251
|
Mueller-Cajar O, Stotz M, Bracher A. Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases. PHOTOSYNTHESIS RESEARCH 2014; 119:191-201. [PMID: 23543331 DOI: 10.1007/s11120-013-9819-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/19/2013] [Indexed: 05/19/2023]
Abstract
The key photosynthetic, CO2-fixing enzyme Rubisco forms inactivated complexes with its substrate ribulose 1,5-bisphosphate (RuBP) and other sugar phosphate inhibitors. The independently evolved AAA+ proteins Rubisco activase and CbbX harness energy from ATP hydrolysis to remodel Rubisco complexes, facilitating release of these inhibitors. Here, we discuss recent structural and mechanistic advances towards the understanding of protein-mediated Rubisco activation. Both activating proteins appear to form ring-shaped hexameric arrangements typical for AAA+ ATPases in their functional form, but display very different regulatory and biochemical properties. Considering the thermolability of the plant enzyme, an improved understanding of the mechanism for Rubisco activation may help in developing heat-resistant plants adapted to the challenge of global warming.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore,
| | | | | |
Collapse
|
252
|
Cavanagh AP, Kubien DS. Can phenotypic plasticity in Rubisco performance contribute to photosynthetic acclimation? PHOTOSYNTHESIS RESEARCH 2014; 119:203-214. [PMID: 23543330 DOI: 10.1007/s11120-013-9816-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Photosynthetic acclimation varies among species, which likely reveals variations at the biochemical level in the pathways that constitute carbon assimilation and energy transfer. Local adaptation and phenotypic plasticity affect the environmental response of photosynthesis. Phenotypic plasticity allows for a wide array of responses from a single individual, encouraging fitness in a broad variety of environments. Rubisco catalyses the first enzymatic step of photosynthesis, and is thus central to life on Earth. The enzyme is well conserved, but there is habitat-dependent variation in kinetic parameters, indicating that local adaptation may occur. Here, we review evidence suggesting that land plants can adjust Rubisco's intrinsic biochemical characteristics during acclimation. We show that this plasticity can theoretically improve CO2 assimilation; the effect is non-trivial, but small relative to other acclimation responses. We conclude by discussing possible mechanisms that could account for biochemical plasticity in land plant Rubisco.
Collapse
Affiliation(s)
- Amanda P Cavanagh
- Department of Biology, University of New Brunswick, 10 Bailey Dr., Fredericton, NB, Canada
| | | |
Collapse
|
253
|
Rogers A. The use and misuse of V(c,max) in Earth System Models. PHOTOSYNTHESIS RESEARCH 2014; 119:15-29. [PMID: 23564478 DOI: 10.1007/s11120-013-9818-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/19/2013] [Indexed: 05/19/2023]
Abstract
Earth System Models (ESMs) aim to project global change. Central to this aim is the need to accurately model global carbon fluxes. Photosynthetic carbon dioxide assimilation by the terrestrial biosphere is the largest of these fluxes, and in many ESMs is represented by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. The maximum rate of carboxylation by the enzyme Rubisco, commonly termed V c,max, is a key parameter in the FvCB model. This study investigated the derivation of the values of V c,max used to represent different plant functional types (PFTs) in ESMs. Four methods for estimating V c,max were identified; (1) an empirical or (2) mechanistic relationship was used to relate V c,max to leaf N content, (3) V c,max was estimated using an approach based on the optimization of photosynthesis and respiration or (4) calibration of a user-defined V c,max to obtain a target model output. Despite representing the same PFTs, the land model components of ESMs were parameterized with a wide range of values for V c,max (-46 to +77% of the PFT mean). In many cases, parameterization was based on limited data sets and poorly defined coefficients that were used to adjust model parameters and set PFT-specific values for V c,max. Examination of the models that linked leaf N mechanistically to V c,max identified potential changes to fixed parameters that collectively would decrease V c,max by 31% in C3 plants and 11% in C4 plants. Plant trait data bases are now available that offer an excellent opportunity for models to update PFT-specific parameters used to estimate V c,max. However, data for parameterizing some PFTs, particularly those in the Tropics and the Arctic are either highly variable or largely absent.
Collapse
Affiliation(s)
- Alistair Rogers
- Department of Environmental Sciences, Brookhaven National Laboratory, Upton, NY, 11973, USA,
| |
Collapse
|
254
|
Stability-activity tradeoffs constrain the adaptive evolution of RubisCO. Proc Natl Acad Sci U S A 2014; 111:2223-8. [PMID: 24469821 DOI: 10.1073/pnas.1310811111] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during photosynthesis. Although the majority of plants use the ancestral C3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C4 photosynthesis. The latter concentrates CO2, and C4 RubisCOs consequently have lower specificity for, and faster turnover of, CO2. The C4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C3 and C4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C3 to C4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability.
Collapse
|
255
|
Wheatley NM, Sundberg CD, Gidaniyan SD, Cascio D, Yeates TO. Structure and identification of a pterin dehydratase-like protein as a ribulose-bisphosphate carboxylase/oxygenase (RuBisCO) assembly factor in the α-carboxysome. J Biol Chem 2014; 289:7973-81. [PMID: 24459150 DOI: 10.1074/jbc.m113.531236] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carboxysomes are proteinaceous bacterial microcompartments that increase the efficiency of the rate-limiting step in carbon fixation by sequestering reaction substrates. Typically, α-carboxysomes are genetically encoded as a single operon expressing the structural proteins and the encapsulated enzymes of the microcompartment. In addition, depending on phylogeny, as many as 13 other genes are found to co-occur near or within α-carboxysome operons. One of these genes codes for a protein with distant homology to pterin-4α-carbinolamine dehydratase (PCD) enzymes. It is present in all α-carboxysome containing bacteria and has homologs in algae and higher plants. Canonical PCDs play an important role in amino acid hydroxylation, a reaction not associated with carbon fixation. We determined the crystal structure of an α-carboxysome PCD-like protein from the chemoautotrophic bacterium Thiomonas intermedia K12, at 1.3-Å resolution. The protein retains a three-dimensional fold similar to canonical PCDs, although the prominent active site cleft present in PCD enzymes is disrupted in the α-carboxysome PCD-like protein. Using a cell-based complementation assay, we tested the PCD-like proteins from T. intermedia and two additional bacteria, and found no evidence for PCD enzymatic activity. However, we discovered that heterologous co-expression of the PCD-like protein from Halothiobacillus neapolitanus with RuBisCO and GroELS in Escherichia coli increased the amount of soluble, assembled RuBisCO recovered from cell lysates compared with co-expression of RuBisCO with GroELS alone. We conclude that this conserved PCD-like protein, renamed here α-carboxysome RuBisCO assembly factor (or acRAF), is a novel RuBisCO chaperone integral to α-carboxysome function.
Collapse
|
256
|
Morita K, Hatanaka T, Misoo S, Fukayama H. Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of rubisco in rice. PLANT PHYSIOLOGY 2014; 164:69-79. [PMID: 24254313 PMCID: PMC3875826 DOI: 10.1104/pp.113.228015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter β-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate and Km for CO2 of the enzyme and slightly decreased the specificity for CO2, indicating that the catalytic properties were shifted to those of a high-activity type Rubisco. The CO2 assimilation rate at low CO2 partial pressure was decreased in overexpression lines but was not changed under ambient and high CO2 partial pressure compared with nontransgenic rice. Although the Rubisco content was increased, Rubisco activation state was decreased in overexpression lines. These results indicate that the catalytic properties of Rubisco can be altered by ectopic expression of OsRbcS1, with substantial effects on photosynthetic performance in rice. We believe this is the first demonstration of organ-specific expression of individual members of the RbcS gene family resulting in marked effects on Rubisco catalytic activity.
