251
|
Kim EY, Park YS, Shin JH, Cho YJ, Shin DH, Yoon HK, Song HY. The effectiveness of erythromycin in reducing stent-related tissue hyperplasia: an experimental study with a rat esophageal model. Acta Radiol 2012; 53:868-73. [PMID: 22855416 DOI: 10.1258/ar.2012.120351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Erythromycin is not only a potent antibiotic; it also has effects of reduction of inflammation and suppression of protein synthesis. PURPOSE To evaluate the impact of erythromycin on tissue hyperplasia after stent placement in a rat esophageal model. MATERIAL AND METHODS A total of 21 rats were included. After placement of self-expanding stents in the mid esophagus, the rats were divided into two experimental groups and one control group. The rats in the experimental groups received daily intraperitoneal injections of erythromycin for 5 weeks; 4 mg/kg (group A, n = 7) and 8 mg/kg (group B, n = 7). Those in the control group (n = 7) received 1 mL of saline intraperitoneally. After sacrifice, histologic analysis was done for thickness of the papillary projection, granulation tissue area, percentage of granulation tissue area, and degree of inflammatory cell infiltration. The statistical significance of differences between groups was assessed by Mann-Whitney U test. RESULTS Tissue hyperplasia as reflected in thickness of papillary projection, granulation tissue area, and percentage of granulation tissue area, was higher in the control group than in the experimental groups, although there was no statistical significance (P = 1.00, 0.332, and 0.263, respectively). However, degree of inflammatory cell infiltration was significantly lower in the experimental groups than the control group (P = 0.025), and the higher dosage of erythromycin reduced inflammatory cell infiltration significantly (P = 0.037). CONCLUSION Intraperitoneal administration of erythromycin is very effective in reducing inflammation after stent placement in a rat esophageal model but has no significant effect on granulation tissue formation.
Collapse
Affiliation(s)
- Eun-Young Kim
- Departments of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul
| | - Yang Shin Park
- Departments of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul
- Department of Radiology, Korea University Guro Hospital, Seoul
| | - Ji Hoon Shin
- Departments of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul
| | - Young Jun Cho
- Department of Radiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Dong-Ho Shin
- Departments of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul
| | - Hyun-Ki Yoon
- Departments of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul
| | - Ho-Young Song
- Departments of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul
| |
Collapse
|
252
|
Deng YL, Xiong XZ, Cheng NS. Organ fibrosis inhibited by blocking transforming growth factor-β signaling via peroxisome proliferator-activated receptor γ agonists. Hepatobiliary Pancreat Dis Int 2012; 11:467-78. [PMID: 23060391 DOI: 10.1016/s1499-3872(12)60210-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Organ fibrosis has been viewed as one of the major medical problems, which can lead to progressive dysfunction of the liver, lung, kidney, skin, heart, and eventually death of patients. Fibrosis is initiated by a variety of pathological, physiological, biochemical, and physical factors. Regardless of their different etiologies, they all share a common pathogenetic process: excessive activation of the key profibrotic cytokine, transforming growth factor-beta (TGF-beta). Peroxisome proliferator-activated receptor gamma (PPARgamma), a ligand-activated transcription factor of the nuclear receptor superfamily, has received particular attention in recent years, because the activation of PPARgamma by both natural and synthetic agonists could effectively inhibit TGF-beta-induced profibrotic effects in many organs. DATA SOURCES The English-language medical databases, PubMed, Elsevier and SpringerLink were searched for articles on PPARgamma, TGF-beta, and fibrosis, and related topics. RESULTS TGF-beta is recognized as a key profibrotic cytokine. Excessive activation of TGF-beta increases synthesis of extracellular matrix proteins and decreases their degradation, associated with a gradual destruction of normal tissue architecture and function, whereas PPARgamma agonists inhibit TGF-beta signal transduction and are effective antifibrogenic agents in many organs including the liver, lung, kidney, skin and heart. CONCLUSIONS The main antifibrotic activity of PPARgamma agonists is to suppress the TGF-beta signaling pathway by so-called PPARgamma-dependent effect. In addition, PPARgamma agonists, especially 15d-PGJ2, also exert potentially antifibrotic activity independent of PPARgamma activation. TGF-beta1/Smads signaling not only plays many essential roles in multiple developmental processes, but also forms cross-talk networks with other signal pathways, and their inhibition by PPARgamma agonists certainly affects the cytokine networks and causes non-suspected side-effects. Anti-TGF-beta therapies with PPARgamma agonists may have to be carefully tailored to be tissue- and target gene-specific to minimize side-effects, indicating a great challenge to the medical research at present.
