251
|
Affiliation(s)
- D Schmucker
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California, Los Angeles, School of Medicine, 675 Charles Young Drive, Los Angeles, CA 90095, USA
| | | |
Collapse
|
252
|
Deleted in colorectal cancer (DCC) regulates the migration of luteinizing hormone-releasing hormone neurons to the basal forebrain. J Neurosci 2001. [PMID: 11157077 DOI: 10.1523/jneurosci.21-03-00911.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Luteinizing hormone-releasing hormone (LHRH) neurons migrate from the vomeronasal organ (VNO) to the forebrain in all mammals studied. In mice, most LHRH neuron migration is dependent on axons that originate in the VNO but bypass the olfactory bulb and project into the basal forebrain. Thus, cues that regulate the trajectories of these vomeronasal axons are candidates for determining the destination of LHRH neurons. Using in situ hybridization techniques, we examined the expression of Deleted in colorectal cancer (DCC), a vertebrate receptor for the guidance molecule netrin-1, during development of the olfactory system. DCC is expressed by cells in the olfactory epithelium (OE) and VNO, and in cells migrating from the OE and VNO from embryonic day 11 (E11) to E14. Some DCC(+) cells on vomeronasal axons in the nose also express LHRH. However, DCC expression is downregulated beginning at E12, so few if any LHRH neurons in the forebrain also express DCC. In rat, DCC is expressed on TAG-1(+) axons that guide migrating LHRH neurons. We therefore examined LHRH neuron migration in DCC(-/-) mice and found that trajectories of the caudal vomeronasal nerve and positions of LHRH neurons are abnormal. Fewer than the normal number of LHRH neurons are found in the basal forebrain, and many LHRH neurons are displaced into the cerebral cortex of DCC(-/-) mice. These results are consistent with the idea that DCC regulates the trajectories of a subset of vomeronasal axons that guide the migration of LHRH neurons. Loss of DCC function results in the migration of many LHRH neurons to inappropriate destinations.
Collapse
|
253
|
Yang X, Arber S, William C, Li L, Tanabe Y, Jessell TM, Birchmeier C, Burden SJ. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 2001; 30:399-410. [PMID: 11395002 DOI: 10.1016/s0896-6273(01)00287-2] [Citation(s) in RCA: 368] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The patterning of skeletal muscle is thought to depend upon signals provided by motor neurons. We show that AChR gene expression and AChR clusters are concentrated in the central region of embryonic skeletal muscle in the absence of innervation. Neurally derived Agrin is dispensable for this early phase of AChR expression, but MuSK, a receptor tyrosine kinase activated by Agrin, is required to establish this AChR prepattern. The zone of AChR expression in muscle lacking motor axons is wider than normal, indicating that neural signals refine this muscle-autonomous prepattern. Neuronal Neuregulin-1, however, is not involved in this refinement process, nor indeed in synapse-specific AChR gene expression. Our results demonstrate that AChR expression is patterned in the absence of innervation, raising the possibility that similarly prepatterned muscle-derived cues restrict axon growth and initiate synapse formation.
Collapse
MESH Headings
- Agrin/deficiency
- Agrin/genetics
- Agrin/metabolism
- Animals
- Axons/physiology
- Body Patterning/physiology
- Embryonic and Fetal Development
- Gene Expression Regulation, Developmental
- Mice
- Mice, Knockout
- Motor Neurons/physiology
- Muscle Denervation
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Neuregulins/genetics
- Neuregulins/physiology
- Neurons, Afferent/physiology
- Receptor Protein-Tyrosine Kinases/deficiency
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Cholinergic/genetics
- Receptors, G-Protein-Coupled
- Receptors, Lysophospholipid
- Recombination, Genetic
- Synapses/physiology
Collapse
Affiliation(s)
- X Yang
- Molecular Neurobiology Program, Skirball Institute, New York University Medical School, New York, NY 10011, USA
| | | | | | | | | | | | | | | |
Collapse
|
254
|
Fricke C, Lee JS, Geiger-Rudolph S, Bonhoeffer F, Chien CB. astray, a zebrafish roundabout homolog required for retinal axon guidance. Science 2001; 292:507-10. [PMID: 11313496 DOI: 10.1126/science.1059496] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As growing retinotectal axons navigate from the eye to the tectum, they sense guidance molecules distributed along the optic pathway. Mutations in the zebrafish astray gene severely disrupt retinal axon guidance, causing anterior-posterior pathfinding defects, excessive midline crossing, and defasciculation of the retinal projection. Eye transplantation experiments show that astray function is required in the eye. We identify astray as zebrafish robo2, a member of the Roundabout family of axon guidance receptors. Retinal ganglion cells express robo2 as they extend axons. Thus, robo2 is required for multiple axon guidance decisions during establishment of the vertebrate visual projection.
