251
|
Thornton V, Warden D, Talbot C, Mastana SS, Bandelow S, Hogervorst E. Modification of estrogen's association with Alzheimer's disease risk by genetic polymorphisms. Brain Res 2011; 1379:213-23. [PMID: 21211518 DOI: 10.1016/j.brainres.2010.12.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/23/2010] [Accepted: 12/23/2010] [Indexed: 11/17/2022]
Abstract
Contrasting effects of estrogen treatment on cognitive function and Alzheimer's disease (AD) risk have been reported. It may be that genetic factors modify these relations. In the present study, 696 participants from the Oxford Project to Investigate Memory and Ageing were included (355 AD cases, 341 controls). Those individuals with other types of dementia and those using hormone treatment had been excluded. Analyses controlled for body mass index, age at blood sampling, and education. Analyses of variance revealed main effects, but not an interaction, for apolipoprotein E (APOE) and Catechol-O-methyl transferase (COMT) genotypes on estradiol (E2) levels in men (p=0.003 and p=0.10, respectively), but not in women (p=0.82 and p=0.49, respectively). Men carrying the APOE ε4 allele had lower E2 levels, while those carrying the COMT Val/Val alleles had higher E2 levels compared to Met/Val (p<0.05) allele carriers. Higher estrone (E1) levels and carrying the APOE ε4 allele (but not COMT alone, or in combination with the APOE genotype) were independent risk factors for AD. Similar to earlier studies, the heterozygous COMT genotype (Met/Val) showed a synergistic effect with the APOE ε4 allele being non-significantly associated with lower cognitive function. In conclusion, the present study suggests that elevated E1 levels significantly increase AD risk in both men and women. However, interactions between APOE ε4 and genetic polymorphisms related to sex steroid metabolism and AD risk need to be further investigated.
Collapse
Affiliation(s)
- V Thornton
- Loughborough University, Loughborough, UK
| | | | | | | | | | | |
Collapse
|
252
|
Hogervorst E, Mursjid F, Priandini D, Setyawan H, Ismael RI, Bandelow S, Rahardjo TB. Borobudur revisited: soy consumption may be associated with better recall in younger, but not in older, rural Indonesian elderly. Brain Res 2010; 1379:206-12. [PMID: 21035431 DOI: 10.1016/j.brainres.2010.10.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
Previous reports have suggested that high frequent tofu consumption is associated with worse cognitive function in East Asian elderly. Some studies also found an increased risk of dementia with high tofu consumption in those older than 65years of age. Tofu and other soy products, such as tempeh, contain high levels of plant estrogens or isoflavones. This study revisited a rural Central Javanese population (56-97 years of age) who were covered by the Borobudur District Health Centers. Data on cognitive performance were available for n=142 participants. Results showed positive linear associations of weekly tofu (beta=.22, p<0.05) and tempeh (beta=.23, p<0.01) consumption with immediate recall, which were significant in those with an average age of 67 years. In those with an average age of 80 years, the earlier reported negative association of tofu with immediate recall was no longer significant. Lifestyle changes (reduction of tofu consumption after dissemination of results) or "healthy survivor effects" may have been responsible for this finding. These findings may be reminiscent of the "Window of Opportunity" theory, which suggests that estrogenic compounds can exert positive effects on verbal memory, but not in older men and women, when no or negative effects of these compounds on brain cells and cognition have been found. Long-term, placebo-controlled treatment studies should investigate whether tempeh, a fermented soybean product that also contains folate, can maintain cognitive function in middle-aged and elderly participants.