Collapse
|
257
|
Bhardwaj U, Bhardwaj A, Kumar R, Leelavathi S, Reddy VS, Mazumdar-Leighton S. Revisiting rubisco as a protein substrate for insect midgut proteases. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 85:13-35. [PMID: 24338735 DOI: 10.1002/arch.21140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gene fragments encoding the large subunit (LS) of Rubisco (RBCL) were cloned from various species of host plants of phytophagous Lepidoptera and expressed as recombinant proteins in Escherichia coli. Recombinant RBCLs were compared among each other along with casein and native Rubisco as proteinaceous substrates for measuring total midgut protease activities of fourth instar larvae of Helicoverpa armigera feeding on casein, Pieris brassicae feeding on cauliflower, and Antheraea assamensis feeding on Litsea monopetala and Persea bombycina. Cognate rRBCL (from the pertinent host plant species) substrates performed similar to noncognate rRBCL reflecting the conserved nature of encoding genes and the versatile use of these recombinant proteins. Casein and recombinant RBCL generally outperformed native Rubisco as substrates, except where inclusion of a reducing agent in the enzyme assay likely unfolded the plant proteins. Levels of total midgut protease activities detected in A. assamensis larvae feeding on two primary host species were similar, suggesting that the suite(s) of digestive enzymes in these insects could hydrolyze a plant protein efficiently. Protease activities detected in the presence of protease inhibitors and the reducing agent dithiothreitol (DTT) suggested that recombinant RBCL was a suitable protein substrate for studying insect proteases using in vitro enzyme assays and substrate zymography.
Collapse
Affiliation(s)
- Usha Bhardwaj
- Plant-Insect Interactions Group, Department of Botany, Delhi University, Delhi, India
| | | | | | | | | | | |
Collapse
|
258
|
Abstract
Cyanobacteria and some chemoautotrophic bacteria enhance their carbon fixation efficiency by actively concentrating bicarbonate within their cytosol. However, converting bicarbonate into carbon dioxide - the form required by RubisCO - would result in its rapid escape through cellular membranes. These organisms resolve this dilemma by sequestering RubisCO behind a semi-permeable protein shell; the resulting large insoluble bodies are known as carboxysomes. For the carbon concentrating mechanism to function, there is an absolute requirement for carbonic anhydrase activity within the carboxysome to convert the bicarbonate to cabon dioxide, and a simultaneous requirement that minimal carbonic anhydrase activity be found within the cystol. Carboxysomal carbomic anhydrases therefore contain additional motifs and domains that generally mediate protein-protein interactions, or encapsulation dependent activation mechanisms. Carboxysomes are found in two deeply divergent varieties. Alpha-Carboxysomes contain a β-carbonic anhydrase, CsoSCA, which is so divergent from canonical β-carbonic anhydrases that it was originally thought to be the founding member of a new class. Beta carboxysomes have CcmM whose N-terminal domain is an active γ-carbonic ahydrase in some strains, but in others has lost all activity and functions primarily as a protein complex assembly scaffold; in addition, a subset of β-carboxysomes also contain the β-carbonic anhydrase CcaA - either in addition to, or instead of, an active CcmM. Here we explore the structures, activities and interactions mediated by the three known carboxysomal carbonic anhydrases, and discuss the mechanisms by which they are recruited to the carboxysome.
Collapse
|
259
|
|
260
|
Aresta M, Dibenedetto A, Angelini A. Catalysis for the Valorization of Exhaust Carbon: from CO 2 to Chemicals, Materials, and Fuels. Technological Use of CO 2. Chem Rev 2013. [DOI: 10.1021/cr4002758 pmid: 24313306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Angela Dibenedetto
- CIRCC, Via Celso Ulpiani 27, 70126 Bari, Italy
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Antonella Angelini
- CIRCC, Via Celso Ulpiani 27, 70126 Bari, Italy
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
261
|
Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem Rev 2013; 114:1709-42. [PMID: 24313306 DOI: 10.1021/cr4002758] [Citation(s) in RCA: 1635] [Impact Index Per Article: 148.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
262
|
Esquivel MG, Genkov T, Nogueira AS, Salvucci ME, Spreitzer RJ. Substitutions at the opening of the Rubisco central solvent channel affect holoenzyme stability and CO2/O 2 specificity but not activation by Rubisco activase. PHOTOSYNTHESIS RESEARCH 2013; 118:209-218. [PMID: 24014091 DOI: 10.1007/s11120-013-9916-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the initial step of carbon metabolism in photosynthesis. The holoenzyme comprises eight large subunits, arranged as a tetramer of dimers around a central solvent channel that defines a fourfold axis of symmetry, and eight small subunits, arranged as two tetramers at the poles of the axis. The phylogenetically divergent small-subunit loops between β-strands A and B form the entrance to the solvent channel. In the green alga Chlamydomonas reinhardtii, Ile-58 from each of the four small-subunit βA-βB loops defines the minimal diameter of the channel opening. To understand the role of the central solvent channel in Rubisco function, directed mutagenesis and transformation of Chlamydomonas were employed to replace Ile-58 with Ala, Lys, Glu, Trp, or three Trp residues (I58W3) to close the entrance to the channel. The I58E, I58K, and I58W substitutions caused only small decreases in photosynthetic growth at 25 and 35 °C, whereas I58W3 had a substantial effect at both temperatures. The mutant enzymes had decreased carboxylation rates, but the I58W3 enzyme had decreases in both carboxylation and CO2/O2 specificity. The I58E, I58W, and I58W3 enzymes were inactivated at lower temperatures than wild-type Rubisco, and were degraded at slower rates under oxidative stress. However, these mutant enzymes were activated by Rubisco activase at normal rates, indicating that the structural transition required for carboxylation is not affected by altering the solvent channel opening. Structural dynamics alone may not be responsible for these distant effects on the Rubisco active site.
Collapse
Affiliation(s)
- M Gloria Esquivel
- Instituto Superior de Agronomia (ISA), Technical University of Lisbon, 1399, Lisbon, Portugal,
| | | | | | | | | |
Collapse
|
263
|
Udenigwe CC, Gong M, Wu S. In silico analysis of the large and small subunits of cereal RuBisCO as precursors of cryptic bioactive peptides. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.08.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
264
|
Wachter RM, Salvucci ME, Carmo-Silva AE, Barta C, Genkov T, Spreitzer RJ. Activation of interspecies-hybrid Rubisco enzymes to assess different models for the Rubisco-Rubisco activase interaction. PHOTOSYNTHESIS RESEARCH 2013; 117:557-66. [PMID: 23613007 DOI: 10.1007/s11120-013-9827-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is prone to inactivation from non-productive binding of sugar-phosphates. Reactivation of Rubisco requires conformational remodeling by a specific chaperone, Rubisco activase. Rubisco activase from tobacco and other plants in the family Solanaceae is an inefficient activator of Rubisco from non-Solanaceae plants and from the green alga Chlamydomonas reinhardtii. To determine if the Rubisco small subunit plays a role in the interaction with Rubisco activase, a hybrid Rubisco (SSNT) composed of tobacco small subunits and Chlamydomonas large subunits was constructed. The SSNT hybrid, like other hybrid Rubiscos containing plant small subunits, supported photoautotrophic growth in Chlamydomonas, but growth in air was much slower than for cells containing wild-type Rubisco. The kinetic properties of the SSNT hybrid Rubisco were similar to the wild-type enzyme, indicating that the poor growth in air was probably caused by disruption of pyrenoid formation and the consequent impairment of the CO2concentrating mechanism. Recombinant Rubisco activase from Arabidopsis activated the SSNT hybrid Rubisco and hybrid Rubiscos containing spinach and Arabidopsis small subunits at rates similar to the rates with wild-type Rubisco. However, none of the hybrid Rubiscos was activated by tobacco Rubisco activase. That replacement of Chlamydomonas small subunits with plant small subunits does not affect the species-specific interaction between Rubisco and Rubisco activase suggests that the association is not dominated by the small subunits that surround the Rubisco central solvent channel. Therefore, the geometry of a side-on binding mode is more consistent with the data than a top-on or ring-stacking binding mode.
Collapse
Affiliation(s)
- Rebekka M Wachter
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287, USA
| | | | | | | | | | | |
Collapse
|
265
|
Müh F, Zouni A. The nonheme iron in photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:295-314. [PMID: 24077892 DOI: 10.1007/s11120-013-9926-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Photosystem II (PSII), the light-driven water:plastoquinone (PQ) oxidoreductase of oxygenic photosynthesis, contains a nonheme iron (NHI) at its electron acceptor side. The NHI is situated between the two PQs QA and QB that serve as one-electron transmitter and substrate of the reductase part of PSII, respectively. Among the ligands of the NHI is a (bi)carbonate originating from CO2, the substrate of the dark reactions of oxygenic photosynthesis. Based on recent advances in the crystallography of PSII, we review the structure of the NHI in PSII and discuss ideas concerning its function and the role of bicarbonate along with a comparison to the reaction center of purple bacteria and other enzymes containing a mononuclear NHI site.
