251
|
Masse GX, Corcuff E, Decaluwe H, Bommhardt U, Lantz O, Buer J, Di Santo JP. gamma(c) cytokines provide multiple homeostatic signals to naive CD4(+) T cells. Eur J Immunol 2007; 37:2606-16. [PMID: 17683114 DOI: 10.1002/eji.200737234] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytokines signaling through receptors sharing the common gamma chain (gamma(c)), including IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21, are critical for the generation and peripheral homeostasis of B, T and NK cells. To identify unique or redundant roles for gamma(c) cytokines in naive CD4(+) T cells, we compared monoclonal populations of CD4(+) T cells from TCR-Tg mice that were gamma(c) (+), gamma(c) (-), CD127(-/-) or CD122(-/-). We found that gamma(c) (-) naive CD4(+) T cells failed to accumulate in the peripheral lymphoid organs and the few remaining cells were characterized by small size, decreased expression of MHC class I and enhanced apoptosis. By over-expressing human Bcl-2, peripheral naive CD4(+) T cells that lack gamma(c) could be rescued. Bcl-2(+) gamma(c) (-) CD4(+) T cells demonstrated enhanced survival characteristics in vivo and in vitro, and could proliferate normally in vitro in response to antigen. Nevertheless, Bcl-2(+) gamma(c) (-) CD4(+) T cells remained small in size, and this phenotype was not corrected by enforced expression of an activated protein kinase B. We conclude that gamma(c) cytokines (primarily but not exclusively IL-7) provide Bcl-2-dependent as well as Bcl-2-independent signals to maintain the phenotype and homeostasis of the peripheral naive CD4(+) T cell pool.
Collapse
Affiliation(s)
- Guillemette X Masse
- Cytokines and Lymphoid Development Unit, Immunology Department, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
252
|
Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 2007; 27:670-84. [PMID: 17950003 DOI: 10.1016/j.immuni.2007.09.006] [Citation(s) in RCA: 1586] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 07/10/2007] [Accepted: 09/17/2007] [Indexed: 12/15/2022]
Abstract
Chronic viral infections often result in T cell exhaustion. To determine the molecular signature of exhaustion, we compared the gene-expression profiles of dysfunctional lymphocytic choriomeningitis virus (LCMV)-specific CD8(+) T cells from chronic infection to functional LCMV-specific effector and memory CD8(+) T cells generated after acute infection. These data showed that exhausted CD8(+) T cells: (1) overexpressed several inhibitory receptors, including PD-1, (2) had major changes in T cell receptor and cytokine signaling pathways, (3) displayed altered expression of genes involved in chemotaxis, adhesion, and migration, (4) expressed a distinct set of transcription factors, and (5) had profound metabolic and bioenergetic deficiencies. T cell exhaustion was progressive, and gene-expression profiling indicated that T cell exhaustion and anergy were distinct processes. Thus, functional exhaustion is probably due to both active suppression and passive defects in signaling and metabolism. These results provide a framework for designing rational immunotherapies during chronic infections.
Collapse
|
253
|
Lukashev D, Ohta A, Sitkovsky M. Hypoxia-dependent anti-inflammatory pathways in protection of cancerous tissues. Cancer Metastasis Rev 2007; 26:273-9. [PMID: 17404693 DOI: 10.1007/s10555-007-9054-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The evolutionarily selected tissue-protecting mechanisms are likely to be triggered by an event of universal significance for all surrounding cells. Such an event could be damage to blood vessels, which would result in local tissue hypoxia. It is now recognized that tissue hypoxia can initiate the tissue-protecting mechanism mediated by at least two different biochemical pathways. The central message of this review is that tumor cells are protected from immune damage in hypoxic and immunosuppressive tumor microenvironments due to the inactivation of anti-tumor T cells by the combined action of these two hypoxia-driven mechanisms. Firstly, tumor hypoxia-produced extracellular adenosine inhibits anti-tumor T cells via their G(s)-protein-coupled and cAMP-elevating A2A and A2B adenosine receptors (A2AR/A2BR). Levels of extracellular adenosine are increased in tumor microenvironments due to the changes in activities of enzymes involved in adenosine metabolism. Secondly, TCR-activated and/or tumor hypoxia-exposed anti-tumor T cells may be inhibited in tumor microenvironments by Hypoxia-inducible Factor 1alpha (HIF-1alpha) Hence, HIF-1alpha activity in T cells may contribute to the tumor-protecting immunosuppressive effects of tumor hypoxia. Here, we summarize the data that support the view that protection of hypoxic cancerous tissues from anti-tumor T cells is mediated by the same mechanism that protects normal tissues from the excessive collateral damage by overactive immune cells during acute inflammation.
Collapse
Affiliation(s)
- D Lukashev
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, 113 Mugar, Boston, MA 02115, USA
| | | | | |
Collapse
|
254
|
Arboleda G, Huang TJ, Waters C, Verkhratsky A, Fernyhough P, Gibson RM. Insulin-like growth factor-1-dependent maintenance of neuronal metabolism through the phosphatidylinositol 3-kinase-Akt pathway is inhibited by C2-ceramide in CAD cells. Eur J Neurosci 2007; 25:3030-8. [PMID: 17561816 DOI: 10.1111/j.1460-9568.2007.05557.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ceramide is a lipid second-messenger generated in response to stimuli associated with neurodegeneration that induces apoptosis, a mechanism underlying neuronal death in Parkinson's disease. We tested the hypothesis that insulin-like growth factor-1 (IGF-1) could mediate a metabolic response in CAD cells, a dopaminergic cell line of mesencephalic origin that differentiate into a neuronal-like phenotype upon serum removal, extend processes resembling neurites, synthesize abundant dopamine and noradrenaline and express the catecholaminergic biosynthetic enzymes tyrosine hydroxylase and dopamine beta-hydroxylase, and that this process was phosphatidylinositol 3-kinase (PI 3-K)-Akt-dependent and could be inhibited by C(2)-ceramide. The metabolic response was evaluated as real-time changes in extracellular acidification rate (ECAR) using microphysiometry. The IGF-1-induced ECAR response was associated with increased glycolysis, determined by increased NAD(P)H reduction, elevated hexokinase activity and Akt phosphorylation. C(2)-ceramide inhibited all these changes in a dose-dependent manner, and was specific, as it was not induced by the inactive C(2)-ceramide analogue C(2)-dihydroceramide. Inhibition of the upstream kinase, PI 3-K, also inhibited Akt phosphorylation and the metabolic response to IGF-1, similar to C(2)-ceramide. Decreased mitochondrial membrane potential occurred after loss of Akt phosphorylation. These results show that IGF-1 can rapidly modulate neuronal metabolism through PI 3-K-Akt and that early metabolic inhibition induced by C(2)-ceramide involves blockade of the PI 3-K-Akt pathway, and may compromise the first step of glycolysis. This may represent a new early event in the C(2)-ceramide-induced cell death pathway that could coordinate subsequent changes in mitochondria and commitment of neurons to apoptosis.
Collapse
Affiliation(s)
- Gonzalo Arboleda
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
255
|
Edinger AL. Controlling cell growth and survival through regulated nutrient transporter expression. Biochem J 2007; 406:1-12. [PMID: 17645414 DOI: 10.1042/bj20070490] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although all cells depend upon nutrients they acquire from the extracellular space, surprisingly little is known about how nutrient uptake is regulated in mammalian cells. Most nutrients are brought into cells by means of specific transporter proteins. In yeast, the expression and trafficking of a wide variety of nutrient transporters is controlled by the TOR (target of rapamycin) kinase. Consistent with this, recent studies in mammalian cells have shown that mTOR (mammalian TOR) and the related protein, PI3K (phosphoinositide 3-kinase), play central roles in coupling nutrient transporter expression to the availability of extrinsic trophic and survival signals. In the case of lymphocytes, it has been particularly well established that these extrinsic signals stimulate cell growth and proliferation in part by regulating nutrient transporter expression. The ability of growth factors to control nutrient access may also play an important role in tumour suppression: the non-homoeostatic growth of tumour cells requires that nutrient transporter expression is uncoupled from trophic factor availability. Also supporting a link between nutrient transporter expression levels and oncogenesis, several recent studies demonstrate that nutrient transporter expression drives, rather than simply parallels, cellular metabolism. This review summarizes the evidence that regulated nutrient transporter expression plays a central role in cellular growth control and highlights the implications of these findings for human disease.
Collapse
Affiliation(s)
- Aimee L Edinger
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| |
Collapse
|
256
|
Carter JH, Lefebvre JM, Wiest DL, Tourtellotte WG. Redundant role for early growth response transcriptional regulators in thymocyte differentiation and survival. THE JOURNAL OF IMMUNOLOGY 2007; 178:6796-805. [PMID: 17513727 DOI: 10.4049/jimmunol.178.11.6796] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The early growth response (Egr) family of transcriptional regulators consists of four proteins that share highly conserved DNA-binding domains. In many cell types, they are coexpressed and appear to have cooperative roles in regulating gene expression during growth and differentiation. Three Egr proteins, Egr1, Egr2, and Egr3, are induced during thymocyte differentiation in response to pre-TCR signaling, suggesting they may be critical for some aspects of pre-TCR-mediated differentiation. Indeed, enforced expression of Egr proteins in developing thymocytes can recapitulate some aspects of pre-TCR signaling, but the mechanisms by which they contribute to beta-selection are still poorly understood. Egr3 stimulates proliferation of beta-selected thymocytes, and Egr3-deficient mice have hypocellular thymuses, defects in proliferation, and impaired progression from double-negative 3 to double-negative 4. Surprisingly, Egr1-deficient mice exhibit normal beta-selection, indicating that the functions of Egr1 during beta-selection are likely compensated by other Egr proteins. In this study, we show that mice lacking both Egr1 and Egr3 exhibit a more severe thymic atrophy and impairment of thymocyte differentiation than mice lacking either Egr1 or Egr3. This is due to a proliferation defect and cell-autonomous increase in apoptosis, indicating that Egr1 and Egr3 cooperate to promote thymocyte survival. Microarray analysis of deregulated gene expression in immature thymocytes lacking both Egr1 and Egr3 revealed a previously unknown role for Egr proteins in the maintenance of cellular metabolism, providing new insight into the function of these molecules during T cell development.
