251
|
Abstract
Recent clinical success has underscored the potential for immunotherapy based on the adoptive cell transfer (ACT) of engineered T lymphocytes to mediate dramatic, potent, and durable clinical responses. This success has led to the broader evaluation of engineered T-lymphocyte-based adoptive cell therapy to treat a broad range of malignancies. In this review, we summarize concepts, successes, and challenges for the broader development of this promising field, focusing principally on lessons gleaned from immunological principles and clinical thought. We present ACT in the context of integrating T-cell and tumor biology and the broader systemic immune response.
Collapse
Affiliation(s)
- Marco Ruella
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
252
|
Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 2014; 257:107-26. [PMID: 24329793 DOI: 10.1111/imr.12131] [Citation(s) in RCA: 379] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Investigators developed chimeric antigen receptors (CARs) for expression on T cells more than 25 years ago. When the CAR is derived from an antibody, the resultant cell should combine the desirable targeting features of an antibody (e.g. lack of requirement for major histocompatibility complex recognition, ability to recognize non-protein antigens) with the persistence, trafficking, and effector functions of a T cell. This article describes how the past two decades have seen a crescendo of research which has now begun to translate these potential benefits into effective treatments for patients with cancer. We describe the basic design of CARs, describe how antigenic targets are selected, and the initial clinical experience with CAR-T cells. Our review then describes our own and other investigators' work aimed at improving the function of CARs and reviews the clinical studies in hematological and solid malignancies that are beginning to exploit these approaches. Finally, we show the value of adding additional engineering features to CAR-T cells, irrespective of their target, to render them better suited to function in the tumor environment, and discuss how the safety of these heavily modified cells may be maintained.
Collapse
Affiliation(s)
- Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | | | | | | |
Collapse
|
253
|
Cieri N, Mastaglio S, Oliveira G, Casucci M, Bondanza A, Bonini C. Adoptive immunotherapy with genetically modified lymphocytes in allogeneic stem cell transplantation. Immunol Rev 2014; 257:165-80. [PMID: 24329796 DOI: 10.1111/imr.12130] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hematopoietic stem cell transplantation from a healthy donor (allo-HSCT) represents the most potent form of cellular adoptive immunotherapy to treat malignancies. In allo-HSCT, donor T cells are double edge-swords: highly potent against residual tumor cells, but potentially highly toxic, and responsible for graft versus host disease (GVHD), a major clinical complication of transplantation. Gene transfer technologies coupled with current knowledge on cancer immunology have generated a wide range of approaches aimed at fostering the immunological response to cancer cells, while avoiding or controlling GVHD. In this review, we discuss cell and gene therapy approaches currently tested in preclinical models and in clinical trials.
Collapse
Affiliation(s)
- Nicoletta Cieri
- University Vita-Salute San Raffaele, Milan, Italy; Experimental Hematology Unit, Division of Regenerative Medicine, Stem Cells and Gene Therapy, PIBIC, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
254
|
Hegde M, Moll AJ, Byrd TT, Louis CU, Ahmed N. Cellular immunotherapy for pediatric solid tumors. Cytotherapy 2014; 17:3-17. [PMID: 25082406 DOI: 10.1016/j.jcyt.2014.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 01/09/2023]
Abstract
Substantial progress has been made in the treatment of pediatric solid tumors over the past 4 decades. However, children with metastatic and or recurrent disease continue to do poorly despite the aggressive multi-modality conventional therapies. The increasing understanding of the tumor biology and the interaction between the tumor and the immune system over the recent years have led to the development of novel immune-based therapies as alternative options for some of these high-risk malignancies. The safety and anti-tumor efficacy of various tumor vaccines and tumor-antigen specific immune cells are currently being investigated for various solid tumors. In early clinical trials, most of these cellular therapies have been well tolerated and have shown promising clinical responses. Although substantial work is being done in this field, the available knowledge for pediatric tumors remains limited. We review the contemporary early phase cell-based immunotherapy efforts for pediatric solid tumors and discuss the rationale and the challenges thereof.
Collapse
Affiliation(s)
- Meenakshi Hegde
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.
| | - Alexander J Moll
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Tiara T Byrd
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Chrystal U Louis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Nabil Ahmed
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
255
|
Nishio N, Diaconu I, Liu H, Cerullo V, Caruana I, Hoyos V, Bouchier-Hayes L, Savoldo B, Dotti G. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res 2014; 74:5195-205. [PMID: 25060519 DOI: 10.1158/0008-5472.can-14-0697] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The clinical efficacy of chimeric antigen receptor (CAR)-redirected T cells remains marginal in solid tumors compared with leukemias. Failures have been attributed to insufficient T-cell migration and to the highly immunosuppressive milieu of solid tumors. To overcome these obstacles, we have combined CAR-T cells with an oncolytic virus armed with the chemokine RANTES and the cytokine IL15, reasoning that the modified oncolytic virus will both have a direct lytic effect on infected malignant cells and facilitate migration and survival of CAR-T cells. Using neuroblastoma as a tumor model, we found that the adenovirus Ad5Δ24 exerted a potent, dose-dependent, cytotoxic effect on tumor cells, whereas CAR-T cells specific for the tumor antigen GD2 (GD2.CAR-T cells) were not damaged. When used in combination, Ad5Δ24 directly accelerated the caspase pathways in tumor cells exposed to CAR-T cells, whereas the intratumoral release of both RANTES and IL15 attracted CAR-T cells and promoted their local survival, respectively, increasing the overall survival of tumor-bearing mice. These preclinical data support the use of this innovative biologic platform of immunotherapy for solid tumors. Cancer Res; 74(18); 5195-205. ©2014 AACR.
Collapse
Affiliation(s)
- Nobuhiro Nishio
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Iulia Diaconu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Hao Liu
- Biostatistics Shared Resource, Baylor College of Medicine Dan L. Duncan Cancer Center, Houston, Texas
| | - Vincenzo Cerullo
- ImmunoViroTherapy Lab Centre for Drug research and Division of Pharmaceutical Biosciences, Faculty of Pharmacy University of Helsinki, Helsinki, Finland
| | - Ignazio Caruana
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | | | - Barbara Savoldo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas. Departments of Pediatrics, Texas Children's Hospital, Houston, Texas
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas. Department of Immunology, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
256
|
Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood 2014; 124:2824-33. [PMID: 25049283 DOI: 10.1182/blood-2013-11-541235] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Advances in the design of chimeric antigen receptors (CARs) have improved the antitumor efficacy of redirected T cells. However, functional heterogeneity of CAR T cells limits their therapeutic potential and is associated with toxicity. We proposed that CAR expression in Vα24-invariant natural killer T (NKT) cells can build on the natural antitumor properties of these cells while their restriction by monomorphic CD1d limits toxicity. Primary human NKT cells were engineered to express a CAR against the GD2 ganglioside (CAR.GD2), which is highly expressed by neuroblastoma (NB). We compared CAR.GD2 constructs that encoded the CD3ζ chain alone, with CD28, 4-1BB, or CD28 and 4-1BB costimulatory endodomains. CAR.GD2 expression rendered NKT cells highly cytotoxic against NB cells without affecting their CD1d-dependent reactivity. We observed a striking T helper 1-like polarization of NKT cells by 4-1BB-containing CARs. Importantly, expression of both CD28 and 4-1BB endodomains in the CAR.GD2 enhanced in vivo persistence of NKT cells. These CAR.GD2 NKT cells effectively localized to the tumor site had potent antitumor activity, and repeat injections significantly improved the long-term survival of mice with metastatic NB. Unlike T cells, CAR.GD2 NKT cells did not induce graft-versus-host disease. These results establish the potential of NKT cells to serve as a safe and effective platform for CAR-directed cancer immunotherapy.
