus and the nucleus basalis of Meynert may facilitate the occurrence of inflammation in their projection areas given the antiinflammatory and neuroprotective action of their key transmitters norepinephrine and acetylcholine. While inflammation has been thought to arise secondary to degeneration, recent experiments demonstrated that inflammatory mediators may stimulate amyloid precursor protein processing by various means and therefore can establish a vicious cycle. Despite the fact that some aspects of inflammation may even be protective for bystander neurons, antiinflammatory treatment strategies should therefore be considered. Non-steroidal anti-inflammatory drugs have been shown to reduce the risk and delay the onset to develop AD. While, the precise molecular mechanism underlying this effect is still unknown, a number of possible mechanisms including cyclooxygenase 2 or gamma-secretase inhibition and activation of the peroxisome proliferator activated receptor gamma may alone or, more likely, in concert account for the epidemiologically observed protection.
Collapse
Affiliation(s)
- Michael T Heneka
- Department of Neurology, Clinical Neurosciences, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | | | | | | |
Collapse
|
259
|
Morawski M, Brückner G, Jäger C, Seeger G, Arendt T. Neurons associated with aggrecan-based perineuronal nets are protected against tau pathology in subcortical regions in Alzheimer's disease. Neuroscience 2010; 169:1347-63. [PMID: 20497908 DOI: 10.1016/j.neuroscience.2010.05.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/14/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
Abstract
The biological basis for the selective vulnerability of neurons in Alzheimer's disease (AD) is elusive. Aggrecan-based perineuronal nets (PNs) of the extracellular matrix have been considered to contribute to neuroprotection in the cerebral cortex. In the present study, we investigated the organization of the aggrecan-based extracellular matrix in subcortical regions known to be preferentially affected by tau pathology in AD. Immunocytochemistry of aggrecan core protein was combined with detection of neurofibrillary degeneration. The results show that many regions affected by tau pathology in AD, such as the basal nucleus of Meynert, the dorsal thalamus, hypothalamic nuclei, raphe nuclei, and the locus coeruleus were devoid of a characteristic aggrecan-based extracellular matrix. Regions composed of nuclei with clearly different intensity of tau pathology, such as the amygdala, the thalamus and the oculomotor complex, showed largely complementary distribution patterns of neurofibrillary tangles and PNs. Quantification in the rostral interstitial nucleus of the longitudinal fascicle potentially affected by tau pathology in AD revealed that tau pathology was not accompanied by loss of aggrecan-based PNs. Neuro-fibrillary tangles in net-associated neurons extremely rarely occurred in the pontine reticular formation. We conclude that the low vulnerability of neurons ensheathed by PNs previously described for cortical areas in AD represents a more general phenomenon that also applies to subcortical regions. The aggrecan-based extracellular matrix of PNs may thus, be involved in neuroprotection.
Collapse
Affiliation(s)
- M Morawski
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Medical Faculty, Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
260
|
Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A 2010; 107:6058-63. [PMID: 20231476 DOI: 10.1073/pnas.0909586107] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Locus ceruleus (LC)-supplied norepinephrine (NE) suppresses neuroinflammation in the brain. To elucidate the effect of LC degeneration and subsequent NE deficiency on Alzheimer's disease pathology, we evaluated NE effects on microglial key functions. NE stimulation of mouse microglia suppressed Abeta-induced cytokine and chemokine production and increased microglial migration and phagocytosis of Abeta. Induced degeneration of the locus ceruleus increased expression of inflammatory mediators in APP-transgenic mice and resulted in elevated Abeta deposition. In vivo laser microscopy confirmed a reduced recruitment of microglia to Abeta plaque sites and impaired microglial Abeta phagocytosis in NE-depleted APP-transgenic mice. Supplying the mice the norepinephrine precursor L-threo-DOPS restored microglial functions in NE-depleted mice. This indicates that decrease of NE in locus ceruleus projection areas facilitates the inflammatory reaction of microglial cells in AD and impairs microglial migration and phagocytosis, thereby contributing to reduced Abeta clearance. Consequently, therapies targeting microglial phagocytosis should be tested under NE depletion.