Collapse
|
266
|
Wu X, Ge T, Yuan H, Li B, Zhu H, Zhou P, Sui F, O’Donnell AG, Wu J. Changes in bacterial CO2 fixation with depth in agricultural soils. Appl Microbiol Biotechnol 2013; 98:2309-19. [DOI: 10.1007/s00253-013-5179-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
|
267
|
Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 2013; 113:6621-58. [PMID: 23767781 PMCID: PMC3895110 DOI: 10.1021/cr300463y] [Citation(s) in RCA: 1304] [Impact Index Per Article: 118.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Aaron M. Appel
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - John E. Bercaw
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Andrew B. Bocarsly
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Daniel L. DuBois
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Michel Dupuis
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - James G. Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Etsuko Fujita
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Paul J. A. Kenis
- Department of Chemical and Biochemical Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Cheryl A. Kerfeld
- DOE Joint Genome Institute, 2800 Mitchell Drive Walnut Creek, California 94598, United States, and Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall Berkeley, California 94720, United States
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Charles H. F. Peden
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Archie R. Portis
- Departments of Crop Sciences and Plant Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Joost N. H. Reek
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Rudolf K. Thauer
- Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Strasse 10, D-35043 Marburg, Germany
| | - Grover L. Waldrop
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
268
|
Sanz-Sáez A, Erice G, Aranjuelo I, Aroca R, Ruíz-Lozano JM, Aguirreolea J, Irigoyen JJ, Sanchez-Diaz M. Photosynthetic and molecular markers of CO₂-mediated photosynthetic downregulation in nodulated alfalfa. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:721-734. [PMID: 23480453 DOI: 10.1111/jipb.12047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/24/2013] [Indexed: 06/01/2023]
Abstract
Elevated CO₂ leads to a decrease in potential net photosynthesis in long-term experiments and thus to a reduction in potential growth. This process is known as photosynthetic downregulation. There is no agreement on the definition of which parameters are the most sensitive for detecting CO₂ acclimation. In order to investigate the most sensitive photosynthetic and molecular markers of CO₂ acclimation, the effects of elevated CO₂, and associated elevated temperature were analyzed in alfalfa plants inoculated with different Sinorhizobium meliloti strains. Plants (Medicago sativa L. cv. Aragón) were grown in summer or autumn in temperature gradient greenhouses (TGG). At the end of the experiment, all plants showed acclimation in both seasons, especially under elevated summer temperatures. This was probably due to the lower nitrogen (N) availability caused by decreased N₂-fixation under higher temperatures. Photosynthesis measured at growth CO₂ concentration, rubisco in vitro activity and maximum rate of carboxylation were the most sensitive parameters for detecting downregulation. Severe acclimation was also related with decreases in leaf nitrogen content associated with declines in rubisco content (large and small subunits) and activity that resulted in a drop in photosynthesis. Despite the sensitivity of rubisco content as a marker of acclimation, it was not coordinated with gene expression, possibly due to a lag between gene transcription and protein translation.
Collapse
Affiliation(s)
- Alvaro Sanz-Sáez
- Department of Plant Biology, University of Navarra, Pamplona E-31008, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Peterhansel C, Krause K, Braun HP, Espie GS, Fernie AR, Hanson DT, Keech O, Maurino VG, Mielewczik M, Sage RF. Engineering photorespiration: current state and future possibilities. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:754-758. [PMID: 23121076 DOI: 10.1111/j.1438-8677.2012.00681.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
Reduction of flux through photorespiration has been viewed as a major way to improve crop carbon fixation and yield since the energy-consuming reactions associated with this pathway were discovered. This view has been supported by the biomasses increases observed in model species that expressed artificial bypass reactions to photorespiration. Here, we present an overview about the major current attempts to reduce photorespiratory losses in crop species and provide suggestions for future research priorities.
Collapse
Affiliation(s)
- C Peterhansel
- Leibniz University Hannover, Institute of Botany, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
His267 is involved in carbamylation and catalysis of RuBisCO-like protein from Bacillus subtilis. Biochem Biophys Res Commun 2013; 431:176-80. [DOI: 10.1016/j.bbrc.2012.12.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/28/2012] [Indexed: 11/24/2022]
|
271
|
Lim ZL, Low NH, Moffatt BA, Gray GR. Gelation in protein extracts from cold acclimated and non-acclimated winter rye (Secale cereale L. cv Musketeer). Cryobiology 2013; 66:156-66. [PMID: 23348601 DOI: 10.1016/j.cryobiol.2013.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/12/2012] [Accepted: 01/10/2013] [Indexed: 12/14/2022]
Abstract
A protein gel is a three-dimensional network consisting of molecular interactions between biopolymers that entrap a significant volume of a continuous liquid phase (water). Molecular interactions in gels occur at junction zones within and between protein molecules through electrostatic forces, hydrogen bonding, hydrophobic associations (van der Waals attractions) and covalent bonding. Gels have the physicochemical properties of both solids and liquids, and are extremely important in the production and stability of a variety of foods, bioproducts and pharmaceuticals. In this study, gelation was induced in phenol extracted protein fractions from non-acclimated (NA) and cold-acclimated (CA) winter rye (Secale cereale L. cv Musketeer) leaf tissue after repeated freeze-thaw treatments. Gel formation only occurred at high pH (pH 12.0) and a minimum of 3-4 freeze-thaw cycles were required. The gel was thermally stable and only a specific combination of chemical treatments could disrupt the gel network. SDS-PAGE analysis identified ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) as the major protein component in the gel, although Rubisco itself did not appear to be a factor in gelation. Raman spectroscopy suggested changes in protein secondary structure during freeze-thaw cycles. Overall, the NA and CA gels were similar in composition and structure, with the exception that the CA gel appeared to be amyloidic in nature based on thioflavin T (ThT) fluorescence. Protein gelation, particularly in the apoplast, may confer protection against freeze-induced dehydration and potentially have a commercial application to improve frozen food quality.
Collapse
Affiliation(s)
- Ze Long Lim
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
272
|
Loewen PC, Didychuk AL, Switala J, Perez-Luque R, Fita I, Loewen MC. Structure of Pisum sativum Rubisco with bound ribulose 1,5-bisphosphate. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:10-4. [PMID: 23295478 PMCID: PMC3539695 DOI: 10.1107/s1744309112047549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/19/2012] [Indexed: 05/22/2023]
Abstract
The first structure of a ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from a pulse crop is reported. Rubisco was purified from Pisum sativum (garden pea) and diffraction-quality crystals were obtained by hanging-drop vapour diffusion in the presence of the substrate ribulose 1,5-bisphosphate. X-ray diffraction data were recorded to 2.20 Å resolution from a single crystal at the Canadian Light Source. The overall quaternary structure of non-activated P. sativum Rubisco highlights the conservation of the form I Rubisco hexadecameric complex. The electron density places the substrate in the active site at the interface of the large-subunit dimers. Lys201 in the active site is not carbamylated as expected for this non-activated structure. Some heterogeneity in the small-subunit sequence is noted, as well as possible variations in the conformation and contacts of ribulose 1,5-bisphosphate in the large-subunit active sites. Overall, the active-site conformation most closely correlates with the `closed' conformation observed in other substrate/inhibitor-bound Rubisco structures.