Collapse
Affiliation(s)
- Yi-Lei Deng
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | |
Collapse
|
253
|
Yamaguchi Y, Takihara T, Chambers RA, Veraldi KL, Larregina AT, Feghali-Bostwick CA. A peptide derived from endostatin ameliorates organ fibrosis. Sci Transl Med 2012; 4:136ra71. [PMID: 22649092 DOI: 10.1126/scitranslmed.3003421] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fibroproliferative disorders such as idiopathic pulmonary fibrosis and systemic sclerosis have no effective therapies and result in significant morbidity and mortality due to progressive organ fibrosis. We examined the effect of peptides derived from endostatin on existing fibrosis and fibrosis triggered by two potent mediators, transforming growth factor-β (TGF-β) and bleomycin, in human and mouse tissues in vitro, ex vivo, and in vivo. We identified one peptide, E4, with potent antifibrotic activity. E4 prevented TGF-β-induced dermal fibrosis in vivo in a mouse model, ex vivo in human skin, and in bleomycin-induced dermal and pulmonary fibrosis in vivo, demonstrating that E4 exerts potent antifibrotic effects. In addition, E4 significantly reduced existing fibrosis in these preclinical models. E4 amelioration of fibrosis was accompanied by reduced cell apoptosis and lower levels of lysyl oxidase, an enzyme that cross-links collagen, and Egr-1 (early growth response gene-1), a transcription factor that mediates the effects of several fibrotic triggers. Our findings identify E4 as a peptide with potent antifibrotic activity and a possible therapeutic agent for organ fibrosis.
Collapse
Affiliation(s)
- Yukie Yamaguchi
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Scleroderma Center, and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
254
|
Shih B, Watson S, Bayat A. Whole genome and global expression profiling of Dupuytren's disease: systematic review of current findings and future perspectives. Ann Rheum Dis 2012; 71:1440-7. [PMID: 22772327 DOI: 10.1136/annrheumdis-2012-201295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Dupuytren's disease (DD) is a common fibroproliferative disorder affecting the palmar fascia, which may lead to permanent contracture of the affected digit. Profiling studies investigating DD at whole-genomic, transcriptomic and proteomic levels have been carried out, from which large numbers of candidate genes potentially involved in DD have been reported. This review focuses on identifying genes reported by multiple studies or validated by multiple experimental techniques, as well as signalling pathways suggested to contribute to DD. Meta-analysis was also carried out on three microarray datasets. Twenty-one genes were found to be reported as dysregulated in multiple gene expression microarrays, seven of which have been further validated by other experimental methods. Sixty-four genes determined to be dsyregulated by meta-analysis correlate to those reported by published microarray studies. In addition, several pathways have been proposed to be involved in DD by whole-genome or global expression profiling. Further investigation in these genes and pathways, and correlating them to genotypes or environmental factors for DD, may aid in further elucidation of mechanisms involved in DD pathogenesis.
Collapse
Affiliation(s)
- B Shih
- Correspondence to Dr Ardeshir Bayat, School of Translational Medicine, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, England, UK
| | | | | |
Collapse
|
255
|
Chen X, Thibeault SL. Response of fibroblasts to transforming growth factor-β1 on two-dimensional and in three-dimensional hyaluronan hydrogels. Tissue Eng Part A 2012; 18:2528-38. [PMID: 22734649 DOI: 10.1089/ten.tea.2012.0094] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1), an important cytokine with multiple functions, is secreted during wound healing. Previous studies have utilized two-dimensional (2D) cell culture to elucidate the functions of TGF-β1; however, 2D culture does not represent the complex three-dimensional (3D) in vivo environment. Using a synthetic hyaluronan (HA) extracellular matrix (ECM) hydrogel, we investigated the effect of TGF-β1 on fibroblasts cultured in three conditions--on tissue culture polystyrene (TCP), on HA (2D), and in HA (3D). After TGF-β1 treatment (0.1 to 20 ng/mL), morphological features and ECM regulation were analyzed by immunocytochemistry, Western blot, quantitative polymerase chain reaction, and zymogram assays. On TCP, cells showed the typical spindle shape with strong alpha smooth muscle actin (α-SMA) staining of cytoplasmic myofilaments along the cell axes after TGF-β1 treatment; on HA (2D), spindle-shape cells showed little α-SMA staining; in HA (3D), cells were smaller and rounded with less α-SMA deposition. The α-SMA gene and protein expression on TCP were significantly upregulated by TGF-β1, but TGF-β1 did not induce α-SMA expression in the presence of HA (both 2D and 3D). 3D HA culture significantly downregulated collagen I, III, and fibronectin expression, increased matrix metalloproteinase 1 and 2 (MMP1/MMP2) activity, upregulated MMP1 mRNA and downregulated TIMP3 mRNA expression. This study suggested that exogenous HA, particularly in 3D culture, appears to suppress ECM production, enhances ECM degradation and remodeling, and inhibits myofibroblast differentiation without decreasing TGF-β receptor expression.
