251
|
Emergence of novel representations in primary motor cortex and premotor neurons during associative learning. J Neurosci 2008; 28:9545-56. [PMID: 18799686 DOI: 10.1523/jneurosci.1965-08.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons in the motor areas of cortex play a key role in associating sensory instructions with movements. However, their ability to acquire and maintain representations of novel stimulus features, especially when these features are behaviorally relevant, remains unknown. We investigated neuronal changes in these areas during and after associative learning, by training monkeys on a novel reaching task that required associating target colors with movement directions. Before and after learning, the monkeys performed a well known center-out task. We found that during learning, up to 48% of the neurons developed learning-related responses, differentiating between the associative task and the center-out task, although movement kinematics were the same. After learning, on returning to the center-out task in which color was irrelevant, many of these neurons maintained their response to the associative task; they displayed novel sensitivity to the color of the target that was relevant during learning. These neuronal responses prevailed in both the primary motor cortex and the ventral and dorsal premotor cortices, without degrading the information that the neurons firing carried about movement direction. Our results show that motor cortical neurons can rapidly develop and maintain sensitivities to novel arbitrary sensory features such as color, when such features are behaviorally relevant.
Collapse
|
252
|
Abstract
Learning and memory formation in the brain depend on the plasticity of neural circuits. In the adult and developing cerebral cortex, this plasticity can result from the formation and elimination of dendritic spines. New synaptic contacts appear in the neuropil where the gaps between axonal and dendritic branches can be bridged by dendritic spines. Such sites are termed potential synapses. Here, we describe a theoretical framework for the analysis of spine remodeling plasticity. We provide a quantitative description of two models of spine remodeling in which the presence of a bouton is either required or not for the formation of a new synapse. We derive expressions for the density of potential synapses in the neuropil, the connectivity fraction, which is the ratio of actual to potential synapses, and the number of structurally different circuits attainable with spine remodeling. We calculate these parameters in mouse occipital cortex, rat CA1, monkey V1, and human temporal cortex. We find that, on average, a dendritic spine can choose among 4-7 potential targets in rodents and 10-20 potential targets in primates. The potential of neuropil for structural circuit remodeling is highest in rat CA1 (7.1-8.6 bits/mum(3)) and lowest in monkey V1 (1.3-1.5 bits/mum(3)). We also evaluate the lower bound of neuron selectivity in the choice of synaptic partners. Postsynaptic excitatory neurons in rodents make synaptic contacts with >21-30% of presynaptic axons encountered with new spine growth. Primate neurons appear to be more selective, making synaptic connections with >7-15% of encountered axons.
Collapse
|
253
|
Loffler G. Perception of contours and shapes: Low and intermediate stage mechanisms. Vision Res 2008; 48:2106-27. [DOI: 10.1016/j.visres.2008.03.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/10/2008] [Accepted: 03/12/2008] [Indexed: 11/29/2022]
|
254
|
Metacontrast masking and the cortical representation of surface color: dynamical aspects of edge integration and contrast gain control. Adv Cogn Psychol 2008; 3:327-47. [PMID: 20517518 PMCID: PMC2864963 DOI: 10.2478/v10053-008-0034-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 09/30/2006] [Indexed: 11/20/2022] Open
Abstract
This paper reviews recent theoretical and experimental work supporting the idea
that brightness is computed in a series of neural stages involving edge
integration and contrast gain control. It is proposed here that metacontrast and
paracontrast masking occur as byproducts of the dynamical properties of these
neural mechanisms. The brightness computation model assumes, more specifically,
that early visual neurons in the retina, and cortical areas V1 and V2, encode
local edge signals whose magnitudes are proportional to the logarithms of the
luminance ratios at luminance edges within the retinal image. These local edge
signals give rise to secondary neural lightness and darkness spatial induction
signals, which are summed at a later stage of cortical processing to produce a
neural representation of surface color, or achromatic color, in the case of the
chromatically neutral stimuli considered here. Prior to the spatial summation of
these edge-based induction signals, the weights assigned to local edge contrast
are adjusted by cortical gain mechanisms involving both lateral interactions
between neural edge detectors and top-down attentional control. We have
previously constructed and computer-simulated a neural model of achromatic color
perception based on these principles and have shown that our model gives a good
quantitative account of the results of several brightness matching experiments.
Adding to this model the realistic dynamical assumptions that 1) the neurons
that encode local contrast exhibit transient firing rate enhancement at the
onset of an edge, and 2) that the effects of contrast gain control take time to
spread between edges, results in a dynamic model of brightness computation that
predicts the existence Broca-Sulzer transient brightness enhancement of the
target, Type B metacontrast masking, and a form of paracontrast masking in which
the target brightness is enhanced when the mask precedes the target in time.
Collapse
|
255
|
Sterkin A, Yehezkel O, Bonneh YS, Norcia A, Polat U. Multi-component correlate for lateral collinear interactions in the human visual cortex. Vision Res 2008; 48:1641-7. [DOI: 10.1016/j.visres.2008.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 04/14/2008] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
|
256
|
Broser P, Grinevich V, Osten P, Sakmann B, Wallace DJ. Critical period plasticity of axonal arbors of layer 2/3 pyramidal neurons in rat somatosensory cortex: layer-specific reduction of projections into deprived cortical columns. Cereb Cortex 2008; 18:1588-603. [PMID: 17998276 PMCID: PMC2430153 DOI: 10.1093/cercor/bhm189] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We examined the effect of whisker trimming during early postnatal development on the morphology of axonal arbors in rat somatosensory cortex. Axonal arbors from populations of layer 2/3 pyramidal neurons in the D2 column were labeled by lentivirus-mediated expression of green fluorescent protein. Axonal projection patterns were compared between untrimmed control animals and animals with all whiskers in A-, B-, and C-rows trimmed (D- and E-rows left intact) from postnatal days 7 to 15 (termed from here on DE-pairing). Control animals had approximately symmetrical horizontal projections toward C- and E-row columns in both supra- and infragranular layers. Following DE-pairing, the density of axons in supragranular layers projecting from the labeled neurons in the D2 column was higher in E- than in C-row columns. This asymmetry resulted primarily from a reduction in projection density toward the deprived C-row columns. In contrast, no change was observed in infragranular layers. The results indicate that DE-pairing during early postnatal development results in reduced axonal projection from nondeprived into deprived columns and that cortical neurons are capable of structural rearrangements at subsets of their axonal arbors.
Collapse
Affiliation(s)
- P Broser
- Department of Cell Physiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
257
|
Kurylo DD, Gazes Y. Effects of Ketamine on perceptual grouping in rats. Physiol Behav 2008; 95:152-6. [PMID: 18571682 DOI: 10.1016/j.physbeh.2008.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 05/13/2008] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
Abstract
Ketamine is a selective NMDA glutamate receptor antagonist that disrupts cognitive and behavioral function. Evidence exists that NMDA receptors play a role in lateral cortical connections, suggesting involvement in integrating information across the cortex. To investigate NMDA receptors' role in cortical integration at a perceptual level, psychophysical measures were made of perceptual grouping, which requires global analysis of neural representations of stimulus elements. Rats were trained to discriminate solid lines as well as patterns of dots that could be perceptually grouped into vertical or horizontal stripes. Psychophysical measures determined thresholds of perceptual grouping capacities. Rats receiving maximum subanesthetic doses of Ketamine discriminated solid patterns normally, but were impaired on dot pattern discrimination when greater demands were placed on perceptual grouping. These results demonstrate a selective disruption by Ketamine of visual discrimination that requires perceptual grouping of stimulus patterns. These results also provide evidence associating NMDA receptor-dependent neural mechanisms with context-dependent perceptual function.