Collapse
Affiliation(s)
- John H Carter
- Department of Pathology, Northwestern University, Chicago IL, 60611, USA
| | | | | | | |
Collapse
|
257
|
Kelly AP, Finlay DK, Hinton HJ, Clarke RG, Fiorini E, Radtke F, Cantrell DA. Notch-induced T cell development requires phosphoinositide-dependent kinase 1. EMBO J 2007; 26:3441-50. [PMID: 17599070 PMCID: PMC1933393 DOI: 10.1038/sj.emboj.7601761] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 05/24/2007] [Indexed: 12/17/2022] Open
Abstract
Phosphoinositide-dependent kinase l (PDK1) phosphorylates and activates multiple AGC serine kinases, including protein kinase B (PKB), p70Ribosomal S6 kinase (S6K) and p90Ribosomal S6 kinase (RSK). PDK1 is required for thymocyte differentiation and proliferation, and herein, we explore the molecular basis for these essential functions of PDK1 in T lymphocyte development. A key finding is that PDK1 is required for the expression of key nutrient receptors in T cell progenitors: CD71 the transferrin receptor and CD98 a subunit of L-amino acid transporters. PDK1 is also essential for Notch-mediated trophic and proliferative responses in thymocytes. A PDK1 mutant PDK1 L155E, which supports activation of PKB but no other AGC kinases, can restore CD71 and CD98 expression in pre-T cells and restore thymocyte differentiation. However, PDK1 L155E is insufficient for thymocyte proliferation. The role of PDK1 in thymus development thus extends beyond its ability to regulate PKB. In addition, PDK1 phosphorylation of AGC kinases such as S6K and RSK is also necessary for thymocyte development.
Collapse
Affiliation(s)
- April P Kelly
- College of Life Science, Division of Cell Biology & Immunology, MSI/WTB complex, University of Dundee, Dundee, UK
| | - David K Finlay
- College of Life Science, Division of Cell Biology & Immunology, MSI/WTB complex, University of Dundee, Dundee, UK
| | | | - Rosie G Clarke
- College of Life Science, Division of Cell Biology & Immunology, MSI/WTB complex, University of Dundee, Dundee, UK
| | - Emma Fiorini
- The Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Freddy Radtke
- Life Science Department, Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique, Fédérale de Lausanne (EPFL), Epalinges, Switzerland
| | - Doreen A Cantrell
- College of Life Science, Division of Cell Biology & Immunology, MSI/WTB complex, University of Dundee, Dundee, UK
- Division of Cell Biology and Immunology, MSI/WTB complex, University of Dundee, Dundee, DD1 5EH, UK. Tel.: +44 1382 385047; Fax: +44 1382 385783; E-mail:
| |
Collapse
|
258
|
Kinet S, Swainson L, Lavanya M, Mongellaz C, Montel-Hagen A, Craveiro M, Manel N, Battini JL, Sitbon M, Taylor N. Isolated receptor binding domains of HTLV-1 and HTLV-2 envelopes bind Glut-1 on activated CD4+ and CD8+ T cells. Retrovirology 2007; 4:31. [PMID: 17504522 PMCID: PMC1876471 DOI: 10.1186/1742-4690-4-31] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Accepted: 05/15/2007] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND We previously identified the glucose transporter Glut-1, a member of the multimembrane-spanning facilitative nutrient transporter family, as a receptor for both HTLV-1 and HTLV-2. However, a recent report concluded that Glut-1 cannot serve as a receptor for HTLV-1 on CD4 T cells: This was based mainly on their inability to detect Glut-1 on this lymphocyte subset using the commercial antibody mAb1418. It was therefore of significant interest to thoroughly assess Glut-1 expression on CD4 and CD8 T cells, and its association with HTLV-1 and -2 envelope binding. RESULTS As previously reported, ectopic expression of Glut-1 but not Glut-3 resulted in significantly augmented binding of tagged proteins harboring the receptor binding domains of either HTLV-1 or HTLV-2 envelope glycoproteins (H1RBD or H2RBD). Using antibodies raised against the carboxy-terminal peptide of Glut-1, we found that Glut-1 expression was significantly increased in both CD4 and CD8 cells following TCR stimulation. Corresponding increases in the binding of H1RBD as well as H2RBD, not detected on quiescent T cells, were observed following TCR engagement. Furthermore, increased Glut-1 expression was accompanied by a massive augmentation in glucose uptake in TCR-stimulated CD4 and CD8 lymphocytes. Finally, we determined that the apparent contradictory results obtained by Takenouchi et al were due to their monitoring of Glut-1 with a mAb that does not bind cells expressing endogenous Glut-1, including human erythrocytes that harbor 300,000 copies per cell. CONCLUSION Transfection of Glut-1 directly correlates with the capacities of HTLV-1 and HTLV-2 envelope-derived ligands to bind cells. Moreover, Glut-1 is induced by TCR engagement, resulting in massive increases in glucose uptake and binding of HTLV-1 and -2 envelopes to both CD4 and CD8 T lymphocytes. Therefore, Glut-1 is a primary binding receptor for HTLV-1 and HTLV-2 envelopes on activated CD4 as well as CD8 lymphocytes.
Collapse
Affiliation(s)
- Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | - Louise Swainson
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | - Madakasira Lavanya
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | - Cedric Mongellaz
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | - Amélie Montel-Hagen
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | - Marco Craveiro
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | - Nicolas Manel
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
- Present address : Skirball Institute of Biomolecular Medicine, NYU School of Medicine, NY, NY 10016, USA
| | - Jean-Luc Battini
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | | | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| |
Collapse
|
259
|
Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL, Simon MC, Thompson CB. The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 2007; 21:1037-49. [PMID: 17437992 PMCID: PMC1855230 DOI: 10.1101/gad.1529107] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 03/08/2007] [Indexed: 01/20/2023]
Abstract
Mammalian cells are believed to have a cell-intrinsic ability to increase glucose metabolism in response to hypoxia. Here we show that the ability of hematopoietic cells to up-regulate anaerobic glycolysis in response to hypoxia is dependent on receptor-mediated signal transduction. In the absence of growth factor signaling, hematopoietic cells fail to express hypoxia-inducible transcription factor (Hif-1alpha) mRNA. Growth factor-deprived hematopoietic cells do not engage in glucose-dependent anabolic synthesis and neither express Hif-1alpha mRNA nor require HIF-1alpha protein to regulate cell survival in response to hypoxia. However, HIF-1alpha is adaptive for the survival of growth factor-stimulated cells, as suppression of HIF-1alpha results in death when growing cells are exposed to hypoxia. Growth factor-dependent HIF-1alpha expression reprograms the intracellular fate of glucose, resulting in decreased glucose-dependent anabolic synthesis and increased lactate production, an effect that is enhanced when HIF-1alpha protein is stabilized by hypoxia. Together, these data suggest that HIF-1alpha contributes to the regulation of growth factor-stimulated glucose metabolism even in the absence of hypoxia.
Collapse
Affiliation(s)
- Julian J. Lum
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Thi Bui
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Michaela Gruber
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - John D. Gordan
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ralph J. DeBerardinis
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Division of Child Development, Rehabilitation Medicine and Metabolic Disease, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Kelly L. Covello
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - M. Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19104, USA
| | - Craig B. Thompson
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
260
|
Zhao Y, Altman BJ, Coloff JL, Herman CE, Jacobs SR, Wieman HL, Wofford JA, Dimascio LN, Ilkayeva O, Kelekar A, Reya T, Rathmell JC. Glycogen synthase kinase 3alpha and 3beta mediate a glucose-sensitive antiapoptotic signaling pathway to stabilize Mcl-1. Mol Cell Biol 2007; 27:4328-39. [PMID: 17371841 PMCID: PMC1900055 DOI: 10.1128/mcb.00153-07] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose uptake and utilization are growth factor-stimulated processes that are frequently upregulated in cancer cells and that correlate with enhanced cell survival. The mechanism of metabolic protection from apoptosis, however, has been unclear. Here we identify a novel signaling pathway initiated by glucose catabolism that inhibited apoptotic death of growth factor-deprived cells. We show that increased glucose metabolism protected cells against the proapoptotic Bcl-2 family protein Bim and attenuated degradation of the antiapoptotic Bcl-2 family protein Mcl-1. Maintenance of Mcl-1 was critical for this protection, as glucose metabolism failed to protect Mcl-1-deficient cells from apoptosis. Increased glucose metabolism stabilized Mcl-1 in both cell lines and primary lymphocytes via inhibitory phosphorylation of glycogen synthase kinase 3alpha and 3beta (GSK-3alpha/beta), which otherwise promoted Mcl-1 degradation. While a number of kinases can phosphorylate and inhibit GSK-3alpha/beta, we provide evidence that protein kinase C may be stimulated by glucose-induced alterations in diacylglycerol levels or distribution to phosphorylate GSK-3alpha/beta, maintain Mcl-1 levels, and inhibit cell death. These data provide a novel nutrient-sensitive mechanism linking glucose metabolism and Bcl-2 family proteins via GSK-3 that may promote survival of cells with high rates of glucose utilization, such as growth factor-stimulated or cancerous cells.
