251
|
Lindle JM, Dunlop MJ. Performing selections under dynamic conditions for synthetic biology applications. Integr Biol (Camb) 2016; 8:556-63. [PMID: 26758547 DOI: 10.1039/c5ib00286a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the design of synthetic circuits and metabolic networks becomes more complex it is often difficult to know a priori which parameters and design choices will result in a desired phenotype. To counter this, rational design can be complemented by library-based approaches where diversity is introduced and then coupled with screening or selection methods. Here, we used a model of competitive growth to show that selection can rapidly identify library variants with near-optimal phenotypes. Many synthetic biology applications require phenotypes that balance multiple objectives, such as responding to more than one chemical signal. In addition, desired traits may be time-dependent, for example changing with the growth phase. By applying dynamic inputs to the selection, we show that it is possible to select for traits that satisfy multiple goals. Furthermore, we demonstrate that the underlying diversity in a library is heavily influenced by the initial circuit design. Overall, our findings argue that rational synthetic circuit design, coupled with diversity generation and dynamic selection are powerful tools for many synthetic biology applications.
Collapse
Affiliation(s)
- Jessica M Lindle
- School of Engineering, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|
252
|
A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng 2016; 33:19-27. [DOI: 10.1016/j.ymben.2015.10.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/27/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022]
|
253
|
Pyne M, Narcross L, Fossati E, Bourgeois L, Burton E, Gold N, Martin V. Reconstituting Plant Secondary Metabolism in Saccharomyces cerevisiae for Production of High-Value Benzylisoquinoline Alkaloids. Methods Enzymol 2016; 575:195-224. [DOI: 10.1016/bs.mie.2016.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
254
|
Ledesma-Amaro R, Nicaud JM. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res 2016; 61:40-50. [DOI: 10.1016/j.plipres.2015.12.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
255
|
Jakočiūnas T, Jensen MK, Keasling JD. CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 2015; 34:44-59. [PMID: 26707540 DOI: 10.1016/j.ymben.2015.12.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/29/2015] [Accepted: 12/10/2015] [Indexed: 12/19/2022]
Abstract
One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing with special emphasis on their application for metabolic engineering of yeast and bacteria. Also, examples of how nuclease-deficient Cas9 has been applied for RNA-guided transcriptional regulation of target genes will be reviewed, as well as tools available for computer-aided design of guide-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering.
Collapse
Affiliation(s)
- Tadas Jakočiūnas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering University of California, Berkeley, CA, USA
| |
Collapse
|
256
|
Laughery MF, Hunter T, Brown A, Hoopes J, Ostbye T, Shumaker T, Wyrick JJ. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Yeast 2015; 32:711-20. [PMID: 26305040 PMCID: PMC4715497 DOI: 10.1002/yea.3098] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/10/2015] [Accepted: 08/18/2015] [Indexed: 01/19/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology is an important tool for genome editing because the Cas9 endonuclease can induce targeted DNA double-strand breaks. Targeting of the DNA break is typically controlled by a single-guide RNA (sgRNA), a chimeric RNA containing a structural segment important for Cas9 binding and a 20mer guide sequence that hybridizes to the genomic DNA target. Previous studies have demonstrated that CRISPR-Cas9 technology can be used for efficient, marker-free genome editing in Saccharomyces cerevisiae. However, introducing the 20mer guide sequence into yeast sgRNA expression vectors often requires cloning procedures that are complex, time-consuming and/or expensive. To simplify this process, we have developed a new sgRNA expression cassette with internal restriction enzyme sites that permit rapid, directional cloning of 20mer guide sequences. Here we describe a flexible set of vectors based on this design for cloning and expressing sgRNAs (and Cas9) in yeast using different selectable markers. We anticipate that the Cas9-sgRNA expression vector with the URA3 selectable marker (pML104) will be particularly useful for genome editing in yeast, since the Cas9 machinery can be easily removed by counter-selection using 5-fluoro-orotic acid (5-FOA) following successful genome editing. The availability of new vectors that simplify and streamline the technical steps required for guide sequence cloning should help accelerate the use of CRISPR-Cas9 technology in yeast genome editing.