Collapse
Affiliation(s)
- Xia Chen
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
256
|
Yeganeh B, Mukherjee S, Moir LM, Kumawat K, Kashani HH, Bagchi RA, Baarsma HA, Gosens R, Ghavami S. Novel non-canonical TGF-β signaling networks: emerging roles in airway smooth muscle phenotype and function. Pulm Pharmacol Ther 2012; 26:50-63. [PMID: 22874922 DOI: 10.1016/j.pupt.2012.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 12/19/2022]
Abstract
The airway smooth muscle (ASM) plays an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease (COPD). ASM cells express a wide range of receptors involved in contraction, growth, matrix protein production and the secretion of cytokines and chemokines. Transforming growth factor beta (TGF-β) is one of the major players in determining the structural and functional abnormalities of the ASM in asthma and COPD. It is increasingly evident that TGF-β functions as a master switch, controlling a network of intracellular and autocrine signaling loops that effect ASM phenotype and function. In this review, the various elements that participate in non-canonical TGF-β signaling, including MAPK, PI3K, WNT/β-catenin, and Ca(2+), are discussed, focusing on their effect on ASM phenotype and function. In addition, new aspects of ASM biology and their possible association with non-canonical TGF-β signaling will be discussed.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Department of Physiology, Manitoba Institute of Child Health, University of Manitoba, 675 McDermot Ave, Winnipeg, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Premature expression of a muscle fibrosis axis in chronic HIV infection. Skelet Muscle 2012; 2:10. [PMID: 22676806 PMCID: PMC3407733 DOI: 10.1186/2044-5040-2-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/07/2012] [Indexed: 02/06/2023] Open
Abstract
Background Despite the success of highly active antiretroviral therapy (HAART), HIV infected individuals remain at increased risk for frailty and declines in physical function that are more often observed in older uninfected individuals. This may reflect premature or accelerated muscle aging. Methods Skeletal muscle gene expression profiles were evaluated in three uninfected independent microarray datasets including young (19 to 29 years old), middle aged (40 to 45 years old) and older (65 to 85 years old) subjects, and a muscle dataset from HIV infected subjects (36 to 51 years old). Using Bayesian analysis, a ten gene muscle aging signature was identified that distinguished young from old uninfected muscle and included the senescence and cell cycle arrest gene p21/Cip1 (CDKN1A). This ten gene signature was then evaluated in muscle specimens from a cohort of middle aged (30 to 55 years old) HIV infected individuals. Expression of p21/Cip1 and related pathways were validated and further analyzed in a rodent model for HIV infection. Results We identify and replicate the expression of a set of muscle aging genes that were prematurely expressed in HIV infected, but not uninfected, middle aged subjects. We validated select genes in a rodent model of chronic HIV infection. Because the signature included p21/Cip1, a cell cycle arrest gene previously associated with muscle aging and fibrosis, we explored pathways related to senescence and fibrosis. In addition to p21/Cip1, we observed HIV associated upregulation of the senescence factor p16INK4a (CDKN2A) and fibrosis associated TGFβ1, CTGF, COL1A1 and COL1A2. Fibrosis in muscle tissue was quantified based on collagen deposition and confirmed to be elevated in association with infection status. Fiber type composition was also measured and displayed a significant increase in slow twitch fibers associated with infection. Conclusions The expression of genes associated with a muscle aging signature is prematurely upregulated in HIV infection, with a prominent role for fibrotic pathways. Based on these data, therapeutic interventions that promote muscle function and attenuate pro-fibrotic gene expression should be considered in future studies.
Collapse
|
258
|
Saito T, Tabata Y. Preparation of gelatin hydrogels incorporating low-molecular-weight heparin for anti-fibrotic therapy. Acta Biomater 2012; 8:646-52. [PMID: 22079782 DOI: 10.1016/j.actbio.2011.10.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/20/2011] [Accepted: 10/17/2011] [Indexed: 12/25/2022]
Abstract
The objective of this study is to design biodegradable hydrogels for the controlled release of low-molecular-weight heparin (LMWH) and evaluate the biological activity. Gelatin was cationized by chemically introducing ethylene diamine into the carboxyl groups in different conditions to obtain cationized gelatins. The cationized gelatin was mixed with the LMWH in aqueous solution to form the complex. Gelatin, together with the complex of LMWH and cationized gelatin, was dehydrothermally cross-linked for different time periods to prepare the gelatin hydrogel-incorporating complex. The hydrogel-incorporating complex was neither degraded in phosphate-buffered saline solution (PBS) at 37 °C nor did it release the LMWH complex. When placed in PBS containing collagenase, the hydrogel was enzymatically degraded to release the LMWH complex. The time profile of hydrogel degradation and the LMWH release depended on the condition of hydrogel cross-linking. The longer the cross-linking time period, the slower the hydrogel degradation and the subsequent LMWH release. The half-life period of LMWH release was in good correspondence with that of hydrogel degradation. It is possible that the LMWH was released as the result of hydrogel degradation. When applied to the mouse model of abdominal membrane fibrosis, the hydrogel system of LMWH release showed a promising anti-fibrotic effect.
