251
|
Dréan A, Goldwirt L, Verreault M, Canney M, Schmitt C, Guehennec J, Delattre JY, Carpentier A, Idbaih A. Blood-brain barrier, cytotoxic chemotherapies and glioblastoma. Expert Rev Neurother 2016; 16:1285-1300. [PMID: 27310463 DOI: 10.1080/14737175.2016.1202761] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Glioblastomas (GBM) are the most common and aggressive primary malignant brain tumors in adults. The blood brain barrier (BBB) is a major limitation reducing efficacy of anti-cancer drugs in the treatment of GBM patients. Areas covered: Virtually all GBM recur after the first-line treatment, at least partly, due to invasive tumor cells protected from chemotherapeutic agents by the intact BBB in the brain adjacent to tumor. The passage through the BBB, taken by antitumor drugs, is poorly and heterogeneously documented in the literature. In this review, we have focused our attention on: (i) the BBB, (ii) the passage of chemotherapeutic agents across the BBB and (iii) the strategies investigated to overcome this barrier. Expert commentary: A better preclinical knowledge of the crossing of the BBB by antitumor drugs will allow optimizing their clinical development, alone or combined with BBB bypassing strategies, towards an increased success rate of clinical trials.
Collapse
Affiliation(s)
- Antonin Dréan
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,b Carthera SAS , Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Lauriane Goldwirt
- c AP-HP , Hôpital Universitaire Saint Louis, Service de Pharmacologie , Paris , France
| | - Maïté Verreault
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Michael Canney
- b Carthera SAS , Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Charlotte Schmitt
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Jeremy Guehennec
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France
| | - Jean-Yves Delattre
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,d AP-HP , Hôpital Universitaire La Pitié Salpêtrière, Service de Neurologie 2-Mazarin , Paris , France
| | - Alexandre Carpentier
- b Carthera SAS , Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,e AP-HP , Hôpital Universitaire La Pitié Salpêtrière, Service de Neurochirurgie , Paris , France
| | - Ahmed Idbaih
- a Inserm U 1127, CNRS UMR 7225 , Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM , Paris , France.,d AP-HP , Hôpital Universitaire La Pitié Salpêtrière, Service de Neurologie 2-Mazarin , Paris , France
| |
Collapse
|
252
|
Muro K, Das S, Raizer JJ. Convection-Enhanced and Local Delivery of Targeted Cytotoxins in the Treatment of Malignant Gliomas. Technol Cancer Res Treat 2016; 5:201-13. [PMID: 16700617 DOI: 10.1177/153303460600500304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite advances in our knowledge about the genesis, molecular biology, and natural history of malignant gliomas and the use of a multi-disciplinary approach to their treatment, patients harboring this diagnosis continue to face a grim prognosis. At the time of diagnosis, patients typically undergo surgery for the establishment of a histologic diagnosis, the reduction of tumor burden, and the relief of mass effect, with the maintenance of the patient's neurological function in mind. This is followed by the administration of adjuvant therapeutics, including radiation therapy and chemotherapy. Many investigational agents with laboratory evidence of efficacy against malignant gliomas have not met their promise in the clinical setting, largely due to the barriers that they must overcome to reach the tumor at a therapeutically meaningful concentration for a durable period of time. The relevant aspects of the blood-brain barrier, blood-tumor barrier, and blood-cerebrospinal fluid barrier, as they pertain to the delivery of agents to the tumor, will be discussed along with the strategies devised to circumvent them. This discussion will be followed by a description of agents currently in preclinical and clinical development, many of which are the result of intense ongoing research into the molecular biology of gliomas.
Collapse
Affiliation(s)
- Kenji Muro
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Abbott Hall, Suite 1123, 710 N Lake Shore Drive, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
253
|
Saito K, Yamasaki K, Yokogami K, Ivanova A, Takeishi G, Sato Y, Takeshima H. Eosinophilic meningitis triggered by implanted Gliadel wafers: case report. J Neurosurg 2016; 126:1783-1787. [PMID: 27285546 DOI: 10.3171/2016.4.jns152771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although carmustine (Gliadel) wafers improve local tumor control and extend the overall survival in patients with malignant glioma, adverse effects have been documented. The authors report the first case of eosinophilic meningitis triggered by the placement of Gliadel wafers. A 61-year-old man with a history of alimentary allergy and glioblastoma in the right frontal lobe underwent resection followed by the implantation of Gliadel wafers. Three weeks later he suffered the sudden onset of headache, vomiting, and progressive consciousness disturbance. Computed tomography revealed enlargement of the ventricular system and subdural space on the side of the tumor. His CSF leukocyte count increased up to 3990 cells/mm3; 95% of the cells were eosinophilic granulocytes (EGs), suggesting eosinophilic meningitis. Laboratory examination showed the patient to have various elevated allergy indicators. The administration of corticosteroids failed to improve his condition. Despite the insertion of a lumbar drain his symptoms failed to improve. He underwent a second surgical intervention to remove the Gliadel wafers. Histologically, EGs had assembled around the wafers. Eosinophilic infiltrate was present in the brain parenchyma around small vessels. After ventriculoperitoneal shunting his course was favorable. A drug lymphocyte stimulation test against the Gliadel wafers failed to demonstrate a positive reaction; polifeprosan, the wafer matrix without 1,3-bis(2-chloroethyl)-1-nitrosourea, yielded a positive reaction. These findings strongly suggest that although extremely rare, polifeprosan (the wafer matrix) can elicit an allergic reaction. When eosinophilic meningitis is suspected after the implantation of Gliadel wafers, their immediate removal should be considered.
Collapse
Affiliation(s)
- Kiyotaka Saito
- Department of Neurosurgery, Division of Clinical Neuroscience, and
| | - Kouji Yamasaki
- Department of Neurosurgery, Division of Clinical Neuroscience, and
| | | | - Asya Ivanova
- Department of Neurosurgery, Division of Clinical Neuroscience, and
| | - Go Takeishi
- Department of Neurosurgery, Division of Clinical Neuroscience, and
| | - Yuichiro Sato
- Department of Diagnostic Pathology, Miyazaki University Hospital, Faculty of Medicine, University of Miyazaki, Japan
| | - Hideo Takeshima
- Department of Neurosurgery, Division of Clinical Neuroscience, and
| |
Collapse
|
254
|
Tseng YY, Kau YC, Liu SJ. Advanced interstitial chemotherapy for treating malignant glioma. Expert Opin Drug Deliv 2016; 13:1533-1544. [DOI: 10.1080/17425247.2016.1193153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yuan-Yun Tseng
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chuan Kau
- Department of Anesthesiology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| |
Collapse
|
255
|
Patterns of Recurrence After Resection of Malignant Gliomas With BCNU Wafer Implants: Retrospective Review in a Single Institution. World Neurosurg 2016; 90:340-347. [DOI: 10.1016/j.wneu.2016.02.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/22/2022]
|
256
|
Abstract
Anaplastic astrocytoma (AA) is a diffusely infiltrating, malignant, astrocytic, primary brain tumor. AA is currently defined by histology although future classification schemes will include molecular alterations. AA can be separated into subgroups, which share similar molecular profiles, age at diagnosis and median survival, based on 1p/19q co-deletion status and IDH mutation status. AA with co-deletion of chromosomes 1p and 19q and IDH mutation have the best prognosis. AA with IDH mutation and no 1p/19q co-deletion have intermediate prognosis and AA with wild-type IDH have the worst prognosis and share many molecular alterations with glioblastoma. Treatment of noncodeleted AA based on preliminary results from the CATNON clinical trial consists of maximal safe resection followed by radiotherapy with post-radiotherapy temozolomide (TMZ) chemotherapy. The role of concurrent TMZ and whether IDH1 subgroups benefit from TMZ is currently being evaluated in the recently completed randomized, prospective Phase III clinical trial, CATNON.
Collapse
Affiliation(s)
- Sean A Grimm
- Northwestern Medicine Brain & Spine Tumor Center, Warrenville, IL 60555, USA
| | - Marc C Chamberlain
- Department of Neurology & Neurological Surgery, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109-1023, USA
| |
Collapse
|
257
|
Nanoparticles for Targeting Intratumoral Hypoxia: Exploiting a Potential Weakness of Glioblastoma. Pharm Res 2016; 33:2059-77. [DOI: 10.1007/s11095-016-1947-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/12/2016] [Indexed: 02/07/2023]
|
258
|
Ene CI, Nerva JD, Morton RP, Barkley AS, Barber JK, Ko AL, Silbergeld DL. Safety and efficacy of carmustine (BCNU) wafers for metastatic brain tumors. Surg Neurol Int 2016; 7:S295-9. [PMID: 27217968 PMCID: PMC4866053 DOI: 10.4103/2152-7806.181987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/22/2016] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Carmustine (BCNU) wafers (Gliadel) prolongs local disease control and progression-free survival (PFS) in patients with malignant gliomas. However, in metastatic brain tumors, there is a paucity of evidence in support of its safety and efficacy. The goal of this study was to assess the safety and efficacy of Gliadel wafers in patients with metastatic brain tumors. METHODS We retrospectively reviewed the University of Washington experience with Gliadel wafers for metastatic brain tumors between 2000 and 2015. RESULTS Gliadel wafers were used in 14 patients with metastatic brain tumors during the period reviewed. There were no postoperative seizures, strokes, or hemorrhages. There was one postoperative wound infection necessitating return to the operating room. The mean time to tumor progression (n = 7) and death (n = 5) after Gliadel wafer implantation was 2.5 and 2.9 years, respectively. Age was the only variable affecting PFS in patients receiving Gliadel wafers. Patients <53 years old (n = 7) had a PFS of 0.52 years, whereas patients >53 years old (n = 7) had a PFS of 4.29 years (P = 0.02). There was no significant difference in PFS in relation to presenting Karnofsky Performance Status (P = 0.26), number of brain metastasis (P = 0.82), tumor volume (P = 0.54), prior surgery (P = 0.57), or prior radiation (P = 0.41). There were no significant differences in the mean survival in relationship to any variable including age. CONCLUSIONS BCNU wafers are a safe and a potentially efficacious adjunct to surgery and radiation for improving local disease control in metastatic brain tumors. Larger studies, however, are needed to examine overall efficacy and tumor specific efficacy.