Collapse
Affiliation(s)
- Yuxing Zhao
- Department of Pharmacology and Cancer Biology, DUMC Box 3813, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 2007; 18:1437-46. [PMID: 17301289 PMCID: PMC1838986 DOI: 10.1091/mbc.e06-07-0593] [Citation(s) in RCA: 443] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cells require growth factors to support glucose metabolism for survival and growth. It is unclear, however, how noninsulin growth factors may regulate glucose uptake and glucose transporters. We show that the hematopoietic growth factor interleukin (IL)3, maintained the glucose transporter Glut1 on the cell surface and promoted Rab11a-dependent recycling of intracellular Glut1. IL3 required phosphatidylinositol-3 kinase activity to regulate Glut1 trafficking, and activated Akt was sufficient to maintain glucose uptake and surface Glut1 in the absence of IL3. To determine how Akt may regulate Glut1, we analyzed the role of Akt activation of mammalian target of rapamycin (mTOR)/regulatory associated protein of mTOR (RAPTOR) and inhibition of glycogen synthase kinase (GSK)3. Although Akt did not require mTOR/RAPTOR to maintain surface Glut1 levels, inhibition of mTOR/RAPTOR by rapamycin greatly diminished glucose uptake, suggesting Akt-stimulated mTOR/RAPTOR may promote Glut1 transporter activity. In contrast, inhibition of GSK3 did not affect Glut1 internalization but nevertheless maintained surface Glut1 levels in IL3-deprived cells, possibly via enhanced recycling of internalized Glut1. In addition, Akt attenuated Glut1 internalization through a GSK3-independent mechanism. These data demonstrate that intracellular trafficking of Glut1 is a regulated component of growth factor-stimulated glucose uptake and that Akt can promote Glut1 activity and recycling as well as prevent Glut1 internalization.
Collapse
Affiliation(s)
- Heather L. Wieman
- Department of Pharmacology and Cancer Biology, Department of Immunology, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710
| | - Jessica A. Wofford
- Department of Pharmacology and Cancer Biology, Department of Immunology, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710
| | - Jeffrey C. Rathmell
- Department of Pharmacology and Cancer Biology, Department of Immunology, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
262
|
Rudrappa SG, Humphrey BD. Energy metabolism in developing chicken lymphocytes is altered during the embryonic to posthatch transition. J Nutr 2007; 137:427-32. [PMID: 17237322 DOI: 10.1093/jn/137.2.427] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adequate energy status in lymphocytes is vital for their development. The ability of developing chicken lymphocytes to acquire and metabolize energy substrates was determined during embryonic days (e) and neonatal days (d) of life when primary-energy substrate metabolism is altered at the whole-animal level. In 3 experiments, bursacytes and thymocytes were isolated on e17, e20, d1, d3, d7, or d14 to analyze markers associated with glucose, glutamine, and lipid metabolism. Bursacyte glucose transporter-3 (Glut-3) mRNA abundance increased from d1 to d14 and hexokinase-1 (HK-1) mRNA abundance was maximum on e20 (P<0.05). Thymocyte Glut-1, Glut-3, and HK-1 mRNA abundance increased from e17 to d14 (P<0.05). HK enzyme activity increased from e20 to d3 in bursacytes and d3 to d7 in thymocytes (P<0.05). Glucose uptake by bursacytes and thymocytes was greater on d14 compared to d1 and d7 (P<0.05). Bursacyte and thymocyte sodium coupled neutral amino acid transporter-2 and glutaminase (GA) mRNA abundance increased from e20 to d7 (P<0.05). GA enzyme activity increased from e20 to d7 in bursacytes (P<0.05) and did not change in thymocytes. Carnitine palmitoyl transferase enzyme activity did not change over time in either cell type. These studies suggest that developing B and T lymphocytes adapt their metabolism during the first 2 wk after hatch. Developing lymphocytes increase glucose metabolism with no change in fatty acid metabolism and bursacytes, but not thymocytes, increase glutamine metabolism. Understanding the factors that regulate lymphocyte development in neonatal chicks may help promote their adaptive immune responses to pathogens in early life.
Collapse
Affiliation(s)
- Shashidhara G Rudrappa
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
263
|
Alves NL, van Lier RAW, Eldering E. Withdrawal symptoms on display: Bcl-2 members under investigation. Trends Immunol 2007; 28:26-32. [PMID: 17129763 DOI: 10.1016/j.it.2006.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 10/26/2006] [Accepted: 11/15/2006] [Indexed: 12/22/2022]
Abstract
The balance between survival and apoptosis of lymphocytes is considered to be regulated by specific signals delivered through cell surface receptors binding either antigen (fragments) or homeostatic cytokines. Expanding lymphocytes must also compete for nutrients. For growth factors and nutrients, recent data indicate how these generic environmental signals couple to members of the apoptosis-regulating Bcl-2 family. The prosurvival molecule Mcl-1 is engaged by lethal BH3-only proteins Puma and Noxa under these circumstances. We propose that Puma and Noxa have specific roles in tipping the balance towards apoptosis after growth factor withdrawal and nutrient shortage, respectively. These complementary mechanisms tune survival in the various niches when lymphocytes compete for resources during selection and expansion.
Collapse
Affiliation(s)
- Nuno L Alves
- Department of Experimental Immunology, Academic Medical Center, AZ 1105 Amsterdam, The Netherlands
| | | | | |
Collapse
|
264
|
van Gorp AGM, Pomeranz KM, Birkenkamp KU, Hui RCY, Lam EWF, Coffer PJ. Chronic protein kinase B (PKB/c-akt) activation leads to apoptosis induced by oxidative stress-mediated Foxo3a transcriptional up-regulation. Cancer Res 2006; 66:10760-9. [PMID: 17108112 DOI: 10.1158/0008-5472.can-06-1111] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased protein kinase B (PKB; c-Akt) activation is a hallmark of diverse neoplasias providing both proliferative and antiapoptotic survival signals. In this study, we investigated the effect of chronic PKB activation on cellular survival and proliferation using cytokine-dependent bone marrow-derived Ba/F3 cells, in which PKBalpha activation can be directly, and specifically, induced by addition of 4-hydroxytamoxifen (4-OHT). Direct activation of PKB rescued Ba/F3 cells from cytokine withdrawal-induced apoptosis; however, surprisingly, these antiapoptotic effects were short lived, cells only being protected for up to 48 hours. We observed that activation of PKB in survival factor-deprived cells led to a dramatic increase of Foxo3a on both the transcriptional and protein level leading to expression of its transcriptional targets Bim and p27(kip1). High levels of PKB activity result in increased aerobic glycolysis and mitochondrial activity resulting in overproduction of reactive oxygen species. To determine whether oxidative stress might itself be responsible for Foxo3a up-regulation, we utilized hydrogen peroxide (H(2)O(2)) as an artificial inducer of oxidative stress and N-acetylcysteine (NAC), a thiol-containing radical oxygen scavenger. Addition of NAC to the culture medium prolonged the life span of cells treated with 4-OHT and prevented the up-regulation of Foxo3a protein levels caused by PKB activation. Conversely, treatment of Ba/F3 cells with H(2)O(2) caused an increase of Foxo3a on both transcriptional and protein levels, suggesting that deregulated PKB activation leads to oxidative stress resulting in Foxo3a up-regulation and subsequently cell death. Taken together, our data provide novel insights into the molecular consequences of uncontrolled PKB activation.
Collapse
Affiliation(s)
- Ankie G M van Gorp
- Molecular Immunology Laboratory, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
265
|
Faber AC, Dufort FJ, Blair D, Wagner D, Roberts MF, Chiles TC. Inhibition of phosphatidylinositol 3-kinase-mediated glucose metabolism coincides with resveratrol-induced cell cycle arrest in human diffuse large B-cell lymphomas. Biochem Pharmacol 2006; 72:1246-56. [PMID: 16979140 DOI: 10.1016/j.bcp.2006.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/07/2006] [Accepted: 08/08/2006] [Indexed: 11/17/2022]
Abstract
An abnormally high rate of aerobic glycolysis is characteristic of many transformed cells. Here we report the polyphenolic compound, resveratrol, inhibited phosphatidylinositol 3-kinase (PI-3K) signaling and glucose metabolism, coinciding with cell-cycle arrest, in germinal center (GC)-like LY1 and LY18 human diffuse large B-cell lymphomas (DLBCLs). Specifically, resveratrol inhibited the phosphorylation of Akt, p70 S6K, and S6 ribosomal protein on activation residues. Biochemical analyses and nuclear magnetic resonance spectroscopy identified glycolysis as the primary glucose catabolic pathway in LY18 cells. Treatment with the glycolytic inhibitor 2-deoxy-D-glucose, resulted in accumulation of LY18 cells in G0/G1 -phase, underscoring the biological significance of glycolysis in growth. Glycolytic flux was inhibited by the PI-3K inhibitor LY294002, suggesting a requirement for PI-3K activity in glucose catabolism. Importantly, resveratrol treatment resulted in inhibition of glycolysis. Decreased glycolytic flux corresponded to a parallel reduction in the expression of several mRNAs encoding rate-limiting glycolytic enzymes. These results are the first to identify as a mechanism underlying resveratrol-induced growth arrest, the inhibition of glucose catabolism by the glycolytic pathway. Taken together, these results raise the possibility that inhibition of signaling and metabolic pathways that control glycolysis might be effective in therapy of DLBCLs.