Collapse
|
257
|
T cells redirected to interleukin-13Rα2 with interleukin-13 mutein--chimeric antigen receptors have anti-glioma activity but also recognize interleukin-13Rα1. Cytotherapy 2014; 16:1121-31. [PMID: 24841514 DOI: 10.1016/j.jcyt.2014.02.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND AIMS Outcomes for patients with glioblastoma remain poor despite aggressive multimodal therapy. Immunotherapy with genetically modified T cells expressing chimeric antigen receptors (CARs) targeting interleukin (IL) 13Rα2, human epidermal growth factor receptor 2, epidermal growth factor variant III or erythropoietin-producing hepatocellular carcinoma A2 has shown promise for the treatment of glioma in preclinical models. On the basis of IL13Rα2 immunotoxins that contain IL13 molecules with one or two amino acid substitutions (IL13 muteins) to confer specificity to IL13Rα2, investigators have constructed CARS with IL13 muteins as antigen-binding domains. Whereas the specificity of IL13 muteins in the context of immunotoxins is well characterized, limited information is available for CAR T cells. METHODS We constructed four second-generation CARs with IL13 muteins with one or two amino acid substitutions, and evaluated the effector function of IL13-mutein CAR T cells in vitro and in vivo. RESULTS T cells expressing all four CARs recognized IL13Rα1 or IL13Rα2 recombinant protein in contrast to control protein (IL4R) as judged by interferon-γ production. IL13 protein produced significantly more IL2, indicating that IL13 mutein-CAR T cells have a higher affinity to IL13Rα2 than to IL13Rα1. In cytotoxicity assays, CAR T cells killed IL13Rα1- and/or IL13Rα2-positive cells in contrast to IL13Rα1- and IL13Rα2-negative controls. Although we observed no significant differences between IL13 mutein-CAR T cells in vitro, only T cells expressing IL13 mutein-CARs with an E13K amino acid substitution had anti-tumor activity in vivo that resulted in a survival advantage of treated animals. CONCLUSIONS Our study highlights that the specificity/avidity of ligands is context-dependent and that evaluating CAR T cells in preclinical animal model is critical to assess their potential benefit.
Collapse
|
258
|
Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol Ther 2014; 22:1018-28. [PMID: 24686242 DOI: 10.1038/mt.2014.41] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/24/2014] [Indexed: 12/16/2022] Open
Abstract
The adoptive transfer of regulatory T cells (Tregs) offers a promising strategy to combat pathologies that are characterized by aberrant immune activation, including graft rejection and autoinflammatory diseases. Expression of a chimeric antigen receptor (CAR) gene in Tregs redirects them to the site of autoimmune activity, thereby increasing their suppressive efficiency while avoiding systemic immunosuppression. Since carcinoembryonic antigen (CEA) has been shown to be overexpressed in both human colitis and colorectal cancer, we treated CEA-transgenic mice that were induced to develop colitis with CEA-specific CAR Tregs. Two disease models were employed: T-cell-transfer colitis as well as the azoxymethane-dextran sodium sulfate model for colitis-associated colorectal cancer. Systemically administered CEA-specific (but not control) CAR Tregs accumulated in the colons of diseased mice. In both model systems, CEA-specific CAR Tregs suppressed the severity of colitis compared to control Tregs. Moreover, in the azoxymethane-dextran sodium sulfate model, CEA-specific CAR Tregs significantly decreased the subsequent colorectal tumor burden. Our data demonstrate that CEA-specific CAR Tregs exhibit a promising potential in ameliorating ulcerative colitis and in hindering colorectal cancer development. Collectively, this study provides a proof of concept for the therapeutic potential of CAR Tregs in colitis patients as well as in other autoimmune inflammatory disorders.
Collapse
|
259
|
Kharfan-Dabaja MA, Wierda WG, Cooper LJN. Immunotherapy for chronic lymphocytic leukemia in the era of BTK inhibitors. Leukemia 2014; 28:507-17. [PMID: 24157582 DOI: 10.1038/leu.2013.311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 02/03/2023]
Abstract
Understanding the pathogenesis of CLL has uncovered a plethora of novel targets for human application of monoclonal antibodies, engineered T cells, or inhibitors of signal transduction pathways. The B-cell receptor signaling pathway is being actively explored as a therapeutic target in CLL. Ibrutinib, an inhibitor of Bruton's tyrosine kinase is showing impressive responses in heavily pre-treated high-risk CLL, whether alone or in combination with MoAbs or chemotherapy. Other key components of the BCR pathway, namely PI3K-δ, are also being targeted with novel therapies with promising results as well. Future trials would likely evaluate ibrutinib in the front-line setting. Moreover, improvements in allogeneic HCT mostly by continuing to reduce associated toxicity as well as incorporating cellular therapies such as autologous CLL tumor vaccines, among others, will continue to expand. This is also the case for the next generation of chimeric antigen receptor therapy for CLL once genetically modified T cells are available at broad scale and with improved efficacy. As our ability to further refine and integrate these therapies continues to improve, and we gain further knowledge from gene sequencing, we anticipate that treatment algorithms will continue to be revised to a more personalized approach to treat this disease with improved efficacy and devoid of unnecessary toxicity.
Collapse
Affiliation(s)
- M A Kharfan-Dabaja
- 1] Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center, Tampa, FL, USA [2] Department of Oncologic Sciences, H. Lee Moffitt Cancer Center, University of South Florida College of Medicine, Tampa, FL, USA
| | - W G Wierda
- Department of Leukemia, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - L J N Cooper
- 1] Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA [2] Division of Pediatrics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| |
Collapse
|
260
|
Hillerdal V, Ramachandran M, Leja J, Essand M. Systemic treatment with CAR-engineered T cells against PSCA delays subcutaneous tumor growth and prolongs survival of mice. BMC Cancer 2014; 14:30. [PMID: 24438073 PMCID: PMC3899402 DOI: 10.1186/1471-2407-14-30] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 01/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adoptive transfer of T cells genetically engineered with a chimeric antigen receptor (CAR) has successfully been used to treat both chronic and acute lymphocytic leukemia as well as other hematological cancers. Experimental therapy with CAR-engineered T cells has also shown promising results on solid tumors. The prostate stem cell antigen (PSCA) is a protein expressed on the surface of prostate epithelial cells as well as in primary and metastatic prostate cancer cells and therefore a promising target for immunotherapy of prostate cancer. METHODS We developed a third-generation CAR against PSCA including the CD28, OX-40 and CD3 ζ signaling domains. T cells were transduced with a lentivirus encoding the PSCA-CAR and evaluated for cytokine production (paired Student's t-test), proliferation (paired Student's t-test), CD107a expression (paired Student's t-test) and target cell killing in vitro and tumor growth and survival in vivo (Log-rank test comparing Kaplan-Meier survival curves). RESULTS PSCA-CAR T cells exhibit specific interferon (IFN)-γ and interleukin (IL)-2 secretion and specific proliferation in response to PSCA-expressing target cells. Furthermore, the PSCA-CAR-engineered T cells efficiently kill PSCA-expressing tumor cells in vitro and systemic treatment with PSCA-CAR-engineered T cells significantly delays subcutaneous tumor growth and prolongs survival of mice. CONCLUSIONS Our data confirms that PSCA-CAR T cells may be developed for treatment of prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University SE-75185 Uppsala, Sweden.
| |
Collapse
|
261
|
Cell transfer therapy for cancer: past, present, and future. J Immunol Res 2014; 2014:525913. [PMID: 24741604 PMCID: PMC3987872 DOI: 10.1155/2014/525913] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/26/2013] [Indexed: 12/30/2022] Open
Abstract
Cell transfer therapy for cancer has made a rapid progress recently and the immunotherapy has been recognized as the fourth anticancer modality after operation, chemotherapy, and radiotherapy. Lymphocytes used for cell transfer therapy include dendritic cells, natural killer (NK) cells, and T lymphocytes such as tumor-infiltrating lymphocytes (TILs) and cytotoxic T lymphocytes (CTLs). In vitro activated or engineered immune cells can traffic to cancer tissues to elicit persistent antitumor immune response which is very important especially after immunosuppressive treatments such as chemotherapy. In this review, we overviewed recent advances in the exploration of dendritic cells, NK cells, and T cells for the treatment of human cancer cells.
Collapse
|
262
|
DeRenzo C, Gottschalk S. Genetically modified T-cell therapy for osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:323-40. [PMID: 24924183 DOI: 10.1007/978-3-319-04843-7_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
T-cell immunotherapy may offer an approach to improve outcomes for patients with osteosarcoma, who fail current therapies. In addition, it has the potential to reduce treatment-related complications for all patients. Generating tumor-specific T cells with conventional antigen presenting cells ex vivo is time consuming and often results in T-cell products with a low frequency of tumor-specific T cells. In addition, the generated T cells remain sensitive to the immunosuppressive tumor microenvironment. Genetic modification of T cells is one strategy to overcome these limitations. For example, T cells can be genetically modified to render them antigen specific, resistant to inhibitory factors, or increase their ability to home to tumor sites. Most genetic modification strategies have only been evaluated in preclinical models, however early phase clinical trials are in progress. In this chapter we review the current status of gene-modified T-cell therapy with special focus on osteosarcoma, highlighting potential antigenic targets, preclinical and clinical studies, and strategies to improve current T-cell therapy approaches.