Collapse
|
261
|
Jardanhazi-Kurutz D, Kummer MP, Terwel D, Vogel K, Dyrks T, Thiele A, Heneka MT. Induced LC degeneration in APP/PS1 transgenic mice accelerates early cerebral amyloidosis and cognitive deficits. Neurochem Int 2010; 57:375-82. [PMID: 20144675 DOI: 10.1016/j.neuint.2010.02.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/16/2009] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
Abstract
Degeneration of locus ceruleus neurons and subsequent reduction of norepinephrine concentration in locus ceruleus projection areas represent an early pathological indicator of Alzheimer's disease. In order to model the pathology of the human disease and to study the effects of norepinephrine-depletion on amyloid precursor protein processing, behaviour, and neuroinflammation, locus ceruleus degeneration was induced in mice coexpressing the swedish mutant of the amyloid precursor protein and the presenilin 1 DeltaExon 9 mutant (APP/PS1) using the neurotoxin N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (dsp4) starting treatment at 3 months of age. Norepinephrine transporter immunolabelling demonstrated severe loss of locus ceruleus neurons and loss of cortical norepinephrine transporter starting as early as 4.5 months of age and aggravating over time. Of note, dsp4-treated transgenic mice showed elevated amyloid beta levels and impaired spatial memory performance at 6.5 months of age compared to control-treated APP/PS1 transgenic mice, indicating an accelerating effect on cerebral amyloidosis and cognitive deficits. Likewise, norepinephrine-depletion increased neuroinflammation compared to transgenic controls as verified by macrophage inflammatory protein-1alpha and -1beta gene expression analysis. Exploratory activity and memory retention was compromised by age in APP/PS1 transgenic mice and further aggravated by induced noradrenergic deficiency. In contrast, novel object recognition was not influenced by norepinephrine deficiency, but by the APP/PS1 transgene at 12 months. Overall, our data indicate that early loss of noradrenergic innervation promotes amyloid deposition and modulates the activation state of inflammatory cells. This in turn could have had impact on the acceleration of cognitive deficits observed over time.
Collapse
|
262
|
Counts SE, Mufson EJ. Noradrenaline activation of neurotrophic pathways protects against neuronal amyloid toxicity. J Neurochem 2010; 113:649-60. [PMID: 20132474 DOI: 10.1111/j.1471-4159.2010.06622.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Degeneration of locus coeruleus (LC) noradrenergic forebrain projection neurons is an early feature of Alzheimer's disease. The physiological consequences of this phenomenon are unclear, but observations correlating LC neuron loss with increased Alzheimer's disease pathology in LC projection sites suggest that noradrenaline (NA) is neuroprotective. To investigate this hypothesis, we determined that NA protected both hNT human neuronal cultures and rat primary hippocampal neurons from amyloid-beta (Abeta(1-42) and Abeta(25-35)) toxicity. The noradrenergic co-transmitter galanin was also effective at preventing Abeta-induced cell death. NA inhibited Abeta(25-35)-mediated increases in intracellular reactive oxygen species, mitochondrial membrane depolarization, and caspase activation in hNT neurons. NA exerted its neuroprotective effects in these cells by stimulating canonical beta(1) and beta(2) adrenergic receptor signaling pathways involving the activation of cAMP response element binding protein and the induction of endogenous nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Treatment with functional blocking antibodies for either NGF or BDNF blocked NA's protective actions against Abeta(1-42) and Abeta(25-35) toxicity in primary hippocampal and hNT neurons, respectively. Taken together, these data suggest that the neuroprotective effects of noradrenergic LC afferents result from stimulating neurotrophic NGF and BDNF autocrine or paracrine loops via beta adrenoceptor activation of the cAMP response element binding protein pathway.
Collapse
Affiliation(s)
- Scott E Counts
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA.
| | | |
Collapse
|
263
|
Salehi A, Faizi M, Colas D, Valletta J, Laguna J, Takimoto-Kimura R, Kleschevnikov A, Wagner SL, Aisen P, Shamloo M, Mobley WC. Restoration of Norepinephrine-Modulated Contextual Memory in a Mouse Model of Down Syndrome. Sci Transl Med 2009; 1. [DOI: 10.1126/scitranslmed.3000258] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Cognitive deficits in mice with a Down syndrome–like genetic defect can be reversed with precursors to the neurotransmitter norepinephrine.