Collapse
Affiliation(s)
- Anthony C Faber
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | |
Collapse
|
266
|
Patke A, Mecklenbräuker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A. BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. ACTA ACUST UNITED AC 2006; 203:2551-62. [PMID: 17060474 PMCID: PMC2118121 DOI: 10.1084/jem.20060990] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
B cell life depends critically on the cytokine B cell–activating factor of the tumor necrosis factor family (BAFF). Lack of BAFF signaling leads to B cell death and immunodeficiency. Excessive BAFF signaling promotes lupus-like autoimmunity. Despite the great importance of BAFF to B cell biology, its signaling mechanism is not well characterized. We show that BAFF initiates signaling and transcriptional programs, which support B cell survival, metabolic fitness, and readiness for antigen-induced proliferation. We further identify a BAFF-specific protein kinase C β–Akt signaling axis, which provides a connection between BAFF and generic growth factor–induced cellular responses.
Collapse
Affiliation(s)
- Alina Patke
- Laboratory of Lymphocyte Signaling, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
267
|
Deberardinis RJ, Lum JJ, Thompson CB. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem 2006; 281:37372-80. [PMID: 17030509 DOI: 10.1074/jbc.m608372200] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An abundant supply of extracellular nutrients is believed to be sufficient to suppress catabolism of cellular macromolecules. Here we show that, despite abundant extracellular nutrients, interleukin-3-deprived hematopoietic cells begin to catabolize intracellular lipids. Constitutive Akt activation blunts the increased beta-oxidation that accompanies growth factor withdrawal, and in growth factor-replete cells, phosphatidylinositol 3-kinase (PI3K) signaling is required to suppress lipid catabolism. Surprisingly, PI3K and Akt exert these effects by suppressing expression of the beta-oxidation enzyme carnitine palmitoyltransferase 1A (CPT1A). Cells expressing a short hairpin RNA against CPT1A fail to induce beta-oxidation in response to growth factor withdrawal and are unable to survive glucose deprivation. When CPT1A is constitutively expressed, growth factor stimulation fails to repress beta-oxidation. As a result, both net lipid synthesis and cell proliferation are diminished. Together, these results demonstrate that modulation of CPT1A expression by PI3K-dependent signaling is the major mechanism by which cells suppress beta-oxidation during anabolic growth.
Collapse
Affiliation(s)
- Ralph J Deberardinis
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
268
|
Swainson L, Kinet S, Mongellaz C, Sourisseau M, Henriques T, Taylor N. IL-7-induced proliferation of recent thymic emigrants requires activation of the PI3K pathway. Blood 2006; 109:1034-42. [PMID: 17023582 DOI: 10.1182/blood-2006-06-027912] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The IL-7 cytokine promotes the survival of a diverse T-cell pool, thereby ensuring an efficient immune response. Moreover, IL-7 induces the proliferation of recent thymic emigrants (RTEs) in neonates. Here, we demonstrate that the survival and proliferative effects of IL-7 on human RTEs can be distinguished on the basis of dose as well as duration of IL-7 administration. A dose of 0.1 ng/mL IL-7 is sufficient to promote viability, whereas cell-cycle entry is observed only at doses higher than 1 ng/mL. Moreover, a short 1-hour exposure to high-dose IL-7 (10 ng/mL) induces long-term survival but continuous IL-7 exposure is necessary for optimal cell-cycle entry and proliferation. We find that distinct signaling intermediates are activated under conditions of IL-7-induced survival and proliferation; STAT5 tyrosine phosphorylation does not correlate with proliferation, whereas up-regulation of the glucose transporter Glut-1 as well as increased glucose uptake are markers of IL-7-induced cell cycle entry. Glut-1 is directly regulated by PI3K and, indeed, inhibiting PI3K activity abrogates IL-7-induced proliferation. Our finding that the survival and proliferation of RTEs are differentially modulated by the dose and kinetics of exogenous IL-7 has important implications for the clinical use of this cytokine.
Collapse
|
269
|
Panić L, Tamarut S, Sticker-Jantscheff M, Barkić M, Solter D, Uzelac M, Grabusić K, Volarević S. Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol Cell Biol 2006; 26:8880-91. [PMID: 17000767 PMCID: PMC1636830 DOI: 10.1128/mcb.00751-06] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nascent ribosome biogenesis is required during cell growth. To gain insight into the importance of this process during mouse oogenesis and embryonic development, we deleted one allele of the ribosomal protein S6 gene in growing oocytes and generated S6-heterozygous embryos. Oogenesis and embryonic development until embryonic day 5.5 (E5.5) were normal. However, inhibition of entry into M phase of the cell cycle and apoptosis became evident post-E5.5 and led to perigastrulation lethality. Genetic inactivation of p53 bypassed this checkpoint and prolonged development until E12.5, when the embryos died, showing decreased expression of D-type cyclins, diminished fetal liver erythropoiesis, and placental defects. Thus, a p53-dependent checkpoint is activated during gastrulation in response to ribosome insufficiency to prevent improper execution of the developmental program.
Collapse
Affiliation(s)
- Linda Panić
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
270
|
Thompson CB, Bauer DE, Lum JJ, Hatzivassiliou G, Zong WX, Zhao F, Ditsworth D, Buzzai M, Lindsten T. How do cancer cells acquire the fuel needed to support cell growth? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 70:357-62. [PMID: 16869772 DOI: 10.1101/sqb.2005.70.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this paper we consider whether the dependency of metazoan cells on extracellular signals to maintain cell survival results in an important barrier that must be overcome during carcinogenesis. It is now generally accepted that a major barrier to cancer comes from the inability of cells to enter and progress through the cell cycle in a cell-autonomous fashion. Most of the oncogenes studied over the last two decades contribute to the ability of the cancer cell to enter and progress through the cell cycle in the absence of the instructional signals normally imparted by extracellular growth factors. Over the last two decades, it has begun to be appreciated that there is a second potential barrier to transformation. It appears that all cells in multicellular organisms need extracellular signals not only to initiate proliferation, but also to maintain cell survival. Every cell in our body expresses the proteins necessary to execute its own death by apoptosis. A cell will activate this apoptotic program by default unless it receives signals from the extracellular environment that allow the cell to suppress the apoptotic machinery it expresses. It now appears that the molecular basis of this suppression lies in the signaling pathways that regulate cellular nutrient uptake and direct the metabolic fate of those nutrients.
Collapse
Affiliation(s)
- C B Thompson
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Ciofani M, Zúñiga-Pflücker JC. A survival guide to early T cell development. Immunol Res 2006; 34:117-32. [PMID: 16760572 DOI: 10.1385/ir:34:2:117] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/15/2022]
Abstract
The survival of immature T cell precursors is dependent on both thymus-derived extrinsic signals and self-autonomous pre-TCR-mediated signals. While the role of cytokines and the pre-TCR in promoting thymocyte survival has been well established, the relationship between pro- and anti-apoptotic signaling cascades remains poorly defined. Recent studies have established a link between cell survival and growth factor-mediated maintenance of cellular metabolism. In this regard, the Notch signaling pathway has emerged as more than an inducer of T lineage commitment and differentiation, but also as a potent trophic factor, promoting the survival and metabolic state of pre-T cells. In this review, we describe current concepts of the intracellular signaling pathways downstream of cell intrinsic and extrinsic factors that dictate survival versus death outcomes during early T cell development.
Collapse
Affiliation(s)
- Maria Ciofani
- Department of Immunology, University of Toronto, and Sunnybrook and Women's Research Institute, 2075 Bayview Ave., Toronto, Ontario, M4N 3M5 Canada
| | | |
Collapse
|
272
|
Alves NL, Derks IAM, Berk E, Spijker R, van Lier RAW, Eldering E. The Noxa/Mcl-1 Axis Regulates Susceptibility to Apoptosis under Glucose Limitation in Dividing T Cells. Immunity 2006; 24:703-716. [PMID: 16782027 DOI: 10.1016/j.immuni.2006.03.018] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 02/22/2006] [Accepted: 03/14/2006] [Indexed: 01/13/2023]
Abstract
Throughout lymphocyte development, cellular persistence and expansion are tightly regulated by survival and apoptosis. Within the Bcl-2 family, distinct apoptogenic BH3-only members like Bid, Bim, and Puma appear to function in specific cell death pathways. We found that naive human T cells after mitogenic activation, apart from expected protective Bcl-2 members, also rapidly upregulate the BH3-only protein Noxa in a p53-independent fashion. The specific role of Noxa became apparent during glucose limitation and involves interaction with the labile Bcl-2 homolog Mcl-1. Knockdown of Noxa or Mcl-1 results in protection or susceptibility, respectively, to apoptosis induced by glucose deprivation. Declining Mcl-1 levels and apoptosis induction are inversely correlated to Noxa levels and prevented by readdition of glucose. We propose that the Noxa/Mcl-1 axis is an apoptosis rheostat in dividing cells, in a selective pathway that functions to restrain lymphocyte expansion and can be triggered by glucose deprivation.
Collapse
Affiliation(s)
- Nuno L Alves
- Department of Experimental Immunology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands
| | - Ingrid A M Derks
- Department of Experimental Immunology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands
| | - Erik Berk
- Department of Experimental Immunology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands
| | - René Spijker
- Department of Experimental Immunology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands; Department of Hematology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands
| | - René A W van Lier
- Department of Experimental Immunology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic Medical Center, 1005 AZ Amsterdam, The Netherlands.
| |
Collapse
|
273
|
Hurtrel B, Petit F, Arnoult D, Müller-Trutwin M, Silvestri G, Estaquier J. Apoptosis in SIV infection. Cell Death Differ 2006; 12 Suppl 1:979-90. [PMID: 15818408 DOI: 10.1038/sj.cdd.4401600] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pathogenic human immunodeficiency virus (HIV)/Simian immunodeficiency virus (SIV) infection is associated with increased T-cell apoptosis. In marked contrast to HIV infection in humans and SIV infection in macaques, the SIV infection of natural host species is typically nonpathogenic despite high levels of viral replication. In these nonpathogenic primate models, no observation of T-cell apoptosis was observed, suggesting that either SIV is less capable of directly inducing apoptosis in natural hosts (likely as a result of coevolution/coadaptation with the host) or, alternatively, that the indirect T-cell apoptosis plays the key role in determining the HIV-associated T-cell depletion and progression to acquired immune deficiency syndrome (AIDS). Understanding the molecular and cellular mechanisms responsible for the disease-free equilibrium in natural hosts for SIV infection, including those determining the absence of high levels of T-cell apoptosis, is likely to provide important clues regarding the mechanisms of AIDS pathogenesis in humans.