Collapse
Affiliation(s)
- Peter C. Loewen
- Department of Microbiology, University of Manitoba, 418 Buller Building, Winnipeg, MB R3T 2N2, Canada
| | - Allison L. Didychuk
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Jacek Switala
- Department of Microbiology, University of Manitoba, 418 Buller Building, Winnipeg, MB R3T 2N2, Canada
| | - Rosa Perez-Luque
- Institut de Biologia Molecular de Barcelona (IBMB–CSIC), Parc Científic, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Ignacio Fita
- Institut de Biologia Molecular de Barcelona (IBMB–CSIC), Parc Científic, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Michele C. Loewen
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
273
|
Parry MAJ, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM. Rubisco activity and regulation as targets for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:717-30. [PMID: 23162118 DOI: 10.1093/jxb/ers336] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rubisco (ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase) enables net carbon fixation through the carboxylation of RuBP. However, some characteristics of Rubisco make it surprisingly inefficient and compromise photosynthetic productivity. For example, Rubisco catalyses a wasteful reaction with oxygen that leads to the release of previously fixed CO(2) and NH(3) and the consumption of energy during photorespiration. Furthermore, Rubisco is slow and large amounts are needed to support adequate photosynthetic rates. Consequently, Rubisco has been studied intensively as a prime target for manipulations to 'supercharge' photosynthesis and improve both productivity and resource use efficiency. The catalytic properties of Rubiscos from diverse sources vary considerably, suggesting that changes in turnover rate, affinity, or specificity for CO(2) can be introduced to improve Rubisco performance in specific crops and environments. While attempts to manipulate plant Rubisco by nuclear transformation have had limited success, modifying its catalysis by targeted changes to its catalytic large subunit via chloroplast transformation have been much more successful. However, this technique is still in need of development for most major food crops including maize, wheat, and rice. Other bioengineering approaches for improving Rubisco performance include improving the activity of its ancillary protein, Rubisco activase, in addition to modulating the synthesis and degradation of Rubisco's inhibitory sugar phosphate ligands. As the rate-limiting step in carbon assimilation, even modest improvements in the overall performance of Rubisco pose a viable pathway for obtaining significant gains in plant yield, particularly under stressful environmental conditions.
Collapse
Affiliation(s)
- Martin A J Parry
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | | | | | | | | | | | | |
Collapse
|
274
|
Villarreal JC, Renner SS. Hornwort pyrenoids, carbon-concentrating structures, evolved and were lost at least five times during the last 100 million years. Proc Natl Acad Sci U S A 2012; 109:18873-8. [PMID: 23115334 PMCID: PMC3503201 DOI: 10.1073/pnas.1213498109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribulose-1,5-biphosphate-carboxylase-oxygenase (RuBisCO) has a crucial role in carbon fixation but a slow catalytic rate, a problem overcome in some plant lineages by physiological and anatomical traits that elevate carbon concentrations around the enzyme. Such carbon-concentrating mechanisms are hypothesized to have evolved during periods of low atmospheric CO(2). Hornworts, the sister to vascular plants, have a carbon-concentrating mechanism that relies on pyrenoids, proteinaceous bodies mostly consisting of RuBisCO. We generated a phylogeny based on mitochondrial and plastid sequences for 36% of the approximately 200 hornwort species to infer the history of gains and losses of pyrenoids in this clade; we also used fossils and multiple dating approaches to generate a chronogram for the hornworts. The results imply five to six origins and an equal number of subsequent losses of pyrenoids in hornworts, with the oldest pyrenoid gained ca. 100 Mya, and most others at <35 Mya. The nonsynchronous appearance of pyrenoid-containing clades, the successful diversification of pyrenoid-lacking clades during periods with low [CO(2)], and the maintenance of pyrenoids during episodes of high [CO(2)] all argue against the previously proposed relationship between pyrenoid origin and low [CO(2)]. The selective advantages, and costs, of hornwort pyrenoids thus must relate to additional factors besides atmospheric CO(2).
Collapse
Affiliation(s)
- Juan Carlos Villarreal
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Munich 80638, Germany.
| | | |
Collapse
|
275
|
Machado IM, Atsumi S. Cyanobacterial biofuel production. J Biotechnol 2012; 162:50-6. [DOI: 10.1016/j.jbiotec.2012.03.005] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/28/2012] [Accepted: 03/08/2012] [Indexed: 12/31/2022]
|
276
|
Structural mechanism of RuBisCO activation by carbamylation of the active site lysine. Proc Natl Acad Sci U S A 2012; 109:18785-90. [PMID: 23112176 DOI: 10.1073/pnas.1210754109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in carbon fixation and the most abundant protein on earth. It has been studied extensively by biochemical and structural methods; however, the most essential activation step has not yet been described. Here, we describe the mechanistic details of Lys carbamylation that leads to RuBisCO activation by atmospheric CO(2). We report two crystal structures of nitrosylated RuBisCO from the red algae Galdieria sulphuraria with O(2) and CO(2) bound at the active site. G. sulphuraria RuBisCO is inhibited by cysteine nitrosylation that results in trapping of these gaseous ligands. The structure with CO(2) defines an elusive, preactivation complex that contains a metal cation Mg(2+) surrounded by three H(2)O/OH molecules. Both structures suggest the mechanism for discriminating gaseous ligands by their quadrupole electric moments. We describe conformational changes that allow for intermittent binding of the metal ion required for activation. On the basis of these structures we propose the individual steps of the activation mechanism. Knowledge of all these elements is indispensable for engineering RuBisCO into a more efficient enzyme for crop enhancement or as a remedy to global warming.
Collapse
|
277
|
Beier C, Zacharias M. Tackling the challenges posed by target flexibility in drug design. Expert Opin Drug Discov 2012; 5:347-59. [PMID: 22823087 DOI: 10.1517/17460441003713462] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Current computational docking methods are often effective in predicting accurate drug-binding geometries in cases of relatively rigid target structures. However, binding of drug-like ligands to protein receptor molecules frequently involves or even requires conformational adaptation. Realistic prediction of ligand-receptor binding geometries and complex stability needs in many cases an appropriate inclusion of conformational changes, not only for the ligand, but also for the receptor molecule. AREAS COVERED IN THIS REVIEW Recent approaches to efficiently account for target receptor flexibility during docking simulations are reviewed. WHAT THE READER WILL GAIN The reader will gain insights into methods to efficiently treat protein side-chain flexibility and approaches for continuous adaptation of backbone conformations in pre-calculated essential or soft collective degrees of freedom. In addition, molecular dynamics or Monte Carlo based methods providing simultaneous inclusion of receptor and ligand flexibility are discussed as well as promising new developments to generate conformationally diverse ensembles of a protein structure. The large variety of possible conformational changes in proteins on ligand binding is illustrated for the enzyme reverse transcriptase of HIV-1, which is an important drug target. TAKE HOME MESSAGE If the backbone conformation of the binding site does not change, current docking programs can perform well by taking side-chain reorientations into account only. Future progress to account for full target flexibility in docking requires both accurate prediction of the essential modes of backbone motion and improvements in scoring to enhance selectivity. Thus, the scoring function should realistically cover energetic and particularly entropic contributions to binding, which would allow more realistic estimates of binding free energies.
Collapse
Affiliation(s)
- Christian Beier
- Jacobs University Bremen, School of Engineering and Science, Campus Ring 1, D-28759 Bremen, Germany
| | | |
Collapse
|
278
|
Choi W, Kim G, Lee K. Influence of the CO2 absorbent monoethanolamine on growth and carbon fixation by the green alga Scenedesmus sp. BIORESOURCE TECHNOLOGY 2012; 120:295-299. [PMID: 22771020 DOI: 10.1016/j.biortech.2012.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/07/2012] [Accepted: 06/10/2012] [Indexed: 06/01/2023]
Abstract
The influence of monoethanolamine (MEA) as a CO(2) absorbent on photoautotrophic culture of CO(2)-fixing microalgae was investigated. When 300 ppm MEA (4.92 mM) was added to blank culture medium, the dissolved inorganic carbon and the molar absorption ratio increased to 51.0mg/L and 0.34 mol CO2 = mol MEA, respectively, which was an almost 6-fold increase in CO(2) solubility. When free MEA up to 300 mg/L was added to a green alga Scenedesmus sp. culture that was supplied 5% (v/v) CO(2) at 0.1 vvm, both cell growth rate and final cell density were enhanced compared to when no MEA was added. The cell growth rate reached 288.6 mg/L/d, which was equivalent to 539.6 mg-CO(2)/L/d as a CO(2)-fixation rate and enhancement of about 63.0% compared to not adding MEA. Chlorophyll-a content and nitrate consumption rate increased correspondingly. MEA doses higher than 400mg/L inhibited cell growth, probably due to toxicity of the carbamate intermediate.