Collapse
Affiliation(s)
- Marian F. Laughery
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Tierra Hunter
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Alexander Brown
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - James Hoopes
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Travis Ostbye
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Taven Shumaker
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
257
|
CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods. Biochim Biophys Acta Rev Cancer 2015; 1856:234-43. [DOI: 10.1016/j.bbcan.2015.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/26/2015] [Accepted: 09/29/2015] [Indexed: 01/30/2023]
|
258
|
Regulatory RNA-assisted genome engineering in microorganisms. Curr Opin Biotechnol 2015; 36:85-90. [DOI: 10.1016/j.copbio.2015.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/18/2015] [Accepted: 08/09/2015] [Indexed: 01/05/2023]
|
259
|
Hasunuma T, Ishii J, Kondo A. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown. Curr Opin Chem Biol 2015; 29:1-9. [DOI: 10.1016/j.cbpa.2015.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 12/31/2022]
|
260
|
Cress BF, Trantas EA, Ververidis F, Linhardt RJ, Koffas MAG. Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways. Curr Opin Biotechnol 2015; 36:205-14. [DOI: 10.1016/j.copbio.2015.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/31/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022]
|
261
|
Jakočiu̅nas T, Rajkumar AS, Zhang J, Arsovska D, Rodriguez A, Jendresen CB, Skjødt ML, Nielsen AT, Borodina I, Jensen MK, Keasling JD. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae. ACS Synth Biol 2015; 4:1226-34. [PMID: 25781611 DOI: 10.1021/acssynbio.5b00007] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Homologous recombination (HR) in Saccharomyces cerevisiae has been harnessed for both plasmid construction and chromosomal integration of foreign DNA. Still, native HR machinery is not efficient enough for complex and marker-free genome engineering required for modern metabolic engineering. Here, we present a method for marker-free multiloci integration of in vivo assembled DNA parts. By the use of CRISPR/Cas9-mediated one-step double-strand breaks at single, double and triple integration sites we report the successful in vivo assembly and chromosomal integration of DNA parts. We call our method CasEMBLR and validate its applicability for genome engineering and cell factory development in two ways: (i) introduction of the carotenoid pathway from 15 DNA parts into three targeted loci, and (ii) creation of a tyrosine production strain using ten parts into two loci, simultaneously knocking out two genes. This method complements and improves the current set of tools available for genome engineering in S. cerevisiae.
Collapse
Affiliation(s)
- Tadas Jakočiu̅nas
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Arun S. Rajkumar
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jie Zhang
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dushica Arsovska
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Angelica Rodriguez
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christian Bille Jendresen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Mette L. Skjødt
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Alex T. Nielsen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Irina Borodina
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michael K. Jensen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jay D. Keasling
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
262
|
Fletcher E, Krivoruchko A, Nielsen J. Industrial systems biology and its impact on synthetic biology of yeast cell factories. Biotechnol Bioeng 2015; 113:1164-70. [PMID: 26524089 DOI: 10.1002/bit.25870] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/01/2015] [Accepted: 10/28/2015] [Indexed: 02/04/2023]
Abstract
Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eugene Fletcher
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Anastasia Krivoruchko
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970, Hørsholm, Denmark.