Collapse
Affiliation(s)
- Chibawanye I Ene
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - John D Nerva
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Ryan P Morton
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Ariana S Barkley
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Jason K Barber
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Andrew L Ko
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Daniel L Silbergeld
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
259
|
Seystahl K, Gramatzki D, Roth P, Weller M. Pharmacotherapies for the treatment of glioblastoma - current evidence and perspectives. Expert Opin Pharmacother 2016; 17:1259-70. [PMID: 27052640 DOI: 10.1080/14656566.2016.1176146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Glioblastoma, the most common malignant brain tumor, exhibits a poor prognosis with little therapeutic progress in the last decade. Novel treatment strategies beyond the established standard of care with temozolomide-based radiotherapy are urgently needed. AREAS COVERED We reviewed the literature on glioblastoma with a focus on phase III trials for pharmacotherapies and/or innovative concepts until December 2015. EXPERT OPINION In the last decade, phase III trials on novel compounds largely failed to introduce efficacious pharmacotherapies beyond temozolomide in glioblastoma. So far, inhibition of angiogenesis by compounds such as bevacizumab, cediranib, enzastaurin or cilengitide as well as alternative dosing schedules of temozolomide did not prolong survival, neither at primary diagnosis nor at recurrent disease. Promising strategies of pharmacotherapy currently under evaluation represent targeting epidermal growth factor receptor (EGFR) with biomarker-stratified patient populations and immunotherapeutic concepts including checkpoint inhibition and vaccination. The clinical role of the medical device delivering 'tumor-treating fields' in newly diagnosed glioblastoma which prolonged overall survival in a phase III study has remained controversial. After failure of several phase III trials with previously promising agents, improvement of concepts and novel compounds are urgently needed to expand the still limited therapeutic options for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Katharina Seystahl
- a Department of Neurology and Brain Tumor Center , University Hospital and University of Zurich , Zurich , Switzerland
| | - Dorothee Gramatzki
- a Department of Neurology and Brain Tumor Center , University Hospital and University of Zurich , Zurich , Switzerland
| | - Patrick Roth
- a Department of Neurology and Brain Tumor Center , University Hospital and University of Zurich , Zurich , Switzerland
| | - Michael Weller
- a Department of Neurology and Brain Tumor Center , University Hospital and University of Zurich , Zurich , Switzerland
| |
Collapse
|
260
|
Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors. J Control Release 2016; 232:103-12. [PMID: 27063424 DOI: 10.1016/j.jconrel.2016.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 01/19/2023]
Abstract
Glioblastoma multiforme (GBM) is a fatal brain tumor characterized by infiltration beyond the margins of the main tumor mass and local recurrence after surgery. The blood-brain barrier (BBB) poses the most significant hurdle to brain tumor treatment. Convection-enhanced delivery (CED) allows for local administration of agents, overcoming the restrictions of the BBB. Recently, polymer nanoparticles have been demonstrated to penetrate readily through the healthy brain when delivered by CED, and size has been shown to be a critical factor for nanoparticle penetration. Because these brain-penetrating nanoparticles (BPNPs) have high potential for treatment of intracranial tumors since they offer the potential for cell targeting and controlled drug release after administration, here we investigated the intratumoral CED infusions of PLGA BPNPs in animals bearing either U87 or RG2 intracranial tumors. We demonstrate that the overall volume of distribution of these BPNPs was similar to that observed in healthy brains; however, the presence of tumors resulted in asymmetric and heterogeneous distribution patterns, with substantial leakage into the peritumoral tissue. Together, our results suggest that CED of BPNPs should be optimized by accounting for tumor geometry, in terms of location, size and presence of necrotic regions, to determine the ideal infusion site and parameters for individual tumors.
Collapse
|
261
|
Hänggi D, Etminan N, Steiger HJ, Johnson M, Peet MM, Tice T, Burton K, Hudson B, Turner M, Stella A, Heshmati P, Davis C, Faleck HJ, Macdonald RL. A Site-Specific, Sustained-Release Drug Delivery System for Aneurysmal Subarachnoid Hemorrhage. Neurotherapeutics 2016; 13:439-49. [PMID: 26935204 PMCID: PMC4824023 DOI: 10.1007/s13311-016-0424-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Nimodipine is the only drug approved for use by the Food and Drug Administration for improving outcome after aneurysmal subarachnoid hemorrhage (SAH). It has less than optimal efficacy, causes dose-limiting hypotension in a substantial proportion of patients, and is administered enterally 6 times daily. We describe development of site-specific, sustained-release nimodipine microparticles that can be delivered once directly into the subarachnoid space or cerebral ventricles for potential improvement in outcome of patients with aneurysmal SAH. Eight injectable microparticle formulations of nimodipine in poly(DL-lactide-co-glycolide) (PLGA) polymers of varying composition were tested in vitro, and 1 was advanced into preclinical studies and clinical application. Intracisternal or intraventricular injection of nimodipine-PLGA microparticles in rats and beagles demonstrated dose-dependent, sustained concentrations of nimodipine in plasma and cerebrospinal fluid for up to 29 days with minimal toxicity in the brain or systemic tissues at doses <2 mg in rats and 51 mg in beagles, which would be equivalent of up to 612-1200 mg in humans, based on scaling relative to cerebrospinal fluid volumes. Efficacy was tested in the double-hemorrhage dog model of SAH. Nimodipine-PLGA microparticles significantly attenuated angiographic vasospasm. This therapeutic approach shows promise for improving outcome after SAH and may have broader applicability for similar diseases that are confined to body cavities or spaces, are self-limited, and lack effective treatments.
Collapse
Affiliation(s)
- Daniel Hänggi
- Department of Neurosurgery, University Medical Center Mannheim, Ruprecht-Karls-University Heidelberg, Germany, Mannheim, Germany.
| | - Nima Etminan
- Department of Neurosurgery, University Medical Center Mannheim, Ruprecht-Karls-University Heidelberg, Germany, Mannheim, Germany
| | - Hans Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | - Tom Tice
- Evonik Industries, Birmingham, AL, USA
| | | | | | | | | | | | | | | | - R Loch Macdonald
- Edge Therapeutics, Inc., Berkeley Heights, NJ, USA
- Division of Neurosurgery, St. Michael's Hospital, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
262
|
Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol 2016; 18:1062-1071. [PMID: 26960561 DOI: 10.1007/s12094-016-1497-x] [Citation(s) in RCA: 466] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/27/2016] [Indexed: 12/17/2022]
Abstract
Glioblastoma (GBM) is the most common and lethal tumor of the central nervous system. The natural history of treated GBM remains very poor with 5-year survival rates of 5 %. Survival has not significantly improved over the last decades. Currently, the best that can be offered is a modest 14-month overall median survival in patients undergoing maximum safe resection plus adjuvant chemoradiotherapy. Prognostic factors involved in survival include age, performance status, grade, specific markers (MGMT methylation, mutation of IDH1, IDH2 or TERT, 1p19q codeletion, overexpression of EGFR, etc.) and, likely, the extent of resection. Certain adjuncts to surgery, especially cortical mapping and 5-ALA fluorescence, favor higher rates of gross total resection with apparent positive impact on survival. Recurrent tumors can be offered re-intervention, participation in clinical trials, anti-angiogenic agent or local electric field therapy, without an evident impact on survival. Molecular-targeted therapies, immunotherapy and gene therapy are promising tools currently under research.
Collapse
|
263
|
Hyperthermic Laser Ablation of Recurrent Glioblastoma Leads to Temporary Disruption of the Peritumoral Blood Brain Barrier. PLoS One 2016; 11:e0148613. [PMID: 26910903 PMCID: PMC4766093 DOI: 10.1371/journal.pone.0148613] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/19/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Poor central nervous system penetration of cytotoxic drugs due to the blood brain barrier (BBB) is a major limiting factor in the treatment of brain tumors. Most recurrent glioblastomas (GBM) occur within the peritumoral region. In this study, we describe a hyperthemic method to induce temporary disruption of the peritumoral BBB that can potentially be used to enhance drug delivery. METHODS Twenty patients with probable recurrent GBM were enrolled in this study. Fourteen patients were evaluable. MRI-guided laser interstitial thermal therapy was applied to achieve both tumor cytoreduction and disruption of the peritumoral BBB. To determine the degree and timing of peritumoral BBB disruption, dynamic contrast-enhancement brain MRI was used to calculate the vascular transfer constant (Ktrans) in the peritumoral region as direct measures of BBB permeability before and after laser ablation. Serum levels of brain-specific enolase, also known as neuron-specific enolase, were also measured and used as an independent quantification of BBB disruption. RESULTS In all 14 evaluable patients, Ktrans levels peaked immediately post laser ablation, followed by a gradual decline over the following 4 weeks. Serum BSE concentrations increased shortly after laser ablation and peaked in 1-3 weeks before decreasing to baseline by 6 weeks. CONCLUSIONS The data from our pilot research support that disruption of the peritumoral BBB was induced by hyperthemia with the peak of high permeability occurring within 1-2 weeks after laser ablation and resolving by 4-6 weeks. This provides a therapeutic window of opportunity during which delivery of BBB-impermeant therapeutic agents may be enhanced. TRIAL REGISTRATION ClinicalTrials.gov NCT01851733.