Collapse
Affiliation(s)
- Daniel D Kurylo
- Department of Psychology, Brooklyn College CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, United States.
| | | |
Collapse
|
258
|
Li W, Piëch V, Gilbert CD. Learning to link visual contours. Neuron 2008; 57:442-51. [PMID: 18255036 DOI: 10.1016/j.neuron.2007.12.011] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/30/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
Abstract
In complex visual scenes, linking related contour elements is important for object recognition. This process, thought to be stimulus driven and hard wired, has substrates in primary visual cortex (V1). Here, however, we find contour integration in V1 to depend strongly on perceptual learning and top-down influences that are specific to contour detection. In naive monkeys, the information about contours embedded in complex backgrounds is absent in V1 neuronal responses and is independent of the locus of spatial attention. Training animals to find embedded contours induces strong contour-related responses specific to the trained retinotopic region. These responses are most robust when animals perform the contour detection task but disappear under anesthesia. Our findings suggest that top-down influences dynamically adapt neural circuits according to specific perceptual tasks. This may serve as a general neuronal mechanism of perceptual learning and reflect top-down mediated changes in cortical states.
Collapse
Affiliation(s)
- Wu Li
- The Rockefeller University, New York, NY 10065, USA.
| | | | | |
Collapse
|
259
|
McManus JNJ, Ullman S, Gilbert CD. A Computational Model of Perceptual Fill-in Following Retinal Degeneration. J Neurophysiol 2008; 99:2086-100. [DOI: 10.1152/jn.00871.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ablation of afferent input results in the reorganization of sensory and motor cortices. In the primary visual cortex (V1), binocular retinal lesions deprive a corresponding cortical region [lesion projection zone (LPZ)] of visual input. Nevertheless, neurons in the LPZ regain responsiveness by shifting their receptive fields (RFs) outside the retinal lesions; this re-emergence of neural activity is paralleled by the perceptual completion of disrupted visual input in human subjects with retinal damage. To determine whether V1 reorganization can account for perceptual fill-in, we developed a neural network model that simulates the cortical remapping in V1. The model shows that RF shifts mediated by the plexus of spatial- and orientation-dependent horizontal connections in V1 can engender filling-in that is both robust and consistent with psychophysical reports of perceptual completion. Our model suggests that V1 reorganization may underlie perceptual fill-in, and it predicts spatial relationships between the original and remapped RFs that can be tested experimentally. More generally, it provides a general explanation for adaptive functional changes following CNS lesions, based on the recruitment of existing cortical connections that are involved in normal integrative mechanisms.
Collapse
|
260
|
Andersen GJ, Ni R. Aging and visual processing: declines in spatial not temporal integration. Vision Res 2008; 48:109-18. [PMID: 18076967 DOI: 10.1016/j.visres.2007.10.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/30/2007] [Accepted: 10/25/2007] [Indexed: 11/25/2022]
Abstract
Age-related declines in vision are well documented in the literature. In the present study we examined whether changes in spatial or temporal integration contribute to this decline. Younger (mean age of 21) and older (mean age of 745) subjects were asked to identify 2D shapes based on kinetic occlusion information---the accretion and deletion of texture during motion. The results of the first experiment indicated age-related decrements in spatial but not temporal integration. In the second experiment we manipulated the lifetime of motion stimuli to more directly examine temporal integration. The results indicated no differential effect of age on temporal integration. The results considered together suggest age related changes in recovering 2D shape from occlusion are the result of spatial but not temporal integration. Age-related changes in neural inhibition and ACh for regulating spatial integration are proposed as possible mechanisms for this decline.
Collapse
Affiliation(s)
- George J Andersen
- Department of Psychology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
261
|
Gur M, Snodderly DM. Physiological differences between neurons in layer 2 and layer 3 of primary visual cortex (V1) of alert macaque monkeys. J Physiol 2008; 586:2293-306. [PMID: 18325976 DOI: 10.1113/jphysiol.2008.151795] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The physiological literature does not distinguish between the superficial layers 2 and 3 of the primary visual cortex even though these two layers differ in their cytoarchitecture and anatomical connections. To distinguish layer 2 from layer 3, we have analysed the response characteristics of neurons recorded during microelectrode penetrations perpendicular to the cortical surface. Extracellular responses of single neurons to sweeping bars were recorded while macaque monkeys performed a fixation task. Data were analysed from penetrations where cells could be localized to specific depths in the cortex. Although the most superficial cells (depth, 145-371 microm; presumably layer 2) responded preferentially to particular stimulus orientations, they were less selective than cells encountered immediately beneath them (depth, 386-696 microm; presumably layer 3). Layer 2 cells had smaller spikes, higher levels of ongoing activity, larger receptive field activating regions, and less finely tuned selectivity for stimulus orientation and length than layer 3 cells. Direction selectivity was found only in layer 3. These data suggest that layer 3 is involved in generating and transmitting precise, localized information about image features, while the lesser selectivity of layer 2 cells may participate in top-down influences from higher cortical areas, as well as modulatory influences from subcortical brain regions.
Collapse
Affiliation(s)
- Moshe Gur
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel.
| | | |
Collapse
|
262
|
Reconstructing Cortical Networks: Case of Directed Graphs with High Level of Reciprocity. BOLYAI SOCIETY MATHEMATICAL STUDIES 2008. [DOI: 10.1007/978-3-540-69395-6_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
263
|
Kurylo DD, Pasternak R, Silipo G, Javitt DC, Butler PD. Perceptual organization by proximity and similarity in schizophrenia. Schizophr Res 2007; 95:205-14. [PMID: 17681736 PMCID: PMC2000474 DOI: 10.1016/j.schres.2007.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 06/28/2007] [Accepted: 07/03/2007] [Indexed: 11/21/2022]
Abstract
Perceptual organization represents a basic and essential function that occurs at an intermediate level of visual processing. Much of the previous research on perceptual organization in schizophrenia employed indirect measurements, or included factors beyond sensory processing. The aims of the present study were to determine the integrity of perceptual organization in schizophrenia, as well as to determine the stimulus duration necessary to perform perceptual organization. Psychophysical measurements were compared between patients with schizophrenia and matched control subjects. Participants viewed dot patterns briefly presented on a computer monitor, and indicated whether stimuli appeared grouped as vertical or horizontal lines. Grouping was based upon either relative proximity or similarity in color. Across trials, relative proximity or color similarity was progressively reduced until stimuli became bi-stable (perceived as either of two patterns of grouping), establishing the grouping threshold. In separate conditions, stimuli were immediately followed by a mask to limit processing. Stimulus duration was progressively reduced until stimuli became bi-stable, establishing the critical stimulus duration (CSD). Schizophrenia patients demonstrated elevated grouping thresholds for grouping by proximity as well as color similarity. In addition, CSD was significantly extended for the schizophrenia group, with a nearly four-fold increase in duration of processing. These results provide direct evidence of impairment in schizophrenia for perceptual organization based upon spatial relationships and feature similarity, and suggest deficits in low-level perceptual organization processes. Although this study did not directly investigate the physiological correlates underlying perceptual impairments, these results are consistent with a theory of impaired lateral connections within visual cortical areas in schizophrenia.
Collapse
Affiliation(s)
- Daniel D Kurylo
- Psychology Department, Brooklyn College CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| | | | | | | | | |
Collapse
|
264
|
Abstract
All cortical and thalamic levels of sensory processing are subject to powerful top-down influences, the shaping of lower-level processes by more complex information. New findings on the diversity of top-down interactions show that cortical areas function as adaptive processors, being subject to attention, expectation, and perceptual task. Brain states are determined by the interactions between multiple cortical areas and the modulation of intrinsic circuits by feedback connections. In perceptual learning, both the encoding and recall of learned information involves a selection of the appropriate inputs that convey information about the stimulus being discriminated. Disruption of this interaction may lead to behavioral disorders, including schizophrenia.