Collapse
|
259
|
Shifren A, Witt C, Christie C, Castro M. Mechanisms of remodeling in asthmatic airways. J Allergy (Cairo) 2012; 2012:316049. [PMID: 22315625 PMCID: PMC3270414 DOI: 10.1155/2012/316049] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/07/2011] [Accepted: 10/10/2011] [Indexed: 01/09/2023] Open
Abstract
Asthma is a chronic inflammatory airway disorder characterized by airway hyperresponsiveness and reversible airflow obstruction. Subgroups of asthma patients develop airflow obstruction that is irreversible or only partially reversible and experience an accelerated rate of lung function decline. The structural changes in the airways of these patients are referred to as airway remodeling. All elements of the airway wall are involved, and remodeled airway wall thickness is substantially increased compared to normal control airways. Airway remodeling is thought to contribute to the subphenotypes of irreversible airflow obstruction and airway hyperresponsiveness, and it has been associated with increased disease severity. Reversal of remodeling is therefore of paramount therapeutic importance, and mechanisms responsible for airway remodeling are feasible therapeutic targets for asthma treatment. This paper will focus on our current understanding of the mechanisms of airway remodeling in asthma and potential targets for future intervention.
Collapse
Affiliation(s)
- Adrian Shifren
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chad Witt
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chandrika Christie
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mario Castro
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
260
|
Abstract
The enhanced permeability and retention (EPR) effect has been a key rationale for the development of nanoscale carriers to solid tumors. As a consequence of EPR, nanotherapeutics are expected to improve drug and detection probe delivery, have less adverse effects than conventional chemotherapy, and thus result in improved detection and treatment of tumors. Physiological barriers posed by the abnormal tumor microenvironment, however, can hinder the homogeneous delivery of nanomedicine in amounts sufficient to eradicate cancer. To effectively enhance the therapeutic outcome of cancer patients by nanotherapeutics, we have to find ways to overcome these barriers. One possibility is to exploit the abnormal tumor microenvironment for selective and improved delivery of therapeutic agents to tumors. Recently, we proposed a multistage nanoparticle delivery system as a potential means to enable uniform delivery throughout the tumor and improve the efficacy of anticancer therapy. Here, we describe the synthesis of a novel multistage nanoparticle formulation that shrinks in size once it enters the tumor interstitial space to optimize the delivery to tumors as well as within tumors. Finally, we provide detailed experimental methods for the characterization of such nanoparticles.
Collapse
|
261
|
Rawal SY, Dabbous MK, Tipton DA. Effect of cannabidiol on human gingival fibroblast extracellular matrix metabolism: MMP production and activity, and production of fibronectin and transforming growth factor β. J Periodontal Res 2011; 47:320-9. [PMID: 22092062 DOI: 10.1111/j.1600-0765.2011.01435.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Marijuana (Cannabis sativa) use may be associated with gingival enlargement, resembling that caused by phenytoin. Cannabidiol (CBD), a nonpsychotropic Cannabis derivative, is structurally similar to phenytoin. While there are many reports on effects of phenytoin on human gingival fibroblasts, there is no information on effects of Cannabis components on these cells. The objective of this study was to determine effects of CBD on human gingival fibroblast fibrogenic and matrix-degrading activities. MATERIAL AND METHODS Fibroblasts were incubated with CBD in serum-free medium for 1-6 d. The effect of CBD on cell viability was determined by measuring activity of a mitochondrial enzyme. The fibrogenic molecule transforming growth factor β and the extracellular matrix molecule fibronectin were measured by ELISA. Pro-MMP-1 and total MMP-2 were measured by ELISA. Activity of MMP-2 was determined via a colorimetric assay in which a detection enzyme is activated by active MMP-2. Data were analysed using ANOVA and Scheffe's F procedure for post hoc comparisons. RESULTS Cannabidiol had little or no significant effect on cell viability. Low CBD concentrations increased transforming growth factor β production by as much as 40% (p < 0.001), while higher concentrations decreased it by as much as 40% (p < 0.0001). Cannabidiol increased fibronectin production by as much as approximately 100% (p < 0.001). Lower CBD concentrations increased MMP production, but the highest concentrations decreased production of both MMPs (p < 0.05) and decreased MMP-2 activity (p < 0.02). CONCLUSION The data suggest that the CBD may promote fibrotic gingival enlargement by increasing gingival fibroblast production of transforming growth factor β and fibronectin, while decreasing MMP production and activity.