Collapse
Affiliation(s)
- Wookjin Choi
- Department of Environmental Engineering and Energy, Myongji University, Yongin 449-728, Republic of Korea
| | | | | |
Collapse
|
279
|
Yang Y, Wang L, Tian J, Li J, Sun J, He L, Guo S, Tezuka T. Proteomic study participating the enhancement of growth and salt tolerance of bottle gourd rootstock-grafted watermelon seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:54-65. [PMID: 22771436 DOI: 10.1016/j.plaphy.2012.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
An insertion grafting technique to do research on salt tolerance was applied using watermelon (Citrullus lanatus [Thunb.] Mansf. cv. Xiuli) as a scion and bottle gourd (Lagenaria siceraria Standl. cv. Chaofeng Kangshengwang) as a rootstock. Rootstock-grafting significantly relieved the inhibition of growth and photosynthesis induced by salt stress in watermelon plants. Proteomic analysis revealed 40 different expressed proteins in response to rootstock-grafting and/or salt stress. These proteins were involved in Calvin cycle, amino acids biosynthesis, carbohydrate and energy metabolism, ROS defense, hormonal biosynthesis and signal transduction. Most of these proteins were up-regulated by rootstock-grafting and/or susceptible to salt stress. The enhancement of the metabolic activities of Calvin cycle, biosynthesis of amino acids, carotenoids and peroxisomes, glycolytic pathway and tricarboxylic acid cycle will probably contribute to intensify the biomass and photosynthetic capacity in rootstock-grafted seedlings under condition without salt. The accumulation of key enzymes included in these biological processes described above seems to play an important role in the enhancement of salt tolerance of rootstock-grafted seedlings. Furthermore, leucine-rich repeat transmembrane protein kinase and phospholipase may be involved in transmitting the internal and external stimuli induced by grafting and/or salt stress.
Collapse
Affiliation(s)
- Yanjuan Yang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Collakova E, Yen JY, Senger RS. Are we ready for genome-scale modeling in plants? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:53-70. [PMID: 22682565 DOI: 10.1016/j.plantsci.2012.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 05/02/2023]
Abstract
As it is becoming easier and faster to generate various types of high-throughput data, one would expect that by now we should have a comprehensive systems-level understanding of biology, biochemistry, and physiology at least in major prokaryotic and eukaryotic model systems. Despite the wealth of available data, we only get a glimpse of what is going on at the molecular level from the global perspective. The major reason is the high level of cellular complexity and our limited ability to identify all (or at least important) components and their interactions in virtually infinite number of internal and external conditions. Metabolism can be modeled mathematically by the use of genome-scale models (GEMs). GEMs are in silico metabolic flux models derived from available genome annotation. These models predict the combination of flux values of a defined metabolic network given the influence of internal and external signals. GEMs have been successfully implemented to model bacterial metabolism for over a decade. However, it was not until 2009 when the first GEM for Arabidopsis thaliana cell-suspension cultures was generated. Genome-scale modeling ("GEMing") in plants brings new challenges primarily due to the missing components and complexity of plant cells represented by the existence of: (i) photosynthesis; (ii) compartmentation; (iii) variety of cell and tissue types; and (iv) diverse metabolic responses to environmental and developmental cues as well as pathogens, insects, and competing weeds. This review presents a critical discussion of the advantages of existing plant GEMs, while identifies key targets for future improvements. Plant GEMs tend to be accurate in predicting qualitative changes in selected aspects of central carbon metabolism, while secondary metabolism is largely neglected mainly due to the missing (unknown) genes and metabolites. As such, these models are suitable for exploring metabolism in plants grown in favorable conditions, but not in field-grown plants that have to cope with environmental changes in complex ecosystems. AraGEM is the first GEM describing a photosynthetic and photorespiring plant cell (Arabidopsis thaliana). We demonstrate the use of AraGEM given the current (limited) knowledge of plant metabolism and reveal the unexpected robustness of AraGEM by a series of in silico simulations. The major focus of these simulations is on the assessment of the: (i) network connectivity; (ii) influence of CO₂ and photon uptake rates on cellular growth rates and production of individual biomass components; and (iii) stability of plant central carbon metabolism with internal pH changes.
Collapse
Affiliation(s)
- Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, 308 Latham Hall, Virginia Tech, Blacksburg, VA, USA.
| | | | | |
Collapse
|
281
|
Koziol L, Valdez CA, Baker SE, Lau EY, Floyd WC, Wong SE, Satcher JH, Lightstone FC, Aines RD. Toward a Small Molecule, Biomimetic Carbonic Anhydrase Model: Theoretical and Experimental Investigations of a Panel of Zinc(II) Aza-Macrocyclic Catalysts. Inorg Chem 2012; 51:6803-12. [DOI: 10.1021/ic300526b] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lucas Koziol
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,
California 94550, United States
| | - Carlos A. Valdez
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,
California 94550, United States
| | - Sarah E. Baker
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,
California 94550, United States
| | - Edmond Y. Lau
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,
California 94550, United States
| | - William C. Floyd
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,
California 94550, United States
| | - Sergio E. Wong
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,
California 94550, United States
| | - Joe H. Satcher
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,
California 94550, United States
| | - Felice C. Lightstone
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,
California 94550, United States
| | - Roger D. Aines
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,
California 94550, United States
| |
Collapse
|
282
|
Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 2012; 162:134-47. [PMID: 22677697 DOI: 10.1016/j.jbiotec.2012.05.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 11/23/2022]
Abstract
Development of sustainable energy is a pivotal step towards solutions for today's global challenges, including mitigating the progression of climate change and reducing dependence on fossil fuels. Biofuels derived from agricultural crops have already been commercialized. However the impacts on environmental sustainability and food supply have raised ethical questions about the current practices. Cyanobacteria have attracted interest as an alternative means for sustainable energy productions. Being aquatic photoautotrophs they can be cultivated in non-arable lands and do not compete for land for food production. Their rich genetic resources offer means to engineer metabolic pathways for synthesis of valuable bio-based products. Currently the major obstacle in industrial-scale exploitation of cyanobacteria as the economically sustainable production hosts is low yields. Much effort has been made to improve the carbon fixation and manipulating the carbon allocation in cyanobacteria and their evolutionary photosynthetic relatives, algae and plants. This review aims at providing an overview of the recent progress in the bioengineering of carbon fixation and allocation in cyanobacteria; wherever relevant, the progress made in plants and algae is also discussed as an inspiration for future application in cyanobacteria.
Collapse
|
283
|
Leakey ADB, Lau JA. Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2]. Philos Trans R Soc Lond B Biol Sci 2012; 367:613-29. [PMID: 22232771 PMCID: PMC3248707 DOI: 10.1098/rstb.2011.0248] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Variation in atmospheric [CO(2)] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO(2)] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO(2)] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO(2)] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO(2)]. Evolutionary responses to elevated [CO(2)] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO(2)] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO(2)]. This lack of evidence for strong evolutionary effects of elevated [CO(2)] is surprising, given the large effects of elevated [CO(2)] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO(2)] and (ii) benefit maximally from future, greater [CO(2)]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C(4) photosynthesis into C(3) leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying [CO(2)].
Collapse
Affiliation(s)
- Andrew D B Leakey
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois, Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL 61801, USA.
| | | |
Collapse
|
284
|
Wang M, Shi S, Lin F, Hao Z, Jiang P, Dai G. Effects of soil water and nitrogen on growth and photosynthetic response of Manchurian ash (Fraxinus mandshurica) seedlings in northeastern China. PLoS One 2012; 7:e30754. [PMID: 22347401 PMCID: PMC3275608 DOI: 10.1371/journal.pone.0030754] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/20/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Soil water and nitrogen (N) are considered to be the main environmental factors limiting plant growth and photosynthetic capacity. However, less is known about the interactive effects of soil water and N on tree growth and photosynthetic response in the temperate ecosystem. METHODS/PRINCIPAL FINDINGS We applied N and water, alone and in combination, and investigated the combined effect of different water and N regimes on growth and photosynthetic responses of Fraxinus mandshurica seedlings. The seedlings were exposed to three water regimes including natural precipitation (CK), higher precipitation (HW) (CK +30%) and lower precipitation (LW) (CK -30%), and both with and without N addition for two growing seasons. We demonstrated that water and N supply led to a significant increase in the growth and biomass production of the seedlings. LW treatment significantly decreased biomass production and leaf N content, but they showed marked increases in N addition. N addition could enhance the photosynthetic capability under HW and CK conditions. Leaf chlorophyll content and the initial activity of Rubisco were dramatically increased by N addition regardless of soil water condition. The positive relationships were found between photosynthetic capacity, leaf N content, and SLA in response to water and N supply in the seedling. Rubisco expression was up-regulated by N addition with decreasing soil water content. Immunofluorescent staining showed that the labeling for Rubisco was relatively low in leaves of the seedlings under LW condition. The accumulation of Rubisco was increased in leaf tissues of LW by N addition. CONCLUSIONS/SIGNIFICANCE Our study has presented better understanding of the interactions between soil water and N on the growth and photosynthetic response in F. mandschurica seedlings, which may provide novel insights on the potential responses of the forest ecosystem to climate change associated with increasing N deposition.