Collapse
Affiliation(s)
- Charles D Gilbert
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
265
|
Lee SH, Blake R, Heeger DJ. Hierarchy of cortical responses underlying binocular rivalry. Nat Neurosci 2007; 10:1048-54. [PMID: 17632508 PMCID: PMC2615054 DOI: 10.1038/nn1939] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 06/18/2007] [Indexed: 11/08/2022]
Abstract
During binocular rivalry, physical stimulation is dissociated from conscious visual awareness. Human brain imaging reveals a tight linkage between the neural events in human primary visual cortex (V1) and the dynamics of perceptual waves during transitions in dominance during binocular rivalry. Here, we report results from experiments in which observers' attention was diverted from the rival stimuli, implying that: competition between two rival stimuli involves neural circuits in V1, and attention is crucial for the consequences of this neural competition to advance to higher visual areas and promote perceptual waves.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Department of Psychology, Seoul National University, Shillim, Gwanak, Seoul 151-746, South Korea.
| | | | | |
Collapse
|
266
|
Teichert T, Wachtler T, Michler F, Gail A, Eckhorn R. Scale-invariance of receptive field properties in primary visual cortex. BMC Neurosci 2007; 8:38. [PMID: 17562009 PMCID: PMC1913534 DOI: 10.1186/1471-2202-8-38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 06/11/2007] [Indexed: 11/30/2022] Open
Abstract
Background Our visual system enables us to recognize visual objects across a wide range of spatial scales. The neural mechanisms underlying these abilities are still poorly understood. Size- or scale-independent representation of visual objects might be supported by processing in primary visual cortex (V1). Neurons in V1 are selective for spatial frequency and thus represent visual information in specific spatial wavebands. We tested whether different receptive field properties of neurons in V1 scale with preferred spatial wavelength. Specifically, we investigated the size of the area that enhances responses, i.e., the grating summation field, the size of the inhibitory surround, and the distance dependence of signal coupling, i.e., the linking field. Results We found that the sizes of both grating summation field and inhibitory surround increase with preferred spatial wavelength. For the summation field this increase, however, is not strictly linear. No evidence was found that size of the linking field depends on preferred spatial wavelength. Conclusion Our data show that some receptive field properties are related to preferred spatial wavelength. This speaks in favor of the hypothesis that processing in V1 supports scale-invariant aspects of visual performance. However, not all properties of receptive fields in V1 scale with preferred spatial wavelength. Spatial-wavelength independence of the linking field implies a constant spatial range of signal coupling between neurons with different preferred spatial wavelengths. This might be important for encoding extended broad-band visual features such as edges.
Collapse
Affiliation(s)
- Tobias Teichert
- Department of Physics, NeuroPhysics Group, Philipps University, D-35032 Marburg, Germany
| | - Thomas Wachtler
- Department of Physics, NeuroPhysics Group, Philipps University, D-35032 Marburg, Germany
| | - Frank Michler
- Department of Physics, NeuroPhysics Group, Philipps University, D-35032 Marburg, Germany
| | - Alexander Gail
- Bernstein Center for Computational Neuroscience (BCCN), German Primate Center, D-37037 Goettingen, Germany
| | - Reinhard Eckhorn
- Department of Physics, NeuroPhysics Group, Philipps University, D-35032 Marburg, Germany
| |
Collapse
|
267
|
Nagy H, Bencsik K, Rajda C, Benedek K, Janáky M, Beniczky S, Kéri S, Vécsei L. Lateral Interactions and Speed of Information Processing in Highly Functioning Multiple Sclerosis Patients. Cogn Behav Neurol 2007; 20:107-12. [PMID: 17558254 DOI: 10.1097/wnn.0b013e3180518079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Visual impairment is a common feature of multiple sclerosis. The aim of this study was to investigate lateral interactions in the visual cortex of highly functioning patients with multiple sclerosis and to compare that with basic visual and neuropsychologic functions. Twenty-two young, visually unimpaired multiple sclerosis patients with minimal symptoms (Expanded Disability Status Scale <2) and 30 healthy controls subjects participated in the study. Lateral interactions were investigated with the flanker task, during which participants were asked to detect the orientation of a low-contrast Gabor patch (vertical or horizontal), flanked with 2 collinear or orthogonal Gabor patches. Stimulus exposure time was 40, 60, 80, and 100 ms. Digit span forward/backward, digit symbol, verbal fluency, and California Verbal Learning Test procedures were used for background neuropsychologic assessment. Results revealed that patients with multiple sclerosis showed intact visual contrast sensitivity and neuropsychologic functions, whereas orientation detection in the orthogonal condition was significantly impaired. At 40-ms exposure time, collinear flankers facilitated the orientation detection performance of the patients resulting in normal performance. In conclusion, the detection of briefly presented, low-contrast visual stimuli was selectively impaired in multiple sclerosis. Lateral interactions between target and flankers robustly facilitated target detection in the patient group.
Collapse
Affiliation(s)
- Helga Nagy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Medical and Pharmaceutical Center, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Al-Shaikhli B, Wachtler T, Eckhorn R. Inhomogeneous retino-cortical mapping is supported and stabilized with correlation-learning during self-motion. Biosystems 2007; 89:264-72. [PMID: 17275173 DOI: 10.1016/j.biosystems.2006.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Accepted: 04/18/2006] [Indexed: 11/22/2022]
Abstract
In primates, the area of primary visual cortex representing a fixed area of visual space decreases with increasing eccentricity. We identify visual situations to which this inhomogeneous retino-cortical mapping is well adapted and study their relevance during natural vision and development. We assume that cortical activations caused by stationary objects during self-motion along the direction of gaze travel on average with constant speed across the cortical surface, independent of retinal eccentricity. This is the case if the distribution of objects corresponds to an ellipsoid with the observer in its center. We apply the resulting flow field to train a simple network of pulse coding neurons with Hebbian learning and demonstrate that the density of learned receptive field centers is in close agreement with primate retino-cortical magnification. In addition, the model reproduces the increase of receptive field size and the decrease of its peak sensitivity with increasing eccentricity. Our results suggest that self-motion may have played an important role in the evolution of the visual system and that cortical magnification can be refined and stabilized by Hebbian learning mechanisms in ontogenesis under natural viewing conditions.
Collapse
Affiliation(s)
- Basim Al-Shaikhli
- Applied Physics/NeuroPhysics Group, Department of Physics, University Marburg, Renthof 7, D-35032 Marburg, Germany.
| | | | | |
Collapse
|
269
|
Stepanyants A, Hirsch JA, Martinez LM, Kisvárday ZF, Ferecskó AS, Chklovskii DB. Local potential connectivity in cat primary visual cortex. ACTA ACUST UNITED AC 2007; 18:13-28. [PMID: 17420172 DOI: 10.1093/cercor/bhm027] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Time invariant description of synaptic connectivity in cortical circuits may be precluded by the ongoing growth and retraction of dendritic spines accompanied by the formation and elimination of synapses. On the other hand, the spatial arrangement of axonal and dendritic branches appears stable. This suggests that an invariant description of connectivity can be cast in terms of potential synapses, which are locations in the neuropil where an axon branch of one neuron is proximal to a dendritic branch of another neuron. In this paper, we attempt to reconstruct the potential connectivity in local cortical circuits of the cat primary visual cortex (V1). Based on multiple single-neuron reconstructions of axonal and dendritic arbors in 3 dimensions, we evaluate the expected number of potential synapses and the probability of potential connectivity among excitatory (pyramidal and spiny stellate) neurons and inhibitory basket cells. The results provide a quantitative description of structural organization of local cortical circuits. For excitatory neurons from different cortical layers, we compute local domains, which contain their potentially pre- and postsynaptic excitatory partners. These domains have columnar shapes with laminar specific radii and are roughly of the size of the ocular dominance column. Therefore, connections between most excitatory neurons in the ocular dominance column can be implemented by local synaptogenesis. Structural connectivity involving inhibitory basket cells is generally weaker than excitatory connectivity. Here, only nearby neurons are capable of establishing more than one potential synapse, implying that within the ocular dominance column these connections have more limited potential for circuit remodeling.