Collapse
Affiliation(s)
- Christopher DeRenzo
- Center for Cell and Gene Therapy, Houston Methodist, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX, 77030, USA
| | | |
Collapse
|
263
|
Dudek RM, Chuang Y, Leonard JN. Engineered cell-based therapies: a vanguard of design-driven medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 844:369-91. [PMID: 25480651 DOI: 10.1007/978-1-4939-2095-2_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Engineered cell-based therapies are uniquely capable of performing sophisticated therapeutic functions in vivo, and this strategy is yielding promising clinical benefits for treating cancer. In this review, we discuss key opportunities and challenges for engineering customized cellular functions using cell-based therapy for cancer as a representative case study. We examine the historical development of chimeric antigen receptor (CAR) therapies as an illustration of the engineering design cycle. We also consider the potential roles that the complementary disciplines of systems biology and synthetic biology may play in realizing safe and effective treatments for a broad range of patients and diseases. In particular, we discuss how systems biology may facilitate both fundamental research and clinical translation, and we describe how the emerging field of synthetic biology is providing novel modalities for building customized cellular functions to overcome existing clinical barriers. Together, these approaches provide a powerful set of conceptual and experimental tools for transforming information into understanding, and for translating understanding into novel therapeutics to establish a new framework for design-driven medicine.
Collapse
Affiliation(s)
- Rachel M Dudek
- Northwestern University, 2145 Sheridan Road, Technological Institute, Rm. E136, Evanston, IL, 60208-3120, USA,
| | | | | |
Collapse
|
264
|
T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: Towards tumor-directed oligoclonal T cell therapy. Biochim Biophys Acta Gen Subj 2014; 1840:378-86. [DOI: 10.1016/j.bbagen.2013.09.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/22/2013] [Accepted: 09/20/2013] [Indexed: 01/01/2023]
|
265
|
Krebs S, Rodríguez-Cruz TG, Derenzo C, Gottschalk S. Genetically modified T cells to target glioblastoma. Front Oncol 2013; 3:322. [PMID: 24427741 PMCID: PMC3876295 DOI: 10.3389/fonc.2013.00322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/17/2013] [Indexed: 01/21/2023] Open
Abstract
Despite advances in surgical procedures, radiation, and chemotherapy the outcome for patients with glioblastoma (GBM) remains poor. While GBM cells express antigens that are potentially recognized by T cells, GBMs prevent the induction of GBM-specific immune responses by creating an immunosuppressive microenvironment. The advent of gene transfer has allowed the rapid generation of antigen-specific T cells as well as T cells with enhanced effector function. Here we review recent advances in the field of cell therapy with genetically modified T cells and how these advances might improve outcomes for patients with GBM in the future.
Collapse
Affiliation(s)
- Simone Krebs
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine , Houston, TX , USA ; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine , Houston, TX , USA ; Department of Pediatrics, Baylor College of Medicine , Houston, TX , USA
| | - Tania G Rodríguez-Cruz
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine , Houston, TX , USA ; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine , Houston, TX , USA ; Department of Pediatrics, Baylor College of Medicine , Houston, TX , USA
| | - Christopher Derenzo
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine , Houston, TX , USA ; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine , Houston, TX , USA ; Department of Pediatrics, Baylor College of Medicine , Houston, TX , USA
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine , Houston, TX , USA ; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine , Houston, TX , USA ; Department of Pediatrics, Baylor College of Medicine , Houston, TX , USA ; Department of Pathology and Immunology, Baylor College of Medicine , Houston, TX , USA
| |
Collapse
|
266
|
Daniotti JL, Vilcaes AA, Torres Demichelis V, Ruggiero FM, Rodriguez-Walker M. Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches. Front Oncol 2013; 3:306. [PMID: 24392350 PMCID: PMC3867695 DOI: 10.3389/fonc.2013.00306] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/03/2013] [Indexed: 12/18/2022] Open
Abstract
Altered networks of gene regulation underlie many pathologies, including cancer. There are several proteins in cancer cells that are turned either on or off, which dramatically alters the metabolism and the overall activity of the cell, with the complex machinery of enzymes involved in the metabolism of glycolipids not being an exception. The aberrant glycosylation of glycolipids on the surface of the majority of cancer cells, associated with increasing evidence about the functional role of these molecules in a number of cellular physiological pathways, has received considerable attention as a convenient immunotherapeutic target for cancer treatment. This has resulted in the development of a substantial number of passive and active immunotherapies, which have shown promising results in clinical trials. More recently, antibodies to glycolipids have also emerged as an attractive tool for the targeted delivery of cytotoxic agents, thereby providing a rationale for future therapeutic interventions in cancer. This review first summarizes the cellular and molecular bases involved in the metabolic pathway and expression of glycolipids, both in normal and tumor cells, paying particular attention to sialosylated glycolipids (gangliosides). The current strategies in the battle against cancer in which glycolipids are key players are then described.
Collapse
Affiliation(s)
- Jose L Daniotti
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Aldo A Vilcaes
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Vanina Torres Demichelis
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Fernando M Ruggiero
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Macarena Rodriguez-Walker
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
267
|
Ohno M, Ohkuri T, Kosaka A, Tanahashi K, June CH, Natsume A, Okada H. Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts. J Immunother Cancer 2013; 1:21. [PMID: 24829757 PMCID: PMC4019893 DOI: 10.1186/2051-1426-1-21] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/05/2013] [Indexed: 01/09/2023] Open
Abstract
Background Expression of miR-17-92 enhances T-cell survival and interferon (IFN)-γ production. We previously reported that miR-17-92 is down-regulated in T-cells derived from glioblastoma (GBM) patients. We hypothesized that transgene-derived co-expression of miR17-92 and chimeric antigen receptor (CAR) in T-cells would improve the efficacy of adoptive transfer therapy against GBM. Methods We constructed novel lentiviral vectors for miR-17-92 (FG12-EF1a-miR-17/92) and a CAR consisting of an epidermal growth factor receptor variant III (EGFRvIII)-specific, single-chain variable fragment (scFv) coupled to the T-cell receptor CD3ζ chain signaling module and co-stimulatory motifs of CD137 (4-1BB) and CD28 in tandem (pELNS-3C10-CAR). Human T-cells were transduced with these lentiviral vectors, and their anti-tumor effects were evaluated both in vitro and in vivo. Results CAR-transduced T-cells (CAR-T-cells) exhibited potent, antigen-specific, cytotoxic activity against U87 GBM cells that stably express EGFRvIII (U87-EGFRvIII) and, when co-transduced with miR-17-92, exhibited improved survival in the presence of temozolomide (TMZ) compared with CAR-T-cells without miR-17-92 co-transduction. In mice bearing intracranial U87-EGFRvIII xenografts, CAR-T-cells with or without transgene-derived miR-17-92 expression demonstrated similar levels of therapeutic effect without demonstrating any uncontrolled growth of CAR-T-cells. However, when these mice were re-challenged with U87-EGFRvIII cells in their brains, mice receiving co-transduced CAR-T-cells exhibited improved protection compared with mice treated with CAR-T-cells without miR-17-92 co-transduction. Conclusion These results warrant the development of novel CAR-T-cell strategies that incorporate miR-17-92 to improve therapeutic potency, especially in patients with GBM.
Collapse
Affiliation(s)
- Masasuke Ohno
- Brain Tumor Program, University of Pittsburgh Cancer Institute, 1.19E Research Pavilion at the Hillman Cancer Center, 5117 Centre Ave, Pittsburgh, PA 15213, USA ; Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan ; Department of Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Takayuki Ohkuri
- Brain Tumor Program, University of Pittsburgh Cancer Institute, 1.19E Research Pavilion at the Hillman Cancer Center, 5117 Centre Ave, Pittsburgh, PA 15213, USA ; Department of Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Akemi Kosaka
- Brain Tumor Program, University of Pittsburgh Cancer Institute, 1.19E Research Pavilion at the Hillman Cancer Center, 5117 Centre Ave, Pittsburgh, PA 15213, USA ; Department of Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Kuniaki Tanahashi
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hideho Okada
- Brain Tumor Program, University of Pittsburgh Cancer Institute, 1.19E Research Pavilion at the Hillman Cancer Center, 5117 Centre Ave, Pittsburgh, PA 15213, USA ; Department of Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA ; Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA ; Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
268
|
Chimeric antigen receptor modified T cell therapy for B cell malignancies. Int J Hematol 2013; 99:132-40. [PMID: 24338745 DOI: 10.1007/s12185-013-1490-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 12/25/2022]
Abstract
Adoptive transfer of tumor-reactive T cells into cancer patients with the intent of inducing a cytotoxic anti-tumor effector response and durable immunity has long been proposed as a novel therapy for a broad range of malignancies; however, local and systemic tolerance mechanisms have hindered the generation of effective T cell therapies and limited the clinical efficacy of this approach in cancer patients. Chimeric antigen receptors (CARs) are recombinant receptors that comprise an extracellular antigen-targeting domain in conjunction with one or more intracellular T cell signaling domains that can be introduced into T cells by genetic modification to redirect their specificity to the CAR-targeted antigen. Administration of CD19-specific CAR-modified T cells that target B cell non-Hodgkin lymphomas and leukemia has been remarkably effective in recent clinical trials, energizing the field and stimulating new efforts to identify the critical parameters of CAR design and T cell engineering that are necessary for effective cancer therapy.