Collapse
Affiliation(s)
- A. Salehi
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - M. Faizi
- Behavioral and Functional Neuroscience Laboratory, Stanford Medical School, Stanford, CA 94305, USA
| | - D. Colas
- Department of Biology, Stanford Medical School, Stanford, CA 94305, USA
| | - J. Valletta
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - J. Laguna
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - R. Takimoto-Kimura
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - A. Kleschevnikov
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| | - S. L. Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - P. Aisen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - M. Shamloo
- Behavioral and Functional Neuroscience Laboratory, Stanford Medical School, Stanford, CA 94305, USA
| | - W. C. Mobley
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA 94305, USA
| |
Collapse
|
264
|
Oikawa N, Ogino K, Masumoto T, Yamaguchi H, Yanagisawa K. Gender effect on the accumulation of hyperphosphorylated tau in the brain of locus-ceruleus-injured APP-transgenic mouse. Neurosci Lett 2009; 468:243-7. [PMID: 19900506 DOI: 10.1016/j.neulet.2009.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 01/01/2023]
Abstract
Locus ceruleus (LC) neurons are preferentially and initially affected in Alzheimer disease (AD); however, the impact of the loss of LC neurons on the pathological sequence of AD, including amyloid beta-protein (Abeta) deposition and neurofibrillary tangle formation, has not been elucidated. In this study, we chemically injured LC neurons of the brains of familial AD-related amyloid precursor protein (APP)-transgenic mice using the LC-noradrenergic neuron-selective neurotoxin, N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (DSP4). The levels of noradrenaline significantly decreased in the cerebral cortices of DSP4-treated mice. The deposition of amyloid fibrils was biochemically observed in the APP-transgenic mouse brains; however, those levels were not significantly altered following DSP4 treatment. In contrast, the levels of accumulated hyperphosphorylated tau markedly increased in the cerebral cortices of DSP4-treated female but not male APP-transgenic mice. Our results suggest that innervation from LC neurons and testosterone secretion are potent and mutually independent suppressors of amyloid-related accumulation of hyperphosphorylated tau in the brain.
Collapse
Affiliation(s)
- Naoto Oikawa
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3, Gengo, Morioka, Obu 474-8522, Japan
| | | | | | | | | |
Collapse
|
265
|
Haroutunian V, Hoffman LB, Beeri MS. Is there a neuropathology difference between mild cognitive impairment and dementia? DIALOGUES IN CLINICAL NEUROSCIENCE 2009. [PMID: 19585952 PMCID: PMC3073531 DOI: 10.31887/dcns.2009.11.2/vharoutunian] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The number of studies that have investigated the neuropathology of mild cognitive impairment (MCI) is small, but growing. In this paper we have restricted our focus to the consideration of the presence and extent of postmortem findings relevant to the neuropathology of Alzheimer's disease. We have drawn from studies that have investigated the postmortem neurobiology of the brains of persons with cognitive function at the interface between unimpaired normal function and mild but definite dementia. The data derived from these studies suggest that i) the brains of persons with MCI evidence significant neuropathological and neurobiological changes relative to those without cognitive impairment; ii) in general, the neuropathological and neurobiological changes are qualitatively similar to those observed in the brains of persons with frank AD-like dementia; and iii) the neuropathological and neurobiological brain changes associated with MCI are quantitatively less than those of persons who meet criteria for dementia. Thus, the available, albeit limited, data suggests that MCI is associated with the early stages of the neurobiological and neuropathological changes that culminate in the florid lesions of AD; including the accumulation of neuritic plaques, neurofibrillary tangles, synaptic and neurotransmitter associated deficits, and significant neuronal cell death.