| |
Collapse
|
263
|
Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK. Progress and challenges in improving the nutritional quality of rice (Oryza sativaL.). Crit Rev Food Sci Nutr 2015; 57:2455-2481. [DOI: 10.1080/10408398.2015.1084992] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Deep Shikha Birla
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Kapil Malik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Manish Sainger
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Darshna Chaudhary
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ranjana Jaiwal
- Department of Zoology, Maharshi Dayanand University, Rohtak, India
| | - Pawan K. Jaiwal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
264
|
Development of biosensors and their application in metabolic engineering. Curr Opin Chem Biol 2015; 28:1-8. [DOI: 10.1016/j.cbpa.2015.05.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/04/2015] [Accepted: 05/14/2015] [Indexed: 01/30/2023]
|
265
|
Ng CY, Khodayari A, Chowdhury A, Maranas CD. Advances in de novo strain design using integrated systems and synthetic biology tools. Curr Opin Chem Biol 2015; 28:105-14. [DOI: 10.1016/j.cbpa.2015.06.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/13/2015] [Accepted: 06/21/2015] [Indexed: 11/17/2022]
|
266
|
Bao Z, Cobb RE, Zhao H. Accelerated genome engineering through multiplexing. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 8:5-21. [PMID: 26394307 DOI: 10.1002/wsbm.1319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 12/27/2022]
Abstract
Throughout the biological sciences, the past 15 years have seen a push toward the analysis and engineering of biological systems at the organism level. Given the complexity of even the simplest organisms, though, to elicit a phenotype of interest often requires genotypic manipulation of several loci. By traditional means, sequential editing of genomic targets requires a significant investment of time and labor, as the desired editing event typically occurs at a very low frequency against an overwhelming unedited background. In recent years, the development of a suite of new techniques has greatly increased editing efficiency, opening up the possibility for multiple editing events to occur in parallel. Termed as multiplexed genome engineering, this approach to genome editing has greatly expanded the scope of possible genome manipulations in diverse hosts, ranging from bacteria to human cells. The enabling technologies for multiplexed genome engineering include oligonucleotide-based and nuclease-based methodologies, and their application has led to the great breadth of successful examples described in this review. While many technical challenges remain, there also exists a multiplicity of opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- Zehua Bao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan E Cobb
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemistry, Department of Bioengineering, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
267
|
Strucko T, Magdenoska O, Mortensen UH. Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production. Metab Eng Commun 2015; 2:99-108. [PMID: 34150513 PMCID: PMC8193238 DOI: 10.1016/j.meteno.2015.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/29/2015] [Accepted: 09/03/2015] [Indexed: 11/26/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is a widely used eukaryotic model organism and a key cell factory for production of biofuels and wide range of chemicals. From the broad palette of available yeast strains, the most popular are those derived from laboratory strain S288c and the industrially relevant CEN.PK strain series. Importantly, in recent years these two strains have been subjected to comparative "-omics" analyzes pointing out significant genotypic and phenotypic differences. It is therefore possible that the two strains differ significantly with respect to their potential as cell factories for production of specific compounds. To examine this possibility, we have reconstructed a de novo vanillin-β-glucoside pathway in an identical manner in S288c and CEN.PK strains. Characterization of the two resulting strains in two standard conditions revealed that the S288c background strain produced up to 10-fold higher amounts of vanillin-β-glucoside compared to CEN.PK. This study demonstrates that yeast strain background may play a major role in the outcome of newly developed cell factories for production of a given product.
Collapse
Affiliation(s)
- Tomas Strucko
- Department of Systems Biology, Technical University of Denmark, 2800Kgs Lyngby, Denmark
| | - Olivera Magdenoska
- Department of Systems Biology, Technical University of Denmark, 2800Kgs Lyngby, Denmark
| | - Uffe H Mortensen
- Department of Systems Biology, Technical University of Denmark, 2800Kgs Lyngby, Denmark
| |
Collapse
|
268
|
Rugbjerg P, Myling-Petersen N, Sommer MOA. Flexible metabolic pathway construction using modular and divisible selection gene regulators. Metab Eng 2015; 31:189-97. [PMID: 26303342 DOI: 10.1016/j.ymben.2015.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 01/09/2023]
Abstract
Genetic selections are important to biological engineering. Although selectable traits are limited, currently each trait only permits simultaneous introduction of a single DNA fragment. Complex pathway and strain construction however depends on rapid, combinatorial introduction of many genes that encode putative pathway candidates and homologs. To triple the utility of existing selection genes, we have developed divisible selection in Saccharomyces cerevisiae. Here, independent DNA fragments can be introduced and selected for simultaneously using a set of split hybrid transcription factors composed of parts from Escherichia coli LexA and Herpes simplex VP16 to regulate one single selectable phenotype of choice. Only when co-expressed, these split hybrid transcription factors promote transcription of a selection gene, causing tight selection of transformants containing all desired DNA fragments. Upon transformation, 94% of the selected colonies resulted strictly from transforming all three modules based on ARS/CEN plasmids. Similarly when used for chromosome integration, 95% of the transformants contained all three modules. The divisible selection system acts dominantly and thus expands selection gene utility from one to three without any genomic pre-modifications of the strain. We demonstrate the approach by introducing the fungal rubrofusarin polyketide pathway at a gene load of 11 kb distributed on three different plasmids, using a single selection trait and one yeast transformation step. By tripling the utility of existing selection genes, the employment of divisible selection improves flexibility and freedom in the strain engineering process.