Collapse
|
269
|
Geldres C, Savoldo B, Hoyos V, Caruana I, Zhang M, Yvon E, Del Vecchio M, Creighton CJ, Ittmann M, Ferrone S, Dotti G. T lymphocytes redirected against the chondroitin sulfate proteoglycan-4 control the growth of multiple solid tumors both in vitro and in vivo. Clin Cancer Res 2013; 20:962-71. [PMID: 24334762 DOI: 10.1158/1078-0432.ccr-13-2218] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Because of its high expression on various types of tumors and its restricted distribution in normal tissues, chondroitin sulfate proteoglycan-4 (CSPG4) represents an attractive target for the antibody-based therapy of several solid tumors. We tested whether T cells transduced with a CSPG4-specific chimeric antigen receptor (CAR) inhibited the growth of CSPG4-expressing tumor cells both in vitro and in vivo. EXPERIMENTAL DESIGN We first independently validated by immunohistochemistry (IHC) the expression of CSPG4 in an extensive panel of tumor arrays and normal tissues as well as queried public gene expression profiling datasets of human tumors. We constructed a second-generation CSPG4-specific CAR also encoding the CD28 costimulatory endodomain (CAR.CSPG4). We then evaluated human T lymphocytes expressing this CAR for their ex vivo and in vivo antitumor activity against a broad panel of solid tumors. RESULTS IHC showed that CSPG4 is highly expressed in melanoma, breast cancer, head and neck squamous cell carcinoma (HNSCC), and mesothelioma. In addition, in silico analysis of microarray expression data identified other important potential tumors expressing this target, including glioblastoma, clear cell renal carcinoma, and sarcomas. T lymphocytes genetically modified with a CSPG4-CAR controlled tumor growth in vitro and in vivo in NSG mice engrafted with human melanoma, HNSCC, and breast carcinoma cell lines. CONCLUSIONS CAR.CSPG4-redirected T cells should provide an effective treatment modality for a variety of solid tumors.
Collapse
Affiliation(s)
- Claudia Geldres
- Authors' Affiliations: Center for Cell and Gene Therapy; Departments of Pediatrics, Pathology and Immunology, and Medicine, Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine; Houston Methodist Hospital and Texas Children's Hospital; Department of Surgery, Michael E. DeBakey Department of Veterans Affairs Medical Center; Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas; and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG. Isolation of Tumor Antigen-Specific Single-Chain Variable Fragments Using a Chimeric Antigen Receptor Bicistronic Retroviral Vector in a Mammalian Screening Protocol. Hum Gene Ther Methods 2013; 24:381-91. [DOI: 10.1089/hgtb.2013.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Grazyna Lipowska-Bhalla
- Clinical Immune and Molecular Monitoring Laboratory, Clinical & Experimental Pharmacology Group, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust, M20 4BX, Manchester, United Kingdom
| | - David E. Gilham
- Clinical and Experimental Immunotherapy, Department of Medical Oncology, Paterson Institute for Cancer Research, Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust, M20 4BX, Manchester, United Kingdom
| | - Robert E. Hawkins
- Clinical and Experimental Immunotherapy, Department of Medical Oncology, Paterson Institute for Cancer Research, Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust, M20 4BX, Manchester, United Kingdom
| | - Dominic G. Rothwell
- Clinical Immune and Molecular Monitoring Laboratory, Clinical & Experimental Pharmacology Group, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust, M20 4BX, Manchester, United Kingdom
| |
Collapse
|
271
|
Gill S, Porter DL. CAR-modified anti-CD19 T cells for the treatment of B-cell malignancies: rules of the road. Expert Opin Biol Ther 2013; 14:37-49. [PMID: 24261468 DOI: 10.1517/14712598.2014.860442] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Malignancies of the B lymphocyte or its precursor include B-cell non-Hodgkin lymphoma as well as chronic and acute lymphoid leukemias. These are among the most common hematologic malignancies and many patients with B-cell malignancies are incurable. Although most patients initially respond to first-line treatment, relapse is frequent and is associated with a poor prognosis. T cells that are genetically engineered to express chimeric antigen receptors (CARs) recognizing the B-cell-associated molecule CD19 have emerged as a potentially potent and exciting therapeutic modality in recent years. AREAS COVERED This review explores the current peer-reviewed publications in the field and a discussion of expert opinion. EXPERT OPINION Genetic engineering of T cells has become clinically feasible and appears to be safe. Here we provide an insight into the process of patient selection, engineered T-cell production, infusion procedure, expected toxicities and efficacy of this exciting approach as it is practiced in the treatment of B-cell malignancies. Anti-CD19-redirected T cells likely represent the vanguard of an exciting new approach to treating cancer.
Collapse
Affiliation(s)
- Saar Gill
- University of Pennsylvania, Abramson Cancer Center, Perelman School of Medicine, Division of Hematology-Oncology, Department of Medicine , Philadelphia, PA 19106 , USA
| | | |
Collapse
|
272
|
Perna SK, Pagliara D, Mahendravada A, Liu H, Brenner MK, Savoldo B, Dotti G. Interleukin-7 mediates selective expansion of tumor-redirected cytotoxic T lymphocytes (CTLs) without enhancement of regulatory T-cell inhibition. Clin Cancer Res 2013; 20:131-9. [PMID: 24097874 DOI: 10.1158/1078-0432.ccr-13-1016] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE The antitumor activity of chimeric antigen receptor (CAR)-redirected CTLs should be enhanced if it were possible to increase their proliferation and function after adoptive transfer without concomitantly increasing the proliferation and function of regulatory T cells (Treg). Here, we explored whether the lack of IL-7Rα in Treg can be exploited by the targeted manipulation of the interleukin-7 (IL-7) cytokine-cytokine receptor axis in CAR-engrafted Epstein-Barr Virus-specific CTLs (EBV-CTLs) to selectively augment their growth and antitumor activity even in the presence of Treg. EXPERIMENTAL DESIGN We generated a bicistronic retroviral vector encoding a GD2-specific CAR and the IL-7Rα subunit, expressed the genes in EBV-CTLs, and assessed their capacity to control tumor growth in the presence of Treg in vitro and in vivo when exposed to either interleukin-2 (IL-2) or IL-7 in a neuroblastoma xenograft. RESULTS We found that IL-7, in sharp contrast with IL-2, supports the proliferation and antitumor activity of IL-7Rα.CAR-GD2(+) EBV-CTLs both in vitro and in vivo even in the presence of fully functional Treg. CONCLUSIONS IL-7 selectively favors the survival, proliferation, and effector function of IL-7Rα-transgenic/CAR-redirected EBV-CTLs in the presence of Treg both in vitro and in vivo. Thus, IL-7 can have a significant impact in sustaining expansion and persistence of adoptively CAR-redirected CTLs.
Collapse
Affiliation(s)
- Serena K Perna
- Authors' Affiliations: Center for Cell and Gene Therapy, and Departments of Pediatrics, Immunology, and Medicine, Baylor College of Medicine, Methodist Hospital and Texas Children's Hospital, Houston, Texas; Dipartimento di Ematologia ed Oncologia Pediatrica, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
273
|
Abstract
Chimeric antigen receptors (CARs) combine the antigen specificity of an antibody with the biologic properties of T lymphocytes. While the concept has been developed more than 20 years ago, only in recent years the clinical application of this approach has produced remarkable objective clinical responses. In this brief review, we outline some specific aspects that have led to antitumor responses in cancer patients.
Collapse
|
274
|
Abstract
T cells have the capacity to eradicate diseased cells, but tumours present considerable challenges that render T cells ineffectual. Cancer cells often make themselves almost 'invisible' to the immune system, and they sculpt a microenvironment that suppresses T cell activity, survival and migration. Genetic engineering of T cells can be used therapeutically to overcome these challenges. T cells can be taken from the blood of cancer patients and then modified with genes encoding receptors that recognize cancer-specific antigens. Additional genes can be used to enable resistance to immunosuppression, to extend survival and to facilitate the penetration of engineered T cells into tumours. Using genetic modification, highly active, self-propagating 'slayers' of cancer cells can be generated.
