251
|
Das D, Ellington B, Paul B, Marsh ENG. Mechanistic insights from reaction of α-oxiranyl-aldehydes with cyanobacterial aldehyde deformylating oxygenase. ACS Chem Biol 2014; 9:570-7. [PMID: 24313866 DOI: 10.1021/cb400772q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthesis of long-chain aliphatic hydrocarbons, which are derived from fatty acids, is widespread in Nature. The last step in this pathway involves the decarbonylation of fatty aldehydes to the corresponding alkanes or alkenes. In cyanobacteria, this is catalyzed by an aldehyde deformylating oxygenase. We have investigated the mechanism of this enzyme using substrates bearing an oxirane ring adjacent to the aldehyde carbon. The enzyme catalyzed the deformylation of these substrates to produce the corresponding oxiranes. Performing the reaction in D2O allowed the facial selectivity of proton addition to be examined by (1)H NMR spectroscopy. The proton is delivered with equal probability to either face of the oxirane ring, indicating the formation of an oxiranyl radical intermediate that is free to rotate during the reaction. Unexpectedly, the enzyme also catalyzes a side reaction in which oxiranyl-aldehydes undergo tandem deformylation to furnish alkanes two carbons shorter. We present evidence that this involves the rearrangement of the intermediate oxiranyl radical formed in the first step, resulting in aldehyde that is further deformylated in a second step. These observations provide support for a radical mechanism for deformylation and, furthermore, allow the lifetime of the radical intermediate to be estimated based on prior measurements of rate constants for the rearrangement of oxiranyl radicals.
Collapse
Affiliation(s)
- Debasis Das
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Benjamin Ellington
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bishwajit Paul
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - E. Neil G. Marsh
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
252
|
Petit J, Bres C, Just D, Garcia V, Mauxion JP, Marion D, Bakan B, Joubès J, Domergue F, Rothan C. Analyses of tomato fruit brightness mutants uncover both cutin-deficient and cutin-abundant mutants and a new hypomorphic allele of GDSL lipase. PLANT PHYSIOLOGY 2014; 164:888-906. [PMID: 24357602 PMCID: PMC3912114 DOI: 10.1104/pp.113.232645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/12/2013] [Indexed: 05/18/2023]
Abstract
The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants.
Collapse
|
253
|
Borisjuk N, Hrmova M, Lopato S. Transcriptional regulation of cuticle biosynthesis. Biotechnol Adv 2014; 32:526-40. [PMID: 24486292 DOI: 10.1016/j.biotechadv.2014.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/08/2014] [Accepted: 01/23/2014] [Indexed: 12/12/2022]
Abstract
Plant cuticle is the hydrophobic protection layer that covers aerial plant organs and plays a pivotal role during plant development and interactions of plants with the environment. The mechanical structure and chemical composition of cuticle lipids and other secondary metabolites vary considerably between plant species, and in response to environmental stimuli and stresses. As the cuticle plays an important role in responses of plants to major abiotic stresses such as drought and high salinity, close attention has been paid to molecular processes underlying the stress-induced biosynthesis of cuticle components. This review addresses the genetic networks responsible for cuticle formation and in particular highlights the role of transcription factors that regulate cuticle formation in response to abiotic stresses.
Collapse
Affiliation(s)
- Nikolai Borisjuk
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia.
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia.
| | - Sergiy Lopato
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
254
|
Ménard R, Verdier G, Ors M, Erhardt M, Beisson F, Shen WH. Histone H2B Monoubiquitination is Involved in the Regulation of Cutin and Wax Composition in Arabidopsis thaliana. ACTA ACUST UNITED AC 2014; 55:455-66. [DOI: 10.1093/pcp/pct182] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
255
|
ATP-Binding Cassette and Multidrug and Toxic Compound Extrusion Transporters in Plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:303-46. [DOI: 10.1016/b978-0-12-800255-1.00006-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
256
|
Abstract
To confer resistance against pathogens and pests in plants, typically dominant resistance genes are deployed. However, because resistance is based on recognition of a single pathogen-derived molecular pattern, these narrow-spectrum genes are usually readily overcome. Disease arises from a compatible interaction between plant and pathogen. Hence, altering a plant gene that critically facilitates compatibility could provide a more broad-spectrum and durable type of resistance. Here, such susceptibility (S) genes are reviewed with a focus on the mechanisms underlying loss of compatibility. We distinguish three groups of S genes acting during different stages of infection: early pathogen establishment, modulation of host defenses, and pathogen sustenance. The many examples reviewed here show that S genes have the potential to be used in resistance breeding. However, because S genes have a function other than being a compatibility factor for the pathogen, the side effects caused by their mutation demands a one-by-one assessment of their usefulness for application.