Collapse
Affiliation(s)
- Armen Stepanyants
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
270
|
Abstract
Our visual percepts are not fully determined by the physical stimulus input. That is why we perceive crisp bounding contours even in the absence of luminance-defined borders in visual illusions such as the Kanizsa figure. It is important to understand which neural processes are involved in creating these artificial visual experiences because this might tell us how we perceive coherent objects in natural scenes, which are characterized by mutual overlap. We have already shown using functional magnetic resonance imaging [Maertens, M., & Pollmann, S. fMRI reveals a common neural substrate of illusory and real contours in v1 after perceptual learning. Journal of Cognitive Neuroscience, 17, 1553-1564, 2005] that neurons in the primary visual cortex (V1) respond to these stimuli. Here we provide support for the hypothesis that V1 is obligatory for the discrimination of the curvature of illusory contours. We presented illusory contours across the portion of the visual field corresponding to the physiological "blind spot." Four observers were extensively trained and asked to discriminate fine curvature differences in these illusory contours. A distinct performance drop (increased errors and response latencies) was observed when illusory contours traversed the blind spot compared to when they were presented in the "normal" contralateral visual field at the same eccentricity. We attribute this specific performance deficit to the failure to build up a representation of the illusory contour in the absence of a cortical representation of the "blind spot" within V1. The current results substantiate the assumption that neural activity in area V1 is closely related to our phenomenal experience of illusory contours in particular, and to the construction of our subjective percepts in general.
Collapse
|
271
|
Giora E, Casco C. Region- and edge-based configurational effects in texture segmentation. Vision Res 2007; 47:879-86. [PMID: 17321563 DOI: 10.1016/j.visres.2007.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 01/13/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
We have found a new configurational effect in texture segmentation. In addition to collinear facilitation at the edge, this effect results from contextual modulation within the texture-region, i.e. from texels not abutting the segmented edge. The largest facilitation was found when two conditions were fulfilled: (i) elements along the edge were parallel to the edge and collinear, (ii) elements in the texture-region were also collinear but non-parallel to the edge. We show that this facilitation occurs when there are groups of different orientation from the edge in the texture-region. We suggest two possible underlying mechanisms: either a region-based process that links collinear iso-oriented elements and locates the edge when the orientation changes, or else second-order filters tuned to orientation differences rather than orientation per se.
Collapse
Affiliation(s)
- Enrico Giora
- Department of General Psychology, University of Padua, Via Venezia 8, 35131-Padua, Italy.
| | | |
Collapse
|
272
|
Raffi M, Siegel RM. A functional architecture of optic flow in the inferior parietal lobule of the behaving monkey. PLoS One 2007; 2:e200. [PMID: 17285147 PMCID: PMC1784069 DOI: 10.1371/journal.pone.0000200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 01/11/2007] [Indexed: 11/18/2022] Open
Abstract
The representation of navigational optic flow across the inferior parietal lobule was assessed using optical imaging of intrinsic signals in behaving monkeys. The exposed cortex, corresponding to the dorsal-most portion of areas 7a and dorsal prelunate (DP), was imaged in two hemispheres of two rhesus monkeys. The monkeys actively attended to changes in motion stimuli while fixating. Radial expansion and contraction, and rotation clockwise and counter-clockwise optic flow stimuli were presented concentric to the fixation point at two angles of gaze to assess the interrelationship between the eye position and optic flow signal. The cortical response depended upon the type of flow and was modulated by eye position. The optic flow selectivity was embedded in a patchy architecture within the gain field architecture. All four optic flow stimuli tested were represented in areas 7a and DP. The location of the patches varied across days. However the spatial periodicity of the patches remained constant across days at ∼950 and 1100 µm for the two animals examined. These optical recordings agree with previous electrophysiological studies of area 7a, and provide new evidence for flow selectivity in DP and a fine scale description of its cortical topography. That the functional architectures for optic flow can change over time was unexpected. These and earlier results also from inferior parietal lobule support the inclusion of both static and dynamic functional architectures that define association cortical areas and ultimately support complex cognitive function.
Collapse
Affiliation(s)
- Milena Raffi
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| | - Ralph M. Siegel
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
273
|
|
274
|
Schwabe L, Obermayer K, Angelucci A, Bressloff PC. The role of feedback in shaping the extra-classical receptive field of cortical neurons: a recurrent network model. J Neurosci 2006; 26:9117-29. [PMID: 16957068 PMCID: PMC6674516 DOI: 10.1523/jneurosci.1253-06.2006] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The responses of neurons in sensory cortices are affected by the spatial context within which stimuli are embedded. In the primary visual cortex (V1), orientation-selective responses to stimuli in the receptive field (RF) center are suppressed by similarly oriented stimuli in the RF surround. Surround suppression, a likely neural correlate of perceptual figure-ground segregation, is traditionally thought to be generated within V1 by long-range horizontal connections. Recently however, it has been shown that these connections are too short and too slow to mediate fast suppression from distant regions of the RF surround. We use an anatomically and physiologically constrained recurrent network model of macaque V1 to show how interareal feedback connections, which are faster and longer-range than horizontal connections, can generate "far" surround suppression. We provide a novel solution to the puzzle of how surround suppression can arise from excitatory feedback axons contacting predominantly excitatory neurons in V1. The basic mechanism involves divergent feedback connections from the far surround targeting pyramidal neurons sending monosynaptic horizontal connections to excitatory and inhibitory neurons in the RF center. One of several predictions of our model is that the "suppressive far surround" is not always suppressive, but can facilitate the response of the RF center, depending on the amount of excitatory drive to the local inhibitors. Our model provides a general mechanism of how top-down feedback signals directly contribute to generating cortical neuron responses to simple sensory stimuli.
Collapse
Affiliation(s)
- Lars Schwabe
- Fakultät IV, Electrical Engineering and Computer Science, Technische Universität Berlin, 10587 Berlin, Germany
- Department of Ophthalmology and Visual Science, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, and
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
| | - Klaus Obermayer
- Fakultät IV, Electrical Engineering and Computer Science, Technische Universität Berlin, 10587 Berlin, Germany
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, and
| | - Paul C. Bressloff
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
275
|
Abstract
Functional brain imaging with positron emission tomography and magnetic resonance imaging has been used extensively to map regional changes in brain activity. The signal used by both techniques is based on changes in local circulation and metabolism (brain work). Our understanding of the cell biology of these changes has progressed greatly in the past decade. New insights have emerged on the role of astrocytes in signal transduction as has an appreciation of the unique contribution of aerobic glycolysis to brain energy metabolism. Likewise our understanding of the neurophysiologic processes responsible for imaging signals has progressed from an assumption that spiking activity (output) of neurons is most relevant to one focused on their input. Finally, neuroimaging, with its unique metabolic perspective, has alerted us to the ongoing and costly intrinsic activity within brain systems that most likely represents the largest fraction of the brain's functional activity.
Collapse
Affiliation(s)
- Marcus E Raichle
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
276
|
Lundqvist M, Rehn M, Djurfeldt M, Lansner A. Attractor dynamics in a modular network model of neocortex. NETWORK (BRISTOL, ENGLAND) 2006; 17:253-76. [PMID: 17162614 DOI: 10.1080/09548980600774619] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Starting from the hypothesis that the mammalian neocortex to a first approximation functions as an associative memory of the attractor network type, we formulate a quantitative computational model of neocortical layers 2/3. The model employs biophysically detailed multi-compartmental model neurons with conductance based synapses and includes pyramidal cells and two types of inhibitory interneurons, i.e., regular spiking non-pyramidal cells and basket cells. The simulated network has a minicolumnar as well as a hypercolumnar modular structure and we propose that minicolumns rather than single cells are the basic computational units in neocortex. The minicolumns are represented in full scale and synaptic input to the different types of model neurons is carefully matched to reproduce experimentally measured values and to allow a quantitative reproduction of single cell recordings. Several key phenomena seen experimentally in vitro and in vivo appear as emergent features of this model. It exhibits a robust and fast attractor dynamics with pattern completion and pattern rivalry and it suggests an explanation for the so-called attentional blink phenomenon. During assembly dynamics, the model faithfully reproduces several features of local UP states, as they have been experimentally observed in vitro, as well as oscillatory behavior similar to that observed in the neocortex.