Collapse
Affiliation(s)
- Michael H Kershaw
- Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia. michael.kershaw@ petermac.org
| | | | | |
Collapse
|
275
|
Abstract
The Sleeping Beauty (SB) transposon/transposase DNA plasmid system is used to genetically modify cells for long-term transgene expression. We adapted the SB system for human application and generated T cells expressing a chimeric antigen receptor (CAR) specific for CD19. Electrotransfer of CD19-specific SB DNA plasmids in peripheral blood mononuclear cells and propagation on CD19 artificial antigen presenting cells was used to numerically expand CD3 T cells expressing CAR. By day 28 of coculture, >90% of expanded CD3 T cells expressed CAR. CAR T cells specifically killed CD19 target cells and consisted of subsets expressing biomarkers consistent with central memory, effector memory, and effector phenotypes. CAR T cells contracted numerically in the absence of the CD19 antigen, did not express SB11 transposase, and maintained a polyclonal TCR Vα and TCR Vβ repertoire. Quantitative fluorescence in situ hybridization revealed that CAR T cells preserved the telomere length. Quantitative polymerase chain reaction and fluorescence in situ hybridization showed CAR transposon integrated on average once per T-cell genome. CAR T cells in peripheral blood can be detected by quantitative polymerase chain reaction at a sensitivity of 0.01%. These findings lay the groundwork as the basis of our first-in-human clinical trials of the nonviral SB system for the investigational treatment of CD19 B-cell malignancies (currently under 3 INDs: 14193, 14577, and 14739).
Collapse
|
276
|
Abstract
Adoptive transfer of antigen-specific T cells has been adapted by investigators for treatment of chronic lymphocytic leukemia (CLL). To overcome issues of immune tolerance which limits the endogenous adaptive immune response to tumor-associated antigens (TAAs), robust systems for the genetic modification and characterization of T cells expressing chimeric antigen receptors (CARs) to redirect specificity have been produced. Refinements with regards to persistence and trafficking of the genetically modified T cells are underway to help improve potency. Clinical trials utilizing this technology demonstrate feasibility, and increasingly, these early-phase trials are demonstrating impressive anti-tumor effects, particularly for CLL patients, paving the way for multi-center trials to establish the efficacy of CAR(+) T cell therapy.
Collapse
|
277
|
Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, Chen K, Shin M, Wall DM, Hönemann D, Gambell P, Westerman DA, Haurat J, Westwood JA, Scott AM, Kravets L, Dickinson M, Trapani JA, Smyth MJ, Darcy PK, Kershaw MH, Prince HM. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther 2013; 21:2122-9. [PMID: 23831595 DOI: 10.1038/mt.2013.154] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/24/2013] [Indexed: 01/01/2023] Open
Abstract
In a phase I study of autologous chimeric antigen receptor (CAR) anti-LeY T-cell therapy of acute myeloid leukemia (AML), we examined the safety and postinfusion persistence of adoptively transferred T cells. Following fludarabine-containing preconditioning, four patients received up to 1.3 × 109 total T cells, of which 14-38% expressed the CAR. Grade 3 or 4 toxicity was not observed. One patient achieved a cytogenetic remission whereas another with active leukemia had a reduction in peripheral blood (PB) blasts and a third showed a protracted remission. Using an aliquot of In111-labeled CAR T cells, we demonstrated trafficking to the bone marrow (BM) in those patients with the greatest clinical benefit. Furthermore, in a patient with leukemia cutis, CAR T cells infiltrated proven sites of disease. Serial PCR of PB and BM for the LeY transgene demonstrated that infused CAR T cells persisted for up to 10 months. Our study supports the feasibility and safety of CAR-T-cell therapy in high-risk AML, and demonstrates durable in vivo persistence.
Collapse
Affiliation(s)
- David S Ritchie
- 1] Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia [2] Hematology Immunology Translational Research Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Australia [3] Cancer Immunology Research Program, Peter MacCallum Cancer Centre, East Melbourne, Australia [4] Division of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, Australia [5] Centre for Blood Cell Therapies, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Novel cellular therapies for leukemia: CAR-modified T cells targeted to the CD19 antigen. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2013; 2012:143-51. [PMID: 23233573 DOI: 10.1182/asheducation-2012.1.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of immune-competent donor T cells to mediate a beneficial graft-versus-leukemia (GVL) effect was first identified in the setting of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematologic malignancies. Unfortunately, with the exception of chronic myelogenous leukemia and EBV-induced lymphoproliferative disease, allo-HSCT GVL lacks the potency to significantly affect disease progression or recurrence in most other hematologic malignancies. The inadequacy of a GVL effect using past approaches is particularly evident in patients with lymphoid malignancies. However, with the advent of improved gene transfer technology, genetically modified tumor-specific immune effectors have extended cellular immunotherapy to lymphoid malignancies. One promising strategy entails the introduction of genes encoding artificial receptors called chimeric antigen receptors (CARs), which redirect the specificity and function of immune effectors. CAR-modified T cells targeted to the B cell-specific CD19 antigen have demonstrated promising results in multiple early clinical trials, supporting further investigation in patients with B-cell cancers. However, disparities in clinical trial design and CAR structure have complicated the discovery of the optimal application of this technology. Recent preclinical studies support additional genetic modifications of CAR-modified T cells to achieve optimal clinical efficacy using this novel adoptive cellular therapy.
Collapse
|
279
|
Kakarla S, Chow KKH, Mata M, Shaffer DR, Song XT, Wu MF, Liu H, Wang LL, Rowley DR, Pfizenmaier K, Gottschalk S. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther 2013; 21:1611-20. [PMID: 23732988 DOI: 10.1038/mt.2013.110] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/01/2013] [Indexed: 12/15/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs), the principle component of the tumor-associated stroma, form a highly protumorigenic and immunosuppressive microenvironment that mediates therapeutic resistance. Co-targeting CAFs in addition to cancer cells may therefore augment the antitumor response. Fibroblast activation protein-α (FAP), a type 2 dipeptidyl peptidase, is expressed on CAFs in a majority of solid tumors making it an attractive immunotherapeutic target. To target FAP-positive CAFs in the tumor-associated stroma, we genetically modified T cells to express a FAP-specific chimeric antigen receptor (CAR). The resulting FAP-specific T cells recognized and killed FAP-positive target cells as determined by proinflammatory cytokine release and target cell lysis. In an established A549 lung cancer model, adoptive transfer of FAP-specific T cells significantly reduced FAP-positive stromal cells, with a concomitant decrease in tumor growth. Combining these FAP-specific T cells with T cells that targeted the EphA2 antigen on the A549 cancer cells themselves significantly enhanced overall antitumor activity and conferred a survival advantage compared to either alone. Our study underscores the value of co-targeting both CAFs and cancer cells to increase the benefits of T-cell immunotherapy for solid tumors.
Collapse
Affiliation(s)
- Sunitha Kakarla
- Center for Cell and Gene Therapy, Texas Children's Hospital, The Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Wang W, Ma Y, Li J, Shi HS, Wang LQ, Guo FC, Zhang J, Li D, Mo BH, Wen F, Liu T, Liu YT, Wang YS, Wei YQ. Specificity redirection by CAR with human VEGFR-1 affinity endows T lymphocytes with tumor-killing ability and anti-angiogenic potency. Gene Ther 2013; 20:970-8. [PMID: 23636245 DOI: 10.1038/gt.2013.19] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 03/02/2013] [Accepted: 03/25/2013] [Indexed: 02/05/2023]
Abstract
Immunotherapy that is based on adoptive transfer of T lymphocytes, which are genetically modified to express chimeric antigen receptors (CARs) that recognize tumor-associated antigens, has been demonstrated to be an efficient cancer therapy. Vascular endothelial growth factor receptor-1 (VEGFR-1), a vital molecule involved in tumor growth and angiogenesis, has not been targeted by CAR-modified T lymphocytes. In this study, we generated CAR-modified T lymphocytes with human VEGFR-1 specificity (V-1 CAR) by electroporation. V-1 CAR-modified T lymphocytes were demonstrated to elicit lytic cytotoxicity to target cells in a VEGFR-1-dependent manner. The adoptive transfer of V-1 CAR T lymphocytes delayed tumor growth and formation and inhibited pulmonary metastasis in xenograft models and such efficacies were enhanced by cotransfer of T lymphocytes that expressed interleukin-15 (IL-15). Moreover, V-1 CAR-modified T lymphocytes lysed primary endothelial cells and impaired tube formation, in vitro. These data demonstrated the antitumor and anti-angiogenesis ability of V-1 CAR-modified T lymphocytes. Our study provides the rationale for the clinical translation of CAR-modified T lymphocytes with VEGFR-1 specificity.