Collapse
|
253
|
Oophorectomy, menopause, estrogen treatment, and cognitive aging: clinical evidence for a window of opportunity. Brain Res 2010; 1379:188-98. [PMID: 20965156 DOI: 10.1016/j.brainres.2010.10.031] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/29/2010] [Accepted: 10/11/2010] [Indexed: 01/13/2023]
Abstract
The neuroprotective effects of estrogen have been demonstrated consistently in cellular and animal studies but the evidence in women remains conflicted. We explored the window of opportunity hypothesis in relation to cognitive aging and dementia. In particular, we reviewed existing literature, reanalyzed some of our data, and combined results graphically. Current evidence suggests that estrogen may have beneficial, neutral, or detrimental effects on the brain depending on age at the time of treatment, type of menopause (natural versus medically or surgically induced), or stage of menopause. The comparison of women who underwent bilateral oophorectomy with referent women provided evidence for a sizeable neuroprotective effect of estrogen before age 50 years. Several case-control studies and cohort studies also showed neuroprotective effects in women who received estrogen treatment (ET) in the early postmenopausal stage (most commonly at ages 50-60 years). The majority of women in those observational studies had undergone natural menopause and were treated for the relief of menopausal symptoms. However, recent clinical trials by the Women's Health Initiative showed that women who initiated ET alone or in combination with a progestin in the late postmenopausal stage (ages 65-79 years) experienced an increased risk of dementia and cognitive decline regardless of the type of menopause. The current conflicting data can be explained by the window of opportunity hypothesis suggesting that the neuroprotective effects of estrogen depend on age at the time of administration, type of menopause, and stage of menopause. Therefore, women who underwent bilateral oophorectomy before the onset of menopause or women who experienced premature or early natural menopause should be considered for hormonal treatment until approximately age 51 years.
Collapse
|
254
|
Daniel JM, Bohacek J. The critical period hypothesis of estrogen effects on cognition: Insights from basic research. Biochim Biophys Acta Gen Subj 2010; 1800:1068-76. [DOI: 10.1016/j.bbagen.2010.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 01/09/2010] [Accepted: 01/16/2010] [Indexed: 02/07/2023]
|
255
|
Decline in mitochondrial bioenergetics and shift to ketogenic profile in brain during reproductive senescence. Biochim Biophys Acta Gen Subj 2010; 1800:1121-6. [PMID: 20538040 DOI: 10.1016/j.bbagen.2010.06.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/30/2010] [Accepted: 06/02/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND We have previously demonstrated that mitochondrial bioenergetic deficits precede Alzheimer's pathology in the female triple transgenic Alzheimer's (3xTgAD) mouse model. Herein, we sought to determine the impact of reproductive senescence on mitochondrial function in the normal non-transgenic (nonTg) and 3xTgAD female mouse model of AD. METHODS Both nonTg and 3xTgAD female mice at 3, 6, 9, and 12 months of age were sacrificed and mitochondrial bioenergetic profile as well as oxidative stress markers were analyzed. RESULTS In both nonTg and 3xTgAD mice, reproductive senescence paralleled a significant decline in PDH, and Complex IV cytochrome c oxidase activity and mitochondrial respiration. During the reproductive senescence transition, both nonTg and 3xTgAD mice exhibited greater individual variability in bioenergetic parameters suggestive of divergent bioenergetic phenotypes. Following transition through reproductive senescence, enzymes required for long-chain fatty acid (HADHA) and ketone body (SCOT) metabolism were significantly increased and variability in cytochrome c oxidase (Complex IV) collapsed to cluster at a approximately 40% decline in both the nonTg and 3xTgAD brain which was indicative of alternative fuel generation with concomitant decline in ATP generation. CONCLUSIONS These data indicate that reproductive senescence in the normal nonTg female brain parallels the shift to ketogenic/fatty acid substrate phenotype with concomitant decline in mitochondrial function and exacerbation of bioenergetic deficits in the 3xTgAD brain. GENERAL SIGNIFICANCE These findings provide a plausible mechanism for increased life-time risk of AD in postmenopausal women and suggest an optimal window of opportunity to prevent or delay decline in bioenergetics during reproductive senescence.