Collapse
Affiliation(s)
- B Hurtrel
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, cedex 15, France
| | | | | | | | | | | |
Collapse
|
274
|
Riley JK, Moley KH. Glucose utilization and the PI3-K pathway: mechanisms for cell survival in preimplantation embryos. Reproduction 2006; 131:823-35. [PMID: 16672348 DOI: 10.1530/rep.1.00645] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The maintenance of optimal glucose utilization during the preimplantation period is critical for embryo survival. A decrease in glucose transport during preimplantation development has been linked to the early steps of programmed cell death in these embryos. Decreased glucose transport is not thought to be simply a consequence of cell death, rather it is thought to be a trigger that can initiate the apoptotic cascade. Extensive apoptosis during the preimplantation period may manifest later in pregnancy as a malformation – or miscarriage, if cell loss is excessive. Phosphatidylinositol 3-kinase (PI3-K) is a known regulator of a number of physiologic responses including cellular proliferation, growth, and survival as well as glucose metabolism. Studies performed in other cell systems have demonstrated that the PI3-K pathway plays a critical role in maintaining glucose transport and metabolism. This review will present the current evidence that suggests that PI3-K is vital for preimplantation embryo survival and development. In addition, data demonstrating that PI3-K activity is important for glucose metabolism during this early developmental period will be discussed.
Collapse
Affiliation(s)
- Joan K Riley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 4911 Barnes-Jewish Hospital Plaza, St Louis, Missouri 63110, USA
| | | |
Collapse
|
275
|
Jensen PJ, Gitlin JD, Carayannopoulos MO. GLUT1 deficiency links nutrient availability and apoptosis during embryonic development. J Biol Chem 2006; 281:13382-13387. [PMID: 16543226 DOI: 10.1074/jbc.m601881200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GLUT1 is essential for human brain development and function, as evidenced by the severe epileptic encephalopathy observed in children with GLUT1 deficiency syndrome resulting from inherited loss-of-function mutations in the gene encoding this facilitative glucose transporter. To further elucidate the pathophysiology of this disorder, the zebrafish orthologue of human GLUT1 was identified, and expression of this gene was abrogated during early embryonic development, resulting in a phenotype of aberrant brain organogenesis consistent with the observed expression of Glut1 in the embryonic tectum and specifically rescued by human GLUT1 mRNA. Affected embryos displayed impaired glucose uptake concomitant with increased neural cell apoptosis and subsequent ventricle enlargement, trigeminal ganglion cell loss, and abnormal hindbrain architecture. Strikingly, inhibiting expression of the zebrafish orthologue of the proapoptotic protein Bad resulted in complete rescue of this phenotype, and this occurred even in the absence of restoration of apparent glucose uptake. Taken together, these studies describe a tractable system for elucidating the cellular and molecular mechanisms of Glut1 deficiency and provide compelling in vivo genetic evidence directly linking nutrient availability and activation of mitochondria-dependent apoptotic mechanisms during embryonic brain development.
Collapse
Affiliation(s)
- Penny J Jensen
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jonathan D Gitlin
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Mary O Carayannopoulos
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
276
|
Lee AWM, States DJ. Colony-stimulating factor-1 requires PI3-kinase-mediated metabolism for proliferation and survival in myeloid cells. Cell Death Differ 2006; 13:1900-14. [PMID: 16514418 DOI: 10.1038/sj.cdd.4401884] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Colony-stimulating factor-1 (CSF-1) is essential for macrophage growth, differentiation and survival. Myeloid cells expressing a CSF-1 receptor mutant (DeltaKI) show markedly impaired CSF-1-mediated proliferation and survival, accompanied by absent signal transducers and activators of transcription 3 (Stat3) phosphorylation and reduced PI3-kinase/Akt activity. Restoring phosphatidylinositol 3-kinase (PI3-kinase) but not Stat3 signals reverses the mitogenic defect. CSF-1-induced proliferation and survival are sensitive to glycolytic inhibitors, 2-deoxyglucose and 3-bromopyruvate. Consistent with a critical role for PI3-kinase-regulated glycolysis, DeltaKI cells reconstituted with active PI3-kinase or Akt are hypersensitive to these inhibitors. CSF-1 upregulates hexokinase II (HKII) expression through PI3-kinase, and PI3-kinase transcriptionally activates the HKII promoter. Moreover, HKII overexpression partially restores mitogenicity. In contrast, Bcl-x(L) expression does not enhance long-term proliferation, although short-term cell death is suppressed in a glycolysis-independent manner. This study identifies robust PI3-kinase activation as essential for optimal CSF-1-mediated mitogenesis in myeloid cells, in part through regulation of HKII and support of glycolysis.
Collapse
Affiliation(s)
- A W-M Lee
- Department of Pharmacology, University of Michigan Medical School, 1150W. Medical Center Dr., Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
277
|
Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR. Glycogen Synthase Kinase-3 Regulates Mitochondrial Outer Membrane Permeabilization and Apoptosis by Destabilization of MCL-1. Mol Cell 2006; 21:749-60. [PMID: 16543145 DOI: 10.1016/j.molcel.2006.02.009] [Citation(s) in RCA: 681] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/28/2005] [Accepted: 02/08/2006] [Indexed: 11/17/2022]
Abstract
We investigated the role of glycogen synthase kinase-3 (GSK-3), which is inactivated by AKT, for its role in the regulation of apoptosis. Upon IL-3 withdrawal, protein levels of MCL-1 decreased but were sustained by pharmacological inhibition of GSK-3, which prevented cytochrome c release and apoptosis. MCL-1 was phosphorylated by GSK-3 at a conserved GSK-3 phosphorylation site (S159). S159 phosphorylation of MCL-1 was induced by IL-3 withdrawal or PI3K inhibition and prevented by AKT or inhibition of GSK-3, and it led to increased ubiquitinylation and degradation of MCL-1. A phosphorylation-site mutant (MCL-1(S159A)), expressed in IL-3-dependent cells, showed enhanced stability upon IL-3 withdrawal and conferred increased protection from apoptosis compared to wild-type MCL-1. The results demonstrate that the control of MCL-1 stability by GSK-3 is an important mechanism for the regulation of apoptosis by growth factors, PI3K, and AKT.
Collapse
Affiliation(s)
- Ulrich Maurer
- Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121, USA.
| | | | | | | | | |
Collapse
|
278
|
Sulic S, Panic L, Barkic M, Mercep M, Uzelac M, Volarevic S. Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev 2006; 19:3070-82. [PMID: 16357222 PMCID: PMC1315409 DOI: 10.1101/gad.359305] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ribosome biogenesis has been associated with regulation of cell growth and cell division, but the molecular mechanisms that integrate the effect of ribosome biogenesis on these processes in mammalian cells remain unknown. To study the effect of impaired ribosome functions in vivo, we conditionally deleted one or two alleles of the 40S ribosomal protein S6 gene in T cells in the mouse. While complete deletion of S6 abrogated T-cell development, hemizygous expression did not have any effect on T-cell maturation in the thymus, but inhibited the accumulation of T cells in the spleen and lymph nodes, as a result of their decreased survival in the peripheral lymphoid organs. Additionally, TCR-mediated stimulation of S6-heterozygous T cells induced a normal increase in their size, but cell cycle progression was impaired. Genetic inactivation of p53 tumor suppressor rescued development of S6-homozygous null thymocytes and proliferative defect of S6-heterozygous T cells. These results demonstrate the existence of a p53-dependent checkpoint mechanism that senses changes in the fidelity of the translational machinery to prevent aberrant cell division or eliminate defective T cells in vivo. Failure to activate this checkpoint response could potentially lead to a development of pathological processes such as tumors and autoimmune diseases.
Collapse
Affiliation(s)
- Sanda Sulic
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Croatia
| | | | | | | | | | | |
Collapse
|
279
|
Doughty CA, Bleiman BF, Wagner DJ, Dufort FJ, Mataraza JM, Roberts MF, Chiles TC. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 2006; 107:4458-65. [PMID: 16449529 PMCID: PMC1895797 DOI: 10.1182/blood-2005-12-4788] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The bioenergetic response of B lymphocytes is subject to rapid changes following antigen encounter in order to provide ATP and anabolic precursors necessary to support growth. However, the pathways involved in glucose acquisition and metabolism are unknown. We find that B lymphocytes rapidly increase glucose uptake and glycolysis following B-cell antigen receptor (BCR) crosslinking. Inhibition of glycolysis blocks BCR-mediated growth. Prior to S-phase entry, glucose metabolism shifts from primarily glycolytic to include the pentose phosphate pathway. BCR-induced glucose utilization is dependent upon phosphatidylinositol 3-kinase (PI-3K) activity as evidenced by inhibition of glucose uptake and glycolysis with LY294002 treatment of normal B cells and impaired glucose utilization in B cells deficient in the PI-3K regulatory subunit p85alpha. Activation of Akt is sufficient to increase glucose utilization in B cells. We find that glucose utilization is inhibited by coengagement of the BCR and FcgammaRIIB, suggesting that limiting glucose metabolism may represent an important mechanism underlying FcgammaRIIB-mediated growth arrest. Taken together, these findings demonstrate that both growth-promoting BCR signaling and growth-inhibitory FcgammaRIIB signaling modulate glucose energy metabolism. Manipulation of these pathways may prove to be useful in the treatment of lymphoproliferative disorders, wherein clonal expansion of B lymphocytes plays a role.