Collapse
Affiliation(s)
- W Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Abstract
UNLABELLED Chimeric antigen receptors (CAR) are recombinant receptors that provide both antigen-binding and T-cell-activating functions. A multitude of CARs has been reported over the past decade, targeting an array of cell surface tumor antigens. Their biologic functions have dramatically changed following the introduction of tripartite receptors comprising a costimulatory domain, termed second-generation CARs. These have recently shown clinical benefit in patients treated with CD19-targeted autologous T cells. CARs may be combined with costimulatory ligands, chimeric costimulatory receptors, or cytokines to further enhance T-cell potency, specificity, and safety. CARs represent a new class of drugs with exciting potential for cancer immunotherapy. SIGNIFICANCE CARs are a new class of drugs with great potential for cancer immunotherapy. Upon their expression in T lymphocytes, CARs direct potent, targeted immune responses that have recently shown encouraging clinical outcomes in a subset of patients with B-cell malignancies. This review focuses on the design of CARs, including the requirements for optimal antigen recognition and different modalities to provide costimulatory support to targeted T cells, which include the use of second- and third generation CARs, costimulatory ligands, chimeric costimulatory receptors, and cytokines.
Collapse
Affiliation(s)
- Michel Sadelain
- Center for Cell Engineering, Molecular Pharmacology and Chemistry Program, and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | |
Collapse
|
282
|
Gill S, Kalos M. T cell-based gene therapy of cancer. Transl Res 2013; 161:365-79. [PMID: 23246626 DOI: 10.1016/j.trsl.2012.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 01/20/2023]
Abstract
Adoptive immunotherapy using gene engineered T cells is a promising and rapidly evolving field, and the ability to engineer T cells to manifest desired phenotypes and functions has become a practical reality. In this review, we describe and summarize current thought about gene engineering of T cells. We focus on the identified requirements for the successful application of T cell based immunotherapy and discuss gene-therapy based strategies that address these requirements and have the potential to enhance the successful implementation of this promising approach to treat cancer.
Collapse
Affiliation(s)
- Saar Gill
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa., USA
| | | |
Collapse
|
283
|
Hombach AA, Chmielewski M, Rappl G, Abken H. Adoptive Immunotherapy with Redirected T Cells Produces CCR7− Cells That Are Trapped in the Periphery and Benefit from Combined CD28-OX40 Costimulation. Hum Gene Ther 2013; 24:259-69. [DOI: 10.1089/hum.2012.247] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andreas A. Hombach
- Center for Molecular Medicine Cologne (CMMC) and Department I Internal Medicine, University of Cologne, 50931 Cologne, Germany
| | - Markus Chmielewski
- Center for Molecular Medicine Cologne (CMMC) and Department I Internal Medicine, University of Cologne, 50931 Cologne, Germany
| | - Gunter Rappl
- Center for Molecular Medicine Cologne (CMMC) and Department I Internal Medicine, University of Cologne, 50931 Cologne, Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne (CMMC) and Department I Internal Medicine, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
284
|
Abstract
T-cell immunotherapy is a promising approach to treat disseminated cancer. However, it has been limited by the ability to isolate and expand T cells restricted to tumour-associated antigens. Using ex vivo gene transfer, T cells from patients can be genetically engineered to express a novel T cell receptor or chimeric antigen receptor to specifically recognize a tumour-associated antigen and thereby selectively kill tumour cells. Indeed, genetically engineered T cells have recently been successfully used for cancer treatment in a small number of patients. Here we review the recent progress in the field, and summarize the challenges that lie ahead and the strategies being used to overcome them.
Collapse
Affiliation(s)
- M Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
285
|
Combining T-cell immunotherapy and anti-androgen therapy for prostate cancer. Prostate Cancer Prostatic Dis 2013; 16:123-31, S1. [PMID: 23295316 DOI: 10.1038/pcan.2012.49] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prostate cancer remains a significant health problem for men in the Western world. Although treatment modalities are available, these do not confer long-term benefit and are accompanied by substantial side effects. Adoptive immunotherapy represents an attractive alternative to conventional treatments as a means to control tumor growth. METHODS To selectively target the tumor-expressed form of Muc1 we constructed a retroviral vector encoding a chimeric antigen receptor (CAR) directed against the aberrantly-expressed extracellular portion of Muc1 called the 'variable number of tandem repeats'. RESULTS We now demonstrate that T cells can be genetically engineered to express a CAR targeting the tumor-associated antigen Muc1. CAR-Muc1 T cells were able to selectively kill Muc1-expressing human prostate cancer cells. However, we noted that heterogeneous expression of the Muc1 antigen on tumor cells facilitated immune escape and the outgrowth of target-antigen loss variants of the tumor. Given the importance of androgen ablation therapy in the management of metastatic prostate cancer, we therefore also tested the value of combining conventional (anti-androgen) and experimental (CAR-Muc1 T cells) approaches. We show that CAR-Muc1 T cells were not adversely impacted by anti-androgen therapy and subsequently demonstrate the feasibility of combining the approaches to produce additive anti-tumor effects in vitro. CONCLUSIONS Adoptive transfer of CAR-Muc1 T cells alone or in combination with other luteinizing hormone-releasing hormone analogs or antagonists should be tested in human clinical trials.
Collapse
|
286
|
Curran KJ, Pegram HJ, Brentjens RJ. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med 2012; 14:405-15. [PMID: 22262649 DOI: 10.1002/jgm.2604] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The genetic engineering of T cells through the introduction of a chimeric antigen receptor (CAR) allows for generation of tumor-targeted T cells. Once expressed by T cells, CARs combine antigen-specificity with T cell activation in a single fusion molecule. Most CARs are comprised of an antigen-binding domain, an extracellular spacer/hinge region, a trans-membrane domain and an intracellular signaling domain resulting in T cell activation after antigen binding. METHODS We performed a search of the literature regarding tumor immunotherapy using CAR-modified T cells to provide a concise review of this topic. RESULTS This review aims to focus on the elements of CAR design required for successful application of this technology in cancer immunotherapy. Most notably, proper target antigen selection, co-stimulatory signaling, and the ability of CAR-modified T cells to traffic, persist and retain function after adoptive transfer are required for optimal tumor eradication. Furthermore, recent clinical trials have demonstrated tumor burden and chemotherapy conditioning before adoptive transfer as being critically important for this therapy. Future research into counteracting the suppressive tumor microenvironment and the ability to activate an endogenous anti-tumor response by CAR-modified T cells may enhance the therapeutic potential of this treatment. CONCLUSIONS In conclusion, CAR-modified T cell therapy is a highly promising treatment for cancer, having already demonstrated both promising preclinical and clinical results. However, further modification and additional clinical trials will need to be conducted to ultimately optimize the anti-tumor efficacy of this approach.
Collapse
Affiliation(s)
- Kevin J Curran
- Memorial Sloan-Kettering Cancer Center - Bone Marrow Transplant Service, Department of Pediatrics, New York, NY, USA
| | | | | |
Collapse
|
287
|
Rabu C, McIntosh R, Jurasova Z, Durrant L. Glycans as targets for therapeutic antitumor antibodies. Future Oncol 2012; 8:943-60. [PMID: 22894669 DOI: 10.2217/fon.12.88] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycans represent a vast class of molecules that modify either proteins or lipids. They exert and regulate important and complex functions in both normal and cancer cell metabolism. As such, the most immunogenic glycans have been targeted in passive and active immunotherapy in human cancer for the past 25 years but it is only recently that techniques have become available to uncover novel glycan targets. The main focus of this review article is to highlight why and how monoclonal antibodies (mAbs) recognizing glycans, and in particular the glycans expressed on glycolipids, are being used in various strategies to target and kill cancer cells. The article reports on the historical use of mAbs and on very recent progress made in antitumor therapy using the anti-GD2 mAb and the antiganglioside mAbs, anti-N-glycolylneuraminic acid mAb and anti-Lewis mAb. Anti-GD2 is showing great promise in Phase III clinical trials in adjuvant treatment of neuroblastoma. Racotumomab, an anti-idiotypic mAb mimicking N-glycolylneuraminic acid-containing gangliosides, is currently being tested in a randomized, controlled Phase II/III clinical trial. This article also presents various strategies used by different groups to develop mAbs against these naturally poorly immunogenic glycans.
Collapse
Affiliation(s)
- Catherine Rabu
- Academic Department of Clinical Oncology, City Hospital Campus, University of Nottingham, Nottingham, NG5 1PB, UK
| | | | | | | |
Collapse
|
288
|
Maher J. Immunotherapy of malignant disease using chimeric antigen receptor engrafted T cells. ISRN ONCOLOGY 2012; 2012:278093. [PMID: 23304553 PMCID: PMC3523553 DOI: 10.5402/2012/278093] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/14/2012] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor- (CAR-) based immunotherapy has been under development for almost 25 years, over which period it has progressed from a new but cumbersome technology to an emerging therapeutic modality for malignant disease. The approach involves the genetic engineering of fusion receptors (CARs) that couple the HLA-independent binding of cell surface target molecules to the delivery of a tailored activating signal to host immune cells. Engineered CARs are delivered most commonly to peripheral blood T cells using a range of vector systems, most commonly integrating viral vectors. Preclinical refinement of this approach has proceeded over several years to the point that clinical testing is now being undertaken at several centres, using increasingly sophisticated and therapeutically successful genetic payloads. This paper considers several aspects of the pre-clinical and clinical development of CAR-based immunotherapy and how this technology is acquiring an increasing niche in the treatment of both solid and haematological malignancies.