Collapse
Affiliation(s)
- Miao Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
| | | | | | | | | | | |
Collapse
|
285
|
Allen JF, de Paula WBM, Puthiyaveetil S, Nield J. A structural phylogenetic map for chloroplast photosynthesis. TRENDS IN PLANT SCIENCE 2011; 16:645-55. [PMID: 22093371 DOI: 10.1016/j.tplants.2011.10.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 05/08/2023]
Abstract
Chloroplasts are cytoplasmic organelles and the sites of photosynthesis in eukaryotic cells. Advances in structural biology and comparative genomics allow us to identify individual components of the photosynthetic apparatus precisely with respect to the subcellular location of their genes. Here we present outline maps of four energy-transducing thylakoid membranes. The maps for land plants and red and green algae distinguish protein subunits encoded in the nucleus from those encoded in the chloroplast. We find no defining structural feature that is common to all chloroplast gene products. Instead, conserved patterns of gene location are consistent with photosynthetic redox chemistry exerting gene regulatory control over its own rate-limiting steps. Chloroplast DNA carries genes whose expression is placed under this control.
Collapse
Affiliation(s)
- John F Allen
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | | | |
Collapse
|
286
|
Stotz M, Mueller-Cajar O, Ciniawsky S, Wendler P, Hartl FU, Bracher A, Hayer-Hartl M. Structure of green-type Rubisco activase from tobacco. Nat Struct Mol Biol 2011; 18:1366-70. [PMID: 22056769 DOI: 10.1038/nsmb.2171] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/04/2011] [Indexed: 01/08/2023]
Abstract
Rubisco, the enzyme that catalyzes the fixation of atmospheric CO(2) in photosynthesis, is subject to inactivation by inhibitory sugar phosphates. Here we report the 2.95-Å crystal structure of Nicotiana tabacum Rubisco activase (Rca), the enzyme that facilitates the removal of these inhibitors. Rca from tobacco has a classical AAA(+)-protein domain architecture. Although Rca populates a range of oligomeric states when in solution, it forms a helical arrangement with six subunits per turn when in the crystal. However, negative-stain electron microscopy of the active mutant R294V suggests that Rca functions as a hexamer. The residues determining species specificity for Rubisco are located in a helical insertion of the C-terminal domain and probably function in conjunction with the N-domain in Rubisco recognition. Loop segments exposed toward the central pore of the hexamer are required for the ATP-dependent remodeling of Rubisco, resulting in the release of inhibitory sugar.
Collapse
Affiliation(s)
- Mathias Stotz
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
287
|
Structure and function of the AAA+ protein CbbX, a red-type Rubisco activase. Nature 2011; 479:194-9. [PMID: 22048315 DOI: 10.1038/nature10568] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 09/15/2011] [Indexed: 12/21/2022]
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the fixation of atmospheric CO(2) in photosynthesis, but tends to form inactive complexes with its substrate ribulose 1,5-bisphosphate (RuBP). In plants, Rubisco is reactivated by the AAA(+) (ATPases associated with various cellular activities) protein Rubisco activase (Rca), but no such protein is known for the Rubisco of red algae. Here we identify the protein CbbX as an activase of red-type Rubisco. The 3.0-Å crystal structure of unassembled CbbX from Rhodobacter sphaeroides revealed an AAA(+) protein architecture. Electron microscopy and biochemical analysis showed that ATP and RuBP must bind to convert CbbX into functionally active, hexameric rings. The CbbX ATPase is strongly stimulated by RuBP and Rubisco. Mutational analysis suggests that CbbX functions by transiently pulling the carboxy-terminal peptide of the Rubisco large subunit into the hexamer pore, resulting in the release of the inhibitory RuBP. Understanding Rubisco activation may facilitate efforts to improve CO(2) uptake and biomass production by photosynthetic organisms.
Collapse
|
288
|
Wang M, Kapralov MV, Anisimova M. Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco. BMC Evol Biol 2011; 11:266. [PMID: 21942934 PMCID: PMC3190394 DOI: 10.1186/1471-2148-11-266] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the key forces shaping proteins is coevolution of amino acid residues. Knowing which residues coevolve in a particular protein may facilitate our understanding of protein evolution, structure and function, and help to identify substitutions that may lead to desired changes in enzyme kinetics. Rubisco, the most abundant enzyme in biosphere, plays an essential role in the process of carbon fixation through photosynthesis, thus facilitating life on Earth. This makes Rubisco an important model system for studying the dynamics of protein fitness optimization on the evolutionary landscape. In this study we investigated the selective and coevolutionary forces acting on large subunit of land plants Rubisco using Markov models of codon substitution and clustering approaches applied to amino acid substitution histories. RESULTS We found that both selection and coevolution shape Rubisco, and that positively selected and coevolving residues have their specifically favored amino acid composition and pairing preference. The mapping of these residues on the known Rubisco tertiary structures showed that the coevolving residues tend to be in closer proximity with each other compared to the background, while positively selected residues tend to be further away from each other. This study also reveals that the residues under positive selection or coevolutionary force are located within functionally important regions and that some residues are targets of both positive selection and coevolution at the same time. CONCLUSION Our results demonstrate that coevolution of residues is common in Rubisco of land plants and that there is an overlap between coevolving and positively selected residues. Knowledge of which Rubisco residues are coevolving and positively selected could be used for further work on structural modeling and identification of substitutions that may be changed in order to improve efficiency of this important enzyme in crops.
Collapse
Affiliation(s)
- Mingcong Wang
- Computational Biochemistry Research Group, Department of Computer Science, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | | |
Collapse
|
289
|
Blayney MJ, Whitney SM, Beck JL. NanoESI mass spectrometry of Rubisco and Rubisco activase structures and their interactions with nucleotides and sugar phosphates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1588-601. [PMID: 21953262 DOI: 10.1007/s13361-011-0187-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 05/19/2023]
Abstract
Ribulose bisphosphate carboxylase/oxygenase (Rubisco) is the protein that is responsible for the fixation of carbon dioxide in photosynthesis. Inhibitory sugar phosphate molecules, which can include its substrate ribulose-1,5-bisphosphate (RuBP), can bind to Rubisco catalytic sites and inhibit catalysis. These are removed by interaction with Rubisco activase (RA) via an ATP hydrolytic reaction. Here we show the first nanoESI mass spectra of the hexadecameric Rubisco and of RA from a higher plant (tobacco). The spectra of recombinant, purified RA revealed polydispersity in its oligomeric forms (up to hexamer) and that ADP was bound. ADP was removed by dialysis against a high ionic strength solution and nucleotide binding experiments showed that ADP bound more tightly to RA than AMP-PNP (a non-hydrolysable ATP analog). There was evidence that there may be two nucleotide binding sites per RA monomer. The oligomerization capacity of mutant and wild-type tobacco RA up to hexamers is analogous to the subunit stoichiometry for other AAA+ enzymes. This suggests assembly of RA into hexamers is likely the most active conformation for removing inhibitory sugar phosphate molecules from Rubisco to enable its catalytic competency. Stoichiometric binding of RuBP or carboxyarabinitol bisphosphate (CABP) to each of the eight catalytic sites of Rubisco was observed.