Collapse
|
264
|
Brandes AA, Bartolotti M, Tosoni A, Poggi R, Bartolini S, Paccapelo A, Bacci A, Ghimenton C, Pession A, Bortolotti C, Zucchelli M, Galzio R, Talacchi A, Volpin L, Marucci G, de Biase D, Pizzolitto S, Danieli D, Ermani M, Franceschi E. Patient outcomes following second surgery for recurrent glioblastoma. Future Oncol 2016; 12:1039-1044. [PMID: 26880307 DOI: 10.2217/fon.16.9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/11/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The most appropriate management of recurrent glioblastoma is still controversial. In particular, the role of surgery at recurrence remains uncertain. PATIENTS & METHODS From our Institutional data warehouse we analyzed 270 consecutive patients who received second surgery for recurrent glioblastoma, to assess survival after second surgery, and to evaluate prognostic factors. RESULTS Complete resection was found in 128 (47.4%) and partial resection in 142 patients (52.6%). Median survival from second surgery was 11.4 months (95% CI: 10.0-12.7). Multivariate analysis showed that age (p = 0.001), MGMT methylation (p = 0.021) and extent of surgery (p < 0.001) are associated with better survival. CONCLUSION A complete resection should be the goal for second resection and younger age and MGMT methylation status might be considered in the selection of patients.
Collapse
Affiliation(s)
- Alba A Brandes
- Department of Medical Oncology, Bellaria Hospital, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Marco Bartolotti
- Department of Medical Oncology, Bellaria Hospital, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Alicia Tosoni
- Department of Medical Oncology, Bellaria Hospital, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Rosalba Poggi
- Department of Medical Oncology, Bellaria Hospital, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Stefania Bartolini
- Department of Medical Oncology, Bellaria Hospital, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Alexandro Paccapelo
- Department of Medical Oncology, Bellaria Hospital, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Antonella Bacci
- Department of Neuroradiology, Bellaria Hospital, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | | | - Annalisa Pession
- Department of Biomedical & NeuroMotor Sciences (DiBiNeM), University of Bologna, Section of Pathology, M. Malpighi, Bellaria Hospital, Bologna, Italy
| | - Carlo Bortolotti
- Department of Neurosurgery, Bellaria Hospital, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Mino Zucchelli
- Department of Neurosurgery, Bellaria Hospital, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Renato Galzio
- Department of Health Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Talacchi
- Section of Neurosurgery, Department of Neurological, Neuropsychological, Morphological & Movement Sciences, University of Verona, University Hospital, Verona, Italy
| | - Lorenzo Volpin
- Department of Neuroscience & Neurosurgery, San Bortolo Hospital, Vicenza, Italy
| | - Gianluca Marucci
- Department of Biomedical & NeuroMotor Sciences (DiBiNeM), University of Bologna, Section of Pathology, M. Malpighi, Bellaria Hospital, Bologna, Italy
| | - Dario de Biase
- Department of Biomedical & NeuroMotor Sciences (DiBiNeM), University of Bologna, Section of Pathology, M. Malpighi, Bellaria Hospital, Bologna, Italy
| | - Stefano Pizzolitto
- Department of Pathology, Santa Maria della Misericordia Hospital, Udine, Italy
| | - Daniela Danieli
- Department of Pathology, San Bortolo Hospital, Vicenza, Italy
| | - Mario Ermani
- Department of Neurosciences, Statistic & Informatic Unit, Azienda Ospedale-Università, Padova, Italy
| | - Enrico Franceschi
- Department of Medical Oncology, Bellaria Hospital, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| |
Collapse
|
265
|
Affiliation(s)
- Mark W. Tibbitt
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - James E. Dahlman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Robert Langer
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Harvard-MIT
Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
266
|
Hersh DS, Wadajkar AS, Roberts NB, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GF, Kim AJ. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des 2016; 22:1177-1193. [PMID: 26685681 PMCID: PMC4900538 DOI: 10.2174/1381612822666151221150733] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/18/2015] [Indexed: 01/10/2023]
Abstract
The blood-brain barrier (BBB) poses a unique challenge for drug delivery to the central nervous system (CNS). The BBB consists of a continuous layer of specialized endothelial cells linked together by tight junctions, pericytes, nonfenestrated basal lamina, and astrocytic foot processes. This complex barrier controls and limits the systemic delivery of therapeutics to the CNS. Several innovative strategies have been explored to enhance the transport of therapeutics across the BBB, each with individual advantages and disadvantages. Ongoing advances in delivery approaches that overcome the BBB are enabling more effective therapies for CNS diseases. In this review, we discuss: (1) the physiological properties of the BBB, (2) conventional strategies to enhance paracellular and transcellular transport through the BBB, (3) emerging concepts to overcome the BBB, and (4) alternative CNS drug delivery strategies that bypass the BBB entirely. Based on these exciting advances, we anticipate that in the near future, drug delivery research efforts will lead to more effective therapeutic interventions for diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Graeme F. Woodworth
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| | - Anthony J. Kim
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| |
Collapse
|
267
|
Robins HI, Zhang P, Gilbert MR, Chakravarti A, de Groot JF, Grimm SA, Wang F, Lieberman FS, Krauze A, Trotti AM, Mohile N, Kee AYJ, Colman H, Cavaliere R, Kesari S, Chmura SJ, Mehta M. A randomized phase I/II study of ABT-888 in combination with temozolomide in recurrent temozolomide resistant glioblastoma: an NRG oncology RTOG group study. J Neurooncol 2016; 126:309-16. [PMID: 26508094 PMCID: PMC4720526 DOI: 10.1007/s11060-015-1966-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/21/2015] [Indexed: 11/28/2022]
Abstract
This study tested the hypothesis that ABT-888 (velparib), a poly (ADP-ribose) polymerase (PARP) inhibitor, can modulate temozolomide (TMZ) resistance in recurrent TMZ refractory glioblastoma patients. The combination regimen (TMZ/ABT-888) was tested using two randomized schedules (5 vs. 21 days), with 6-month progression free survival (PFS6) as the primary endpoint. The maximum tolerated dose (MTD) for TMZ using the 21 day of 28 TMZ schedule, in concert with 40 mg BID ABT-888 was determined in a phase I portion of this study, and previously reported to be 75 mg/m(2) (arm1). The MTD for ABT-888 (40 mg BID) and the 5 of 28 day TMZ (150-200 mg/m(2)) schedule was known from prior trials (arm2). Two cohorts were studied: bevacizumab (BEV) naïve (n = 151), and BEV refractory (n = 74). Overall ten patients were ineligible. The incidence rate of grade 3/4 myelosuppression over all was 20.0 %. For the BEV refractory cohort, the PFS 6 was 4.4 %; for the BEV naïve cohort, PFS6 was 17 %. Overall survival was similar for both arms in both the BEV naïve [median survival time (MST) 10.3 M; 95 % CI 8.4-12] and BEV refractory cohort (MST 4.7 M; 95 %CI 3.5-5.6). The median PFS was essentially the same for both arms and both cohorts at ~2.0 M (95 % CI 1.9-2.1).
Collapse
Affiliation(s)
- H Ian Robins
- Paul Carbone Comprehensive Cancer Center, University of Wisconsin, 600 Highland Avenue, Madison, WI, 53792, USA.
| | - Peixin Zhang
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA, USA
| | - Mark R Gilbert
- National Cancer Institute at the National Institutes of Health, Bethesda, MD, USA
| | | | - John F de Groot
- University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | | | - Fen Wang
- University of Kansas, Kansas City, KS, USA
| | | | - Andra Krauze
- National Cancer Institute Radiation Oncology Branch, Bethesda, MD, USA
| | - Andy M Trotti
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | | | - Howard Colman
- University of Utah Health Science Center, Salt Lake City, UT, USA
| | | | - Santosh Kesari
- Departments of Neurosciences and Radiation Medicine & Applied Sciences, UC San Diego Health Sciences, La Jolla, CA, USA
| | | | - Minesh Mehta
- University of Maryland Medical Systems, Baltimore, MD, USA
| |
Collapse
|
268
|
Kleinberg L. Polifeprosan 20, 3.85% carmustine slow release wafer in malignant glioma: patient selection and perspectives on a low-burden therapy. Patient Prefer Adherence 2016; 10:2397-2406. [PMID: 27920506 PMCID: PMC5125766 DOI: 10.2147/ppa.s93020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polifeprosan 20 with carmustine (GLIADEL®) polymer implant wafer is a biodegradable compound containing 3.85% carmustine (BCNU, bischloroethylnitrosourea) implanted in the brain at the time of planned tumor surgery, which then slowly degrades to release the BCNU chemotherapy directly into the brain thereby bypassing the blood-brain barrier. Carmustine implant wafers were demonstrated to improve survival in randomized placebo-controlled trials in patients undergoing a near total resection of newly diagnosed or recurrent malignant glioma. Based on these trials and other supporting data, carmustine wafer therapy was approved for use for newly diagnosed and recurrent malignant glioma in the United States and the European Union. Adverse events are uncommon, and as this therapy is placed at the time of surgery, it does not add to patient treatment burden. Nevertheless, this therapy appears to be underutilized. This article reviews the evidence for a favorable therapeutic ratio for the patient and the potential barriers. Consideration of these issues is important for optimal use of this therapeutic approach and may be important as this technology and other local therapies are further developed in the future.