Collapse
|
257
|
Serrano M, Coluccia F, Torres M, L’Haridon F, Métraux JP. The cuticle and plant defense to pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:274. [PMID: 24982666 PMCID: PMC4056637 DOI: 10.3389/fpls.2014.00274] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/26/2014] [Indexed: 05/03/2023]
Abstract
The cuticle provides a physical barrier against water loss and protects against irradiation, xenobiotics, and pathogens. Components of the cuticle are perceived by invading fungi and activate developmental processes during pathogenesis. In addition, cuticle alterations of various types induce a syndrome of reactions that often results in resistance to necrotrophs. This article reviews the current knowledge on the role of the cuticle in relation to the perception of pathogens and activation of defenses.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Pierre Métraux
- *Correspondence: Jean-Pierre Métraux, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland e-mail:
| |
Collapse
|
258
|
Pu Y, Gao J, Guo Y, Liu T, Zhu L, Xu P, Yi B, Wen J, Tu J, Ma C, Fu T, Zou J, Shen J. A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus. BMC PLANT BIOLOGY 2013; 13:215. [PMID: 24330756 PMCID: PMC3881019 DOI: 10.1186/1471-2229-13-215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/05/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND The aerial parts of land plants are covered with cuticular waxes that limit non-stomatal water loss and gaseous exchange, and protect plants from ultraviolet radiation and pathogen attack. This is the first report on the characterization and genetic mapping of a novel dominant glossy mutant (BnaA.GL) in Brassica napus. RESULTS Transmission electron microscopy revealed that the cuticle ultrastructure of GL mutant leaf and stem were altered dramatically compared with that of wide type (WT). Scanning electron microscopy corroborated the reduction of wax on the leaf and stem surface. A cuticular wax analysis of the GL mutant leaves further confirmed the drastic decrease in the total wax content, and a wax compositional analysis revealed an increase in aldehydes but a severe decrease in alkanes, ketones and secondary alcohols. These results suggested a likely blockage of the decarbonylation step in the wax biosynthesis pathway. Genetic mapping narrowed the location of the BnaA.GL gene to the end of A9 chromosome. A single-nucleotide polymorphism (SNP) chip assay in combination with bulk segregant analysis (BSA) also located SNPs in the same region. Two SNPs, two single sequence repeat (SSR) markers and one IP marker were located on the flanking region of the BnaA.GL gene at a distance of 0.6 cM. A gene homologous to ECERIFERUM1 (CER1) was located in the mapped region. A cDNA microarray chip assay revealed coordinated down regulation of genes encoding enzymes of the cuticular wax biosynthetic pathway in the glossy mutant, with BnCER1 being one of the most severely suppressed genes. CONCLUSIONS Our results indicated that surface wax biosynthesis is broadly affected in the glossy mutant due to the suppression of the BnCER1 and other wax-related genes. These findings offer novel clues for elucidating the molecular basis of the glossy phenotype.
Collapse
Affiliation(s)
- Yuanyuan Pu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lixia Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jitao Zou
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0 W9, Canada
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
259
|
Reisberg EE, Hildebrandt U, Riederer M, Hentschel U. Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves. PLoS One 2013; 8:e78613. [PMID: 24223831 PMCID: PMC3818481 DOI: 10.1371/journal.pone.0078613] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/13/2013] [Indexed: 02/01/2023] Open
Abstract
The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed “core” community) while others were positively or negatively affected by the wax mutant phenotype (termed “plant line-specific“ community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria.