Collapse
Affiliation(s)
- Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY, USA.
| | | | | |
Collapse
|
266
|
Stephan BC, Matthews FE, Khaw KT, Dufouil C, Brayne C. Beyond mild cognitive impairment: vascular cognitive impairment, no dementia (VCIND). ALZHEIMERS RESEARCH & THERAPY 2009; 1:4. [PMID: 19674437 PMCID: PMC2719105 DOI: 10.1186/alzrt4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Identifying the causes of dementia is important in the search for effective preventative and treatment strategies. The concept of mild cognitive impairment (MCI), as prodromal dementia, has been useful but remains controversial since in population-based studies it appears to be a limited predictor of progression to dementia. Recognising the relative contribution of neurodegenerative and vascular causes, as well as their interrelationship, may enhance predictive accuracy. The concept of vascular cognitive impairment (VCI) has been introduced to describe the spectrum of cognitive change related to vascular causes from early cognitive decline to dementia. A recent review of this concept highlighted the need for diagnostic criteria that encompass the full range of the VCI construct. However, very little is known regarding the mildest stage of VCI, generally termed 'vascular cognitive impairment, no dementia' (VCIND). Whether mild cognitive change in the context of neurodegenerative pathologies is distinct from that in the context of cerebrovascular diseases is not known. This is key to the definition of VCIND and whether it is possible to identify this state. Distinguishing between vascular (that is, VCIND) and non-vascular (that is, MCI) cognitive disorders and determining how well each might predict dementia may not be possible due to the overlap in pathologies observed in the older population. Here, we review the concept of VCIND in an effort to identify recent developments and areas of controversy in nosology and the application of VCIND for screening individuals at increased risk of dementia secondary to vascular disease and its risk factors.
Collapse
Affiliation(s)
- Blossom Cm Stephan
- Department of Public Health and Primary Care, Institute of Public Health, The University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK.
| | | | | | | | | |
Collapse
|
267
|
Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009; 118:5-36. [PMID: 19381658 DOI: 10.1007/s00401-009-0532-1] [Citation(s) in RCA: 674] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 11/26/2022]
Abstract
The lesions of Alzheimer disease include accumulation of proteins, losses of neurons and synapses, and alterations related to reactive processes. Extracellular Abeta accumulation occurs in the parenchyma as diffuse, focal or stellate deposits. It may involve the vessel walls of arteries, veins and capillaries. The cases in which the capillary vessel walls are affected have a higher probability of having one or two apoepsilon 4 alleles. Parenchymal as well as vascular Abeta deposition follows a stepwise progression. Tau accumulation, probably the best histopathological correlate of the clinical symptoms, takes three aspects: in the cell body of the neuron as neurofibrillary tangle, in the dendrites as neuropil threads, and in the axons forming the senile plaque neuritic corona. The progression of tau pathology is stepwise and stereotyped from the entorhinal cortex, through the hippocampus, to the isocortex. The neuronal loss is heterogeneous and area-specific. Its mechanism is still discussed. The timing of the synaptic loss, probably linked to Abeta peptide itself, maybe as oligomers, is also controversial. Various clinico-pathological types of Alzheimer disease have been described, according to the type of the lesions (plaque only and tangle predominant), the type of onset (focal onset), the cause (genetic or sporadic) and the associated lesions (Lewy bodies, vascular lesions, hippocampal sclerosis, TDP-43 inclusions and argyrophilic grain disease).
Collapse
|
268
|
Heneka MT. Noradrenergic denervation facilitates the release of acetylcholine and serotonin in the hippocampus: Towards a mechanism underlying upregulations described in MCI patients. Exp Neurol 2009; 217:237-9. [DOI: 10.1016/j.expneurol.2009.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 03/13/2009] [Indexed: 11/24/2022]
|
269
|
Bernedo V, Insua D, Suárez ML, Santamarina G, Sarasa M, Pesini P. Beta-amyloid cortical deposits are accompanied by the loss of serotonergic neurons in the dog. J Comp Neurol 2009; 513:417-29. [PMID: 19180552 DOI: 10.1002/cne.21985] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dogs may naturally suffer an age-related cognitive impairment that has aroused a great deal of interest, even beyond the field of the veterinary clinic. This canine senile dementia reproduces several key aspects of Alzheimer's disease (AD), including the presence of beta-amyloid (A beta) deposits in the cerebral cortex, neurodegeneration, and learning and memory impairments. In the present study, we have used unbiased stereological procedures to estimate the number of the dorsal and median raphe nuclei (DRN and MRN, respectively) serotonergic neurons immunolabeled with an anti-tryptophan hydroxylase (TrH) monoclonal antibody in young and aged dogs without A beta cortical deposits and in aged dogs with A beta cortical deposits. The estimated total number of TrH-labeled neurons (mean +/- SD) was 94,790 +/- 26,341 for the DRN and 40,404 +/- 8,692 for the MRN. The statistical analyses revealed that aged dogs with A beta cortical pathology had 33% fewer serotonergic neurons in the DRN and MRN than aged dogs without A beta cortical deposits (108,043 +/- 18,800 vs. 162,242 +/- 39,942, respectively; P = 0.01). In contrast, no significant variations were found between young and aged dogs without A beta cortical deposits. These results suggest that degeneration of the serotonergic neurons could be involved in the cognitive damage that accompanies A beta cortical pathology in the dog and reinforce the use of the canine model for exploring the potential mechanisms linking the cortical A beta pathology and serotonergic neurodegeneration that occurs during the course of AD.