Collapse
Affiliation(s)
- John Maher
- CAR Mechanics Group, Department of Research Oncology, King's Health Partners Integrated Cancer Centre, King's College London, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Barnet and Chase Farm Hospitals NHS Trust, Barnet, Hertfordshire EN5 3DJ, UK
- Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
289
|
Abstract
AbstractThe ability of immune-competent donor T cells to mediate a beneficial graft-versus-leukemia (GVL) effect was first identified in the setting of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematologic malignancies. Unfortunately, with the exception of chronic myelogenous leukemia and EBV-induced lymphoproliferative disease, allo-HSCT GVL lacks the potency to significantly affect disease progression or recurrence in most other hematologic malignancies. The inadequacy of a GVL effect using past approaches is particularly evident in patients with lymphoid malignancies. However, with the advent of improved gene transfer technology, genetically modified tumor-specific immune effectors have extended cellular immunotherapy to lymphoid malignancies. One promising strategy entails the introduction of genes encoding artificial receptors called chimeric antigen receptors (CARs), which redirect the specificity and function of immune effectors. CAR-modified T cells targeted to the B cell–specific CD19 antigen have demonstrated promising results in multiple early clinical trials, supporting further investigation in patients with B-cell cancers. However, disparities in clinical trial design and CAR structure have complicated the discovery of the optimal application of this technology. Recent preclinical studies support additional genetic modifications of CAR-modified T cells to achieve optimal clinical efficacy using this novel adoptive cellular therapy.
Collapse
|
290
|
Abstract
Outcomes for patients with glioblastoma (GBM) remain poor despite aggressive multimodal therapy. Immunotherapy with genetically modified T cells expressing chimeric antigen receptors (CARs) targeting interleukin (IL)-13Rα2, epidermal growth factor receptor variant III (EGFRvIII), or human epidermal growth factor receptor 2 (HER2) has shown promise for the treatment of gliomas in preclinical models and in a clinical study (IL-13Rα2). However, targeting IL-13Rα2 and EGFRvIII is associated with the development of antigen loss variants, and there are safety concerns with targeting HER2. Erythropoietin-producing hepatocellular carcinoma A2 (EphA2) has emerged as an attractive target for the immunotherapy of GBM as it is overexpressed in glioma and promotes its malignant phenotype. To generate EphA2-specific T cells, we constructed an EphA2-specific CAR with a CD28-ζ endodomain. EphA2-specific T cells recognized EphA2-positive glioma cells as judged by interferon-γ (IFN-γ) and IL-2 production and tumor cell killing. In addition, EphA2-specific T cells had potent activity against human glioma-initiating cells preventing neurosphere formation and destroying intact neurospheres in coculture assays. Adoptive transfer of EphA2-specific T cells resulted in the regression of glioma xenografts in severe combined immunodeficiency (SCID) mice and a significant survival advantage in comparison to untreated mice and mice treated with nontransduced T cells. Thus, EphA2-specific T-cell immunotherapy may be a promising approach for the treatment of EphA2-positive GBM.
Collapse
|
291
|
Shi H, Liu L, Wang Z. Improving the efficacy and safety of engineered T cell therapy for cancer. Cancer Lett 2012; 328:191-7. [PMID: 23022475 DOI: 10.1016/j.canlet.2012.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/29/2012] [Accepted: 09/19/2012] [Indexed: 01/28/2023]
Abstract
Adoptive T-cell therapy (ACT) using tumor-infiltrating lymphocytes (TILs) is a powerful immunotherapeutics approach against metastatic melanoma. The success of TIL therapy has led to novel strategies for redirecting normal T cells to recognize tumor-associated antigens (TAAs) by genetically engineering tumor antigen-specific T cell receptors (TCRs) or chimeric antigen receptor (CAR) genes. In this manner, large numbers of antigen-specific T cells can be rapidly generated compared with the longer term expansion of TILs. Great efforts have been made to improve these approaches. Initial clinical studies have demonstrated that genetically engineered T cells can mediate tumor regression in vivo. In this review, we discuss the development of TCR and CAR gene-engineered T cells and the safety concerns surrounding the use of these T cells in patients. We highlight the importance of judicious selection of TAAs for modified T cell therapy and propose solutions for potential "on-target, off-organ" toxicity.
Collapse
Affiliation(s)
- Huan Shi
- Department of Oncology, Shandong Cancer Hospital and Institute, No. 440 Jiyan Road, Jinan, Shandong 250117, PR China
| | | | | |
Collapse
|
292
|
Hoyos V, Savoldo B, Dotti G. Genetic modification of human T lymphocytes for the treatment of hematologic malignancies. Haematologica 2012; 97:1622-31. [PMID: 22929977 DOI: 10.3324/haematol.2012.064303] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Modern chemotherapy regimens and supportive care have produced remarkable improvements in the overall survival of patients with hematologic malignancies. However, the development of targeted small molecules, monoclonal antibodies, and biological therapies that demonstrate greater efficacy and lower toxicity remains highly desirable in hematology, and oncology in general. In the context of biological therapies, T-lymphocyte based treatments have enormous potential. Donor lymphocyte infusion in patients relapsed after allogeneic hematopoietic stem cell transplant pioneered the concept that T lymphocytes can effectively control tumor growth, and this was then followed by the development of cell culture strategies to generate T lymphocytes with selective activity against tumor cells. Over the past decade, it has become clear that the adoptive transfer of ex vivo expanded antigen-specific cytotoxic T lymphocytes promotes sustained antitumor effects in patients with virus-associated lymphomas, such as Epstein-Barr virus related post-transplant lymphomas and Hodgkin's lymphomas. Because of this compelling clinical evidence and the concomitant development of methodologies for robust gene transfer to human T lymphocytes, the field has rapidly evolved, offering new opportunities to extend T-cell based therapies. This review summarizes the most recent biological and clinical developments using genetically manipulated T cells for the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
293
|
Sharifzadeh Z, Rahbarizadeh F, Shokrgozar MA, Ahmadvand D, Mahboudi F, Jamnani FR, Moghimi SM. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett 2012; 334:237-44. [PMID: 22902507 DOI: 10.1016/j.canlet.2012.08.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 11/27/2022]
Abstract
Despite the preclinical success of adoptive therapy with T cells bearing chimeric nanoconstructed antigen receptors (CARs), certain limitations of this therapeutic approach such as the immunogenicity of the antigen binding domain, the emergence of tumor cell escape variants and the blocking capacity of soluble antigen still remain. Here, we address these issues using a novel CAR binding moiety based on the oligoclonal camelid single domain antibodies. A unique set of 13 single domain antibodies were selected from an immunized camel phage library based on their target specificity and binding affinity. A combination of these single domain antibodies was used to generate four tumor associated glycoprotein (TAG-72)-specific CARs harboring an identical antigen binding site, but with different signaling and spacer domains. Although all four CARs were functionally active against the TAG-72 expressing tumor cells, the combination of CD3ζ, OX40, CD28 as well as the CH3-CH2-hinge-hinge domains most efficiently triggered T cell activation. Importantly, CAR mediated functions were not blocked by the soluble TAG-72 antigen at a supraphysiological concentration. Our approach may have the potential to reverse multiple tumor immune evasion mechanisms, avoid CAR immunogenicity, and overcome problems in cancer gene therapy with engineered nanoconstructs.
Collapse
|
294
|
Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG. Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol Immunother 2012; 61:953-62. [PMID: 22527245 PMCID: PMC11028843 DOI: 10.1007/s00262-012-1254-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/25/2012] [Indexed: 12/30/2022]
Abstract
The adoptive transfer of chimeric antigen receptor (CAR)-expressing T cells is a relatively new but promising approach in the field of cancer immunotherapy. This therapeutic strategy is based on the genetic reprogramming of T cells with an artificial immune receptor that redirects them against targets on malignant cells and enables their destruction by exerting T cell effector functions. There has been an explosion of interest in the use of CAR T cells as an immunotherapy for cancer. In the pre-clinical setting, there has been a considerable focus upon optimizing the structural and signaling potency of the CAR while advances in bio-processing technology now mean that the clinical testing of these gene-modified T cells has become a reality. This review will summarize the concept of CAR-based immunotherapy and recent clinical trial activity and will further discuss some of the likely future challenges facing CAR-modified T cell therapies.