Collapse
Affiliation(s)
- S Y Rawal
- College of Dentistry, Department of Periodontology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
262
|
Fuentes-Calvo I, Blázquez-Medela AM, Eleno N, Santos E, López-Novoa JM, Martínez-Salgado C. H-Ras isoform modulates extracellular matrix synthesis, proliferation, and migration in fibroblasts. Am J Physiol Cell Physiol 2011; 302:C686-97. [PMID: 22094331 DOI: 10.1152/ajpcell.00103.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ras GTPases are ubiquitous plasma membrane transducers of extracellular stimuli. In addition to their role as oncogenes, Ras GTPases are key regulators of cell function. Each of the Ras isoforms exhibits specific modulatory activity on different cellular pathways. This has prompted researchers to determine the pathophysiological roles of each isoform. There is a proven relationship between the signaling pathways of transforming growth factor-β1 (TGF-β1) and Ras GTPases. To assess the individual role of H-Ras oncogene in basal and TGF-β1-mediated extracellular matrix (ECM) synthesis, proliferation, and migration in fibroblasts, we analyzed these processes in embryonic fibroblasts obtained from H-Ras knockout mice (H-ras(-/-)). We found that H-ras(-/-) fibroblasts exhibited a higher basal phosphatidylinositol-3-kinase (PI3K)/Akt activation than wild-type (WT) fibroblasts, whereas MEK/ERK 1/2 activation was similar in both types of cells. Fibronectin and collagen synthesis were higher in H-ras(-/-) fibroblasts and proliferation was lower in H-ras(-/-) than in WT fibroblasts. Moreover, H-Ras appeared indispensable to maintain normal fibroblast motility, which was highly restricted in H-ras(-/-) cells. These results suggest that H-Ras (through downregulation of PI3K/Akt activation) could modulate fibroblast activity by reducing ECM synthesis and upregulating both proliferation and migration. TGF-β1 strongly increased ERK and Akt activation in WT but not in H-ras(-/-) fibroblasts, suggesting that H-Ras is necessary to increase ERK 1/2 activation and to maintain PI3K downregulation in TGF-β1-stimulated fibroblasts. TGF-β1 stimulated ECM synthesis and proliferation, although ECM synthesis was higher and proliferation lower in H-ras(-/-) than in WT fibroblasts. Hence, H-Ras activation seems to play a key role in the regulation of these effects.
Collapse
Affiliation(s)
- Isabel Fuentes-Calvo
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto “Reina Sofía” de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
263
|
Schisandrin B suppresses TGFβ1 signaling by inhibiting Smad2/3 and MAPK pathways. Biochem Pharmacol 2011; 83:378-84. [PMID: 22100726 DOI: 10.1016/j.bcp.2011.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 01/18/2023]
Abstract
TGFβ1 plays a crucial role in the pathogenesis of vascular fibrotic diseases. Schisandra chinensis (S. chinensis), which is used as an oriental herbal medicine, is effective in the treatment of vascular injuries that cause aberrant TGFβ1 signaling. In this study, we investigated whether S. chinensis extract and its active ingredients inhibit TGFβ1 signaling in A7r5 vascular smooth muscle cells. We found that S. chinensis extract suppressed TGFβ1 signaling via inhibition of Smad2/3 phosphorylation and nuclear translocation. Among the active ingredients of S. chinensis extract, schisandrin B (SchB) most potently inhibited TGFβ1 signaling. SchB inhibited sustained phosphorylation and nuclear translocation of Smad2/3. Moreover, SchB suppressed TGFβ1-induced phosphorylation of p38 and JNK, which contributed to Smad2/3 inactivation. The present study is the first to demonstrate that S. chinensis extract and SchB inhibit TGFβ1 signaling. Our results may help future investigations to understand vascular fibrosis pathogenesis and to develop novel therapeutic strategies for treatment of vascular fibrotic diseases.
Collapse
|
264
|
Differential global gene expression in cystic fibrosis nasal and bronchial epithelium. Genomics 2011; 98:327-36. [DOI: 10.1016/j.ygeno.2011.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 01/08/2023]
|
265
|
Li Z, Jimenez SA. Protein kinase Cδ and c-Abl kinase are required for transforming growth factor β induction of endothelial-mesenchymal transition in vitro. ACTA ACUST UNITED AC 2011; 63:2473-83. [PMID: 21425122 DOI: 10.1002/art.30317] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The origin of the mesenchymal cells responsible for the intimal fibrosis in systemic sclerosis (SSc) has not been fully identified. The present study was undertaken to investigate whether subendothelial mesenchymal cells may emerge through transdifferentiation of endothelial cells (ECs) into myofibroblasts via endothelial-mesenchymal transition (EndoMT) in vitro and to explore the signaling pathways involved in this process. METHODS Primary mouse pulmonary ECs isolated by immunomagnetic methods with sequential anti-CD34 and anti-CD102 antibody selection were cultured in monolayers. Cell morphology and diacetylated low-density lipoprotein uptake assays confirmed their EC characteristics. The induction of EndoMT was assessed by determination of α-smooth muscle actin (α-SMA), type I collagen, and VE-cadherin expression, and the expression of the transcriptional repressor Snail-1 was analyzed. The signaling pathways involved were examined using small-molecule kinase inhibitors and RNA interference. RESULTS Transforming growth factor β1 (TGFβ1) induced α-SMA and type I collagen expression and inhibited VE-cadherin. These effects were mediated by a marked increase in Snail-1 expression and were abolished by treatment with either the c-Abl tyrosine kinase inhibitor imatinib mesylate or the protein kinase Cδ (PKCδ) inhibitor rottlerin. The inhibitory effects of imatinib mesylate and rottlerin were mediated by inhibition of phosphorylation of glycogen synthase kinase 3β at residue Ser(9). These observations were confirmed in experiments using small interfering RNA specific for c-Abl and PKCδ. CONCLUSION These results indicate that c-Abl and PKCδ are crucial for TGFβ-induced EndoMT and that imatinib mesylate and rottlerin or similar kinase inhibitor molecules may be effective therapeutic agents for SSc and other fibroproliferative vasculopathies in which EndoMT plays a pathogenetic role.