Collapse
Affiliation(s)
- Vanessa Bernedo
- Departamento de Ciencias Clínicas Veterinarias, Universidad de Santiago de Compostela, Facultad de Veterinaria de Lugo, 27002 Lugo, Spain
| | | | | | | | | | | |
Collapse
|
270
|
Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol 2009; 68:1-14. [PMID: 19104448 DOI: 10.1097/nen.0b013e3181919a48] [Citation(s) in RCA: 444] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Amyloid plaques and neurofibrillary tangles (NFTs) are the pathological hallmarks of Alzheimer disease (AD). There is controversy regarding the use of current diagnostic criteria for AD and whether amyloid plaques and NFTs contribute to cognitive impairment. Because AD is specific to humans, rigorous and comprehensiveclinicopathologic studies are necessary to test and refine hypotheses of AD diagnosis and pathogenesis. Neither the clinical nor the pathological aspects of AD evolve in a linear manner, but thepredictable sequence of AD pathology allows for stage-based correlations with cognitive deterioration. We discuss subsets of patients with clinical dementia who lack amyloid plaques and NFTs and, conversely, whether individuals without antemortem cognitive impairment can harbor severe AD-type pathological findings at autopsy. There are many medical, technical, and anatomical challenges to clinicopathologic studies in AD. For example, at least two thirds of persons older than 80 years have non-AD brain diseases that can effect on cognitive function. We argue that existing data strongly support the hypothesis that both amyloid plaques and NFTs contribute to cognitive impairment.
Collapse
|
271
|
Amyloid pathology is associated with progressive monoaminergic neurodegeneration in a transgenic mouse model of Alzheimer's disease. J Neurosci 2009; 28:13805-14. [PMID: 19091971 DOI: 10.1523/jneurosci.4218-08.2008] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
beta-Amyloid (Abeta) pathology is an essential pathogenic component in Alzheimer's disease (AD). However, the significance of Abeta pathology, including Abeta deposits/oligomers and glial reactions, to neurodegeneration is unclear. In particular, despite the Abeta neurotoxicity indicated by in vitro studies, mouse models with significant Abeta deposition lack robust and progressive loss of forebrain neurons. Such results have fueled the view that Abeta pathology is insufficient for neurodegeneration in vivo. In this study, because monoaminergic (MAergic) neurons show degenerative changes at early stages of AD, we examined whether the APPswe/PS1DeltaE9 mouse model recapitulates progressive MAergic neurodegeneration occurring in AD cases. We show that the progression forebrain Abeta deposition in the APPswe/PS1DeltaE9 model is associated with progressive losses of the forebrain MAergic afferents. Significantly, axonal degeneration is associated with significant atrophy of cell bodies and eventually leads to robust loss (approximately 50%) of subcortical MAergic neurons. Degeneration of these neurons occurs without obvious local Abeta or tau pathology at the subcortical sites and precedes the onset of anxiety-associated behavior in the mice. Our results show that a transgenic mouse model of Abeta pathology develops progressive MAergic neurodegeneration occurring in AD cases.