Collapse
Affiliation(s)
- Lawrence Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
- Correspondence: Lawrence Kleinberg, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA, Email
| |
Collapse
|
269
|
Abstract
Neurosurgical intervention remains the first step in effective glioma management. Mounting evidence suggests that cytoreduction for low- and high-grade gliomas is associated with a survival benefit. Beyond conventional neurosurgical principles, an array of techniques have been refined in recent years to maximize the effect of the neurosurgical oncologist and facilitate the impact of subsequent adjuvant therapy. With intraoperative mapping techniques, aggressive microsurgical resection can be safely pursued even when tumors occupy essential functional pathways. Other adjunct techniques, such as intraoperative magnetic resonance imaging, intraoperative ultrasonography, and fluorescence-guided surgery, can be valuable tools to safely reduce the tumor burden of low- and high-grade gliomas. Taken together, this collection of surgical strategies has pushed glioma extent of resection towards the level of cellular resolution.
Collapse
Affiliation(s)
- Colin Watts
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Cambridge, Cambridge, UK.
| | - Nader Sanai
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
270
|
Abstract
This review focusses on polyanhydrides, a fascinating class of degradable polymers that have been used in and investigated for many bio-related applications because of their degradability and capacity to undergo surface erosion. This latter phenomenon is driven by hydrolysis of the anhydride moieties at the surface and high hydrophobicity of the polymer such that degradation and mass loss (erosion) occur before water can penetrate deep within the bulk of the polymer. As such, when surface-eroding polymers are used as therapeutic delivery vehicles, the rate of delivery is often controlled by the rate of polymer erosion, providing predictable and controlled release rates that are often zero-order. These desirable attributes are heavily influenced by polymer composition and morphology, and therefore also monomer structure and polymerization method. This review examines approaches for polyanhydride synthesis, discusses their general thermomechanical properties, surveys their hydrolysis and degradation processes along with their biocompatibility, and looks at recent developments and uses of polyanhydrides in drug delivery, stimuli-responsive materials, and novel nanotechnologies.
Collapse
|
271
|
Masuda Y, Ishikawa E, Yamamoto T, Matsuda M, Akutsu H, Kohzuki H, Nakai K, Okamoto E, Takano S, Masumoto T, Matsumura A. Early Postoperative Expansion of Parenchymal High-intensity Areas on T2-weighted Imaging Predicts Delayed Cerebral Edema Caused by Carmustine Wafer Implantation in Patients with High-grade Glioma. Magn Reson Med Sci 2015; 15:299-307. [PMID: 26726015 PMCID: PMC5608126 DOI: 10.2463/mrms.mp.2015-0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Carmustine (BCNU) wafer (Gliadel® Wafer) implantation after tumor resection is an approved treatment for high-grade glioma (HGG). These wafers change various characteristics on early postoperative magnetic resonance imaging (ep-MRI) including slight expansion of high-intensity areas on T2-weighted imaging (ep-T2-HIAs) into adjacent parenchyma without restricted diffusivity. We assessed the frequency of the ep-T2-HIAs after BCNU wafer implantation in HGG patients. Moreover, we focused on ep-T2-HIA expansion and its relation to delayed cerebral edema. Methods: Twenty-five consecutive HGG patients who underwent BCNU wafer implantation were assessed. First, patients were divided into ep-T2-HIA and non-ep-T2-HIA groups, and the incidence of delayed adverse effects was compared between the two groups. Subsequently, the patients were divided into delayed edema and non-delayed edema groups, and pre-, intra-, and postoperative data were compared between the two groups. Results: The ep-T2-HIA expansion and the delayed edema were evident in 9 cases (36%) and 12 cases (48%), respectively. In comparison of the ep-T2-HIA and non-ep-T2-HIA groups, delayed edema was the only delayed adverse effect associated with ep-T2-HIA expansion (P = 0.004). Univariate analysis showed a significantly higher ratio of delayed edema in the subgroups with maximal diameter of removed cavity ≤40 mm (P = 0.047) and the ep-T2-HIA expansion in comparison of the delayed edema and non-delayed edema groups. Multivariate analysis showed that the ep-T2-HIA expansion was the only independent factor associated with delayed edema (P = 0.021). Conclusion: In BCNU wafer implantation cases, ep-T2-HIA expansion was a predictive factor for delayed cerebral edema.
Collapse
Affiliation(s)
- Yosuke Masuda
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Jackson S, Anders NM, Mangraviti A, Wanjiku TM, Sankey EW, Liu A, Brem H, Tyler B, Rudek MA, Grossman SA. The effect of regadenoson-induced transient disruption of the blood-brain barrier on temozolomide delivery to normal rat brain. J Neurooncol 2015; 126:433-9. [PMID: 26626489 DOI: 10.1007/s11060-015-1998-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
The blood-brain barrier (BBB) significantly reduces the delivery of many systemically administered agents to the central nervous system. Although temozolomide is the only chemotherapy to improve survival in patients with glioblastoma, its concentration in brain is only 20 % of that in blood. Regadenoson, an FDA approved adenosine receptor agonist used for cardiac stress testing, transiently disrupts rodent BBB allowing high molecular weight dextran (70 kD) to enter the brain. This study was conducted to determine if regadenoson could facilitate entry of temozolomide into normal rodent brain. Temozolomide (50 mg/kg) was administered by oral gavage to non-tumor bearing F344 rats. Two-thirds of the animals received a single dose of intravenous regadenoson 60-90 min later. All animals were sacrificed 120 or 360 min after temozolomide administration. Brain and plasma temozolomide concentrations were determined using HPLC/MS/MS. Brain temozolomide concentrations were significantly higher at 120 min when it was given with regadenoson versus alone (8.1 ± 2.7 and 5.1 ± 3.5 µg/g, P < 0.05). A similar trend was noted in brain:plasma ratios (0.45 ± 0.08 and 0.29 ± 0.09, P < 0.05). Brain concentrations and brain:plasma ratios were not significantly different 360 min after temozolomide administration. No differences were seen in plasma temozolomide concentrations with or without regadenoson. These results suggest co-administration of regadenoson with temozolomide results in 60% higher temozolomide levels in normal brain without affecting plasma concentrations. This novel approach to increasing intracranial concentrations of systemically administered agents has potential to improve the efficacy of chemotherapy in neuro-oncologic disorders.
Collapse
Affiliation(s)
- Sadhana Jackson
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA
| | - Nicole M Anders
- Chemical Therapeutics and Analytical Pharmacology Core Laboratory, Johns Hopkins University, Bunting-Blaustein Cancer Research Building I, 1650 Orleans Street, CRB1 Room 1M52, Baltimore, MD, 21231, USA
| | - Antonella Mangraviti
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA
| | - Teresia M Wanjiku
- Chemical Therapeutics and Analytical Pharmacology Core Laboratory, Johns Hopkins University, Bunting-Blaustein Cancer Research Building I, 1650 Orleans Street, CRB1 Room 1M52, Baltimore, MD, 21231, USA
| | - Eric W Sankey
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA
| | - Ann Liu
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA
| | - Henry Brem
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA.,Departments of Ophthalmology, Oncology and Biomedical Engineering, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA
| | - Betty Tyler
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA
| | - Michelle A Rudek
- Chemical Therapeutics and Analytical Pharmacology Core Laboratory, Johns Hopkins University, Bunting-Blaustein Cancer Research Building I, 1650 Orleans Street, CRB1 Room 1M52, Baltimore, MD, 21231, USA
| | - Stuart A Grossman
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA.
| |
Collapse
|
273
|
|
274
|
Abstract
Glioblastoma, the most aggressive of the gliomas, has a high recurrence and mortality rate. The nature of this poor prognosis resides in the molecular heterogeneity and phenotypic features of this tumor. Despite research advances in understanding the molecular biology, it has been difficult to translate this knowledge into effective treatment. Nearly all will have tumor recurrence, yet to date very few therapies have established efficacy as salvage regimens. This challenge is further complicated by imaging confounders and to an even greater degree by the ever increasing molecular heterogeneity that is thought to be both sporadic and treatment-induced. The development of novel clinical trial designs to support the development and testing of novel treatment regimens and drug delivery strategies underscore the need for more precise techniques in imaging and better surrogate markers to help determine treatment response. This review summarizes recent approaches to treat patients with recurrent glioblastoma and considers future perspectives.
Collapse
Affiliation(s)
- Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
275
|
Wait SD, Prabhu RS, Burri SH, Atkins TG, Asher AL. Polymeric drug delivery for the treatment of glioblastoma. Neuro Oncol 2015; 17 Suppl 2:ii9-ii23. [PMID: 25746091 DOI: 10.1093/neuonc/nou360] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) remains an almost universally fatal diagnosis. The current therapeutic mainstay consists of maximal safe surgical resection followed by radiation therapy (RT) with concomitant temozolomide (TMZ), followed by monthly TMZ (the "Stupp regimen"). Several chemotherapeutic agents have been shown to have modest efficacy in the treatment of high-grade glioma (HGG), but blood-brain barrier impermeability remains a major delivery obstacle. Polymeric drug-delivery systems, developed to allow controlled local release of biologically active substances for a variety of conditions, can achieve high local concentrations of active agents while limiting systemic toxicities. Polymerically delivered carmustine (BCNU) wafers, placed on the surface of the tumor-resection cavity, can potentially provide immediate chemotherapy to residual tumor cells during the standard delay between surgery and chemoradiotherapy. BCNU wafer implantation as monochemotherapy (with RT) in newly diagnosed HGG has been investigated in 2 phase III studies that reported significant increases in median overall survival. A number of studies have investigated the tumoricidal synergies of combination chemotherapy with BCNU wafers in newly diagnosed or recurrent HGG, and a primary research focus has been the integration of BCNU wafers into multimodality therapy with the standard Stupp regimen. Overall, the results of these studies have been encouraging in terms of safety and efficacy. However, the data must be qualified by the nature of the studies conducted. Currently, there are no phase III studies of BCNU wafers with the standard Stupp regimen. We review the rationale, biochemistry, pharmacokinetics, and research history (including toxicity profile) of this modality.