Collapse
Affiliation(s)
- Mikael Lundqvist
- School of Numerical and Computer Science (CSC), Royal Institute of Technology, Sweden
| | | | | | | |
Collapse
|
277
|
Wang Q, Gao E, Burkhalter A. In vivo transcranial imaging of connections in mouse visual cortex. J Neurosci Methods 2006; 159:268-76. [PMID: 16945423 DOI: 10.1016/j.jneumeth.2006.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 06/29/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
From the moment the mouse model took center stage for studies of cortical arealization and map formation, there was an urgent need for methods to identify areal borders in the living animal. The need was met in part by intrinsic optical signal imaging, which has been successfully applied to map topographic representations in primary visual, auditory and somatosensory cortex. However, the challenge remains to register these maps to the underlying structure. This is especially important for studies of the mouse brain in which cortical areas are often only a few hundred microns across. Here, we show that in visual cortex neuronal tracing with fluororuby and fluoroemerald can be used for transcranial imaging through the intact skull of callosal connections from the opposite side of the brain, and for mapping of topographic striate-extrastriate cortical pathways in living mice. Because callosal connections are important landmarks for cortical areas, the new method will allow registration of functional maps to underlying structures and facilitate targeted single-unit recordings in identified cortical areas.
Collapse
Affiliation(s)
- Quanxin Wang
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | | | | |
Collapse
|
278
|
Li W, Piëch V, Gilbert CD. Contour saliency in primary visual cortex. Neuron 2006; 50:951-62. [PMID: 16772175 DOI: 10.1016/j.neuron.2006.04.035] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/31/2005] [Accepted: 04/17/2006] [Indexed: 10/24/2022]
Abstract
Contour integration is an important intermediate stage of object recognition, in which line segments belonging to an object boundary are perceptually linked and segmented from complex backgrounds. Contextual influences observed in primary visual cortex (V1) suggest the involvement of V1 in contour integration. Here, we provide direct evidence that, in monkeys performing a contour detection task, there was a close correlation between the responses of V1 neurons and the perceptual saliency of contours. Receiver operating characteristic analysis showed that single neuronal responses encode the presence or absence of a contour as reliably as the animal's behavioral responses. We also show that the same visual contours elicited significantly weaker neuronal responses when they were not detected in the detection task, or when they were unattended. Our results demonstrate that contextual interactions in V1 play a pivotal role in contour integration and saliency.
Collapse
Affiliation(s)
- Wu Li
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | |
Collapse
|
279
|
Sterzer P, Haynes JD, Rees G. Primary visual cortex activation on the path of apparent motion is mediated by feedback from hMT+/V5. Neuroimage 2006; 32:1308-16. [PMID: 16822682 DOI: 10.1016/j.neuroimage.2006.05.029] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/27/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022] Open
Abstract
Apparent motion (AM) is the illusory perception of real motion created when two spatially distinct stationary visual objects are presented in alternating sequence. In common with many other illusory percepts, activation during AM can be identified in unstimulated regions of V1 representing the illusory motion path. However, little is known about the mechanisms underlying such activation and its relationship with motion-sensitive area hMT+/V5. Using fMRI and a novel AM stimulus, we replicated previous findings showing a correlate of the perceived AM path in V1. To more closely characterize the mechanisms underlying these activations, we performed analyses of effective connectivity and found that the AM-induced activations on the illusory AM path were associated with enhanced feedback (but not feedforward) connectivity from hMT+/V5. These findings provide for the first time evidence for the involvement of cortico-cortical coupling in generating an illusory percept of AM. They therefore emphasize the role of recurrent processing between visual cortical areas in human perceptual awareness.
Collapse
Affiliation(s)
- Philipp Sterzer
- Wellcome Department of Imaging Neuroscience, University College London, 12 Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
280
|
Anderson JC, Martin KAC. Synaptic connection from cortical area V4 to V2 in macaque monkey. J Comp Neurol 2006; 495:709-21. [PMID: 16506191 DOI: 10.1002/cne.20914] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The major target of the V4 projection in V2 is layer 1, where it forms a tangential spread of asymmetric (excitatory) synapses. This is characteristic of a "feedback" projection. Some axons formed discrete clusters of bouton terminaux between lengths of myelinated axon, while others were unbranched and formed a continuous distribution of en passant boutons with no intercalated myelin. Minor projections were found in layers 2/3 and 6. Dendritic spines were the most frequently encountered targets of the V4 projection (80% in layer 1 and layer 2/3, 94% in layer 6). The remaining targets were dendritic shafts. In layer 1, 69% of target dendrites (12% of all targets) had characteristics identifying them as smooth (GABAergic) cells. In layer 2/3 and layer 6 virtually all the shaft synapses were on smooth dendrites (86% and 100%, respectively). Multisynaptic boutons were rare (mean 1.1 synapses per bouton). Synapses formed in layer 6 were smaller than those of layer 1 (mean area 0.073 microm(2) vs. 0.117 microm(2)). Synapses formed with spines had a more complex postsynaptic density than those formed with dendritic shafts. With respect to targets and synaptic type and size and morphology of synapses, the feedback projection from V4 to V2 resembles those of feedforward projections. The principal difference between the feedforward and feedback projection is in the lamina location of their terminal boutons. The concentration of the V4 projection on layer 1, where it forms asymmetric synapses mainly with spines, suggests that it excites the distal apical dendrites of pyramidal cells.
Collapse
Affiliation(s)
- John C Anderson
- Institute for Neuroinformatics, University of Zürich, and ETH Zürich, 8057 Zürich, Switzerland.
| | | |
Collapse
|
281
|
Sullivan TJ, de Sa VR. A model of surround suppression through cortical feedback. Neural Netw 2006; 19:564-72. [PMID: 16500076 DOI: 10.1016/j.neunet.2005.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 12/21/2005] [Indexed: 11/27/2022]
Abstract
Surround suppression occurs when a visual stimulus outside a neuron's classical receptive field causes a reduction in firing rate. It has become clear that several mechanisms are working together to induce center-surround effects such as surround suppression. While several models exist that rely on lateral connections within V1 to explain surround suppression, few have been proposed that show how cortical feedback might play a role. In this work, we propose a theory in which reductions in excitatory feedback contribute to a neuron's suppressed firing rate. We also provide a computational model that incorporates this idea.
Collapse
Affiliation(s)
- Thomas J Sullivan
- Department of Electrical Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
282
|
Stettler DD, Yamahachi H, Li W, Denk W, Gilbert CD. Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron 2006; 49:877-87. [PMID: 16543135 DOI: 10.1016/j.neuron.2006.02.018] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 12/12/2005] [Accepted: 02/07/2006] [Indexed: 11/26/2022]
Abstract
While recent studies of synaptic stability in adult cerebral cortex have focused on dendrites, how much axons change is unknown. We have used advances in axon labeling by viruses and in vivo two-photon microscopy to investigate axon branching and bouton dynamics in primary visual cortex (V1) of adult Macaque monkeys. A nonreplicative adeno-associated virus bearing the gene for enhanced green fluorescent protein (AAV.EGFP) provided persistent labeling of axons, and a custom-designed two-photon microscope enabled repeated imaging of the intact brain over several weeks. We found that large-scale branching patterns were stable but that a subset of small branches associated with terminaux boutons, as well as a subset of en passant boutons, appeared and disappeared every week. Bouton losses and gains were both approximately 7% of the total population per week, with no net change in the overall density. These results suggest ongoing processes of synaptogenesis and elimination in adult V1.
Collapse
|
283
|
Samonds JM, Zhou Z, Bernard MR, Bonds AB. Synchronous Activity in Cat Visual Cortex Encodes Collinear and Cocircular Contours. J Neurophysiol 2006; 95:2602-16. [PMID: 16354730 DOI: 10.1152/jn.01070.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We explored how contour information in primary visual cortex might be embedded in the simultaneous activity of multiple cells recorded with a 100-electrode array. Synchronous activity in cat visual cortex was more selective and predictable in discriminating between drifting grating and concentric ring stimuli than changes in firing rate. Synchrony was found even between cells with wholly different orientation preferences when their receptive fields were circularly aligned, and membership in synchronous groups was orientation and curvature dependent. The existence of synchrony between cocircular cells reinforces its role as a general mechanism for contour integration and shape detection as predicted by association field concepts. Our data suggest that cortical synchrony results from common and synchronous input from earlier visual areas and that it could serve to shape extrastriate response selectivity.