Collapse
Affiliation(s)
- Cheryl A Doughty
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | | | |
Collapse
|
280
|
Abstract
Organismal homeostasis depends on an intricate balance between cell death and renewal. Early pathologists recognized that this balance could be disrupted by the extensive damage observed in internal organs during the course of certain diseases. This form of tissue damage was termed "necrosis", derived from the Greek "nekros" for corpse. As it became clear that the essential building block of tissue was the cell, necrosis came to be used to describe pathologic cell death. Until recently, necrotic cell death was believed to result from injuries that caused an irreversible bioenergetic compromise. The cell dying by necrosis has been viewed as a victim of extrinsic events beyond its control. However, recent evidence suggests that a cell can initiate its own demise by necrosis in a manner that initiates both inflammatory and/or reparative responses in the host. By initiating these adaptive responses, programmed cell necrosis may serve to maintain tissue and organismal integrity.
Collapse
Affiliation(s)
- Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, New York 11794, USA
| | | |
Collapse
|
281
|
Jacobs SR, Rathmell JC. Lymphocyte selection by starvation: glucose metabolism and cell death. Trends Immunol 2006; 27:4-7. [PMID: 16300996 DOI: 10.1016/j.it.2005.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 10/21/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
It has recently been shown by Ciaofani and Zúñiga-Pflücker that the Notch signaling pathway is important in the regulation of thymocyte glucose metabolism during beta-selection. Control of cell metabolism has key roles in the regulation of cell death pathways. Changes in glucose metabolism might affect cell death pathways and be crucial in the development and selection of T lymphocytes.
Collapse
Affiliation(s)
- Sarah R Jacobs
- Sarah W. Stedman Nutrition and Metabolism Center, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
282
|
Kryworuchko M, Thèze J. Interleukin-2: from T cell growth and homeostasis to immune reconstitution of HIV patients. VITAMINS AND HORMONES 2006; 74:531-47. [PMID: 17027529 DOI: 10.1016/s0083-6729(06)74021-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Interleukin (IL)-2 was initially described as a major stimulant of T lymphocytes in vitro. Later, the characterization of IL-2 knockout animals showed that the ability to stimulate T cells could be replaced by other cytokines. In vivo, IL-2 plays a unique role in controlling lymphoproliferation. This is partly explained by its role in the generation and maintenance of T regulatory cells (Treg). In HIV-infected patients, the IL-2/IL-2 receptor (IL-2R) system is dysregulated. The fact that IL-2 is underproduced along with defective IL-2R signaling detected in patient lymphocytes, may explain the progressive impairment of the immune system that occurs during chronic infection with this virus. These defects are partly reversed by highly active antiretroviral therapy (HAART). However, in some patients IL-2R defects persist and the CD4 counts remain low despite good control of the viral load. These patients benefit from HAART given in conjunction with IL-2 therapy.
Collapse
Affiliation(s)
- Marko Kryworuchko
- Infectious Disease and Vaccine Research Centre, Division of Virology, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | |
Collapse
|
283
|
Abstract
Activation of the Akt/PKB protein kinase family triggers increases in cell size, metabolism and survival. Akt coordinately regulates these fundamental cellular processes through phosphorylation-dependent inactivation of tumor suppressors and activation of trophic signaling. Akt signaling stimulates transport and metabolism of both glucose and amino acids, which in turn support mTOR-dependent increases in protein translation. In addition, Akt activation directs cells to undertake a metabolic conversion from oxidative phosphorylation to aerobic glycolysis. Although this conversion promotes cell growth, it also renders cell survival dependent on a continuous supply of extracellular nutrients, which themselves are required regulatory elements in Akt signal transduction.
Collapse
Affiliation(s)
- David R Plas
- Department of Genome Science, The Genome Research Institute, University of Cincinnati, OH 45237, USA.
| | | |
Collapse
|
284
|
Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 2005; 5:844-52. [PMID: 16239903 DOI: 10.1038/nri1710] [Citation(s) in RCA: 643] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ligation of antigen receptors at the surface of lymphocytes initiates a transcriptional and translational response that is required for cellular proliferation and effector function. By contrast, co-stimulatory-molecule ligation contributes to the immune response by allowing the uptake and utilization of extracellular nutrients to provide energy for cellular proliferation and effector functions. Growth factors also potentiate the ability of lymphocytes to metabolically switch between resting and proliferative states. Lymphocytes that do not receive these signals fail to increase their metabolism to meet the higher bioenergetic demands of cell growth and are either deleted or rendered unresponsive to mitogenic signals. In this Review, we describe how T cells actively acquire metabolic substrates from their environment to meet these energy demands and respond appropriately to pathogens.
Collapse
Affiliation(s)
- Casey J Fox
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
285
|
Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC, Kornbluth S. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 2005; 123:89-103. [PMID: 16213215 PMCID: PMC2788768 DOI: 10.1016/j.cell.2005.07.032] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 07/08/2005] [Accepted: 07/27/2005] [Indexed: 11/20/2022]
Abstract
Vertebrate female reproduction is limited by the oocyte stockpiles acquired during embryonic development. These are gradually depleted over the organism's lifetime through the process of apoptosis. The timer that triggers this cell death is yet to be identified. We used the Xenopus egg/oocyte system to examine the hypothesis that nutrient stores can regulate oocyte viability. We show that pentose-phosphate-pathway generation of NADPH is critical for oocyte survival and that the target of this regulation is caspase-2, previously shown to be required for oocyte death in mice. Pentose-phosphate-pathway-mediated inhibition of cell death was due to the inhibitory phosphorylation of caspase-2 by calcium/calmodulin-dependent protein kinase II (CaMKII). These data suggest that exhaustion of oocyte nutrients, resulting in an inability to generate NADPH, may contribute to ooctye apoptosis. These data also provide unexpected links between oocyte metabolism, CaMKII, and caspase-2.
Collapse
Affiliation(s)
- Leta K. Nutt
- Dept. of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710
| | - Seth S. Margolis
- Dept. of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710
| | - Mette Jensen
- Dept. of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710
- Sarah Stedman Center for Nutrition and Metabolism, Duke University Medical Center, Durham, North Carolina, 27710
| | - Catherine E. Herman
- Dept. of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, 27710
- Sarah Stedman Center for Nutrition and Metabolism, Duke University Medical Center, Durham, North Carolina, 27710
| | - William G. Dunphy
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Jeffrey C. Rathmell
- Dept. of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, 27710
- Sarah Stedman Center for Nutrition and Metabolism, Duke University Medical Center, Durham, North Carolina, 27710
| | - Sally Kornbluth
- Dept. of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710
- To whom correspondence should be addressed: Dept. of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813, C370 LSRC, Research Drive, Durham, NC 27710, Phone: 919-613-8624, FAX: 919-681-1005,
| |
Collapse
|
286
|
Cepero E, King AM, Coffey LM, Perez RG, Boise LH. Caspase-9 and effector caspases have sequential and distinct effects on mitochondria. Oncogene 2005; 24:6354-66. [PMID: 16007191 DOI: 10.1038/sj.onc.1208793] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proapoptotic Bcl-2 family members alter mitochondrial permeability resulting in the release of apoptogenic factors that initiate a caspase cascade. These changes are well described; however, the effects of caspases on mitochondrial function are less well characterized. Here we describe the consequence of caspase-9 and effector caspase inhibition on mitochondrial physiology during intrinsic cell death. Caspase inhibition prevents the complete loss of mitochondrial membrane potential without affecting cytochrome c release. When effector caspases are inhibited, mitochondria become uncoupled and produce reactive oxygen species. Interestingly, the effector caspase-mediated depolarization of the mitochondria occurs independent of the activity of complexes I-IV of the electron transport chain. In contrast, caspase-9 inhibition prevents mitochondrial uncoupling and ROS production and allows for continued electron transport despite the release of cytochrome c. Taken together, these data suggest that activated caspase-9 prevents the accessibility of cytochrome c to complex III, resulting in the production of reactive oxygen species, and that effector caspases may depolarize mitochondria to terminate ROS production and preserve an apoptotic phenotype.
Collapse
Affiliation(s)
- Enrique Cepero
- Department of Microbiology and Immunology, University of Miami School of Medicine, PO Box 016960 (R-138), Miami, FL 33101, USA
| | | | | | | | | |
Collapse
|
287
|
Jiang Q, Li WQ, Aiello FB, Mazzucchelli R, Asefa B, Khaled AR, Durum SK. Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev 2005; 16:513-33. [PMID: 15996891 DOI: 10.1016/j.cytogfr.2005.05.004] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IL-7 is essential for the development and survival of T lymphocytes. This review is primarily from the perspective of the cell biology of the responding T cell. Beginning with IL-7 receptor structure and regulation, the major signaling pathways appear to be via PI3K and Stat5, although the requirement for either has yet to be verified by published knockout experiments. The proliferation pathway induced by IL-7 differs from conventional growth factors and is primarily through posttranslational regulation of p27, a Cdk inhibitor, and Cdc25a, a Cdk-activating phosphatase. The survival function of IL-7 is largely through maintaining a favorable balance of bcl-2 family members including Bcl-2 itself and Mcl-1 on the positive side, and Bax, Bad and Bim on the negative side. There are also some remarkable metabolic effects of IL-7 withdrawal. Studies of IL-7 receptor signaling have yet to turn up unique pathways, despite the unique requirement for IL-7 in T cell biology. There remain significant questions regarding IL-7 production and the major producing cells have yet to be fully characterized.