Collapse
Affiliation(s)
- Zhaodong Li
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
266
|
Lee JJ, Park SK, Kwon OS, Won IS, Kim DK, Jung YK, Ku YS, Kim YS, Choi DJ, Kim JH. Genetic polymorphism at codon 10 of the transforming growth factor-β1 gene in patients with alcoholic liver cirrhosis. THE KOREAN JOURNAL OF HEPATOLOGY 2011; 17:37-43. [PMID: 21494076 PMCID: PMC3304620 DOI: 10.3350/kjhep.2011.17.1.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background/Aims Transforming growth factor beta1 (TGF-β1) is a key cytokine in the production of extracellular matrix. A genetic polymorphism at codon 10 of the TGF-β1 gene is associated with liver fibrosis. We investigated the effect of genetic polymorphisms at codon 10 on the development of alcoholic liver cirrhosis (ALC). Methods In total, 119 controls and 182 patients with ALC, were enrolled in the study. Clinical and laboratory data including total lifetime alcohol intake were collected at enrollment. The genotype at codon 10 was determined for each patient by single-strand conformation polymorphism. Results There were three types of genetic polymorphism at codon 10: homozygous proline (P/P), heterozygous proline/leucine (P/L), and homozygous leucine (L/L). Among the controls, the proportions of P/P, P/L, and L/L were 26.1%, 44.5%, and 29.4%, respectively in the ALC group, these proportions were 23.1%, 43.4%, and 33.5%, respectively. The genotype distribution did not differ between the controls and the ALC group. In the ALC group, age, total lifetime alcohol intake, and distribution of Child-Pugh class did not differ with the genotype. Of the male patients with ALC (n=164), the proportions of P/P, P/L, and L/L were 20.1%, 44.5%, and 35.4%, respectively the genotype distribution did not differ between the male controls and the male ALC patients. Conclusions The genotype at codon 10 in TGF-β1 does not appear to influence the development of ALC. Further study is needed to investigate other genetic factors that influence the development of ALC in patients with chronic alcohol intake.
Collapse
Affiliation(s)
- Jong Joon Lee
- Department of Internal Medicine, Gachon University of Medicine and Science, Incheon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Chang PC, Chen Y, Lai MT, Chang HY, Huang CM, Liu HP, Lin WY, Lai CH, Sheu JJC, Tsai FJ. Association analysis of polymorphisms in lumican gene and systemic lupus erythematosus in a Taiwan Chinese Han population. J Rheumatol 2011; 38:2376-81. [PMID: 21885486 DOI: 10.3899/jrheum.101310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Lumican (LUM) is predominantly localized in areas of pathological fibrosis. To determine whether polymorphisms in LUM gene are associated with development of systemic lupus erythematosus (SLE), we analyzed 2 single-nucleotide polymorphisms (SNP) of LUM in a Taiwan Chinese Han population. METHODS Participants included 168 patients with SLE and 192 age-matched controls in whom examinations had excluded SLE. Genotyping of -628 A/-(rs17018757) and c.1567 T/C polymorphisms in LUM were carried out in each patient and control using the polymerase chain reaction-restriction fragment-length polymorphism method, and validated by Taqman SNP genotyping assay. Data were correlated with the development of SLE and various clinical symptoms by chi-square analysis. RESULTS Frequencies of C/C genotype and the C allele at c.1567 T/C were significantly higher in patients than controls. Polymorphism at c.1567 C/T was found to be associated with arthritis and photosensitivity in patients with SLE, which are both connective tissue-related symptoms. CONCLUSION The c.1567 T/C polymorphism of LUM is related to the development and clinical symptoms of SLE.
Collapse
Affiliation(s)
- Pei-Chun Chang
- Department of Bioinformatics, and Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Chen C, Li H, Xie Q, Shang H, Ji J, Bai S, Cao Y, Ma Y, Bi Y. Transcriptional profiling of host gene expression in chicken liver tissues infected with oncogenic Marek's disease virus. J Gen Virol 2011; 92:2724-2733. [PMID: 21832007 DOI: 10.1099/vir.0.034066-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Marek's disease virus (MDV), one of the most potent oncogenic herpesviruses, leads to highly contagious immunosuppressive and neoplastic disease in susceptible chickens. Previous studies mainly focused on the roles of host genes modulated by MDV in the virological rather than the neoplastic stage of disease. To investigate the molecular mechanisms of tumorigenesis in Marek's disease further, a microarray analysis with Affymetrix Gene-Chip Chicken Genome Arrays was performed in a non-lymphoid tissue liver during the neoplastic stage. Of the 32 773 chicken transcriptions arrayed on a chip, 269 genes were significantly differentially expressed during the neoplastic stage caused by MDV infection (upregulated, 175; downregulated, 94). The altered genomic expression of 15 randomly selected genes was confirmed by real-time RT-PCR. Biological functions and pathways of the group of 269 differentially expressed genes were analysed by using a bioinformatics tool (ipa, Ingenuity Pathway Analysis). The results revealed that 19 possible gene networks with intermolecular connections and 22 significant metabolic and signalling pathways (P≤0.05) among 137 differentially expressed genes. These 137 genes were classified into a number of functional groups that included genetic disorder, cancer, cellular growth and proliferation, and cell death. In summary, the investigation of global host-gene expression, providing the biological functions of differentially expressed genes in lymphoid tumours of the liver in response to MDV infections, may contribute to a basic understanding of the molecular mechanisms involved in tumorigenesis following MDV infection.