Collapse
Affiliation(s)
- Jason M Samonds
- Department of Electrical Engineering, Vanderbilt University, Nashville Tennesse, USA.
| | | | | | | |
Collapse
|
284
|
Abstract
Abstract
After few seconds, a figure steadily presented in peripheral vision becomes perceptually filled-in by its background, as if it “disappeared”. We report that directing attention to the color, shape, or location of a figure increased the probability of perceiving filling-in compared to unattended figures, without modifying the time required for filling-in. This effect could be augmented by boosting attention. Furthermore, the frequency distribution of filling-in response times for attended figures could be predicted by multiplying the frequencies of response times for unattended figures with a constant. We propose that, after failure of figure–ground segregation, the neural interpolation processes that produce perceptual filling-in are enhanced in attended figure regions. As filling-in processes are involved in surface perception, the present study demonstrates that even very early visual processes are subject to modulation by cognitive factors.
Collapse
Affiliation(s)
- P. De Weerd
- 1University of Maastricht
- 1University of Maastricht
| | - E. Smith
- 2Northwestern University
- 2Northwestern University
| | | |
Collapse
|
285
|
Kasamatsu T, Mizobe K, Sutter EE. Muscimol and baclofen differentially suppress retinotopic and
nonretinotopic responses in visual cortex. Vis Neurosci 2006; 22:839-58. [PMID: 16469192 DOI: 10.1017/s0952523805226135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 06/15/2005] [Indexed: 11/06/2022]
Abstract
This study relates to local field potentials and single-unit responses
in cat visual cortex elicited by contrast reversal of bar gratings that
were presented in single, double, or multiple discrete patch (es) of the
visual field. Concurrent stimulation of many patches by means of the
pseudorandom, binary m-sequence technique revealed interactions between
their respective responses. An analysis identified two distinct components
of local field potentials: a fast local component (FLC) and a slow
distributed component (SDC). The FLC is thought to be a primarily
postsynaptic response, as judged by its relatively short latency. It is
directly generated by thalamocortical volleys following retinotopic
stimulation of receptive fields of a small cluster of single cells,
combined with responses to recurrent excitation and inhibition derived
from the cells under study and immediately neighboring cells. In contrast,
the SDC is thought to be an aggregate of dendritic potentials related to
the long-range lateral connections (i.e. long-range coupling). We compared
the suppressive effects of a GABAA-receptor agonist, muscimol,
on the FLC and SDC with those of a GABAB-receptor agonist,
baclofen, and found that muscimol more strongly suppressed the FLC than
the SDC, and that the reverse was the case for baclofen. The differential
suppression of the FLC and SDC found in the present study is consistent
with the notion that intracortical electrical signals related to the FLC
terminate on the somata and proximal/basal dendrites, while those
related to the SDC terminate on distal dendrites.
Collapse
Affiliation(s)
- Takuji Kasamatsu
- The Smith-Kettlewell Eye Research Institute, 2318 Fillmore Street, San Francisco, California 94115, USA
| | | | | |
Collapse
|
286
|
Neri P, Levi DM. Spatial resolution for feature binding is impaired in peripheral and amblyopic vision. J Neurophysiol 2006; 96:142-53. [PMID: 16421195 DOI: 10.1152/jn.01261.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We measured spatial resolution for discriminating targets that differed from nearby distractors in either color or orientation or their conjunction. In the fovea of normal human observers, whenever both attributes are big enough to be individually visible, their conjunction is also visible. In the periphery, the two attributes may be visible, but their conjunction may be invisible. We found a similar impairment in resolving conjunctions for the fovea of deprived eyes of humans with abnormal visual development (amblyopia). These results are quantitatively explained by a model of primary visual cortex (V1) in which orientation and color maps are imperfectly co-registered topographically. Our results in persons with amblyopia indicate that the ability of the fovea to compensate for this poor co-registration is consolidated by visual experience during postnatal development.
Collapse
Affiliation(s)
- Peter Neri
- School of Optometry and Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-2020, USA.
| | | |
Collapse
|
287
|
Knyazeva MG, Fornari E, Meuli R, Innocenti G, Maeder P. Imaging of a synchronous neuronal assembly in the human visual brain. Neuroimage 2006; 29:593-604. [PMID: 16182570 DOI: 10.1016/j.neuroimage.2005.07.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/26/2005] [Accepted: 07/29/2005] [Indexed: 10/25/2022] Open
Abstract
Perception, motion, and cognition involve the formation of cooperative neuronal assemblies distributed over the cerebral cortex. It remains to explore what characterizes the assemblies, their location, and the structural substrate of assembly formation. In this EEG/fMRI study, we describe the response of the visual areas of the two hemispheres in subjects who viewed bilateral iso-oriented (IG) or orthogonally-oriented (OG) moving gratings projected in the two hemifields. The IG stimulus synchronized activity across the hemispheres, as shown by an increased EEG coherence. The increase was restricted to the occipital electrodes and to the beta band. Compared with OG, IG increased the BOLD signal in a restricted territory corresponding to area VP/V4. Within this territory, a linear relation was found between the increased interhemispheric EEG coherence and BOLD. Thus, the increased BOLD localized a trans-hemispheric, synchronous neuronal assembly probably achieved by a callosal cortico-cortical connection. This assembly might reflect an early stage of perceptual grouping since the IG stimulus conforms to Gestalt psychology principles of collinearity and common fate.
Collapse
Affiliation(s)
- Maria G Knyazeva
- Department of Radiology, Centre Hospitalier Universitaire Vaudois, CHUV, 1011 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
288
|
Angelucci A, Bressloff PC. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. PROGRESS IN BRAIN RESEARCH 2006; 154:93-120. [PMID: 17010705 DOI: 10.1016/s0079-6123(06)54005-1] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A central question in visual neuroscience is what circuits generate the responses of neurons in the primary visual cortex (V1). V1 neurons respond best to oriented stimuli of optimal size within their receptive field (RF) center. This size tuning is contrast dependent, i.e. a neuron's optimal stimulus size measured at high contrast (the high-contrast summation RF, or hsRF) is smaller than when measured using low-contrast stimuli (the low-contrast summation RF, or lsRF). Responses to stimuli in the RF center are usually suppressed by iso-oriented stimuli in the extra-classical RF surround. Iso-orientation surround suppression is fast and long range, extending well beyond the size of V1 cells' lsRF. Geniculocortical feedforward (FF), V1 lateral and extrastriate feedback (FB) connections to V1 could all contribute to generating the RF center and surround of V1 neurons. Studies on the spatio-temporal properties and functional organization of these connections can help disclose their specific contributions to the responses of V1 cells. These studies, reviewed in this chapter, have shown that FF afferents to V1 integrate signals within the hsRF of V1 cells; V1 lateral connections are commensurate with the size of the lsRF and may, thus, underlie contrast-dependent changes in spatial summation, and modulatory effects arising from the surround region closer to the RF center (the "near" surround). The spatial and temporal properties of lateral connections cannot account for the dimensions and onset latency of modulation arising from more distant regions of the surround (the "far" surround). Inter-areal FB connections to V1, instead, are commensurate with the full spatial range of center and surround responses, and show fast conduction velocity consistent with the short onset latency of modulation arising from the "far" surround. We review data showing that a subset of FB connections terminate in a patchy fashion in V1, and show modular and orientation specificity, consistent with their proposed role in orientation-specific center-surround interactions. We propose specific mechanisms by which each connection type contributes to the RF center and surround of V1 neurons, and implement these hypotheses into a recurrent network model. We show physiological data in support of the model's predictions, revealing that modulation from the "far" surround is not always suppressive, but can be facilitatory under specific stimulus conditions.