Collapse
Affiliation(s)
- Michelle J Blayney
- School of Chemistry, University of Wollongong, New South Wales, 2522, Australia
| | | | | |
Collapse
|
290
|
Whitney SM, Sharwood RE, Orr D, White SJ, Alonso H, Galmés J. Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in Flaveria. Proc Natl Acad Sci U S A 2011; 108:14688-93. [PMID: 21849620 PMCID: PMC3167554 DOI: 10.1073/pnas.1109503108] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Improving global yields of important agricultural crops is a complex challenge. Enhancing yield and resource use by engineering improvements to photosynthetic carbon assimilation is one potential solution. During the last 40 million years C(4) photosynthesis has evolved multiple times, enabling plants to evade the catalytic inadequacies of the CO(2)-fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco). Compared with their C(3) ancestors, C(4) plants combine a faster rubisco with a biochemical CO(2)-concentrating mechanism, enabling more efficient use of water and nitrogen and enhanced yield. Here we show the versatility of plastome manipulation in tobacco for identifying sequences in C(4)-rubisco that can be transplanted into C(3)-rubisco to improve carboxylation rate (V(C)). Using transplastomic tobacco lines expressing native and mutated rubisco large subunits (L-subunits) from Flaveria pringlei (C(3)), Flaveria floridana (C(3)-C(4)), and Flaveria bidentis (C(4)), we reveal that Met-309-Ile substitutions in the L-subunit act as a catalytic switch between C(4) ((309)Ile; faster V(C), lower CO(2) affinity) and C(3) ((309)Met; slower V(C), higher CO(2) affinity) catalysis. Application of this transplastomic system permits further identification of other structural solutions selected by nature that can increase rubisco V(C) in C(3) crops. Coengineering a catalytically faster C(3) rubisco and a CO(2)-concentrating mechanism within C(3) crop species could enhance their efficiency in resource use and yield.
Collapse
Affiliation(s)
- Spencer M Whitney
- Research School of Biology, Australian National University, Canberra ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
291
|
Götze JP, Saalfrank P. Quantum chemical modeling of the kinetic isotope effect of the carboxylation step in RuBisCO. J Mol Model 2011; 18:1877-83. [PMID: 21866315 DOI: 10.1007/s00894-011-1207-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/31/2011] [Indexed: 10/17/2022]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the most important enzyme for the assimilation of carbon into biomass, features a well-known isotope effect with regards to the CO(2) carbon atom. This kinetic isotope effect α = k(12)/k(13) for the carboxylation step of the RuBisCO reaction sequence, and its microscopic origin, was investigated with the help of cluster models and quantum chemical methods [B3LYP/6-31G(d,p)]. We use a recently proposed model for the RuBisCO active site, in which a water molecule remains close to the reaction center during carboxylation of ribulose-1,5-bisphosphate [B. Kannappan, J.E. Gready, J. Am. Chem. Soc. 130 (2008), 15063]. Alternative active-site models and/or computational approaches were also tested. An isotope effect alpha for carboxylation is found, which is reasonably close to the one measured for the overall reaction, and which originates from a simple frequency shift of the bending vibration of (12)CO(2) compared to (13)CO(2). The latter is the dominant mode for the product formation at the transition state.
Collapse
Affiliation(s)
- Jan Philipp Götze
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Potsdam-Golm, Germany.
| | | |
Collapse
|
292
|
Clustering of MS spectra for improved protein identification rate and screening for protein variants and modifications by MALDI-MS/MS. J Proteomics 2011; 74:1190-200. [DOI: 10.1016/j.jprot.2011.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/30/2011] [Accepted: 04/08/2011] [Indexed: 12/11/2022]
|
293
|
Subunit interface dynamics in hexadecameric rubisco. J Mol Biol 2011; 411:1083-98. [PMID: 21745478 DOI: 10.1016/j.jmb.2011.06.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 11/23/2022]
Abstract
Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) plays an important role in the global carbon cycle as a hub for biomass. Rubisco catalyzes not only the carboxylation of RuBP with carbon dioxide but also a competing oxygenation reaction of RuBP with a negative impact on photosynthetic yield. The functional active site is built from two large (L) subunits that form a dimer. The octameric core of four L(2) dimers is held at each end by a cluster of four small (S) subunits, forming a hexadecamer. Each large subunit contacts more than one S subunit. These interactions exploit the dynamic flexibility of Rubisco, which we address in this study. Here, we describe seven different types of interfaces of hexadecameric Rubisco. We have analyzed these interfaces with respect to the size of the interface area and the number of polar interactions, including salt bridges and hydrogen bonds in a variety of Rubisco enzymes from different organisms and different kingdoms of life, including the Rubisco-like proteins. We have also performed molecular dynamics simulations of Rubisco from Chlamydomonas reinhardtii and mutants thereof. From our computational analyses, we propose structural checkpoints of the S subunit to ensure the functionality and/or assembly of the Rubisco holoenzyme. These checkpoints appear to fine-tune the dynamics of the enzyme in a way that could influence enzyme performance.
Collapse
|
294
|
Gourion B, Delmotte N, Bonaldi K, Nouwen N, Vorholt JA, Giraud E. Bacterial RuBisCO is required for efficient Bradyrhizobium/Aeschynomene symbiosis. PLoS One 2011; 6:e21900. [PMID: 21750740 PMCID: PMC3130060 DOI: 10.1371/journal.pone.0021900] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/08/2011] [Indexed: 11/18/2022] Open
Abstract
Rhizobia and legume plants establish symbiotic associations resulting in the formation of organs specialized in nitrogen fixation. In such organs, termed nodules, bacteria differentiate into bacteroids which convert atmospheric nitrogen and supply the plant with organic nitrogen. As a counterpart, bacteroids receive carbon substrates from the plant. This rather simple model of metabolite exchange underlies symbiosis but does not describe the complexity of bacteroids' central metabolism. A previous study using the tropical symbiotic model Aeschynomene indica/photosynthetic Bradyrhizobium sp. ORS278 suggested a role of the bacterial Calvin cycle during the symbiotic process. Herein we investigated the role of two RuBisCO gene clusters of Bradyrhizobium sp. ORS278 during symbiosis. Using gene reporter fusion strains, we showed that cbbL1 but not the paralogous cbbL2 is expressed during symbiosis. Congruently, CbbL1 was detected in bacteroids by proteome analysis. The importance of CbbL1 for symbiotic nitrogen fixation was proven by a reverse genetic approach. Interestingly, despite its symbiotic nitrogen fixation defect, the cbbL1 mutant was not affected in nitrogen fixation activity under free living state. This study demonstrates a critical role for bacterial RuBisCO during a rhizobia/legume symbiotic interaction.
Collapse
Affiliation(s)
- Benjamin Gourion
- Laboratoire des Symbioses Tropicales et Méditerranéennes, SupAgro/Institut National de la Recherche Agronomique/Université Montpellier 2/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
295
|
Ishikawa C, Hatanaka T, Misoo S, Miyake C, Fukayama H. Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. PLANT PHYSIOLOGY 2011; 156:1603-11. [PMID: 21562335 PMCID: PMC3135941 DOI: 10.1104/pp.111.177030] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/06/2011] [Indexed: 05/17/2023]
Abstract
Rubisco limits photosynthetic CO(2) fixation because of its low catalytic turnover rate (k(cat)) and competing oxygenase reaction. Previous attempts to improve the catalytic efficiency of Rubisco by genetic engineering have gained little progress. Here we demonstrate that the introduction of the small subunit (RbcS) of high k(cat) Rubisco from the C(4) plant sorghum (Sorghum bicolor) significantly enhances k(cat) of Rubisco in transgenic rice (Oryza sativa). Three independent transgenic lines expressed sorghum RbcS at a high level, accounting for 30%, 44%, and 79% of the total RbcS. Rubisco was likely present as a chimera of sorghum and rice RbcS, and showed 1.32- to 1.50-fold higher k(cat) than in nontransgenic rice. Rubisco from transgenic lines showed a higher K(m) for CO(2) and slightly lower specificity for CO(2) than nontransgenic controls. These results suggest that Rubisco in rice transformed with sorghum RbcS partially acquires the catalytic properties of sorghum Rubisco. Rubisco content in transgenic lines was significantly increased over wild-type levels but Rubisco activation was slightly decreased. The expression of sorghum RbcS did not affect CO(2) assimilation rates under a range of CO(2) partial pressures. The J(max)/V(cmax) ratio was significantly lower in transgenic line compared to the nontransgenic plants. These observations suggest that the capacity of electron transport is not sufficient to support the increased Rubisco capacity in transgenic rice. Although the photosynthetic rate was not enhanced, the strategy presented here opens the way to engineering Rubisco for improvement of photosynthesis and productivity in the future.