Collapse
Affiliation(s)
- Peter Rugbjerg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark.
| | - Nils Myling-Petersen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark.
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark.
| |
Collapse
|
269
|
White biotechnology: State of the art strategies for the development of biocatalysts for biorefining. Biotechnol Adv 2015; 33:1653-70. [PMID: 26303096 DOI: 10.1016/j.biotechadv.2015.08.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022]
Abstract
White biotechnology is a term that is now often used to describe the implementation of biotechnology in the industrial sphere. Biocatalysts (enzymes and microorganisms) are the key tools of white biotechnology, which is considered to be one of the key technological drivers for the growing bioeconomy. Biocatalysts are already present in sectors such as the chemical and agro-food industries, and are used to manufacture products as diverse as antibiotics, paper pulp, bread or advanced polymers. This review proposes an original and global overview of highly complementary fields of biotechnology at both enzyme and microorganism level. A certain number of state of the art approaches that are now being used to improve the industrial fitness of biocatalysts particularly focused on the biorefinery sector are presented. The first part deals with the technologies that underpin the development of industrial biocatalysts, notably the discovery of new enzymes and enzyme improvement using directed evolution techniques. The second part describes the toolbox available by the cell engineer to shape the metabolism of microorganisms. And finally the last part focuses on the 'omic' technologies that are vital for understanding and guide microbial engineering toward more efficient microbial biocatalysts. Altogether, these techniques and strategies will undoubtedly help to achieve the challenging task of developing consolidated bioprocessing (i.e. CBP) readily available for industrial purpose.
Collapse
|
270
|
Petrovič U. Next-generation biofuels: a new challenge for yeast. Yeast 2015; 32:583-93. [DOI: 10.1002/yea.3082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 11/11/2022] Open
Affiliation(s)
- Uroš Petrovič
- Jožef Stefan Institute; Department of Molecular and Biomedical Sciences; Ljubljana Slovenia
| |
Collapse
|
271
|
Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH. A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi. PLoS One 2015; 10:e0133085. [PMID: 26177455 PMCID: PMC4503723 DOI: 10.1371/journal.pone.0133085] [Citation(s) in RCA: 412] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/22/2015] [Indexed: 11/19/2022] Open
Abstract
The number of fully sequenced fungal genomes is rapidly increasing. Since genetic tools are poorly developed for most filamentous fungi, it is currently difficult to employ genetic engineering for understanding the biology of these fungi and to fully exploit them industrially. For that reason there is a demand for developing versatile methods that can be used to genetically manipulate non-model filamentous fungi. To facilitate this, we have developed a CRISPR-Cas9 based system adapted for use in filamentous fungi. The system is simple and versatile, as RNA guided mutagenesis can be achieved by transforming a target fungus with a single plasmid. The system currently contains four CRISPR-Cas9 vectors, which are equipped with commonly used fungal markers allowing for selection in a broad range of fungi. Moreover, we have developed a script that allows identification of protospacers that target gene homologs in multiple species to facilitate introduction of common mutations in different filamentous fungi. With these tools we have performed RNA-guided mutagenesis in six species of which one has not previously been genetically engineered. Moreover, for a wild-type Aspergillus aculeatus strain, we have used our CRISPR Cas9 system to generate a strain that contains an AACU_pyrG marker and demonstrated that the resulting strain can be used for iterative gene targeting.