Collapse
Affiliation(s)
- Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Center, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|
289
|
Wielaard J, Sajda P. Extraclassical Receptive Field Phenomena and Short-Range Connectivity in V1. Cereb Cortex 2005; 16:1531-45. [PMID: 16373456 DOI: 10.1093/cercor/bhj090] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Extraclassical receptive field phenomena in V1 are commonly attributed to long-range lateral connections and/or extrastriate feedback. We address 2 such phenomena: surround suppression and receptive field expansion at low contrast. We present rigorous computational support for the hypothesis that the phenomena largely result from local short-range (< 0.5 mm) cortical connections and lateral geniculate nucleus input. The neural mechanisms of surround suppression in our simulations operate via (A) enhancement of inhibition, (B) reduction of excitation, or (C) action of both simultaneously. Mechanisms (B) and (C) are substantially more prevalent than (A). We observe, on average, a growth in the spatial summation extent of excitatory and inhibitory synaptic inputs for low-contrast stimuli. However, we find this is neither sufficient nor necessary to explain receptive field expansion at low contrast, which usually involves additional changes in the relative gain of these inputs.
Collapse
Affiliation(s)
- Jim Wielaard
- Laboratory for Intelligent Imaging and Neural Computing, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
290
|
Alais D, Lorenceau J, Arrighi R, Cass J. Contour interactions between pairs of Gabors engaged in binocular rivalry reveal a map of the association field. Vision Res 2005; 46:1473-87. [PMID: 16289206 DOI: 10.1016/j.visres.2005.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 09/23/2005] [Accepted: 09/24/2005] [Indexed: 11/25/2022]
Abstract
A psychophysical study was conducted to investigate contour interactions (the 'association field'). Two Gabor patches were presented to one eye, with random-dot patches in corresponding locations of the other eye so as to produce binocular rivalry. Perceptual alternations of the two rivalry processes were monitored continuously by observers and the two time series were cross-correlated. The Gabors were oriented collinearly, obliquely, or orthogonally, and spatial separation was varied. A parallel condition was also included. Correlation between the rivalry processes strongly depended on separation and relative orientation. Correlations between adjacent collinear Gabors was near-perfect and reduced with spatial separation and as relative orientation departed from collinear. Importantly, variations in cross-correlation did not alter the rivalry processes (average dominance duration, and therefore alternation rate, was constant across conditions). Instead, synchronisation of rivalry oscillations accounts for the correlation variations: rivalry alternations were highly synchronised when contour interactions were strong and were poorly synchronised when contour interactions were weak. The level of synchrony between these two stochastic processes, in depending on separation and relative orientation, effectively reveals a map of the association field. These association fields are not greatly affected by contrast, and can be demonstrated between contours that are presented to separate hemispheres.
Collapse
Affiliation(s)
- David Alais
- Department of Physiology and Institute for Biomedical Research, School of Medical Science, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
291
|
Kraft A, Schira MM, Hagendorf H, Schmidt S, Olma M, Brandt SA. fMRI localizer technique: Efficient acquisition and functional properties of single retinotopic positions in the human visual cortex. Neuroimage 2005; 28:453-63. [PMID: 16019234 DOI: 10.1016/j.neuroimage.2005.05.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 05/24/2005] [Accepted: 05/27/2005] [Indexed: 11/26/2022] Open
Abstract
Current fMRI retinotopic mapping procedures often use checkerboard stimuli consisting of expanding rings and rotating wedges to measure the topography within human visual areas. Efficient procedures are well described in the literature. For many experimental paradigms, e.g., visuo-spatial attention paradigms, the identification of task-relevant positions is the only mandatory prerequisite. To define these specific "regions-of-interest" (ROIs), spatially defined localizers are used. A precise evaluation of localizer techniques in regard to efficient scanning time, optimal BOLD (blood oxygenic level dependent) response, as well as quantification of the resulting ROIs within each visual area (size, overlap, surround effects) has not been studied to date. Here, we suggest a mapping procedure designed to quantify spatial and functional properties of single positions at close proximity in multiple human visual areas. During a passive viewing task, various stimuli (e.g., checkerboards or colored objects) subtending 1.4 degrees of visual angle were presented at one out of four positions in a randomized block design. We measured the degree of overlap between positions at different hierarchical levels of the visual system (V1-V4v) and quantified modulatory effects on a specific position by stimulation at neighboring (1.7 degrees spacing) or distant positions (5.1 degrees or 8.5 degrees spacing). Within each visual area, "mexican-hat" distributions of local signal intensity changes, which describe a particular combination of facilitatory and suppressive effects, were found. Cubic fitting revealed the most localized tuning effect in V1, which gradually decreased throughout the higher visual areas. Colored objects were most efficient in localizing circumscribed retinotopic positions in both early and higher areas.
Collapse
Affiliation(s)
- Antje Kraft
- Department of Neurology, Charité, Berlin NeuroImaging Center, Schumannstr. 20/21, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
292
|
Cass JR, Spehar B. Dynamics of cross- and iso-surround facilitation suggest distinct mechanisms. Vision Res 2005; 45:3060-73. [PMID: 16171843 DOI: 10.1016/j.visres.2005.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 08/02/2005] [Accepted: 08/03/2005] [Indexed: 11/23/2022]
Abstract
Psychophysical studies have found that contrast sensitivity is enhanced by spatially separated flanking stimuli that are collinear with a foveal target. Considerable uncertainty remains, however, about the facilitative effect of other surround configurations. We investigated this by systematically manipulating relative flanker position (target end-zones or side-bands) and orientation (iso-oriented or ortho-oriented targets and flankers) at multiple target-flanker separations. We also examined the effect of a temporal dimension (exposure duration) across combinations of these spatial parameters. We found facilitation in the context of all surround configurations tested, but not at all separations and exposure durations. Interestingly, although the minimum exposure required to induce facilitation (facilitative delay) increased as a function of separation for all configurations (averaged across subjects), the rate at which this occurred depended, not upon flanker position or orientation relative to the target, but the alignment of the flankers relative to each other. By transforming these slopes into striate transmission speeds we estimate that: (i) collinear flanker facilitation matches the slow conduction velocities of long-range (LR) horizontal striate connections and (ii) non-collinear, parallel flanker facilitation correlates with the much faster extra-striate feedforward/feedback connections.
Collapse
Affiliation(s)
- John R Cass
- Department of Physiology, University of Sydney, Anderson Stuart Building (F13), Sydney, NSW 2006, Australia.
| | | |
Collapse
|
293
|
Claessens PM, Wagemans J. Perceptual grouping in Gabor lattices: Proximity and alignment. ACTA ACUST UNITED AC 2005; 67:1446-59. [PMID: 16555596 DOI: 10.3758/bf03193649] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We propose the Gabor lattice as a new stimulus designed to deal with multiple organizations in perceptual grouping, allowing both comparison between psychophysical data and neural findings and a systematic investigation of grouping based on several low-level characteristics and their interactions. A Gabor lattice is a geometric lattice with Gabor patches, evoking a multistable global orientation percept. Visual grouping in Gabor lattices with elements aligned in a global orientation was compared with grouping of nonaligned Gabor patches and of Gaussian blobs. The effect sizes of proximity and alignment were estimated in logistic regression analyses. The results confirmed the importance of proximity and local element alignment as factors in dynamic grouping. We also found a small but consistent enhancement of grouping along the global vector orthogonal to the local patch orientations. In light of these results, we further motivate the relevance of these stimuli and the associated experimental paradigm.
Collapse
|
294
|
Shmuel A, Korman M, Sterkin A, Harel M, Ullman S, Malach R, Grinvald A. Retinotopic axis specificity and selective clustering of feedback projections from V2 to V1 in the owl monkey. J Neurosci 2005; 25:2117-31. [PMID: 15728852 PMCID: PMC6726055 DOI: 10.1523/jneurosci.4137-04.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical maps and feedback connections are ubiquitous features of the visual cerebral cortex. The role of the feedback connections, however, is unclear. This study was aimed at revealing possible organizational relationships between the feedback projections from area V2 and the functional maps of orientation and retinotopy in area V1. Optical imaging of intrinsic signals was combined with cytochrome oxidase histochemistry and connectional anatomy in owl monkeys. Tracer injections were administered at orientation-selective domains in regions of pale and thick cytochrome oxidase stripes adjacent to the border between these stripes. The feedback projections from V2 were found to be more diffuse than the intrinsic horizontal connections within V1, but they nevertheless demonstrated clustering. The clusters of feedback axons projected preferentially to interblob cytochrome oxidase regions. The distribution of preferred orientations of the recipient domains in V1 was broad but appeared biased toward values similar to the preferred orientation of the projecting cells in V2. The global spatial distribution of the feedback projections in V1 was anisotropic. The major axis of anisotropy was systematically parallel to a retinotopic axis in V1 corresponding to the preferred orientation of the cells of origin in V2. We conclude that the feedback connections from V2 to V1 might play a role in enhancing the response in V1 to collinear contour elements.