Collapse
|
256
|
Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 2010; 62:155-98. [PMID: 20392807 PMCID: PMC2879914 DOI: 10.1124/pr.109.002071] [Citation(s) in RCA: 480] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The classic view of estrogen actions in the brain was confined to regulation of ovulation and reproductive behavior in the female of all mammalian species studied, including humans. Burgeoning evidence now documents profound effects of estrogens on learning, memory, and mood as well as neurodevelopmental and neurodegenerative processes. Most data derive from studies in females, but there is mounting recognition that estrogens play important roles in the male brain, where they can be generated from circulating testosterone by local aromatase enzymes or synthesized de novo by neurons and glia. Estrogen-based therapy therefore holds considerable promise for brain disorders that affect both men and women. However, as investigations are beginning to consider the role of estrogens in the male brain more carefully, it emerges that they have different, even opposite, effects as well as similar effects in male and female brains. This review focuses on these differences, including sex dimorphisms in the ability of estradiol to influence synaptic plasticity, neurotransmission, neurodegeneration, and cognition, which, we argue, are due in a large part to sex differences in the organization of the underlying circuitry. There are notable sex differences in the incidence and manifestations of virtually all central nervous system disorders, including neurodegenerative disease (Parkinson's and Alzheimer's), drug abuse, anxiety, and depression. Understanding the cellular and molecular basis of sex differences in brain physiology and responses to estrogen and estrogen mimics is, therefore, vitally important for understanding the nature and origins of sex-specific pathological conditions and for designing novel hormone-based therapeutic agents that will have optimal effectiveness in men or women.
Collapse
Affiliation(s)
- Glenda E Gillies
- Centre for Neuroscience, Department of Medicine, Hammersmith Hospital, Imperial College Faculty of Medicine, DuCane Road, London W12ONN, UK.
| | | |
Collapse
|
257
|
Hogervorst E, Bandelow S. Sex steroids to maintain cognitive function in women after the menopause: A meta-analyses of treatment trials. Maturitas 2010; 66:56-71. [DOI: 10.1016/j.maturitas.2010.02.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
|
258
|
Blalock EM, Grondin R, Chen KC, Thibault O, Thibault V, Pandya JD, Dowling A, Zhang Z, Sullivan P, Porter NM, Landfield PW. Aging-related gene expression in hippocampus proper compared with dentate gyrus is selectively associated with metabolic syndrome variables in rhesus monkeys. J Neurosci 2010; 30:6058-71. [PMID: 20427664 PMCID: PMC3155249 DOI: 10.1523/jneurosci.3956-09.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 02/15/2010] [Accepted: 03/21/2010] [Indexed: 11/21/2022] Open
Abstract
Age-dependent metabolic syndrome (MetS) is a well established risk factor for cardiovascular disease, but it also confers major risk for impaired cognition in normal aging or Alzheimer's disease (AD). However, little is known about the specific pathways mediating MetS-brain interactions. Here, we performed the first studies quantitatively linking MetS variables to aging changes in brain genome-wide expression and mitochondrial function. In six young adult and six aging female rhesus monkeys, we analyzed gene expression in two major hippocampal subdivisions critical for memory/cognitive function [hippocampus proper, or cornu ammonis (CA), and dentate gyrus (DG)]. Genes that changed with aging [aging-related genes (ARGs)] were identified in each region. Serum variables reflecting insulin resistance and dyslipidemia were used to construct a quantitative MetS index (MSI). This MSI increased with age and correlated negatively with hippocampal mitochondrial function (state III oxidation). More than 2000 ARGs were identified in CA and/or DG, in approximately equal numbers, but substantially more ARGs in CA than in DG were correlated selectively with the MSI. Pathways represented by MSI-correlated ARGs were determined from the Gene Ontology Database and literature. In particular, upregulated CA ARGs representing glucocorticoid receptor (GR), chromatin assembly/histone acetyltransferase, and inflammatory/immune pathways were closely associated with the MSI. These results suggest a novel model in which MetS is associated with upregulation of hippocampal GR-dependent transcription and epigenetic coactivators, contributing to decreased mitochondrial function and brain energetic dysregulation. In turn, these MSI-associated neuroenergetic changes may promote inflammation, neuronal vulnerability, and risk of cognitive impairment/AD.