Collapse
Affiliation(s)
- Christina S. Nødvig
- Eukaryotic Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| | - Jakob B. Nielsen
- Eukaryotic Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| | - Martin E. Kogle
- Eukaryotic Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| | - Uffe H. Mortensen
- Eukaryotic Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| |
Collapse
|
272
|
Ronda C, Maury J, Jakočiunas T, Jacobsen SAB, Germann SM, Harrison SJ, Borodina I, Keasling JD, Jensen MK, Nielsen AT. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb Cell Fact 2015; 14:97. [PMID: 26148499 PMCID: PMC4492099 DOI: 10.1186/s12934-015-0288-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/22/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND One of the bottlenecks in production of biochemicals and pharmaceuticals in Saccharomyces cerevisiae is stable and homogeneous expression of pathway genes. Integration of genes into the genome of the production organism is often a preferred option when compared to expression from episomal vectors. Existing approaches for achieving stable simultaneous genome integrations of multiple DNA fragments often result in relatively low integration efficiencies and furthermore rely on the use of selection markers. RESULTS Here, we have developed a novel method, CrEdit (CRISPR/Cas9 mediated genome Editing), which utilizes targeted double strand breaks caused by CRISPR/Cas9 to significantly increase the efficiency of homologous integration in order to edit and manipulate genomic DNA. Using CrEdit, the efficiency and locus specificity of targeted genome integrations reach close to 100% for single gene integration using short homology arms down to 60 base pairs both with and without selection. This enables direct and cost efficient inclusion of homology arms in PCR primers. As a proof of concept, a non-native β-carotene pathway was reconstructed in S. cerevisiae by simultaneous integration of three pathway genes into individual intergenic genomic sites. Using longer homology arms, we demonstrate highly efficient and locus-specific genome integration even without selection with up to 84% correct clones for simultaneous integration of three gene expression cassettes. CONCLUSIONS The CrEdit approach enables fast and cost effective genome integration for engineering of S. cerevisiae. Since the choice of the targeting sites is flexible, CrEdit is a powerful tool for diverse genome engineering applications.
Collapse
Affiliation(s)
- Carlotta Ronda
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Jérôme Maury
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Tadas Jakočiunas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Simo Abdessamad Baallal Jacobsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Susanne Manuela Germann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Scott James Harrison
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Michael Krogh Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| |
Collapse
|
273
|
Kavšček M, Stražar M, Curk T, Natter K, Petrovič U. Yeast as a cell factory: current state and perspectives. Microb Cell Fact 2015; 14:94. [PMID: 26122609 PMCID: PMC4486425 DOI: 10.1186/s12934-015-0281-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is one of the oldest and most frequently used microorganisms in biotechnology with successful applications in the production of both bulk and fine chemicals. Yet, yeast researchers are faced with the challenge to further its transition from the old workhorse to a modern cell factory, fulfilling the requirements for next generation bioprocesses. Many of the principles and tools that are applied for this development originate from the field of synthetic biology and the engineered strains will indeed be synthetic organisms. We provide an overview of the most important aspects of this transition and highlight achievements in recent years as well as trends in which yeast currently lags behind. These aspects include: the enhancement of the substrate spectrum of yeast, with the focus on the efficient utilization of renewable feedstocks, the enhancement of the product spectrum through generation of independent circuits for the maintenance of redox balances and biosynthesis of common carbon building blocks, the requirement for accurate pathway control with improved genome editing and through orthogonal promoters, and improvement of the tolerance of yeast for specific stress conditions. The causative genetic elements for the required traits of the future yeast cell factories will be assembled into genetic modules for fast transfer between strains. These developments will benefit from progress in bio-computational methods, which allow for the integration of different kinds of data sets and algorithms, and from rapid advancement in genome editing, which will enable multiplexed targeted integration of whole heterologous pathways. The overall goal will be to provide a collection of modules and circuits that work independently and can be combined at will, depending on the individual conditions, and will result in an optimal synthetic host for a given production process.