Collapse
|
272
|
Acute and chronic effects of intravitreally injected beta-amyloid on the neurotransmitter system in the retina. Toxicology 2008; 256:92-100. [PMID: 19059454 DOI: 10.1016/j.tox.2008.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/09/2008] [Accepted: 11/10/2008] [Indexed: 11/24/2022]
Abstract
The potential cytotoxic effect of aggregated Abeta(1-42) to neurons that express classical neurotransmitters, including acetylcholine, gamma-amino butyric acid, catecholamines and serotonin was assessed. The cholinergic system has been the central focus of the therapeutic drug strategies in amyloid-depositing pathologies such as Alzheimer's disease. Aggregated Abeta(1-42) has a multisystem cytotoxic effect causing non-specific reduction in immunoreactivity, dysfunction, or loss of retinal nerve cells. The extent of this was investigated using immunocytochemistry, TUNEL staining for apoptosis, and measurement of cell density as well as retinal surface area. There was a differential acute and/or chronic effect of Abeta on choline acetyltransferase, gamma-aminobutyric acid and 5-tryptamine hydroxylase systems, observed with the increasing time course of 6h to 5 months, and a bilateral/systemic effect. In contrast, the overall pattern of catecholaminergic system, as revealed by tyrosine hydroxylase immunoreactivity of the retina, appears to have remained relatively unaffected by Abeta (however this may reflect neuronal loss due to reduction in the retinal surface). This is the first in vivo evidence in a CNS model to show that not only all major neurotransmitter systems are differentially affected by Abeta aggregates but the effect may vary from one transmitter system to another under the same experimental conditions in situ and in a dose- and time-dependent manner.
Collapse
|
273
|
Wai MSM, Liang Y, Shi C, Cho EYP, Kung HF, Yew DT. Co-localization of hyperphosphorylated tau and caspases in the brainstem of Alzheimer's disease patients. Biogerontology 2008; 10:457-69. [PMID: 18946722 DOI: 10.1007/s10522-008-9189-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 10/07/2008] [Indexed: 11/25/2022]
Abstract
Hyperphosphorylation of microtubule associated protein tau had limited studies in Alzheimer's disease (AD) brainstem. We compared the distribution and number of neurons with hyperphosphorylated tau in two age groups of AD brainstems with mean ages of 65.4 +/- 5.7 and 91.1 +/- 6.4 years. The degree of co-localization of hyperphosphorylated tau positive cells with either cleaved caspase-3 or cleaved caspase-6 was also quantified. Results showed hyperphosphorylated tau mainly occurred in hypoglossal, dorsal motor vagal, trigeminal sensory/motor nuclei as well as in dorsal raphe, locus coeruleus and substantia nigra. Older AD brainstem consistently had higher density of hyperphosphorylated tau cells. Up to 70% of tau positive cells also displayed either cleaved caspase-3 or caspase-6, and the number of co-localized tau cells in each caspase subfamily group was always higher in older aged group. Some hyperphosphorylated tau cells with cleaved caspases had TUNEL positive nuclei. These findings suggest that these latter cells went through the apoptotic process or DNA fragmentation.
Collapse
Affiliation(s)
- Maria Sen Mun Wai
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
274
|
Jackisch R, Gansser S, Cassel JC. Noradrenergic denervation facilitates the release of acetylcholine and serotonin in the hippocampus: Towards a mechanism underlying upregulations described in MCI patients? Exp Neurol 2008; 213:345-53. [DOI: 10.1016/j.expneurol.2008.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/12/2008] [Accepted: 06/14/2008] [Indexed: 12/25/2022]
|
275
|
Martorana A, Stefani A, Palmieri MG, Esposito Z, Bernardi G, Sancesario G, Pierantozzi M. L-dopa modulates motor cortex excitability in Alzheimer's disease patients. J Neural Transm (Vienna) 2008; 115:1313-9. [PMID: 18594753 DOI: 10.1007/s00702-008-0082-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 06/15/2008] [Indexed: 01/28/2023]
Abstract
In Alzheimer's disease (AD), transcranial magnetic stimulation (TMS) studies have shown abnormalities of motor cortical excitability, such as a decreased intra-cortical inhibition (ICI) and changes in resting motor threshold (rMT). We studied the effects of L-dopa on rMT and ICI in a cohort of moderate AD patients after paired-pulse TMS. Results were compared with a control group of healthy subjects. As expected, AD patients showed a significant reduction in ICI and a lower rMT. L-dopa administration (soluble form, melevodopa 200 mg) promptly reversed the ICI impairment up to normalization. This effect was specific, since it was not mimicked in control subjects. These results indicate a possible role of dopamine in modulating AD cortical excitability, thus suggesting an interaction between dopaminergic ascending pathways and endogenous intracortical transmitters. In addition, considering that L-dopa showed a pharmacological profile similar to the one of cholinomimetics, L-dopa might represent a reliable tool to study new therapeutic perspective and strategies for AD.