Collapse
Affiliation(s)
- Eric M Blalock
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Hogervorst E, Matthews FE, Brayne C. Are optimal levels of testosterone associated with better cognitive function in healthy older women and men? Biochim Biophys Acta Gen Subj 2010; 1800:1145-52. [PMID: 20060437 DOI: 10.1016/j.bbagen.2009.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 12/04/2009] [Accepted: 12/31/2009] [Indexed: 12/01/2022]
Abstract
BACKGROUND Sex steroids can positively affect the brain and from this it would follow that high levels of sex steroids could be associated with better cognitive function in older men and women. METHODS This Healthy Ageing Study sample comprised of 521 older participants (51% women) without dementia at baseline, with an age range from 64 to 94 years. Testosterone and sex hormone binding globulin were measured using the automated Immulite 2000 and analyzed in association with baseline memory, global cognitive function and decline (assessed using the Mini-Mental Status Examination or MMSE) and controlling for potential confounds such as age, education, vascular disease, smoking, diabetes, thyroid function, and body mass index. RESULTS In healthy older men and women, optimal levels of testosterone were associated with better MMSE scores at baseline. Follow-up analyses indicated that in men, low testosterone levels (OR=.94, 95% CI=.88 to 1.00) were a risk factor for a sharp cognitive decline after 2 years, perhaps indicative of dementia. Associations were independent of covariates and baseline MMSE. Conversely, women at risk for a sharp drop in cognitive function showed some evidence for higher calculated free testosterone levels at baseline. CONCLUSIONS Results replicate earlier cross-sectional findings that high levels of sex steroids are not associated with better cognitive function in older people. In men, age accelerated endocrinological change could be associated with dementia pathology. GENERAL SIGNIFICANCE These data do not support increasing testosterone levels to prevent cognitive decline in men and women over 65 years of age.
Collapse
Affiliation(s)
- Eef Hogervorst
- Department of Human Sciences, Brockington Building, Loughborough University, Loughborough, UK.
| | | | | |
Collapse
|
260
|
Henderson VW, Brinton RD. Menopause and mitochondria: windows into estrogen effects on Alzheimer's disease risk and therapy. PROGRESS IN BRAIN RESEARCH 2010; 182:77-96. [PMID: 20541661 PMCID: PMC5776041 DOI: 10.1016/s0079-6123(10)82003-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabolic derangements and oxidative stress are early events in Alzheimer's disease pathogenesis. Multi-faceted effects of estrogens include improved cerebral metabolic profile and reduced oxidative stress through actions on mitochondria, suggesting that a woman's endogenous and exogenous estrogen exposures during midlife and in the late post-menopause might favourably influence Alzheimer risk and symptoms. This prediction finds partial support in the clinical literature. As expected, early menopause induced by oophorectomy may increase cognitive vulnerability; however, there is no clear link between age at menopause and Alzheimer risk in other settings, or between natural menopause and memory loss. Further, among older post-menopausal women, initiating estrogen-containing hormone therapy increases dementia risk and probably does not improve Alzheimer's disease symptoms. As suggested by the 'critical window' or 'healthy cell' hypothesis, better outcomes might be expected from earlier estrogen exposures. Some observational results imply that effects of hormone therapy on Alzheimer risk are indeed modified by age at initiation, temporal proximity to menopause, or a woman's health. However, potential methodological biases warrant caution in interpreting observational findings. Anticipated results from large, ongoing clinical trials [Early Versus Late Intervention Trial with Estradiol (ELITE), Kronos Early Estrogen Prevention Study (KEEPS)] will help settle whether midlife estrogen therapy improves midlife cognitive skills but not whether midlife estrogen exposures modify late-life Alzheimer risk. Estrogen effects on mitochondria adumbrate the potential relevance of estrogens to Alzheimer's disease. However, laboratory models are inexact embodiments of Alzheimer pathogenesis and progression, making it difficult to surmise net effects of estrogen exposures. Research needs include better predictors of adverse cognitive outcomes, biomarkers for risks associated with hormone therapy, and tools for monitoring brain function and disease progression.