Collapse
Affiliation(s)
- Grazyna Lipowska-Bhalla
- Clinical and Experimental Immunotherapy Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Clinical and Molecular Monitoring Laboratory, Clinical and Experimental Pharmacology Group, Manchester Academic Health Science Centre, School of Cancer and Enabling Sciences, University of Manchester, Manchester, UK
| | - David E. Gilham
- Clinical and Experimental Immunotherapy Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Clinical and Experimental Immunotherapy Group, Paterson Institute for Cancer Research, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Robert E. Hawkins
- Clinical and Experimental Immunotherapy Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Dominic G. Rothwell
- Clinical and Molecular Monitoring Laboratory, Clinical and Experimental Pharmacology Group, Manchester Academic Health Science Centre, School of Cancer and Enabling Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
295
|
Kang TH, Mao CP, He L, Tsai YC, Liu K, La V, Wu TC, Hung CF. Tumor-targeted delivery of IL-2 by NKG2D leads to accumulation of antigen-specific CD8+ T cells in the tumor loci and enhanced anti-tumor effects. PLoS One 2012; 7:e35141. [PMID: 22509395 PMCID: PMC3324421 DOI: 10.1371/journal.pone.0035141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
Interleukin-2 (IL-2) has been shown to promote tumor-specific T-cell proliferation and differentiation but systemic administration of IL-2 results in significant toxicity. Therefore, a strategy that can specifically deliver IL-2 to the tumor location may alleviate concerns of toxicity. Because NKG2D ligands have been shown to be highly expressed in many cancer cells but not in healthy cells, we reason that a chimeric protein consisting of NKG2D linked to IL-2 will lead to the specific targeting of IL-2 to the tumor location. Therefore, we created chimeric proteins consisting of NKG2D linked to Gaussia luciferase (GLuc; a marker protein) or IL-2 to form NKG2D-Fc-GLuc and NKG2D-Fc-IL2, respectively. We demonstrated that NKG2D linked to GLuc was able to deliver GLuc to the tumor location in vivo. Furthermore, we showed that TC-1 tumor-bearing mice intramuscularly injected with DNA encoding NKG2D-Fc-IL2, followed by electroporation, exhibited an increased number of luciferase-expressing E7-specific CD8+ T cells at the tumor location. More importantly, treatment with the DNA construct encoding NKG2D-Fc-IL2 significantly enhanced the therapeutic anti-tumor effects generated by intradermal vaccination with therapeutic HPV DNA in tumor-bearing mice. Therefore, by linking NKG2D to IL2, we are able to specifically deliver IL-2 to the tumor location, enhancing antigen-specific T-cell immune response and controlling tumor growth. Our approach represents a platform technology to specifically deliver proteins of interest to tumor loci.
Collapse
Affiliation(s)
- Tae Heung Kang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chih-Ping Mao
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Liangmei He
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ya-Chea Tsai
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Katherine Liu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Victor La
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - T.-C. Wu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
296
|
Khaleghi S, Rahbarizadeh F, Ahmadvand D, Rasaee MJ, Pognonec P. A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells. Int J Hematol 2012; 95:434-44. [PMID: 22407872 DOI: 10.1007/s12185-012-1037-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 02/16/2012] [Accepted: 02/22/2012] [Indexed: 11/27/2022]
Abstract
In accordance with the two-step hypothesis of T cell activation and the observation that stimulation through the T cell receptor (TCR) alone may lead to anergy, we focused on the introduction of co-stimulatory signaling to this type of receptors to achieve optimal activation. Enhanced mRNA and cell surface receptor expression via the co-stimulatory gene fragment (OX40) was confirmed by RT-PCR and flow cytometry. Inclusion of the OX40 co-stimulatory signaling region in series with the TCR led to enhanced antigen-induced IL-2 production after stimulation by MUC1-expressing cancer cell lines as compared to the chimeric receptor without OX40. Moreover, with the aim of maintaining high efficiency, while providing a means of controlling any possible unwanted proliferation in vivo, a regulation system was used. This controls the dimerization of a membrane-bound caspase 8 protein. Toward that goal, pFKC8 and CAR constructs were co-transfected into Jurkat cells, and the level of apoptosis was measured. 24 h after addition of the dimerizer, a 91% decrease in transfected cells was observed.
Collapse
Affiliation(s)
- Sepideh Khaleghi
- Department of Medical Biotechnology, School of Medical Sciences, Tarbiat Modares University, PO Box: 14115-331 Tehran, Iran
| | | | | | | | | |
Collapse
|
297
|
Adoptive T-cell therapy of B-cell malignancies: Conventional and physiological chimeric antigen receptors. Cancer Lett 2012; 316:1-5. [DOI: 10.1016/j.canlet.2011.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 01/10/2023]
|
298
|
Marr LA, Gilham DE, Campbell JDM, Fraser AR. Immunology in the clinic review series; focus on cancer: double trouble for tumours: bi-functional and redirected T cells as effective cancer immunotherapies. Clin Exp Immunol 2012; 167:216-25. [PMID: 22235997 PMCID: PMC3278687 DOI: 10.1111/j.1365-2249.2011.04517.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2011] [Indexed: 01/04/2023] Open
Abstract
Cancer is one of the most important pathological conditions facing mankind in the 21st century, and is likely to become the most important cause of death as improvements continue in health, diet and life expectancy. The immune response is responsible for controlling nascent cancer through immunosurveillance. If tumours escape this control, they can develop into clinical cancer. Although surgery and chemo- or radiotherapy have improved survival rates significantly, there is a drive to reharness immune responses to treat disease. As T cells are one of the key immune cells in controlling cancer, research is under way to enhance their function and improve tumour targeting. This can be achieved by transduction with tumour-specific T cell receptor (TCR) or chimaeric antigen receptors (CAR) to generate redirected T cells. Virus-specific cells can also be transduced with TCR or CAR to create bi-functional T cells with specificity for both virus and tumour. In this review we outline the development and optimization of redirected and bi-functional T cells, and outline the results from current clinical trials using these cells. From this we discuss the challenges involved in generating effective anti-tumour responses while avoiding concomitant damage to normal tissues and organs.
Collapse
Affiliation(s)
- L A Marr
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
299
|
Merhavi-Shoham E, Haga-Friedman A, Cohen CJ. Genetically modulating T-cell function to target cancer. Semin Cancer Biol 2011; 22:14-22. [PMID: 22210183 DOI: 10.1016/j.semcancer.2011.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/15/2011] [Indexed: 12/14/2022]
Abstract
The adoptive transfer of tumor-specific T-lymphocytes holds promise for the treatment of metastatic cancer. Genetic modulation of T-lymphocytes using TCR transfer with tumor-specific TCR genes is an attractive strategy to generate anti-tumor response, especially against large solid tumors. Recently, several clinical trials have demonstrated the therapeutic potential of this approach which lead to impressive tumor regression in cancer patients. Still, several factors may hinder the clinical benefit of this approach, such as the type of cells to modulate, the vector configuration or the safety of the procedure. In the present review we will aim at giving an overview of the recent developments related to the immune modulation of the anti-tumor adaptive response using genetically engineered lymphocytes and will also elaborate the development of other genetic modifications to enhance their anti-tumor immune response.
Collapse
Affiliation(s)
- Efrat Merhavi-Shoham
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|
300
|
Hombach AA, Abken H. Costimulation by chimeric antigen receptors revisited the T cell antitumor response benefits from combined CD28-OX40 signalling. Int J Cancer 2011; 129:2935-44. [PMID: 22030616 DOI: 10.1002/ijc.25960] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 12/10/2010] [Indexed: 12/14/2022]
Abstract
The therapeutic success of adoptive therapy with chimeric antigen receptor (CAR) engineered T cells depends on the appropriate costimulation of CD3ζ to induce full T cell activation. Costimulatory endodomains of the CD28 family are therefore fused with CD3ζ in a dual signalling CAR. Serious adverse events in two most recent trials; however, highlight the need to analyse in more detail the impact of each costimulatory endodomain on individual effector functions of redirected T cells. We therefore performed a thoroughly controlled side-by-side comparison of the most frequently used endodomains with respect to their impact on CD4(+) and CD8(+) T cell effector functions. CD28 reinforced T cell proliferation and is mandatory to induce IL-2. In the absence of added IL-2, CD28 and OX40 (CD137) but not 4-1BB (CD134) enhanced specific cytolysis. While CD28, 4-1BB and OX40 similarly improved pro-inflammatory cytokine secretion, OX40 most efficiently prevented activation induced cell death of CD62L(-) effector memory T cells. CD28 was superior to initiate the T cell response, OX40 and 4-1BB sustained the response in long term with OX40 being most effective. We consequently combined the beneficial functions in a 3rd generation CD28-OX40 CAR which substantially improved the antitumor response without loosing specificity.
Collapse
Affiliation(s)
- Andreas A Hombach
- Clinic I Internal Medicine Tumorgenetics, University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|