Collapse
Affiliation(s)
- Alessandro Martorana
- Dipartimento di Neuroscienze, Clinica Neurologica, Università di Roma, "Tor Vergata", via Montpellier, 1, 00133 Rome, Italy,
| | | | | | | | | | | | | |
Collapse
|
276
|
Insua D, Suárez ML, Santamarina G, Sarasa M, Pesini P. Dogs with canine counterpart of Alzheimer's disease lose noradrenergic neurons. Neurobiol Aging 2008; 31:625-35. [PMID: 18573571 DOI: 10.1016/j.neurobiolaging.2008.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/25/2008] [Accepted: 05/18/2008] [Indexed: 01/10/2023]
Abstract
Degeneration of noradrenergic neurons in the locus ceruleus is a well-described feature of Alzheimer's disease (AD). In spite of extensive utilization of the dog as a model for human degenerative diseases, there is no data on the response to aging of the noradrenergic system in dogs. We have used modern unbiased stereology to estimate the total number of A6-A7 noradrenergic neurons in normal, aged dogs and dogs with the canine counterpart of AD. In small-breed dogs with no cognitive impairments, the total mean number of tyrosine hydroxylase immunolabeled A6-A7 neurons was 17,228+/-1655, with no differences between young and aged dogs. In contrast, aged dogs with cognitive impairments exhibited a significant reduction in the total number of A6-A7 neurons (13,487+/-1374; P=0.001). Additionally, we found a negative correlation between the number of A6-A7 neurons and the extent of beta-amyloid deposits in the prefrontal cortex. These results suggest that the canine model could be useful in exploring the potential benefits of noradrenergic drugs for the treatment of AD.
Collapse
Affiliation(s)
- Daniel Insua
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria de Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | | | | | | | | |
Collapse
|
277
|
Current awareness in geriatric psychiatry. Int J Geriatr Psychiatry 2007; 22:1172-9. [PMID: 18038466 DOI: 10.1002/gps.1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
278
|
Abstract
As our society ages, age-related diseases assume increasing prominence as both personal and public health concerns. Disorders of cognition are particularly important in both regards, and Alzheimer's disease is by far the most common cause of dementia of aging. In 2000, the prevalence of Alzheimer's disease in the United States was estimated to be 4.5 million individuals, and this number has been projected to increase to 14 million by 2050. Although not an inevitable consequence of aging, these numbers speak to the dramatic scope of its impact. This article focuses on Alzheimer's disease and the milder degrees of cognitive impairment that may precede the clinical diagnosis of probable Alzheimer's disease, such as mild cognitive impairment.
Collapse
|
279
|
Paquet C, Boissonnot M, Roger F, Dighiero P, Gil R, Hugon J. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer's disease. Neurosci Lett 2007; 420:97-9. [PMID: 17543991 DOI: 10.1016/j.neulet.2007.02.090] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/21/2007] [Accepted: 02/23/2007] [Indexed: 11/15/2022]
Abstract
In Alzheimer's disease (AD), brain lesions are marked by severe neuronal loss and retinal degeneration was previously mentioned in affected patients. Mild cognitive impairment (MCI) is a clinical syndrome that could be an early phase of AD. In this study, using optical coherence tomography (OCT), the retinal nerve fiber layer (RNFL) thickness was assessed in patients with mild AD, moderate to severe AD, amnestic MCI and control subjects. The results show that RNFL thickness is statistically reduced in patients with MCI, mild AD or moderate to severe AD compared to controls. In addition, no statistical difference was found between the results in MCI patients and mild AD patients. The RNFL seems to be involved early during the course of amnestic MCI and OCT tests could be carried out in patients with cognitive troubles.
Collapse
Affiliation(s)
- Claire Paquet
- Department of Neurology, Poitiers University Hospital, 86021 Poitiers, France
| | | | | | | | | | | |
Collapse
|