Collapse
Affiliation(s)
- Victor W Henderson
- Department of Health Research & Policy (Epidemiology), Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
261
|
Meyer M, Gonzalez Deniselle MC, Garay LI, Monachelli GG, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF. Stage dependent effects of progesterone on motoneurons and glial cells of wobbler mouse spinal cord degeneration. Cell Mol Neurobiol 2010; 30:123-35. [PMID: 19693665 PMCID: PMC11498551 DOI: 10.1007/s10571-009-9437-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 07/20/2009] [Indexed: 12/13/2022]
Abstract
In the Wobbler mouse, a mutation in the Vps54 gene is accompanied by motoneuron degeneration and astrogliosis in the cervical spinal cord. Previous work has shown that these abnormalities are greatly attenuated by progesterone treatment of clinically afflicted Wobblers. However, whether progesterone is effective at all disease stages has not yet been tested. The present work used genotyped (wr/wr) Wobbler mice at three periods of the disease: early progressive (1-2 months), established (5-8 months) or late stages (12 months) and age-matched wildtype controls (NFR/NFR), half of which were implanted with a progesterone pellet (20 mg) for 18 days. In untreated Wobblers, degenerating vacuolated motoneurons were initially abundant, experienced a slight reduction at the established stage and dramatically diminished during the late period. In motoneurons, the cholinergic marker choline acetyltransferase (ChAT) was reduced at all stages of the Wobbler disease, whereas hyperexpression of the growth-associated protein (GAP43) mRNA preferentially occurred at the early progressive and established stages. Progesterone therapy significantly reduced motoneuron vacuolation, enhanced ChAT immunoreactive perikarya and reduced the hyperexpression of GAP43 during the early progressive and established stages. At all stage periods, untreated Wobblers showed high density of glial fibrillary acidic protein (GFAP)+ astrocytes and decreased number of glutamine synthase (GS) immunostained cells. Progesterone treatment down-regulated GFAP+ astrocytes and up-regulated GS+ cell number. These data reinforced the usefulness of progesterone to improve motoneuron and glial cell abnormalities of Wobbler mice and further showed that therapeutic benefit seems more effective at the early progressive and established periods, rather than on advance stages of spinal cord neurodegeneration.
Collapse
Affiliation(s)
- Maria Meyer
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Claudia Gonzalez Deniselle
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Laura I. Garay
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Gisella Gargiulo Monachelli
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Analia Lima
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Rachida Guennoun
- UMR788 Inserm and University Paris-Sud 11, Kremlin-Bicêtre, France
| | | | - Alejandro F. De Nicola
- Instituto de Biologia y Medicina Experimental-CONICET, Laboratorio de Bioquimica Neuroendócrina, Obligado 2490, 1428 Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
262
|
Association of the aromatase gene with Alzheimer's disease in women. Neurosci Lett 2010; 468:202-6. [DOI: 10.1016/j.neulet.2009.10.089] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 10/15/2009] [Accepted: 10/27/2009] [Indexed: 11/20/2022]
|
263
|
DonCarlos LL, Azcoitia I, Garcia-Segura LM. Neuroprotective actions of selective estrogen receptor modulators. Psychoneuroendocrinology 2009; 34 Suppl 1:S113-22. [PMID: 19447561 PMCID: PMC2794899 DOI: 10.1016/j.psyneuen.2009.04.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/20/2009] [Accepted: 04/20/2009] [Indexed: 12/13/2022]
Abstract
Decreasing levels of sex hormones with aging may have a negative impact on brain function, since this decrease is associated with the progression of neurodegenerative disorders, increased depressive symptoms and other psychological disturbances. Extensive evidence from animal studies indicates that sex steroids, in particular estradiol, are neuroprotective. However, the potential benefits of estradiol therapy for the brain are counterbalanced by negative, life-threatening risks in the periphery. A potential therapeutic alternative to promote neuroprotection is the use of selective estrogen receptor modulators (SERMs), which may be designed to act with tissue selectivity as estrogen receptor agonists in the brain and not in other organs. Currently available SERMs act not only with tissue selectivity, but also with cellular selectivity within the brain and differentially modulate the activation of microglia, astroglia and neurons. Finally, SERMs may promote the interaction of estrogen receptors with the neuroprotective signaling of growth factors, such as the phosphatidylinositol 3-kinase/glycogen synthase kinase 3 pathway.