Collapse
Affiliation(s)
- Cuiying Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Hongmei Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Huiqin Shang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Ji
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Siwei Bai
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yulin Ma
- Department of Animal and Food Science, University of Kentucky, Lexington, KY 40546, USA
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
269
|
Park K, Hong SW, Hur W, Lee MY, Yang JA, Kim SW, Yoon SK, Hahn S. Target specific systemic delivery of TGF-β siRNA/(PEI-SS)-g-HA complex for the treatment of liver cirrhosis. Biomaterials 2011; 32:4951-8. [DOI: 10.1016/j.biomaterials.2011.03.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/19/2011] [Indexed: 12/13/2022]
|
270
|
Thompson SA, Copeland CR, Reich DH, Tung L. Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers. Circulation 2011; 123:2083-93. [PMID: 21537003 DOI: 10.1161/circulationaha.110.015057] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND After cardiac injury, activated cardiac myofibroblasts can influence tissue electrophysiology. Because mechanical coupling through adherens junctions provides a route for intercellular communication, we tested the hypothesis that myofibroblasts exert tonic contractile forces on the cardiomyocytes and affect electric propagation via a process of mechanoelectric feedback. METHODS AND RESULTS The role of mechanoelectric feedback was examined in transforming growth factor-β-treated monolayers of cocultured myofibroblasts and neonatal rat ventricular cells by inhibiting myofibroblast contraction and blocking mechanosensitive channels. Untreated (control) and transforming growth factor-β-treated (fibrotic) anisotropic monolayers were optically mapped for electrophysiological comparison. Longitudinal conduction velocity, transverse conduction velocity, and normalized action potential upstroke velocity (dV/dt(max)) significantly decreased in fibrotic monolayers (14.4 ± 0.7 cm/s [mean ± SEM], 4.1 ± 0.3 cm/s [n=53], and 3.1 ± 0.2% per ms [n=14], respectively) compared with control monolayers (27.2 ± 0.8 cm/s, 8.5 ± 0.4 cm/s [n=40], and 4.9 ± 0.1% per ms [n=12], respectively). Application of the excitation-contraction uncoupler blebbistatin or the mechanosensitive channel blocker gadolinium or streptomycin dramatically increased longitudinal conduction velocity, transverse conduction velocity, and dV/dt(max) in fibrotic monolayers (35.9 ± 1.5 cm/s, 10.3 ± 0.6 cm/s [n=17], and 4.5 ± 0.1% per ms [n=14], respectively). Similar results were observed with connexin43-silenced cardiac myofibroblasts. Spiral-wave induction in fibrotic monolayers also decreased after the aforementioned treatments. Finally, traction force measurements of individual myofibroblasts showed a significant increase with transforming growth factor-β, a decrease with blebbistatin, and no change with mechanosensitive channel blockers. CONCLUSIONS These observations suggest that myofibroblast-myocyte mechanical interactions develop during cardiac injury, and that cardiac conduction may be impaired as a result of increased mechanosensitive channel activation owing to tension applied to the myocyte by the myofibroblast.
Collapse
Affiliation(s)
- Susan A Thompson
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
271
|
He M, Cheng N, Gao WW, Zhang M, Zhang YY, Ye RD, Wang MW. Characterization of Quin-C1 for its anti-inflammatory property in a mouse model of bleomycin-induced lung injury. Acta Pharmacol Sin 2011; 32:601-10. [PMID: 21499285 DOI: 10.1038/aps.2011.4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AIM To study the in vivo effects of Quin-C1, a highly specific agonist for formyl peptide receptor 2 (FPR2/ALX), in a mouse model of bleomycin (BLM)-induced lung injury. METHODS Male ICR mice were injected intratracheally with BLM (d 0), and intraperitoneally with Quin-C1 (0.2 mg/d) or vehicle between d 1 and d 28, during which pulmonary inflammation was monitored. A similar regimen was carried out between d 5 and d 28 to differentiate anti-inflammatory from anti-fibrotic effects. During the treatment, leukocyte numbers in bronchoalveolar lavage fluid (BALF) were counted, and FPR2/ALX transcripts, tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), the mouse keratinocyte-derived chemokine (KC), transforming growth factor β1 (TGF-β1) and C-X-C motif chemokine 10 (CXCL10) expression levels in the lung tissue were also measured. Both hydroxyproline content and histological changes were examined on d 28 to assess the severity of lung fibrosis. RESULTS BLM caused a significant increase in expression levels of all the selected cytokines and chemokines, as well as a thickening of the alveolar wall. Treatment with Quin-C1 significantly reduced the neutrophil and lymphocyte counts in BALF, diminished expression of TNF-α, IL-1β, KC, and TGF-β1, and decreased collagen deposition in lung tissue. The treatment also lowered the content of lung hydroxyproline. Quin-C1 did not ameliorate lung fibrosis when the treatment was started 5 d after the BLM challenge, suggesting that the protection may be attributed to its anti-inflammatory effects. Exposure to BLM or BLM plus Quin-C1 did not change the level of FPR2/ALX transcripts (mFpr1, mFpr2, and Lxa4r) in the lung tissue. CONCLUSION The results demonstrate an anti-inflammatory role for Quin-C1 in bleomycin-induced lung injury, which may be further explored for therapeutic applications.