Collapse
Affiliation(s)
- Qiong Jiang
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | | | | | | | | | | | | |
Collapse
|
288
|
Sitkovsky M, Lukashev D. Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 2005; 5:712-21. [PMID: 16110315 DOI: 10.1038/nri1685] [Citation(s) in RCA: 408] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Immune cells are often exposed to low oxygen tensions, which markedly affect cellular metabolism. We describe how activated T cells adapt to the changing energy supplies in hypoxic areas of inflamed tissues by using hypoxia-inducible factor 1 (HIF1) to switch to glycolysis as the main source of energy and by signalling through extracellular-adenosine receptors. This hypoxic regulation might alter the balance between T helper 1 cells and T helper 2 cells and might alter the activities of cells of the innate immune system, thereby qualitatively and quantitatively affecting immune responses. This regulatory mechanism should be taken into account in the design and interpretation of in vitro and in vivo studies of immune-cell effector functions.
Collapse
Affiliation(s)
- Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, 134MU, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
289
|
Ciofani M, Zúñiga-Pflücker JC. Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 2005; 6:881-8. [PMID: 16056227 DOI: 10.1038/ni1234] [Citation(s) in RCA: 373] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/16/2005] [Indexed: 11/09/2022]
Abstract
Notch signals are necessary for the functional outcomes of T cell receptor beta-selection, including differentiation, proliferation and rescue from apoptosis. The mechanism underlying this requirement for T cell development is unknown. Here we show that Notch receptor and Delta-like 1 ligand interactions promoted the survival of CD4(-)CD8(-) pre-T cells through the maintenance of cell size, glucose uptake and metabolism. Furthermore, the trophic effects of Notch signaling were mediated by the pathway of phosphatidylinositol-3-OH kinase and the kinase Akt, such that expression of active Atk overcame the requirement for Notch in beta-selection. Collectively, our results demonstrate involvement of Notch receptor-ligand interactions in the regulation of cellular metabolism, thus enabling the autonomous signaling capacity of the pre-T cell receptor complex.
Collapse
Affiliation(s)
- Maria Ciofani
- Department of Immunology, University of Toronto, Sunnybrook and Women's Research Institute, Toronto, Ontario M4N 3M5, Canada
| | | |
Collapse
|
290
|
Cham CM, Gajewski TF. Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:4670-7. [PMID: 15814691 DOI: 10.4049/jimmunol.174.8.4670] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Differentiation of CD8+ T cells from the naive to the effector state is accompanied by changes in basal gene expression profiles that parallel the acquisition of effector functions. Among these are metabolism genes, and we now show that 2C TCR transgenic effector CD8+ T cells express higher levels of glycolytic enzymes and display greater glucose uptake, a higher glycolytic rate, and increased lactate production compared with naive cells. To determine whether glucose was required for effector T cell functions, we regulated glucose availability in vitro. Glucose deprivation strongly inhibited IFN-gamma gene expression, whereas IL-2 production was little affected. Inhibition correlated with diminished phosphorylation of p70S6 kinase and eIF4E binding protein 1 and a requirement for de novo protein synthesis, whereas other signaling pathways known to regulate IFN-gamma expression were unaffected. Together, our data reveal that optimal induction of IFN-gamma transcription is a glucose-dependent process, indicate that there are undefined factors that influence IFN-gamma expression, and have implications for regulation of the effector phase of CD8+ T cell responses in tissue microenvironments.
Collapse
Affiliation(s)
- Candace M Cham
- Committee on Cancer Biology, Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
291
|
Abstract
Highly active anti-retroviral therapy (HAART) has drastically altered the course of HIV-1 infection, resulting in a major decrease in morbidity and mortality. However, adverse drug reactions and long-term toxicities associated with HAART are now a concern. A major toxicity that has been highlighted by the increased use of HAART is related to mitochondrial side-effects. At the same time, analysis of the biochemical pathways involved in programmed cell death has revealed that mitochondria are main sensors in this process. In this article, the regulation of mitochondrial damage following the use of nucleoside analogue reverse transcriptase inhibitors (NRTIs) and protease inhibitors is discussed, with a particular focus on the putative molecular mechanisms involved.
Collapse
Affiliation(s)
- Frédéric Petit
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | | | | | | |
Collapse
|
292
|
Abstract
Akt/PKB is a serine/threonine protein kinase that functions as a critical regulator of cell survival and proliferation. Akt/PKB family comprises three highly homologous members known as PKBalpha/Akt1, PKBbeta/Akt2 and PKBgamma/Akt3 in mammalian cells. Similar to many other protein kinases, Akt/PKB contains a conserved domain structure including a specific PH domain, a central kinase domain and a carboxyl-terminal regulatory domain that mediates the interaction between signaling molecules. Akt/PKB plays important roles in the signaling pathways in response to growth factors and other extracellular stimuli to regulate several cellular functions including nutrient metabolism, cell growth, apoptosis and survival. This review surveys recent developments in understanding the molecular mechanisms of Akt/PKB activation and its roles in cell survival in normal and cancer cells.
Collapse
Affiliation(s)
- Gang Song
- The Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | |
Collapse
|
293
|
Cinalli RM, Herman CE, Lew BO, Wieman HL, Thompson CB, Rathmell JC. T cell homeostasis requires G protein-coupled receptor-mediated access to trophic signals that promote growth and inhibit chemotaxis. Eur J Immunol 2005; 35:786-95. [PMID: 15719365 PMCID: PMC2628485 DOI: 10.1002/eji.200425729] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Signals that regulate T cell homeostasis are not fully understood. G protein-coupled receptors (GPCR), such as the chemokine receptors, may affect homeostasis by direct signaling or by guiding T cell migration to distinct location-restricted signals. Here, we show that blockade of Galphai-associated GPCR signaling by treatment with pertussis toxin led to T cell atrophy and shortened life-span in T cell-replete hosts and prevented T cell homeostatic growth and proliferation in T cell-deficient hosts. In vitro, however, neither GPCR inhibition nor chemokine stimulation affected T cell atrophy, survival, or proliferation. These findings suggest that GPCR signals are not trophic stimuli, but instead may be required for migration to distinct trophic signals, such as IL-7 or self-peptide/MHC. Surprisingly, while chemokines did not affect atrophy, atrophic T cells displayed increased chemokine-induced chemotaxis that was prevented by IL-7 and submitogenic anti-CD3 antibody treatment. This increase in migration was associated with increased levels of GTP-bound Rac and the ability to remodel actin. These data suggest a novel mechanism of T cell homeostasis wherein GPCR may promote T cell migration to distinct location-restricted homeostatic trophic cues for T cell survival and growth. Homeostatic trophic signals, in turn, may suppress chemokine sensitivity and cytoskeletal remodeling, to inhibit further migration.
Collapse
Affiliation(s)
- Ryan M. Cinalli
- Abramson Family Cancer Research Institute, Departments of Cancer Biology and Medicine, University of Pennsylvania, Philadelphia, USA
| | - Catherine E. Herman
- Department of Pharmacology and Cancer Biology, Sarah W. Stedman Center for Nutrition and Metabolism, Duke University Medical Center, Durham, USA
| | - Brian O. Lew
- Department of Pharmacology and Cancer Biology, Sarah W. Stedman Center for Nutrition and Metabolism, Duke University Medical Center, Durham, USA
| | - Heather L. Wieman
- Department of Pharmacology and Cancer Biology, Sarah W. Stedman Center for Nutrition and Metabolism, Duke University Medical Center, Durham, USA
| | - Craig B. Thompson
- Abramson Family Cancer Research Institute, Departments of Cancer Biology and Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jeffrey C. Rathmell
- Department of Pharmacology and Cancer Biology, Sarah W. Stedman Center for Nutrition and Metabolism, Duke University Medical Center, Durham, USA
| |
Collapse
|
294
|
Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005; 120:237-48. [PMID: 15680329 DOI: 10.1016/j.cell.2004.11.046] [Citation(s) in RCA: 1126] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 11/10/2004] [Accepted: 11/22/2004] [Indexed: 02/09/2023]
Abstract
In animals, cells are dependent on extracellular signals to prevent apoptosis. However, using growth factor-dependent cells from Bax/Bak-deficient mice, we demonstrate that apoptosis is not essential to limit cell autonomous survival. Following growth factor withdrawal, Bax-/-Bak-/- cells activate autophagy, undergo progressive atrophy, and ultimately succumb to death. These effects result from loss of the ability to take up sufficient nutrients to maintain cellular bioenergetics. Despite abundant extracellular nutrients, growth factor-deprived cells maintain ATP production from catabolism of intracellular substrates through autophagy. Autophagy is essential for maintaining cell survival following growth factor withdrawal and can sustain viability for several weeks. During this time, cells respond to growth factor readdition by rapid restoration of the ability to take up and metabolize glucose and by subsequent recovery of their original size and proliferative potential. Thus, growth factor signal transduction is required to direct the utilization of sufficient exogenous nutrients to maintain cell viability.
Collapse
Affiliation(s)
- Julian J Lum
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
295
|
Abstract
Size is a fundamental attribute impacting cellular design, fitness, and function. Size homeostasis requires a doubling of cell mass with each division. In yeast, division is delayed until a critical size has been achieved. In metazoans, cell cycles can be actively coupled to growth, but in certain cell types extracellular signals may independently induce growth and division. Despite a long history of study, the fascinating mechanisms that control cell size have resisted molecular genetic insight. Recently, genetic screens in Drosophila and functional genomics approaches in yeast have macheted into the thicket of cell size control.