Collapse
Affiliation(s)
- Scott D Wait
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| | - Roshan S Prabhu
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| | - Stuart H Burri
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| | - Tyler G Atkins
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| | - Anthony L Asher
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| |
Collapse
|
276
|
Azad TD, Pan J, Connolly ID, Remington A, Wilson CM, Grant GA. Therapeutic strategies to improve drug delivery across the blood-brain barrier. Neurosurg Focus 2015; 38:E9. [PMID: 25727231 DOI: 10.3171/2014.12.focus14758] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resection of brain tumors is followed by chemotherapy and radiation to ablate remaining malignant cell populations. Targeting these populations stands to reduce tumor recurrence and offer the promise of more complete therapy. Thus, improving access to the tumor, while leaving normal brain tissue unscathed, is a critical pursuit. A central challenge in this endeavor lies in the limited delivery of therapeutics to the tumor itself. The blood-brain barrier (BBB) is responsible for much of this difficulty but also provides an essential separation from systemic circulation. Due to the BBB's physical and chemical constraints, many current therapies, from cytotoxic drugs to antibody-based proteins, cannot gain access to the tumor. This review describes the characteristics of the BBB and associated changes wrought by the presence of a tumor. Current strategies for enhancing the delivery of therapies across the BBB to the tumor will be discussed, with a distinction made between strategies that seek to disrupt the BBB and those that aim to circumvent it.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | |
Collapse
|
277
|
Rehman AA, Elmore KB, Mattei TA. The effects of alternating electric fields in glioblastoma: current evidence on therapeutic mechanisms and clinical outcomes. Neurosurg Focus 2015; 38:E14. [PMID: 25727223 DOI: 10.3171/2015.1.focus14742] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glioblastoma is both the most common and most lethal primary CNS malignancy in adults, accounting for 45.6% of all malignant CNS tumors, with a 5-year survival rate of only 5.0%, despite the utilization of multimodal therapy including resection, chemotherapy, and radiation. Currently available treatment options for glioblastoma often remain limited, offering brief periods of improved survival, but with substantial side effects. As such, improvements in current treatment strategies or, more likely, the implementation of novel strategies altogether are warranted. In this topic review, the authors provide a comprehensive review on the potential of alternating electric fields (AEFs) in the treatment of glioblastoma. Alternating electric fields-also known as tumor-treating fields (TTFs)-represent an entirely original therapeutic modality with preliminary studies suggesting comparable, and at times improved, efficacy to standard chemotherapeutic agents in the treatment of recurrent glioblastoma. A recent multicenter, Phase III, randomized clinical trial comparing NovoTTF-100A monotherapy to physician's best choice chemotherapy in patients with recurrent glioblastoma revealed that AEFs have similar efficacy to standard chemotherapeutic agents with a more favorable side-effects profile and improved quality of life. In particular, AEFs were shown to have limited systemic adverse effects, with the most common side effect being contact dermatitis on the scalp at the sites of transducer placement. This study prompted FDA approval of the NovoTTF-100A system in April 2011 as a standalone therapy for treatment of recurrent glioblastoma refractory to surgical and radiation treatment. In addition to discussing the available clinical evidence regarding the utilization of AEFs in glioblastoma, this article provides essential information regarding the supposed therapeutic mechanism as well as modes of potential tumor resistance to such novel therapy, delineating future perspectives regarding basic science research on the issue.
Collapse
Affiliation(s)
- Azeem A Rehman
- University of Illinois College of Medicine at Peoria, Illinois; and
| | | | | |
Collapse
|
278
|
Update on Brain Tumors: New Developments in Neuro-oncologic Diagnosis and Treatment, and Impact on Rehabilitation Strategies. PM R 2015; 8:678-89. [PMID: 26548964 DOI: 10.1016/j.pmrj.2015.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 11/21/2022]
Abstract
Brain tumors can be a source of functional impairment to patients due to neurologic sequelae associated with the tumor itself as well as treatment side effects. As a result, many of these patients may require rehabilitation services. Surgery, chemotherapy, and radiation therapy have been longstanding, primary treatment modalities in the management of brain tumors, though these treatments continue to evolve given new developments in research and technology. A better understanding of the diagnostic workup and current treatment standards helps the physiatrist and rehabilitation team identify rehabilitation services needed, recognize potential side-effects from anticipated or concurrent treatments, and coordinate care with referral sources. The purpose of this article is to review these new advances in diagnosis and treatment of patients with brain tumors, as well as discuss the rehabilitation implications for this population, including factors such as rehabilitation approach, timing of concomitant treatment, cost management, and coordination of care.
Collapse
|
279
|
Kaplan JA, Liu R, Freedman JD, Padera R, Schwartz J, Colson YL, Grinstaff MW. Prevention of lung cancer recurrence using cisplatin-loaded superhydrophobic nanofiber meshes. Biomaterials 2015; 76:273-81. [PMID: 26547283 DOI: 10.1016/j.biomaterials.2015.10.060] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 02/02/2023]
Abstract
For early stage lung cancer patients, local cancer recurrence after surgical resection is a significant concern and stems from microscopic disease left behind after surgery. Here we apply a local drug delivery strategy to combat local lung cancer recurrence after resection using non-woven, biodegradable nanofiber meshes loaded with cisplatin. The meshes are fabricated using a scalable electrospinning process from two biocompatible polymers--polycaprolactone and poly(glycerol monostearate-co-caprolactone)--to afford favorable mechanical properties for use in a dynamic tissue such as the lung. Owing to their rough nanostructure and hydrophobic polymer composition, these meshes exhibit superhydrophobicity, and it is this non-wetting nature that sustains the release of cisplatin in a linear fashion over ∼90 days, with anti-cancer efficacy demonstrated using an in vitro Lewis Lung carcinoma (LLC) cell assay. The in vivo evaluation of cisplatin-loaded superhydrophobic meshes in the prevention of local cancer recurrence in a murine model of LLC surgical resection demonstrated a statistically significant increase (p = 0.0006) in median recurrence-free survival to >23 days, compared to standard intraperitoneal cisplatin therapy of equivalent dose. These results emphasize the importance of supplementing cytoreductive surgery with local drug delivery strategies to improve prognosis for lung cancer patients undergoing tumor resection.
Collapse
Affiliation(s)
- Jonah A Kaplan
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Department of Medicine, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Rong Liu
- Department of Surgery, Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA
| | - Jonathan D Freedman
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Department of Medicine, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - Robert Padera
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - John Schwartz
- AcuityBio Corp., 200 Upland Rd., Newton, MA 02460, USA
| | - Yolonda L Colson
- Department of Surgery, Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA.
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Department of Medicine, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA.
| |
Collapse
|
280
|
Sato K, Dan M, Yamamoto D, Miyajima Y, Hara A, Kumabe T. Chronic Phase Intracranial Hemorrhage Caused by Ruptured Pseudoaneurysm Induced by Carmustine Wafer Implantation for Insulo-opercular Anaplastic Astrocytoma: A Case Report. Neurol Med Chir (Tokyo) 2015; 55:848-51. [PMID: 26423018 PMCID: PMC4663023 DOI: 10.2176/nmc.cr.2015-0186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Carmustine wafers improve the survival of patients with high-grade gliomas, but several adverse events have been reported. A 42-year-old man with left insulo-opercular anaplastic astrocytoma developed a massive intra-cavital hematoma with subarachnoid hemorrhage caused by ruptured pseudoaneurysm of the left middle cerebral artery (MCA) adjacent to the site of carmustine wafers implanted 6 months previously. Intraoperative finding demonstrated a dissection of the insular portion of the MCA, and pathological examination identified the resected pseudoaneurysm. This case demonstrates that carmustine wafers can cause changes in local vessels. Therefore, implantation of carmustine wafers near to important vessels passing close to the resection cavity should be considered with great caution.
Collapse
Affiliation(s)
- Kimitoshi Sato
- Department of Neurosurgery, Kitasato University School of Medicine
| | | | | | | | | | | |
Collapse
|
281
|
Abstract
Current first-line treatment regimens combine surgical resection and chemoradiation for Glioblastoma that provides a slight increase in overall survival. Age on its own should not be used as an exclusion criterion of glioblastoma multiforme (GBM) treatment, but performance should be factored heavily into the decision-making process for treatment planning. Despite aggressive initial treatment, most patients develop recurrent diseases which can be treated with re-resection, systemic treatment with targeted agents or cytotoxic chemotherapy, reirradiation, or radiosurgery. Research into novel therapies is investigating alternative temozolomide regimens, convection-enhanced delivery, immunotherapy, gene therapy, antiangiogenic agents, poly ADP ribose polymerase inhibitors, or cancer stem cell signaling pathways. Given the aggressive and resilient nature of GBM, continued efforts to better understand GBM pathophysiology are required to discover novel targets for future therapy.
Collapse
Affiliation(s)
- Sanjoy Roy
- Department of Radiotherapy, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Debarshi Lahiri
- Department of Radiotherapy, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Tapas Maji
- Department of Radiotherapy, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Jaydip Biswas
- Department of Radiotherapy, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| |
Collapse
|
282
|
Suzuki A, Leland P, Joshi BH, Puri RK. Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 2015; 75:79-88. [DOI: 10.1016/j.cyto.2015.05.026] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 02/03/2023]
|
283
|
Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer. Ther Deliv 2015; 6:989-1016. [PMID: 26488496 DOI: 10.4155/tde.15.48] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood-brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers noninvasive delivery of small molecule and biological cancer therapeutics. Local delivery methods enable high dose delivery while avoiding systemic exposure. BBB disruption with focused ultrasound and microbubbles offers local and noninvasive treatment. Clinical trials show the prospects of these technologies and point to challenges for the future.