Collapse
Affiliation(s)
- Eva E. Reisberg
- University of Würzburg, Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, Würzburg, Germany
| | - Ulrich Hildebrandt
- University of Würzburg, Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, Würzburg, Germany
| | - Markus Riederer
- University of Würzburg, Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, Würzburg, Germany
| | - Ute Hentschel
- University of Würzburg, Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, Würzburg, Germany
- * E-mail:
| |
Collapse
|
260
|
Vishwanath SJ, Kosma DK, Pulsifer IP, Scandola S, Pascal S, Joubès J, Dittrich-Domergue F, Lessire R, Rowland O, Domergue F. Suberin-associated fatty alcohols in Arabidopsis: distributions in roots and contributions to seed coat barrier properties. PLANT PHYSIOLOGY 2013; 163:1118-32. [PMID: 24019425 PMCID: PMC3813638 DOI: 10.1104/pp.113.224410] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/04/2013] [Indexed: 05/18/2023]
Abstract
Suberin is found in a variety of tissues, such as root endoderms and periderms, storage tuber periderms, tree cork layer, and seed coats. It acts as a hydrophobic barrier to control the movement of water, gases, and solutes as well as an antimicrobial barrier. Suberin consists of polymerized phenolics, glycerol, and a variety of fatty acid derivatives, including primary fatty alcohols. We have conducted an in-depth analysis of the distribution of the C18:0 to C22:0 fatty alcohols in Arabidopsis (Arabidopsis thaliana) roots and found that only 20% are part of the root suberin polymer, together representing about 5% of its aliphatic monomer composition, while the remaining 80% are found in the nonpolymeric (soluble) fraction. Down-regulation of Arabidopsis FATTY ACYL REDUCTASE1 (FAR1), FAR4, and FAR5, which collectively produce the fatty alcohols found in suberin, reduced their levels by 70% to 80% in (1) the polymeric and nonpolymeric fractions from roots of tissue culture-grown plants, (2) the suberin-associated root waxes from 7-week-old soil-grown plants, and (3) the seed coat suberin polymer. By contrast, the other main monomers of suberin were not altered, indicating that reduced levels of fatty alcohols did not influence the suberin polymerization process. Nevertheless, the 75% reduction in total fatty alcohol and diol loads in the seed coat resulted in increased permeability to tetrazolium salts and a higher sensitivity to abscisic acid. These results suggest that fatty alcohols and diols play an important role in determining the functional properties of the seed coat suberin barrier.
Collapse
|
261
|
Marsh ENG, Waugh MW. Aldehyde Decarbonylases: Enigmatic Enzymes of Hydrocarbon Biosynthesis. ACS Catal 2013; 3. [PMID: 24319622 DOI: 10.1021/cs400637t] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- E. Neil G. Marsh
- Department of Chemistry and ‡Department of
Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Matthew W. Waugh
- Department of Chemistry and ‡Department of
Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
262
|
Active hydrocarbon biosynthesis and accumulation in a green alga, Botryococcus braunii (race A). EUKARYOTIC CELL 2013; 12:1132-41. [PMID: 23794509 DOI: 10.1128/ec.00088-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among oleaginous microalgae, the colonial green alga Botryococcus braunii accumulates especially large quantities of hydrocarbons. This accumulation may be achieved more by storage of lipids in the extracellular space rather than in the cytoplasm, as is the case for all other examined oleaginous microalgae. The stage of hydrocarbon synthesis during the cell cycle was determined by autoradiography. The cell cycle of B. braunii race A was synchronized by aminouracil treatment, and cells were taken at various stages in the cell cycle and cultured in a medium containing [(14)C]acetate. Incorporation of (14)C into hydrocarbons was detected. The highest labeling occurred just after septum formation, when it was about 2.6 times the rate during interphase. Fluorescent and electron microscopy revealed that new lipid accumulation on the cell surface occurred during at least two different growth stages and sites of cells. Lipid bodies in the cytoplasm were not prominent in interphase cells. These lipid bodies then increased in number, size, and inclusions, reaching maximum values just before the first lipid accumulation on the cell surface at the cell apex. Most of them disappeared from the cytoplasm concomitant with the second new accumulation at the basolateral region, where extracellular lipids continuously accumulated. The rough endoplasmic reticulum near the plasma membrane is prominent in B. braunii, and the endoplasmic reticulum was often in contact with both a chloroplast and lipid bodies in cells with increasing numbers of lipid bodies. We discuss the transport pathway of precursors of extracellular hydrocarbons in race A.
Collapse
|