Collapse
Affiliation(s)
- Amir Shmuel
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | | | | | | | | | |
Collapse
|
295
|
Haynes JD, Tregellas J, Rees G. Attentional integration between anatomically distinct stimulus representations in early visual cortex. Proc Natl Acad Sci U S A 2005; 102:14925-30. [PMID: 16192359 PMCID: PMC1253541 DOI: 10.1073/pnas.0501684102] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Indexed: 11/18/2022] Open
Abstract
Vision often requires attending to, and integrating information from, distant parts of the visual field. However, the neural basis for such long-range integration is not clearly understood. Here, we demonstrate a specific neural signature of attentional integration between stimuli in different parts of the visual field. Using functional MRI, we found that a task requiring the integration of information between two attended but spatially separated stimuli actively modulated the degree of functional integration (in terms of effective connectivity) between their retinotopic representations in visual cortical areas V1, V2, and V4. Spatial attention enhanced long-distance coupling between distinct neuronal populations that represented the attended visual stimuli, even at the earliest stages of cortical processing. In contrast, unattended stimulus representations were decoupled both from attended representations and particularly strongly from each other. Furthermore, enhanced functional integration between cortical representations was associated with enhanced behavioral performance. Attention may thus serve to "bind" together cortical loci at multiple levels of the visual hierarchy that are commonly involved in processing attended stimuli, promoting integration between otherwise functionally isolated cortical loci.
Collapse
Affiliation(s)
- John-Dylan Haynes
- Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, United Kingdom.
| | | | | |
Collapse
|
296
|
Cass JR, Spehar B. Dynamics of collinear contrast facilitation are consistent with long-range horizontal striate transmission. Vision Res 2005; 45:2728-39. [PMID: 16038960 DOI: 10.1016/j.visres.2005.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 02/10/2005] [Accepted: 03/03/2005] [Indexed: 10/25/2022]
Abstract
It is well established that activity of striate neurons may be either facilitated or suppressed by visual stimuli presented outside of their classical receptive field (CRF) limits. Whilst two general mechanisms have been identified as candidates for these contextual effects; those based on extra-striate feedback and long-range horizontal striate connections; the physiological data supporting these models is both ambiguous and inconsistent. Here we investigate psychophysically the phenomenon of collinear facilitation, in which contrast detection thresholds for foveally presented Gabor stimuli are reduced via concurrent presentation of remote collinear flankers. Using backward noise masking, we demonstrate that the minimum exposure duration required to induce facilitation increases monotonically with greater target-flanker separation. The inferred cortical propagation velocities of this process (0.10-0.23 ms(-1)) closely correspond with depolarising activity observed to travel across striate cortex of several species. These dynamics strongly suggest that contrast facilitation is mediated via long-range horizontal striate connections. This conclusion complements a recent suggestion that collinear induced long-range suppressive dynamics depend on extra-striate feedback.
Collapse
Affiliation(s)
- John R Cass
- School of Psychology, University of New South Wales, Sydney 2052, Australia.
| | | |
Collapse
|
297
|
Wong EH, Levi DM, McGraw PV. Spatial interactions reveal inhibitory cortical networks in human amblyopia. Vision Res 2005; 45:2810-9. [PMID: 16040080 DOI: 10.1016/j.visres.2005.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 06/01/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
Humans with amblyopia have a well-documented loss of sensitivity for first-order, or luminance defined, visual information. Recent studies show that they also display a specific loss of sensitivity for second-order, or contrast defined, visual information; a type of image structure encoded by neurons found predominantly in visual area A18/V2. In the present study, we investigate whether amblyopia disrupts the normal architecture of spatial interactions in V2 by determining the contrast detection threshold of a second-order target in the presence of second-order flanking stimuli. Adjacent flanks facilitated second-order detectability in normal observers. However, in marked contrast, they suppressed detection in each eye of the majority of amblyopic observers. Furthermore, strabismic observers with no loss of visual acuity show a similar pattern of detection suppression. We speculate that amblyopia results in predominantly inhibitory cortical interactions between second-order neurons.
Collapse
Affiliation(s)
- Erwin H Wong
- School of Optometry, University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
298
|
Abstract
Primary and secondary visual cortex (V1 and V2) form the foundation of the cortical visual system. V1 transforms information received from the lateral geniculate nucleus (LGN) and distributes it to separate domains in V2 for transmission to higher visual areas. During the past 20 years, schemes for the functional organization of V1 and V2 have been based on a tripartite framework developed by Livingstone & Hubel (1988) . Since then, new anatomical data have accumulated concerning V1's input, its internal circuitry, and its output to V2. These new data, along with physiological and imaging studies, now make it likely that the visual attributes of color, form, and motion are not neatly segregated by V1 into different stripe compartments in V2. Instead, there are just two main streams, originating from cytochrome oxidase patches and interpatches, that project to V2. Each stream is composed of a mixture of magno, parvo, and konio geniculate signals. Further studies are required to elucidate how the patches and interpatches differ in the output they convey to extrastriate cortex.
Collapse
Affiliation(s)
- Lawrence C Sincich
- Beckman Vision Center, University of California-San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
299
|
Abstract
Increasingly systematic approaches to quantifying receptive fields in primary visual cortex, combined with inspired ideas about functional circuitry, non-linearities, and visual stimuli, are bringing new interest to classical problems. This includes the distinction and hierarchy between simple and complex cells, the mechanisms underlying the receptive field surround, and debates about optimal stimuli for mapping receptive fields. An important new problem arises from recent observations of stimulus-dependent spatial and temporal summation in primary visual cortex. It appears that the receptive field can no longer be considered unique, and we might have to relinquish this cherished notion as the embodiment of neuronal function in primary visual cortex.
Collapse
Affiliation(s)
- Wyeth Bair
- Royal Society USA Fellowship, University Laboratory of Physiology, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
300
|
Cantone G, Xiao J, McFarlane N, Levitt JB. Feedback connections to ferret striate cortex: direct evidence for visuotopic convergence of feedback inputs. J Comp Neurol 2005; 487:312-31. [PMID: 15892103 DOI: 10.1002/cne.20570] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interareal feedback connections are a fundamental aspect of cortical architecture, yet many aspects of their organization and functional relevance remain poorly understood. Previous studies have investigated the topography of feedback projections from extrastriate cortex to macaque area 17. We have extended this analysis to the ferret. We made restricted injections of cholera toxin B (CTb) into ferret area 17 and mapped the distribution of retrogradely labeled cells in extrastriate cortex. In addition to extensive label spreading within area 17, we found dense cell label in areas 18, 19, and 21 and the suprasylvian cortex and sparser connections from the lateral temporal and posterior parietal cortex. We made extensive physiological assessments of magnification factors in the extrastriate visual cortex and used these measures to convert the spread of labeled cortex in millimeters into a span in degrees of visual field. We also directly measured the visuotopic extents of receptive fields in the regions containing labeled cells in cases in which we made both CTb injections and physiological recordings in the same animals; we then compared the aggregate receptive field (ARF) of the labeled region in each extrastriate area with that of the injection site. In areas 18, 19, and 21, receptive fields of cells in regions containing labeled neurons overlapped those at the injection site but spanned a greater distance in visual space than the ARF of the injection site. The broad visuotopic extent of feedback connections is consistent with the suggestion that they contribute to response modulation by stimuli beyond the classical receptive field.
Collapse
Affiliation(s)
- Gina Cantone
- Department of Biology, City College of the City University of New York, New York 10031, USA
| | | | | | | |
Collapse
|