Collapse
|
284
|
The TWEAK receptor Fn14 is a potential cell surface portal for targeted delivery of glioblastoma therapeutics. Oncogene 2015; 35:2145-55. [PMID: 26300004 DOI: 10.1038/onc.2015.310] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Fibroblast growth factor-inducible 14 (Fn14; TNFRSF12A) is the cell surface receptor for the tumor necrosis factor (TNF) family member TNF-like weak inducer of apoptosis (TWEAK). The Fn14 gene is normally expressed at low levels in healthy tissues but expression is significantly increased after tissue injury and in many solid tumor types, including glioblastoma (GB; formerly referred to as 'GB multiforme'). GB is the most common and aggressive primary malignant brain tumor and the current standard-of-care therapeutic regimen has a relatively small impact on patient survival, primarily because glioma cells have an inherent propensity to invade into normal brain parenchyma, which invariably leads to tumor recurrence and patient death. Despite major, concerted efforts to find new treatments, a new GB therapeutic that improves survival has not been introduced since 2005. In this review article, we summarize studies indicating that (i) Fn14 gene expression is low in normal brain tissue but is upregulated in advanced brain cancers and, in particular, in GB tumors exhibiting the mesenchymal molecular subtype; (ii) Fn14 expression can be detected in glioma cells residing in both the tumor core and invasive rim regions, with the maximal levels found in the invading glioma cells located within normal brain tissue; and (iii) TWEAK Fn14 engagement as well as Fn14 overexpression can stimulate glioma cell migration, invasion and resistance to chemotherapeutic agents in vitro. We also discuss two new therapeutic platforms that are currently in development that leverage Fn14 overexpression in GB tumors as a way to deliver cytotoxic agents to the glioma cells remaining after surgical resection while sparing normal healthy brain cells.
Collapse
|
285
|
Depot delivery of dexamethasone and cediranib for the treatment of brain tumor associated edema in an intracranial rat glioma model. J Control Release 2015; 217:183-90. [PMID: 26285064 DOI: 10.1016/j.jconrel.2015.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/03/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
Abstract
Treatments of brain tumor associated edema with systemically delivered dexamethasone, the standard of care, and cediranib, a novel anti-edema agent, are associated with systemic toxicities in brain tumor patients. A tunable, reservoir-based drug delivery device was developed to investigate the effects of delivering dexamethasone and cediranib locally in the brain in an intracranial 9L gliosarcoma rat model. Reproducible, sustained releases of both dexamethasone and solid dispersion of cediranib in polyvinylpyrrolidone (AZD/PVP) from these devices were achieved. The water-soluble AZD/PVP, which exhibited similar bioactivity as cediranib, was developed to enhance the release of cediranib from the device. Local and systemic administration of both dexamethasone and cediranib was equally efficacious in alleviating edema but had no effect on tumor growth. Edema reduction led to modest but significant improvement in survival. Local delivery of dexamethasone prevented dexamethasone-induced weight loss, an adverse effect seen in animals treated with systemic dexamethasone. Local deliveries of dexamethasone and cediranib via these devices used only 2.36% and 0.21% of the systemic doses respectively, but achieved similar efficacy as systemic drug deliveries without the side effects associated with systemic administration. Other therapeutic agents targeting brain tumor can be delivered locally in the brain to provide similar improved treatment outcomes.
Collapse
|
286
|
Kang JH, Adamson C. Novel chemotherapeutics and other therapies for treating high-grade glioma. Expert Opin Investig Drugs 2015; 24:1361-79. [PMID: 26289791 DOI: 10.1517/13543784.2015.1048332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Despite extensive research, high-grade glioma (HGG) remains a dire diagnosis with no change in the standard of care in almost a decade. However, recent advancements uncovering molecular biomarkers of brain tumors and tumor-specific antigens targeted by immunotherapies provide opportunities for novel personalized treatment regimens to improve survival. AREAS COVERED In this review, the authors provide a comprehensive overview of recent therapeutic advancements in HGG. Furthermore, they describe new molecular biomarkers and molecular classifications, in addition to updated research on bevacizumab, targeted molecular therapies, immunotherapy and alternative delivery methods that overcome the blood-brain barrier to reach the target tumor tissue. Challenges regarding each therapy are also outlined. The authors also provide some insight into a novel non-chemotherapeutic treatment for malignant glioma, NovoTTFA, as well as a summary of current treatment options for recurrence. EXPERT OPINION Current research for treating malignant gliomas are paving the path to personalized therapy, including immunotherapy, that involve integrated genomic and histolopathologic data, as well as a multi-modal treatment regimen. Immunotherapy will potentially be the next addition to the current standard of care, specialized to the antigens presented on the tumors. The results of the current trials of multi-antigen vaccines are eagerly anticipated.
Collapse
Affiliation(s)
- Jennifer H Kang
- a 1 Duke University School of Medicine , Box 3807, Durham, NC, USA
| | - Cory Adamson
- b 2 Director, Molecular Neuro-oncology Lab, Duke Medical Center , DUMC Box 3807, Durham, NC, USA.,c 3 Chief of Neurosurgery, Durham VA Medical Center , 508 Fulton Street, Durham, NC, USA +1 919 698 3152 ; .,d 4 Duke Medical Center , DUMC Box 3807, Durham, NC, USA
| |
Collapse
|
287
|
Abstract
OBJECT Patients, practitioners, payers, and regulators are advocating for reform in how medical advances are evaluated. Because surgery does not adhere to a standardized developmental pathway, how the medical community accepts a procedure remains unclear. The authors developed a new model, using publication data and patterns, that quantifies this process. Using this technique, the authors identified common archetypes and influences on neurosurgical progress from idea inception to acceptance. METHODS Seven neurosurgical procedures developed in the past 15-25 years were used as developmental case studies (endovascular coil, deep brain stimulation, vagus nerve stimulation, 1,3-bis(2-chloroethyl)-l-nitrosourea wafer, and 3 radiosurgery procedures), and the literature on each topic was evaluated. A new metric the authors termed "progressive scholarly acceptance" (PSA) was used as an end point for community acceptance. PSA was reached when the number of investigations that refine or improve a procedure eclipsed the total number of reports assessing initial efficacy. Report characteristics, including the number of patients studied, study design, and number of authoring groups from the first report to the point of PSA, were assessed. RESULTS Publication data implicated factors that had an outsized influence on acceptance. First, procedural accessibility to investigators was found to influence the number of reports, number of patients studied, and number of authoring groups contributing. Barriers to accessibility included target disease rarity, regulatory restrictions, and cost. Second, the ease or difficulty in applying a randomized controlled trial had an impact on study design. Based on these 2 factors, 3 developmental archetypes were characterized to generally describe the development of surgery. CONCLUSIONS Common surgical development archetypes can be described based on factors that impact investigative methods, data accumulation, and ultimate acceptance by society. The approach and proposed terminologies in this report could inform future procedural development as well as any attempts to regulate surgical innovation.
Collapse
Affiliation(s)
- Zane Schnurman
- Department of Neurosurgery, NYU Langone Medical Center, New York, New York
| | - Douglas Kondziolka
- Department of Neurosurgery, NYU Langone Medical Center, New York, New York
| |
Collapse
|
288
|
Kleinberg LR, Stieber V, Mikkelsen T, Judy K, Weingart J, Barnett G, Olson J, Desideri S, Ye X, Grossman S. Outcome of Adult Brain Tumor Consortium (ABTC) prospective dose-finding trials of I-125 balloon brachytherapy in high-grade gliomas: challenges in clinical trial design and technology development when MRI treatment effect and recurrence appear similar. ACTA ACUST UNITED AC 2015; 4:235-241. [PMID: 27695605 DOI: 10.1007/s13566-015-0210-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study is to define the maximal safe radiation dose to guide further study of the GliaSite balloon brachytherapy (GSBT) system in untreated newly diagnosed glioblastoma (NEW-GBM) and recurrent high-grade glioma (REC-HGG). GBST is a balloon placed in the resection cavity and later filled through a subcutaneous port with liquid I-125 Iotrex, providing radiation doses that diminish uniformly with distance from the balloon surface. METHODS The Adult Brain Tumor Consortium initiated prospective dose-finding studies to determine maximum tolerated dose in NEW-GBM treated before standard RT or after surgery for REC-HGG. Patients were inevaluable if there was progression before the 90-day posttreatment toxicity evaluation point. RESULTS Ten NEW-GBM patients had the balloon placed, and 2/10 reached the 90 day timepoint. Five REC-HGG enrolled and two were assessable at the 90-day evaluation endpoint. Imaging progression occurred before 90-day evaluation in 7/12 treated patients. The trials were closed as too few patients were assessable to allow dose escalation, although no dose-limiting toxicities (DLTs) were observed. Median survival from treatment was 15.3 months (95 % CI 7.1-23.6) for NEW-GBM and 12.8 months (95 % CI 4.2-20.9) for REC-HGG. CONCLUSION These trials failed to determine a maximum tolerated dose (MTD) for further testing as early imaging changes, presumed to be progression, were common and interfered with the assessment of treatment-related toxicity. The survival outcomes in these and other related studies, although based on small populations, suggest that GSBT may be worthy of further study using clinical and survival endpoints, rather than standard imaging results. The implications for local therapy development are discussed.