Collapse
Affiliation(s)
- Paul Jorgensen
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto ON, Canada M5S 1A8.
| | | |
Collapse
|
296
|
Hammerman PS, Fox CJ, Birnbaum MJ, Thompson CB. Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood 2005; 105:4477-83. [PMID: 15705789 PMCID: PMC1895036 DOI: 10.1182/blood-2004-09-3706] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Akt kinases promote hematopoietic cell growth and accumulation through phosphorylation of apoptotic effectors and stimulation of mTOR-dependent translation. In Akt-transformed leukemic cells, tumor growth can be inhibited by the mTOR inhibitor rapamycin, and clinical trials of rapamycin analogs for the treatment of leukemia are under way. Surprisingly, nontransformed hematopoietic cells can grow and proliferate in the presence of rapamycin. Here, we show that Pim-2 is required to confer rapamycin resistance. Primary hematopoietic cells from Pim-2- and Pim-1/Pim-2-deficient animals failed to accumulate and underwent apoptosis in the presence of rapamycin. Although animals deficient in Akt-1 or Pim-1/Pim-2 are viable, few animals with a compound deletion survived development, and those that were born had severe anemia. Primary hematopoietic cells from Akt-1/Pim-1/Pim-2-deficient animals displayed marked impairments in cell growth and survival. Conversely, ectopic expression of either Pim-2 or Akt-1 induced increased cell size and apoptotic resistance. However, though the effects of ectopic Akt-1 were reversed by rapamycin or a nonphosphorylatable form of 4EBP-1, those of Pim-2 were not. Coexpression of the transgenes in mice led to additive increases in cell size and survival and predisposed animals to rapid tumor formation. Together, these data indicate that Pim-2 and Akt-1 are critical components of overlapping but independent pathways, either of which is sufficient to promote the growth and survival of nontransformed hematopoietic cells.
Collapse
Affiliation(s)
- Peter S Hammerman
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Rm 451 BRB II/III, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | | | | | | |
Collapse
|
297
|
Xi X, Gao L, Hatala DA, Smith DG, Codispoti MC, Gong B, Kern TS, Zhang JZ. Chronically elevated glucose-induced apoptosis is mediated by inactivation of Akt in cultured Müller cells. Biochem Biophys Res Commun 2005; 326:548-53. [PMID: 15596134 DOI: 10.1016/j.bbrc.2004.11.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Indexed: 11/16/2022]
Abstract
Hyperglycemia induces apoptotic cell death in a variety of cell types in diabetes, and the mechanism remains unclear. We report here that culture of rat retinal glial Müller cells in 25 mM glucose for 72 h significantly inactivated Akt and induced apoptosis. Likewise, hyperglycemia caused a significant dephosphorylation of Akt at serine-473 in Müller cells in the retina of streptozotocin-induced diabetic rats. Inactivation of Akt was associated with dephosphorylation of BAD, increased cytochrome c release, and activation of caspase-3 and caspase-9. Upregulation of Akt activity by overexpression of constitutively active Akt inhibited elevated glucose-induced apoptosis, whereas downregulation of Akt activity by overexpression of dominant negative Akt exacerbated elevated glucose-induced apoptosis, as assessed by caspase activity and nucleic acid staining. These data suggest that apoptosis induced by chronically elevated glucose is at least in part mediated by downregulation of Akt survival pathway in cultured Müller cells. It has been reported that antiapoptotic effect of Akt requires glucose in growth factor withdrawal-induced apoptosis. Our data suggest that although acutely elevated glucose may be beneficial to the cell survival, chronically elevated glucose can cause apoptosis via downregulation of Akt survival signaling.
Collapse
Affiliation(s)
- Xia Xi
- Department of Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
298
|
Rahman ZSM, Manser T. B cells expressing Bcl-2 and a signaling-impaired BAFF-specific receptor fail to mature and are deficient in the formation of lymphoid follicles and germinal centers. THE JOURNAL OF IMMUNOLOGY 2004; 173:6179-88. [PMID: 15528355 DOI: 10.4049/jimmunol.173.10.6179] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TNF family cytokine B cell-activating factor belonging to the TNF family (BAFF) (BLyS) plays a fundamental role in regulating peripheral B cell survival and homeostasis. A BAFF-specific receptor (BAFF-R; BR3) appears to mediate these functions via activation of the NF-kappaB2 pathway. Signaling by the BAFF-R is also required to sustain the germinal center (GC) reaction. Engagement of this receptor results in the induction of Bcl-2, suggesting that this antiapoptotic factor acts downstream of the BAFF-R and NF-kappaB2 pathway to promote peripheral B cell survival during primary and Ag-driven development. To test this idea, we created lines of mice coexpressing a Bcl-2 transgene and a signaling-deficient form of the BAFF-R derived from the B lymphopenic A/WySnJ strain. Surprisingly, although dramatically elevated numbers of B cells accumulate in the periphery of these mice, these B cells exhibit extremely perturbed primary development, formation of lymphoid microenvironments, and GC and IgG responses. Moreover, mice expressing the bcl-2 transgene alone display a loss of marginal zone B cells, an expansion of follicular B cells that appear immature, and alterations of the GC reaction. These results suggest that the BAFF-R and Bcl-2 regulate key and nonoverlapping aspects of peripheral B cell survival and development.
Collapse
Affiliation(s)
- Ziaur S M Rahman
- Department of Microbiology and Immunology and The Kimmel Cancer Institute, Thomas Jefferson Medical College, Philadelphia, PA 19017, USA
| | | |
Collapse
|
299
|
Inobe M, Schwartz RH. CTLA-4 Engagement Acts as a Brake on CD4+ T Cell Proliferation and Cytokine Production but Is Not Required for Tuning T Cell Reactivity in Adaptive Tolerance. THE JOURNAL OF IMMUNOLOGY 2004; 173:7239-48. [PMID: 15585846 DOI: 10.4049/jimmunol.173.12.7239] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adaptive tolerance is the physiologic down-regulation of T cell responsiveness in the face of persistent antigenic stimulation. In this study, we examined the role of CTLA-4 in this process using CTLA-4-deficient and wild-type TCR transgenic, Rag2(-/-), CD4(+) T cells transferred into a T cell-deficient, Ag-expressing host. Surprisingly, we found that the tuning process of adoptively transferred T cells could be induced and the hyporesponsive state maintained in the absence of CTLA-4. Furthermore, movement to a deeper state of anergy following restimulation in vivo in a second Ag-bearing host was also unaffected. In contrast, CTLA-4 profoundly inhibited late T cell expansion in vivo following both primary and secondary transfers, and curtailed IL-2 and IFN-gamma production. Removal of this braking function in CTLA-4-deficient mice following Ag stimulation may explain their lymphoproliferative dysregulation.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, CD
- Antigens, Differentiation/genetics
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- CD3 Complex/genetics
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/transplantation
- CTLA-4 Antigen
- Cell Division/genetics
- Cell Division/immunology
- Cell Proliferation
- Columbidae
- Cytochromes c/immunology
- Cytokines/antagonists & inhibitors
- Cytokines/biosynthesis
- Down-Regulation/genetics
- Down-Regulation/immunology
- Growth Inhibitors/deficiency
- Growth Inhibitors/genetics
- Growth Inhibitors/immunology
- Growth Inhibitors/metabolism
- Immunity, Innate/genetics
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred A
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Resting Phase, Cell Cycle/genetics
- Resting Phase, Cell Cycle/immunology
- Self Tolerance/genetics
Collapse
Affiliation(s)
- Manabu Inobe
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
300
|
Kim FJ, Manel N, Garrido EN, Valle C, Sitbon M, Battini JL. HTLV-1 and -2 envelope SU subdomains and critical determinants in receptor binding. Retrovirology 2004; 1:41. [PMID: 15575958 PMCID: PMC539286 DOI: 10.1186/1742-4690-1-41] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 12/02/2004] [Indexed: 01/14/2023] Open
Abstract
Background Human T-cell leukemia virus (HTLV) -1 and -2 are deltaretroviruses that infect a wide range of cells. Glut1, the major vertebrate glucose transporter, has been shown to be the HTLV Env receptor. While it is well established that the extracellular surface component (SU) of the HTLV envelope glycoprotein (Env) harbors all of the determinants of interaction with the receptor, identification of SU subdomains that are necessary and sufficient for interaction with the receptor, as well as critical amino acids therein, remain to be precisely defined. Although highly divergent in the rest of their genomes, HTLV and murine leukemia virus (MLV) Env appear to be related and based on homologous motifs between the HTLV and MLV SU, we derived chimeric HTLV/MLV Env and soluble HTLV-1 and -2 truncated amino terminal SU subdomains. Results Using these SU constructs, we found that the 183 and 178 amino terminal residues of the HTLV-1 and -2 Env, respectively, were sufficient to efficiently bind target cells of different species. Binding resulted from bona fide interaction with the HTLV receptor as isolated SU subdomains specifically interfered with HTLV Env-mediated binding, cell fusion, and cell-free as well as cell-to-cell infection. Therefore, the HTLV receptor-binding domain (RBD) lies in the amino terminus of the SU, immediately upstream of a central immunodominant proline rich region (Env residues 180 to 205), that we show to be dispensible for receptor-binding and interference. Moreover, we identified a highly conserved tyrosine residue at position 114 of HTLV-1 Env, Tyr114, as critical for receptor-binding and subsequent interference to cell-to-cell fusion and infection. Finally, we observed that residues in the vicinity of Tyr114 have lesser impact on receptor binding and had various efficiency in interference to post-binding events. Conclusions The first 160 residues of the HTLV-1 and -2 mature cleaved SU fold as autonomous domains that contain all the determinants required for binding the HTLV receptor.
Collapse
Affiliation(s)
- Felix J Kim
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- Current address: Memorial Sloan-Kettering Cancer Center 1275 York Ave, New York, NY, 10021, USA
| | - Nicolas Manel
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
| | - Edith N Garrido
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
| | - Carine Valle
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
| | - Jean-Luc Battini
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
| |
Collapse
|