Collapse
Affiliation(s)
- Martin Kavšček
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/II, 8010, Graz, Austria.
| | - Martin Stražar
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
| | - Tomaž Curk
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
| | - Klaus Natter
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/II, 8010, Graz, Austria.
| | - Uroš Petrovič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
274
|
Lee JS, Grav LM, Lewis NE, Faustrup Kildegaard H. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnol J 2015; 10:979-94. [PMID: 26058577 DOI: 10.1002/biot.201500082] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/10/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used production host for therapeutic proteins. With the recent emergence of CHO genome sequences, CHO cell line engineering has taken on a new aspect through targeted genome editing. The bacterial clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system enables rapid, easy and efficient engineering of mammalian genomes. It has a wide range of applications from modification of individual genes to genome-wide screening or regulation of genes. Facile genome editing using CRISPR/Cas9 empowers researchers in the CHO community to elucidate the mechanistic basis behind high level production of proteins and product quality attributes of interest. In this review, we describe the basis of CRISPR/Cas9-mediated genome editing and its application for development of next generation CHO cell factories while highlighting both future perspectives and challenges. As one of the main drivers for the CHO systems biology era, genome engineering with CRISPR/Cas9 will pave the way for rational design of CHO cell factories.
Collapse
Affiliation(s)
- Jae Seong Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, CA, USA
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.
| |
Collapse
|
275
|
CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun 2015; 2:13-22. [PMID: 34150504 PMCID: PMC8193243 DOI: 10.1016/j.meteno.2015.03.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/21/2015] [Accepted: 03/11/2015] [Indexed: 11/24/2022] Open
Abstract
There is a demand to develop 3rd generation biorefineries that integrate energy production with the production of higher value chemicals from renewable feedstocks. Here, robust and stress-tolerant industrial strains of Saccharomyces cerevisiae will be suitable production organisms. However, their genetic manipulation is challenging, as they are usually diploid or polyploid. Therefore, there is a need to develop more efficient genetic engineering tools. We applied a CRISPR–Cas9 system for genome editing of different industrial strains, and show simultaneous disruption of two alleles of a gene in several unrelated strains with the efficiency ranging between 65% and 78%. We also achieved simultaneous disruption and knock-in of a reporter gene, and demonstrate the applicability of the method by designing lactic acid-producing strains in a single transformation event, where insertion of a heterologous gene and disruption of two endogenous genes occurred simultaneously. Our study provides a foundation for efficient engineering of industrial yeast cell factories. We developed CRISPR–Cas9-based system for gene disruptions in industrial yeast. We showed high rate of disruption efficiency in unrelated industrial strains. Gene knock-in may be performed simultaneously with gene disruption. Use of the described Cas9-based system results in marker-free stable genetic modifications. The method was applied for single-step construction of lactic acid-producing strains.
Collapse
Key Words
- Biorefineries
- CRISPR–Cas9
- CRISPR–Cas9, clustered regularly interspaced short palindromic repeats–CRISPR-associated endonuclease 9
- Chemical production
- DSB, double strand break
- GOI, gene of interest
- Genome editing
- HDR, homology-directed repair
- HR, homologous recombination
- Industrial yeast
- NHEJ, non-homologous end joining
- PAM, protospacer adjacent motif
- PI, propidium iodide
- SNPs, single nucleotide polymorphisms
- TALENs, transcription activator-like effector nucleases
- USER, uracil-specific excision reaction
- ZFNs, zinc finger nucleases
- crRNA, CRISPR RNA
- gRNA, guide RNA
- tracrRNA, trans-activating RNA
Collapse
|
276
|
Fidan O, Zhan J. Recent advances in engineering yeast for pharmaceutical protein production. RSC Adv 2015. [DOI: 10.1039/c5ra13003d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Currently available systems and synthetic biology tools can be applied to yeast engineering for improved biopharmaceutical protein production.
Collapse
Affiliation(s)
- Ozkan Fidan
- Department of Biological Engineering
- Utah State University
- Logan
- USA
| | - Jixun Zhan
- Department of Biological Engineering
- Utah State University
- Logan
- USA
| |
Collapse
|
277
|
H McArthur IV G, P Nanjannavar P, H Miller E, S Fong S. Integrative metabolic engineering. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.3.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|