Collapse
Affiliation(s)
- C Fricke
- Department of Neurobiology and Anatomy, University of Utah Medical Center, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
255
|
Abstract
Ephrins are cell surface associated ligands for Eph receptor tyrosine kinases and are implicated in repulsive axon guidance, cell migration, topographic mapping and angiogenesis. During the past year, Eph receptors have been shown to associate with glutamate receptors in excitatory neurons, suggesting a role in synapse formation or function. Moreover, ephrin/Eph signaling appears to regulate neural stem cell proliferation and migration in adult mouse brains. The mode of action of ephrin/Ephs has been expanded from repulsion to adhesion and from cell surface attachment to regulated cleavage.
Collapse
Affiliation(s)
- R Klein
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
256
|
Abstract
The control of cell movement during development is essential for forming and stabilizing the spatial organization of tissues and cell types. During initial steps of tissue patterning, distinct regional domains or cell types arise at appropriate locations, and the movement of cells is constrained in order to maintain spatial relationships during growth. In other situations, the guidance of migrating cells or neuronal growth cones to specific destinations underlies the establishment or remodeling of a pattern. Eph receptor tyrosine kinases and their ephrin ligands are key players in controlling these cell movements in many tissues and at multiple stages of patterning.
Collapse
Affiliation(s)
- D G Wilkinson
- Division of Developmental Neurobiology, National Institute for Medical Research, Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
257
|
Abstract
It is now well established that the small GTPases of the Rho family--Rac, Cdc42 and Rho--regulate growth cone morphology. Less clear is their role in guiding the growth cone. Do they act permissively, providing the dynamic actin structures needed for guidance? Or do they act instructively, transducing specific guidance signals? Recent studies have provided the first strong evidence for an instructive role: extracellular guidance cues can modulate Rho GTPase activities in vitro, and Rho GTPase activators function in growth cone guidance in vivo. The pathways linking Rho GTPases and the actin cytoskeleton are also rapidly coming into view, revealing further points of regulation by extracellular guidance cues. The growth cone is therefore guided by signals transduced both via and independently of Rho GTPases.
Collapse
Affiliation(s)
- B J Dickson
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
258
|
|
259
|
Yamada T, Okafuji T, Ohta K, Handwerker C, Drescher U, Tanaka H. Analysis of ephrin-A2 in the chick retinotectal projection using a function-blocking monoclonal antibody. ACTA ACUST UNITED AC 2001; 47:245-54. [PMID: 11351336 DOI: 10.1002/neu.1032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Eph receptor tyrosine kinases and their ligands have been shown to be involved in processes of cell migration and axon guidance during embryonic development. Here we describe the development of a function-blocking monoclonal antibody against chick ephrin-A2, and its effect on retinal ganglion cell axons studied both in vitro and in vivo. In the stripe assay, the blocking antibody completely abolished the repulsive effect of posterior tectal membranes. In vivo, in a loss-of-function approach, hybridoma cells secreting the antiephrin-A2 antibody were applied to chick embryos from embryonic day 3 (E3) on, and the retinotectal projection was subsequently analyzed at E16. DiI tracing analyses showed that although the projection of both temporal and nasal retinal ganglion axons in the tectum was, overall, normal, occasionally diffuse and extra termination zones were observed, in addition to axons over-shooting their termination zones. These data support the idea that ephrin-A2 contributes to the establishment of the chick retinotectal projection.
Collapse
Affiliation(s)
- T Yamada
- Division of Developmental Neurobiology, Kumamoto University Graduate School of Medical Sciences, Honjo 2, Kumamoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
260
|
Kullander K, Mather NK, Diella F, Dottori M, Boyd AW, Klein R. Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron 2001; 29:73-84. [PMID: 11182082 DOI: 10.1016/s0896-6273(01)00181-7] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The EphA4 receptor tyrosine kinase regulates the formation of the corticospinal tract (CST), a pathway controlling voluntary movements, and of the anterior commissure (AC), connecting the neocortical temporal lobes. To study EphA4 kinase signaling in these processes, we generated mice expressing mutant EphA4 receptors either lacking kinase activity or with severely downregulated kinase activity. We demonstrate that EphA4 is required for CST formation as a receptor for which it requires an active kinase domain. In contrast, the formation of the AC is rescued by kinase-dead EphA4, suggesting that in this structure EphA4 acts as a ligand for which its kinase activity is not required. Unexpectedly, the cytoplasmic sterile-alpha motif (SAM) domain is not required for EphA4 functions. Our findings establish both kinase-dependent and kinase-independent functions of EphA4 in the formation of major axon tracts.