Collapse
Affiliation(s)
- L R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Cancer Center, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA
| | - V Stieber
- Piedmont Radiation Oncology, Winston-Salem, NC, USA
| | | | - K Judy
- Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - J Weingart
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Cancer Center, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA
| | - G Barnett
- Cleveland Clinic, Cleveland, OH, USA
| | - J Olson
- Emory University, Atlanta, USA
| | - S Desideri
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Cancer Center, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA
| | - X Ye
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Cancer Center, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA
| | - S Grossman
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Cancer Center, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA
| |
Collapse
|
289
|
McHugh KJ, Guarecuco R, Langer R, Jaklenec A. Single-injection vaccines: Progress, challenges, and opportunities. J Control Release 2015; 219:596-609. [PMID: 26254198 DOI: 10.1016/j.jconrel.2015.07.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 01/01/2023]
Abstract
Currently, vaccination is the most efficient and cost-effective medical treatment for infectious diseases; however, each year 10 million infants remain underimmunized due to current vaccination schedules that require multiple doses to be administered across months or years. These dosing regimens are especially challenging in the developing world where limited healthcare access poses a major logistical barrier to immunization. Over the past four decades, researchers have attempted to overcome this issue by developing single-administration vaccines based on controlled-release antigen delivery systems. These systems can be administered once, but release antigen over an extended period of time to elicit both primary and secondary immune responses resulting in antigen-specific immunological memory. Unfortunately, unlike controlled release systems for drugs, single-administration vaccines have yet to be commercialized due to poor antigen stability and difficulty in obtaining unconventional release kinetics. This review discusses the current state of single-administration vaccination, challenges delaying the development of these vaccines, and potential strategies for overcoming these challenges.
Collapse
Affiliation(s)
- Kevin J McHugh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rohiverth Guarecuco
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
290
|
Grossman R, Burger P, Soudry E, Tyler B, Chaichana KL, Weingart J, Olivi A, Gallia GL, Sidransky D, Quiñones-Hinojosa A, Ye X, Brem H. MGMT inactivation and clinical response in newly diagnosed GBM patients treated with Gliadel. J Clin Neurosci 2015; 22:1938-42. [PMID: 26249244 DOI: 10.1016/j.jocn.2015.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 11/17/2022]
Abstract
We examined the relationship between the O(6)-methylguanine-methyltransferase (MGMT) methylation status and clinical outcomes in newly diagnosed glioblastoma multiforme (GBM) patients who were treated with Gliadel wafers (Eisai, Tokyo, Japan). MGMT promoter methylation has been associated with increased survival among patients with GBM who are treated with various alkylating agents. MGMT promoter methylation, in DNA from 122 of 160 newly diagnosed GBM patients treated with Gliadel, was determined by a quantitative methylation-specific polymerase chain reaction, and was correlated with overall survival (OS) and recurrence-free survival (RFS). The MGMT promoter was methylated in 40 (32.7%) of 122 patients. The median OS was 13.5 months (95% confidence interval [CI] 11.0-14.5) and RFS was 9.4 months (95% CI 7.8-10.2). After adjusting for age, Karnofsky performance score, extent of resection, temozolomide (TMZ) and radiation therapy (RT), the newly diagnosed GBM patients with MGMT methylation had a 15% reduced mortality risk, compared to patients with unmethylated MGMT (hazard ratio 0.85; 95% CI 0.56-1.31; p=0.46). The patients aged over 70 years with MGMT methylation had a significantly longer median OS of 13.5 months, compared to 7.6 months in patients with unmethylated MGMT (p=0.027). A significant difference was also found in older patients, with a median RFS of 13.1 versus 7.6 months for methylated and unmethylated MGMT groups, respectively (p=0.01). Methylation of the MGMT promoter in newly diagnosed GBM patients treated with Gliadel, RT and TMZ, was associated with significantly improved OS compared to the unmethylated population. In elderly patients, methylation of the MGMT promoter was associated with significantly better OS and RFS.
Collapse
Affiliation(s)
- Rachel Grossman
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Peter Burger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Ethan Soudry
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States.
| | - Kaisorn L Chaichana
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Jon Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Alessandro Olivi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - David Sidransky
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| |
Collapse
|
291
|
Barker FG. Brain Tumor Clinical Trials. Neurosurgery 2015; 62 Suppl 1:141-5. [DOI: 10.1227/neu.0000000000000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
292
|
Abstract
Standard treatment for glioblastoma multiforme is surgery followed by radiotherapy and chemotherapy, generally with temozolomide. However, disease recurs in almost all patients. Diagnosis of progression is complex given the possibility of pseudoprogression. The Response Assessment in Neuro-Oncology criteria increase the sensitivity for detecting progression. Most patients will not be candidates for new surgery or re-irradiation, and anticancer drugs are the most common approach for second-line treatment, if the patient's condition allows. Antiangiogenics, inhibitors of the epidermal growth factor receptor, nitrosoureas, and re-treatment with temozolomide have been studied in the second line, but a standard therapy has not yet been established. This review considers currently available medical treatment options for patients with glioblastoma recurrence.
Collapse
Affiliation(s)
- O. Gallego
- Medical Oncology, Hospital Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
293
|
Hot melt extruded and injection moulded disulfiram-loaded PLGA millirods for the treatment of glioblastoma multiforme via stereotactic injection. Int J Pharm 2015; 494:73-82. [PMID: 26235918 DOI: 10.1016/j.ijpharm.2015.07.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Glioblastoma multiforme (GBM) has a poor prognosis and is one of the most common primary malignant brain tumours in adults. Stereotactic injections have been used to deliver chemotherapeutic drugs directly into brain tumours. This paper describes the development of disulfiram (DSF)-loaded biodegradable millirods manufactured using hot melt extrusion (HME) and injection moulding (IM). The paper demonstrates that the stability of the DSF within the millirods is dependent on the manufacturing technique used as well as the drug loading. The physical state of the DSF within the millirods was dependent on the fabrication process, with the DSF in the HME millirods being either completely amorphous within the PLGA, while the DSF within the IM millirods retained between 54 and 66% of its crystallinity. Release of DSF from the millirods was dependent on the degradation rate of the PLGA, the manufacturing technique used as well as the DSF loading. DSF in the 10% (w/w) DSF loaded HME millirods and the 20% (w/w) DSF-loaded HME and IM millirods had a similar cytotoxicity against a GBM cell line compared to the unprocessed DSF control. However, the 10% (w/w) DSF-loaded IM millirods had a significantly lower cytotoxicity when compared to the unprocessed control.
Collapse
|
294
|
Johnson DR, Fogh SE, Giannini C, Kaufmann TJ, Raghunathan A, Theodosopoulos PV, Clarke JL. Case-Based Review: newly diagnosed glioblastoma. Neurooncol Pract 2015; 2:106-121. [PMID: 31386093 DOI: 10.1093/nop/npv020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (WHO grade IV astrocytoma) is the most common and most aggressive primary brain tumor in adults. Optimal treatment of a patient with glioblastoma requires collaborative care across numerous specialties. The diagnosis of glioblastoma may be suggested by the symptomatic presentation and imaging, but it must be pathologically confirmed via surgery, which can have dual diagnostic and therapeutic roles. Standard of care postsurgical treatment for newly diagnosed patients involves radiation therapy and oral temozolomide chemotherapy. Despite numerous recent trials of novel therapeutic approaches, this standard of care has not changed in over a decade. Treatment options under active investigation include molecularly targeted therapies, immunotherapeutic approaches, and the use of alternating electrical field to disrupt tumor cell division. These trials may be aided by new insights into glioblastoma heterogeneity, allowing for focused evaluation of new treatments in the patient subpopulations most likely to benefit from them. Because glioblastoma is incurable by current therapies, frequent clinical and radiographic assessment is needed after initial treatment to allow for early intervention upon progressive tumor when it occurs.
Collapse
Affiliation(s)
- Derek R Johnson
- Department of Neurology and Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota (D.R.J.); Department of Radiation Oncology, University of California, San Francisco, California (S.E.F.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (C.G., A.R.); Department of Radiology, Mayo Clinic, Rochester, Minnesota (T.J.K.); Department of Neurological Surgery, University of California, San Francisco, California (P.V.T.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, California (J.L.C.)
| | - Shannon E Fogh
- Department of Neurology and Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota (D.R.J.); Department of Radiation Oncology, University of California, San Francisco, California (S.E.F.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (C.G., A.R.); Department of Radiology, Mayo Clinic, Rochester, Minnesota (T.J.K.); Department of Neurological Surgery, University of California, San Francisco, California (P.V.T.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, California (J.L.C.)
| | - Caterina Giannini
- Department of Neurology and Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota (D.R.J.); Department of Radiation Oncology, University of California, San Francisco, California (S.E.F.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (C.G., A.R.); Department of Radiology, Mayo Clinic, Rochester, Minnesota (T.J.K.); Department of Neurological Surgery, University of California, San Francisco, California (P.V.T.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, California (J.L.C.)
| | - Timothy J Kaufmann
- Department of Neurology and Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota (D.R.J.); Department of Radiation Oncology, University of California, San Francisco, California (S.E.F.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (C.G., A.R.); Department of Radiology, Mayo Clinic, Rochester, Minnesota (T.J.K.); Department of Neurological Surgery, University of California, San Francisco, California (P.V.T.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, California (J.L.C.)
| | - Aditya Raghunathan
- Department of Neurology and Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota (D.R.J.); Department of Radiation Oncology, University of California, San Francisco, California (S.E.F.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (C.G., A.R.); Department of Radiology, Mayo Clinic, Rochester, Minnesota (T.J.K.); Department of Neurological Surgery, University of California, San Francisco, California (P.V.T.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, California (J.L.C.)
| | - Philip V Theodosopoulos
- Department of Neurology and Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota (D.R.J.); Department of Radiation Oncology, University of California, San Francisco, California (S.E.F.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (C.G., A.R.); Department of Radiology, Mayo Clinic, Rochester, Minnesota (T.J.K.); Department of Neurological Surgery, University of California, San Francisco, California (P.V.T.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, California (J.L.C.)
| | - Jennifer L Clarke
- Department of Neurology and Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota (D.R.J.); Department of Radiation Oncology, University of California, San Francisco, California (S.E.F.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (C.G., A.R.); Department of Radiology, Mayo Clinic, Rochester, Minnesota (T.J.K.); Department of Neurological Surgery, University of California, San Francisco, California (P.V.T.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, California (J.L.C.)
| |
Collapse
|
295
|
Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Ther Deliv 2015; 6:353-69. [PMID: 25853310 DOI: 10.4155/tde.14.114] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malignant gliomas, including glioblastoma and anaplastic astrocytomas, are characterized by their propensity to invade surrounding brain parenchyma, making curative resection difficult. These tumors typically recur within two centimeters of the resection cavity even after gross total removal. As a result, there has been an emphasis on developing therapeutics aimed at achieving local disease control. In this review, we will summarize the current developments in the delivery of local therapeutics, namely direct injection, convection-enhanced delivery and implantation of drug-loaded polymers, as well as the application of these therapeutics in future methods including microchip drug delivery and local gene therapy.