Collapse
|
296
|
Gong X, Hong M, Wang Y, Zhou M, Cai J, Liu C, Gong S, Hong F. Cerium relieves the inhibition of photosynthesis of maize caused by manganese deficiency. Biol Trace Elem Res 2011; 141:305-16. [PMID: 20480399 DOI: 10.1007/s12011-010-8716-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 04/22/2010] [Indexed: 10/19/2022]
Abstract
It had been proved that manganese (Mn) deficiency could damage the photosynthesis of plants, and lanthanides could improve photosynthesis and greatly promote plant growth. However, the mechanisms on how Mn deficiency and cerium (Ce) addition affects the photosynthetic carbon reaction of plants under manganese deficiency are still poorly understood. In this study, the main aim was to determine Mn deficiency and cerium addition effects in key enzymes of CO(2) assimilation of maize. Maize plants were cultivated in Hoagland's solution. They were subjected to Mn deficiency and to Ce administered in the Mn-present Hoagland's media and Mn-deficient Hoagland's media. The growth condition, chlorophyll synthesis, and oxygen evolution were significantly destroyed by manganese deficiency, the activities of ribulose-1, 5-bisphosphate caroxylase/oxygenase (Rubisco), and Rubisco activase, and their genes expressions were inhibited by Mn deficiency. However, Ce treatment promoted the chlorophyll synthesis, oxygen evolution, and the activities of two key enzymes in CO(2) assimilation. Reverse transcription polymerase chain reaction was carried out, and the results showed that the mRNA expressions of Rubisco small subunit (rbcS), Rubisco large subunit (rbcL), and Rubisco activase subunit (rca) in the cerium-treated maize were obviously increased. One of the possible mechanisms of carbon reaction promoted by Ce is that the Ce treatment resulted in the enhancements of Rubisco and Rubisco activase mRNA amounts, the protein levels, and activities of Rubisco and Rubisco activase, thereby leading to the high rate of photosynthetic carbon reaction and enhancement of maize growth under Mn-deficient conditions. Together, the experimental study implied that Ce could partly substitute for magnesium and increase the oxidative stress-resistance of spinach chloroplast grown in Mn-deficiency conditions, but the mechanisms need further study.
Collapse
Affiliation(s)
- Xiaolan Gong
- Medical College of Soochow University, Suzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
297
|
Zhang XH, Webb J, Huang YH, Lin L, Tang RS, Liu A. Hybrid Rubisco of tomato large subunits and tobacco small subunits is functional in tobacco plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:480-8. [PMID: 21421395 DOI: 10.1016/j.plantsci.2010.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/07/2010] [Accepted: 11/09/2010] [Indexed: 05/08/2023]
Abstract
Biogenesis of functional ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in plants requires specific assembly in the chloroplast of the imported, cytosol-synthesized small subunits (SS) with the chloroplast-made large subunits (LS). Accumulating evidence indicates that chloroplasts (plastids) generally have a low tolerance for assembling foreign or modified Rubisco. To explore Rubisco engineering, we created two lines of transplastomic tobacco plants whose rbcL gene was replaced by tomato-derived rbcL: plant LLS2 with Rubisco composed of tobacco SS and Q437R LS and plant LLS4 with a hybrid Rubisco of tobacco SS and tomato LS (representing four substitutions of Y226F, A230T, S279T and Q437R from tobacco LS). Plant LLS2 exhibited similar phenotypes as the wild type. Plant LLS4 showed lower chlorophyll and Rubisco levels particularly in young emerging leaves, lower photosynthesis rates and biomass during early stages of development, but was able to reach reproductive maturity and somewhat wild type-like phenotype under ambient CO₂ condition. In vitro assays detected similar carboxylase activity and RuBP affinity in LLS2 and LLS4 plants as in wild type. Our studies demonstrated that tomato LS was sufficiently assembled with tobacco SS into functional Rubisco. The hybrid Rubisco of tomato LS and tobacco SS can drive photosynthesis that supports photoautotrophic growth and reproduction of tobacco plants under ambient CO₂ and light conditions. We discuss the effect of these residue substitutions on Rubisco activity and the possible attribution of chlorophyll deficiency to the in planta photosynthesis performance in the hybrid Rubisco plants.
Collapse
Affiliation(s)
- Xing-Hai Zhang
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | | | | | | | | | | |
Collapse
|
298
|
The Combination of Lectin Affinity Chromatography, Gel Electrophoresis and Mass Spectrometry in the Study of Plant Glycoproteome: Preliminary Insights. Chromatographia 2011. [DOI: 10.1007/s10337-010-1846-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
299
|
Dobreva MA, Frazier RA, Mueller-Harvey I, Clifton LA, Gea A, Green RJ. Binding of pentagalloyl glucose to two globular proteins occurs via multiple surface sites. Biomacromolecules 2011; 12:710-5. [PMID: 21250665 DOI: 10.1021/bm101341s] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction between pentagalloyl glucose (PGG) and two globular proteins, bovine serum albumin (BSA) and ribulose-1,5-bisphosphate carboxylase oxygenase (rubisco), was investigated by isothermal titration calorimetry (ITC). ITC data fit to a binding model consisting of two sets of multiple binding sites, which reveal similarities in the mode of binding of PGG to BSA and rubisco. In both cases, the interaction is characterized by a high number of binding sites, which suggests that binding occurs by a surface adsorption mechanism that leads to coating of the protein surface, which promotes aggregation and precipitation of the PGG-protein complex. This model was confirmed by turbidimetry analysis of the PGG-BSA interaction. Analysis of tryptophan fluorescence quenching during the interaction of PGG with BSA suggests that binding of PGG leads to some conformational changes that are energetically closer to the unfolded state of the BSA structure, because small red shifts in the resulting emission spectra were observed.
Collapse
Affiliation(s)
- Marina A Dobreva
- Chemistry and Biochemistry Laboratory, Animal Science Research Group, Department of Agriculture, University of Reading, P.O. Box 236, 1 Earley Gate, Reading, RG6 6AT, United Kingdom
| | | | | | | | | | | |
Collapse
|
300
|
Schwarte S, Tiedemann R. A gene duplication/loss event in the ribulose-1,5-bisphosphate-carboxylase/oxygenase (rubisco) small subunit gene family among accessions of Arabidopsis thaliana. Mol Biol Evol 2011; 28:1861-76. [PMID: 21220760 DOI: 10.1093/molbev/msr008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39), the most abundant protein in nature, catalyzes the assimilation of CO(2) (worldwide about 10(11) t each year) by carboxylation of ribulose-1,5-bisphosphate. It is a hexadecamer consisting of eight large and eight small subunits. Although the Rubisco large subunit (rbcL) is encoded by a single gene on the multicopy chloroplast genome, the Rubisco small subunits (rbcS) are encoded by a family of nuclear genes. In Arabidopsis thaliana, the rbcS gene family comprises four members, that is, rbcS-1a, rbcS-1b, rbcS-2b, and rbcS-3b. We sequenced all Rubisco genes in 26 worldwide distributed A. thaliana accessions. In three of these accessions, we detected a gene duplication/loss event, where rbcS-1b was lost and substituted by a duplicate of rbcS-2b (called rbcS-2b*). By screening 74 additional accessions using a specific polymerase chain reaction assay, we detected five additional accessions with this duplication/loss event. In summary, we found the gene duplication/loss in 8 of 100 A. thaliana accessions, namely, Bch, Bu, Bur, Cvi, Fei, Lm, Sha, and Sorbo. We sequenced an about 1-kb promoter region for all Rubisco genes as well. This analysis revealed that the gene duplication/loss event was associated with promoter alterations (two insertions of 450 and 850 bp, one deletion of 730 bp) in rbcS-2b and a promoter deletion (2.3 kb) in rbcS-2b* in all eight affected accessions. The substitution of rbcS-1b by a duplicate of rbcS-2b (i.e., rbcS-2b*) might be caused by gene conversion. All four Rubisco genes evolve under purifying selection, as expected for central genes of the highly conserved photosystem of green plants. We inferred a single positive selected site, a tyrosine to aspartic acid substitution at position 72 in rbcS-1b. Exactly the same substitution compromises carboxylase activity in the cyanobacterium Anacystis nidulans. In A. thaliana, this substitution is associated with an inferred recombination. Functional implications of the substitution remain to be evaluated.
Collapse
Affiliation(s)
- Sandra Schwarte
- Evolutionary Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|