Collapse
Affiliation(s)
- Lydia L. DonCarlos
- Department of Cell Biology, Neurobiology and Anatomy, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA. Tel: +1-7082164975; Fax: +1-7082163913; e-mail:
| | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain. Tel: +34-913944861, Fax: +34-913944981 e-mail:
| | - Luis M. Garcia-Segura
- Instituto Cajal, CSIC, E-28002 Madrid, Spain. Tel:+34-915854729; Fax: +34-915854754; e-mail:
| |
Collapse
|
264
|
Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2009; 106:14670-5. [PMID: 19667196 DOI: 10.1073/pnas.0903563106] [Citation(s) in RCA: 729] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction has been proposed to play a pivotal role in neurodegenerative diseases, including Alzheimer's disease (AD). To address whether mitochondrial dysfunction precedes the development of AD pathology, we conducted mitochondrial functional analyses in female triple transgenic Alzheimer's mice (3xTg-AD) and age-matched nontransgenic (nonTg). Mitochondrial dysfunction in the 3xTg-AD brain was evidenced by decreased mitochondrial respiration and decreased pyruvate dehydrogenase (PDH) protein level and activity as early as 3 months of age. 3xTg-AD mice also exhibited increased oxidative stress as manifested by increased hydrogen peroxide production and lipid peroxidation. Mitochondrial amyloid beta (Abeta) level in the 3xTg-AD mice was significantly increased at 9 months and temporally correlated with increased level of Abeta binding to alcohol dehydrogenase (ABAD). Embryonic neurons derived from 3xTg-AD mouse hippocampus exhibited significantly decreased mitochondrial respiration and increased glycolysis. Results of these analyses indicate that compromised mitochondrial function is evident in embryonic hippocampal neurons, continues unabated in females throughout the reproductive period, and is exacerbated during reproductive senescence. In nontransgenic control mice, oxidative stress was coincident with reproductive senescence and accompanied by a significant decline in mitochondrial function. Reproductive senescence in the 3xTg-AD mouse brain markedly exacerbated mitochondrial dysfunction. Collectively, the data indicate significant mitochondrial dysfunction occurs early in AD pathogenesis in a female AD mouse model. Mitochondrial dysfunction provides a plausible mechanistic rationale for the hypometabolism in brain that precedes AD diagnosis and suggests therapeutic targets for prevention of AD.
Collapse
|
265
|
Role of protein phosphatases and mitochondria in the neuroprotective effects of estrogens. Front Neuroendocrinol 2009; 30:93-105. [PMID: 19410596 PMCID: PMC2835549 DOI: 10.1016/j.yfrne.2009.04.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 12/15/2022]
Abstract
In the present treatise, we provide evidence that the neuroprotective and mito-protective effects of estrogens are inexorably linked and involve the ability of estrogens to maintain mitochondrial function during neurotoxic stress. This is achieved by the induction of nuclear and mitochondrial gene expression, the maintenance of protein phosphatases levels in a manner that likely involves modulation of the phosphorylation state of signaling kinases and mitochondrial pro- and anti-apoptotic proteins, and the potent redox/antioxidant activity of estrogens. These estrogen actions are mediated through a combination of estrogens receptor (ER)-mediated effects on nuclear and mitochondrial transcription of protein vital to mitochondrial function, ER-mediated, non-genomic signaling and non-ER-mediated effects of estrogens on signaling and oxidative stress. Collectively, these multifaceted, coordinated action of estrogens leads to their potency in protecting neurons from a wide variety of acute insults as well as chronic neurodegenerative processes.
Collapse
|
266
|
Arnold S, Beyer C. Neuroprotection by estrogen in the brain: the mitochondrial compartment as presumed therapeutic target. J Neurochem 2009; 110:1-11. [DOI: 10.1111/j.1471-4159.2009.06133.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
267
|
Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1540-70. [PMID: 19559056 DOI: 10.1016/j.bbamcr.2009.06.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/21/2022]
Abstract
There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17beta-estradiol (E(2)) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E(2)-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERalpha and ERbeta and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anti-cancer drug resistance in human breast cancer cells, neuroprotection for Alzheimer's disease and Parkinson's disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimens for the prevention or treatment of a wide variety of medical complications based on E(2)/ER-mediated MRC biogenesis pathway.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
268
|
Abstract
An increase in L-type voltage-gated calcium channel (LTCC) current is a prominent biomarker of brain aging and is believed to contribute to cognitive decline and vulnerability to neuropathologies. Studies examining age-related changes in LTCCs have focused primarily on males, although estrogen (17beta-estradiol, E2) affects calcium-dependent activities associated with cognition. Therefore, to better understand brain aging in females, the effects of chronic E2 replacement on LTCC current activity in hippocampal neurons of young and aged ovariectomized rats were determined. The zipper slice preparation was used to expose cornu ammonis 1 (CA1) pyramidal neurons for recording LTCC currents using the cell-attached patch-clamp technique. We found that an age-related increase in LTCC current in neurons from control animals was prevented by E2 treatment. In addition, in situ hybridization revealed that within stratum pyramidale of the CA1 area, mRNA expression of the Ca(v)1.2 LTCC subunit, but not the Ca(v)1.3 subunit, was decreased in aged E2-treated rats. Thus, the reported benefits of E2 on cognition and neuronal health may be attributed, at least in part, to its age-related decrease in LTCC current.