Collapse
|
296
|
Abstract
OPINION STATEMENT Treatment of patients with high-grade glioma (HGG) should begin with thorough evaluation by a specialized multidisciplinary team to determine whether or not the patient is appropriate for surgery, chemotherapy and radiotherapy. Particular attention should be paid to the performance status and neurological function. Surgery is the first step in therapeutic intervention. Patients undergo either biopsy, debulking surgery or maximal resection depending on the anatomical location of the tumour and the patient's clinical condition. Extent of resection has a prognostic value. In patients who are 'fit for surgery', the aim is to remove all contrast-enhancing tumour without causing neurological deficit. If microsurgical resection is not feasible, then a biopsy, either open or stereotactic, should be performed to confirm high-grade glioma diagnosis and to perform molecular genetic analyses (MGMT methylation status, loss of heterozygosity in 1p/19q, IDH1 status) as this has treatment implications. Over the past decade, much glioma research has focussed on novel surgical approaches to improve long-term outcomes. The evidence to support the benefit of maximizing extent of resection is growing. Advances in neurosurgical techniques allow safer, more aggressive surgery to maximize tumour resection whilst minimizing neurological deficit. Surgical adjuncts including advanced neuronavigation, intraoperative magnetic resonance imaging, high-frequency ultrasonography, fluorescence-guided microsurgery using intraoperative fluorescence, functional mapping of motor and language pathways, and locally delivered therapies are extending the armamentarium of the neurosurgeon to provide patients with the best outcome. Operating on elderly patients and those with recurrent disease, although controversial, is becoming more common due to emerging neurosurgical approaches. Here, we discuss the emerging surgical techniques and comment on the future of HGG surgery.
Collapse
Affiliation(s)
- Fahid Tariq Rasul
- Department of Clinical Neurosciences, Brain Repair Centre, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK,
| | | |
Collapse
|
297
|
Hawasli AH, Kim AH, Dunn GP, Tran DD, Leuthardt EC. Stereotactic laser ablation of high-grade gliomas. Neurosurg Focus 2015; 37:E1. [PMID: 25434378 DOI: 10.3171/2014.9.focus14471] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Evolving research has demonstrated that surgical cytoreduction of a high-grade glial neoplasm is an important factor in improving the prognosis of these difficult tumors. Recent advances in intraoperative imaging have spurred the use of stereotactic laser ablation (laser interstitial thermal therapy [LITT]) for intracranial lesions. Among other targets, laser ablation has been used in the focal treatment of high-grade gliomas (HGGs). The revived application of laser ablation for gliomas parallels major advancements in intraoperative adjuvants and groundbreaking molecular advances in neuro-oncology. The authors review the research on stereotactic LITT for the treatment of HGGs and provide a potential management algorithm for HGGs that incorporates LITT in clinical practice.
Collapse
|
298
|
Concurrent delivery of carmustine, irinotecan, and cisplatin to the cerebral cavity using biodegradable nanofibers: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2015. [PMID: 26209775 DOI: 10.1016/j.colsurfb.2015.06.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, and the prognosis of patients afflicted with GBM has been dismal, exhibiting progressive neurologic impairment and imminent death. Even with the most active regimens currently available, chemotherapy achieves only modest improvement in the overall survival. New chemotherapeutic agents and novel approaches to therapy are required for improving clinical outcomes. In this study, we used an electrospinning technique and developed biodegradable poly[(d,l)-lactide-co-glycolide] nanofibrous membranes that facilitated a sustained release of carmustine (or bis-chloroethylnitrosourea, BCNU), irinotecan, and cisplatin. An elution method and a high-performance liquid chromatography assay were employed to characterize the in vitro and in vivo release behaviors of pharmaceuticals from the nanofibrous membranes. The experimental results showed that the biodegradable, nanofibrous membranes released high concentrations of BCNU, irinotecan, and cisplatin for more than 8 weeks in the cerebral cavity of rats. A histological examination revealed progressive atrophy of the brain tissues without inflammatory reactions. Biodegradable drug-eluting nanofibrous membranes may facilitate sustained delivery of various and concurrent chemotherapeutic agents in the cerebral cavity, enhancing the therapeutic efficacy of GBM treatment and preventing toxic effects resulting from the systemic administration of chemotherapeutic agents.
Collapse
|
299
|
Seib FP, Coburn J, Konrad I, Klebanov N, Jones GT, Blackwood B, Charest A, Kaplan DL, Chiu B. Focal therapy of neuroblastoma using silk films to deliver kinase and chemotherapeutic agents in vivo. Acta Biomater 2015; 20:32-38. [PMID: 25861948 PMCID: PMC4428956 DOI: 10.1016/j.actbio.2015.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/08/2015] [Accepted: 04/02/2015] [Indexed: 12/17/2022]
Abstract
Current methods for treatment of high-risk neuroblastoma patients include surgical intervention, in addition to systemic chemotherapy. However, only limited therapeutic tools are available to pediatric surgeons involved in neuroblastoma care, so the development of intraoperative treatment modalities is highly desirable. This study presents a silk film library generated for focal therapy of neuroblastoma; these films were loaded with either the chemotherapeutic agent doxorubicin or the targeted drug crizotinib. Drug release kinetics from the silk films were fine-tuned by changing the amount and physical crosslinking of silk; doxorubicin loaded films were further refined by applying a gold nanocoating. Doxorubicin-loaded, physically crosslinked silk films showed the best in vitro activity and superior in vivo activity in orthotopic neuroblastoma studies when compared to the doxorubicin-equivalent dose administered intravenously. Silk films were also suitable for delivery of the targeted drug crizotinib, as crizotinib-loaded silk films showed an extended release profile and an improved response both in vitro and in vivo when compared to freely diffusible crizotinib. These findings, when combined with prior in vivo data on silk, support a viable future for silk-based anticancer drug delivery systems.
Collapse
Affiliation(s)
- F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jeannine Coburn
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Ilona Konrad
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Nikolai Klebanov
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Gregory T Jones
- Department of Biochemistry, Tufts University, Medford, MA, USA
| | - Brian Blackwood
- Department of Surgery, Rush University Medical Center, Chicago, IL USA
| | - Alain Charest
- Department of Neurosurgery, Tufts Medical Center, Boston, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Bill Chiu
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
300
|
Xing WK, Shao C, Qi ZY, Yang C, Wang Z. The role of Gliadel wafers in the treatment of newly diagnosed GBM: a meta-analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3341-8. [PMID: 26170620 PMCID: PMC4492653 DOI: 10.2147/dddt.s85943] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Standard treatment for high-grade glioma (HGG) includes surgery followed by radiotherapy and/or chemotherapy. Insertion of carmustine wafers into the resection cavity as a treatment for malignant glioma is currently a controversial topic among neurosurgeons. Our meta-analysis focused on whether carmustine wafer treatment could significantly benefit the survival of patients with newly diagnosed glioblastoma multiforme (GBM). Method We searched the PubMed and Web of Science databases without any restrictions on language using the keywords “Gliadel wafers”, “carmustine wafers”, “BCNU wafers”, or “interstitial chemotherapy” in newly diagnosed GBM for the period from January 1990 to March 2015. Randomized controlled trials (RCTs) and cohort studies/clinical trials that compared treatments designed with and without carmustine wafers and which reported overall survival or hazard ratio (HR) or survival curves were included in this study. Moreover, the statistical analysis was conducted by the STATA 12.0 software. Results Six studies including two RCTs and four cohort studies, enrolling a total of 513 patients (223 with and 290 without carmustine wafers), matched the selection criteria. Carmustine wafers showed a strong advantage when pooling all the included studies (HR =0.63, 95% confidence interval (CI) =0.49–0.81; P=0.019). However, the two RCTs did not show a statistical increase in survival in the group with carmustine wafer compared to the group without it (HR =0.51, 95% CI =0.18–1.41; P=0.426), while the cohort studies demonstrated a significant survival increase (HR =0.59, 95% CI =0.44–0.79; P<0.0001). Conclusion Carmustine-impregnated wafers play a significant role in improving survival when used for patients with newly diagnosed GBM. More studies should be designed for newly diagnosed GBM in the future.
Collapse
Affiliation(s)
- Wei-kang Xing
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Chuan Shao
- Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zhen-yu Qi
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Chao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|