Collapse
Affiliation(s)
- K Kullander
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
261
|
Simpson JH, Bland KS, Fetter RD, Goodman CS. Short-range and long-range guidance by Slit and its Robo receptors: a combinatorial code of Robo receptors controls lateral position. Cell 2000; 103:1019-32. [PMID: 11163179 DOI: 10.1016/s0092-8674(00)00206-3] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Slit is secreted by midline glia in Drosophila and functions as a short-range repellent to control midline crossing. Although most Slit stays near the midline, some diffuses laterally, functioning as a long-range chemorepellent. Here we show that a combinatorial code of Robo receptors controls lateral position in the CNS by responding to this presumptive Slit gradient. Medial axons express only Robo, intermediate axons express Robo3 and Robo, while lateral axons express Robo2, Robo3, and Robo. Removal of robo2 or robo3 causes lateral axons to extend medially; ectopic expression of Robo2 or Robo3 on medial axons drives them laterally. Precise topography of longitudinal pathways appears to be controlled by a combination of long-range guidance (the Robo code determining region) and short-range guidance (discrete local cues determining specific location within a region).
Collapse
Affiliation(s)
- J H Simpson
- Howard Hughes Medical Institute, Division of Neurobiology, Department of Molecular and Cell Biology, 519 LSA, University of California, Berkeley CA 94720, USA
| | | | | | | |
Collapse
|
262
|
Rajagopalan S, Vivancos V, Nicolas E, Dickson BJ. Selecting a longitudinal pathway: Robo receptors specify the lateral position of axons in the Drosophila CNS. Cell 2000; 103:1033-45. [PMID: 11163180 DOI: 10.1016/s0092-8674(00)00207-5] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
On each side of the midline of the Drosophila CNS, axons are organized into a series of parallel pathways. Here we show that the midline repellent Slit, previously identified as a short-range signal that regulates midline crossing, also functions at long range to pattern these longitudinal pathways. In this long-range function, Slit signals through the receptors Robo2 and Robo3. Axons expressing neither, one, or both of these receptors project in one of three discrete lateral zones, each successively further from the midline. Loss of robo2 or robo3 function repositions axons closer to the midline, while gain of robo2 or robo3 function shifts axons further from the midline. Local cues further refine the lateral position. Together, these long- and short-range guidance cues allow growth cones to select with precision a specific longitudinal pathway.
Collapse
Affiliation(s)
- S Rajagopalan
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
263
|
Schulte D, Cepko CL. Two homeobox genes define the domain of EphA3 expression in the developing chick retina. Development 2000; 127:5033-45. [PMID: 11060230 DOI: 10.1242/dev.127.23.5033] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Graded expression of the Eph receptor EphA3 in the retina and its two ligands, ephrin A2 and ephrin A5 in the optic tectum, the primary target of retinal axons, have been implicated in the formation of the retinotectal projection map. Two homeobox containing genes, SOHo1 and GH6, are expressed in a nasal-high, temporal-low pattern during early retinal development, and thus in opposing gradients to EphA3. Retroviral misexpression of SOHo1 or GH6 completely and specifically repressed EphA3 expression in the neural retina, but not in other parts of the central nervous system, such as the optic tectum. Under these conditions, some temporal ganglion cell axons overshot their expected termination zones in the rostral optic tectum, terminating aberrantly at more posterior locations. However, the majority of ganglion cell axons mapped to the appropriate rostrocaudal locations, although they formed somewhat more diffuse termination zones. These findings indicate that other mechanisms, in addition to differential EphA3 expression in the neural retina, are required for retinal ganglion axons to map to the appropriate rostrocaudal locations in the optic tectum. They further suggest that the control of topographic specificity along the retinal nasal-temporal axis is split into several independent pathways already at a very early time in development.
Collapse
Affiliation(s)
- D Schulte
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
264
|
Erkman L, Yates PA, McLaughlin T, McEvilly RJ, Whisenhunt T, O'Connell SM, Krones AI, Kirby MA, Rapaport DH, Bermingham JR, O'Leary DD, Rosenfeld MG. A POU domain transcription factor-dependent program regulates axon pathfinding in the vertebrate visual system. Neuron 2000; 28:779-92. [PMID: 11163266 DOI: 10.1016/s0896-6273(00)00153-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Axon pathfinding relies on the ability of the growth cone to detect and interpret guidance cues and to modulate cytoskeletal changes in response to these signals. We report that the murine POU domain transcription factor Brn-3.2 regulates pathfinding in retinal ganglion cell (RGC) axons at multiple points along their pathways and the establishment of topographic order in the superior colliculus. Using representational difference analysis, we identified Brn-3.2 gene targets likely to act on axon guidance at the levels of transcription, cell-cell interaction, and signal transduction, including the actin-binding LIM domain protein abLIM. We present evidence that abLIM plays a crucial role in RGC axon pathfinding, sharing functional similarity with its C. elegans homolog, UNC-115. Our findings provide insights into a Brn-3.2-directed hierarchical program linking signaling events to cytoskeletal changes required for axon pathfinding.
Collapse
Affiliation(s)
- L Erkman
- Howard Hughes Medical Institute and, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|