Collapse
|
269
|
Tiwari-Woodruff S, Voskuhl RR. Neuroprotective and anti-inflammatory effects of estrogen receptor ligand treatment in mice. J Neurol Sci 2009; 286:81-5. [PMID: 19442988 DOI: 10.1016/j.jns.2009.04.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/23/2009] [Accepted: 04/14/2009] [Indexed: 11/15/2022]
Abstract
Demyelination and neurodegeneration is a major contributor in the progression of disability in multiple sclerosis (MS). Thus, the development of therapies that are neuroprotective has elicited considerable interests. Estrogens and estrogen receptor (ER) ligand treatments are promising treatments to prevent MS-induced neurodegeneration and a multicenter phase II clinical trial of estriol as a beneficial therapy in MS is underway. Here, we discuss studies performed in our laboratory that examined the effects of ER ligands in the inflammatory/demyelinating disorder experimental autoimmune encephalomyelitis (EAE), a model of MS. Administration of estriol or 17beta-estradiol reduced clinical severity and this clinical disease improvement was associated with favorable changes in cytokine production. There was a significant decrease of neuronal pathology in gray matter along with myelin and axon preservation in white matter of spinal cords of mice with EAE. In subsequent experiments, we contrasted the results of ERalpha versus ERbeta ligand treatment. While ERalpha ligand treatment was anti-inflammatory, ERbeta ligand treatment was not. ERbeta ligand treatment nevertheless reduced demyelination and preserved axon numbers in white matter and prevented neuronal abnormalities in gray matter. Clinically, ERalpha ligand treatment abrogated the disease at the onset, while ERbeta ligand treatment had no effect at disease onset, but promoted recovery. Thus, unlike ERalpha ligand treatment, ERbeta ligand treatment was protective at the level of the target organ, independent of anti-inflammatory effects in the peripheral immune system. ERbeta ligand treatment should be considered as a potential neuroprotective agent for MS and other neurodegenerative diseases, particularly since breast and uterine cancer are mediated through ERalpha.
Collapse
Affiliation(s)
- Seema Tiwari-Woodruff
- Department of Neurology, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
270
|
Brinton RD. Estrogen-induced plasticity from cells to circuits: predictions for cognitive function. Trends Pharmacol Sci 2009; 30:212-22. [PMID: 19299024 DOI: 10.1016/j.tips.2008.12.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 12/03/2008] [Accepted: 12/05/2008] [Indexed: 01/29/2023]
Abstract
Controversy regarding estrogen action in the brain remains at the forefront of basic, translational and clinical science for women's health. Here, I provide an integrative analysis of estrogen-inducible plasticity and posit it as a strategy for predicting cognitive domains affected by estrogen in addition to sources of variability. Estrogen enhancement of plasticity is evidenced by increases in neurogenesis, neural network connectivity and synaptic transmission. In parallel, estrogen increases glucose transport, aerobic glycolysis and mitochondrial function to provide the ATP necessary to sustain increased energetic demand. The pattern of plasticity predicts that estrogen would preferentially affect cognitive tasks of greater complexity, temporal demand and associative challenge. Thus, estrogen deprivation should be associated with decrements in these functions. Estrogen regulation of plasticity and bioenergetics provides a framework for predicting estrogen-dependent cognitive functions while also identifying sources of variability and potential biomarkers for identifying women appropriate for hormone therapy.
Collapse
Affiliation(s)
- Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy Pharmaceutical Sciences Center, Los Angeles, CA 90033, USA.
| |
Collapse
|