Collapse
|
272
|
Dahan E, Ben Simon GJ. An Augmented Trabeculectomy for Neovascular Glaucoma. Ophthalmic Surg Lasers Imaging Retina 2011; 42:196-201. [DOI: 10.3928/15428877-20110420-01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 03/06/2011] [Indexed: 11/20/2022]
|
273
|
Abonia JP, Franciosi JP, Rothenberg ME. TGF-β1: Mediator of a feedback loop in eosinophilic esophagitis--or should we really say mastocytic esophagitis? J Allergy Clin Immunol 2011; 126:1205-7. [PMID: 21134572 DOI: 10.1016/j.jaci.2010.10.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 12/14/2022]
|
274
|
Jüllig M, Chen X, Middleditch MJ, Vazhoor G, Hickey AJ, Gong D, Lu J, Zhang S, Phillips ARJ, Cooper GJS. Illuminating the molecular basis of diabetic arteriopathy: a proteomic comparison of aortic tissue from diabetic and healthy rats. Proteomics 2011; 10:3367-78. [PMID: 20707005 DOI: 10.1002/pmic.201000276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Arterial disease is a major diabetic complication, yet the component molecular mechanisms of diabetic arteriopathy remain poorly understood. In order to identify major proteins/pathways implicated in diabetic arteriopathy, we studied the effect of 16-wk untreated streptozotocin-induced diabetes on the rat aortic proteome. Specific protein levels in isolated aortas were compared in six discrete, pair-wise (streptozotocin-diabetic and non-diabetic age-matched controls) experiments in which individual proteins were identified and quantified by iTRAQ combined with LC-MS/MS. A total of 398 unique non-redundant proteins were identified in at least one experiment and 208 were detected in three or more. Between-group comparisons revealed significant changes or trends towards changes in relative abundance of 51 proteins (25 increased, 26 decreased). Differences in levels of selected proteins were supported by Western blotting and/or enzyme assays. The most prominent diabetes-associated changes were in groups of proteins linked to oxidative stress responses and the structure/function of myofibrils and microfilaments. Indexes of mitochondrial content were measurably lower in aortic tissue from diabetic animals. Functional cluster analysis also showed decreased levels of glycolytic enzymes and mitochondrial electron transport system-complex components. These findings newly implicate several proteins/functional pathways in the pathogenesis of arteriosclerosis/diabetic arteriopathy.
Collapse
Affiliation(s)
- Mia Jüllig
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Yang L, Wang J, Fan Y, Chen S, Wang L, Ma J. Effect of 1,25(OH)2D3 on rat peritoneal mesothelial cells treated with high glucose plus lipopolysaccharide. Cell Immunol 2011; 271:173-9. [DOI: 10.1016/j.cellimm.2011.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 12/25/2022]
|
276
|
Rosas-Taraco AG, Higgins DM, Sánchez-Campillo J, Lee EJ, Orme IM, González-Juarrero M. Local pulmonary immunotherapy with siRNA targeting TGFβ1 enhances antimicrobial capacity in Mycobacterium tuberculosis infected mice. Tuberculosis (Edinb) 2010; 91:98-106. [PMID: 21195670 DOI: 10.1016/j.tube.2010.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/19/2010] [Accepted: 11/13/2010] [Indexed: 12/31/2022]
Abstract
In this study we demonstrate that it is possible to shift the immune system during a chronic infection with Mycobacterium tuberculosis. TGFβ and IL10 cytokines inhibit the Th1 response during chronic pulmonary infection with M. tuberculosis. We show that intrapulmonary delivery of siRNA targeting TGFβ1 is able to reduce the pulmonary bacillary load in mice chronically infected with M. tuberculosis: an effect that appears to be partly dependent on IL10 expression. To demonstrate this, we induced gene silencing of tgfβ1 in the lungs of wild type and IL10 knockout mice using a non-invasive aerosolized intrapulmonary delivery of siRNA targeting TGFβ1. Five days after the last treatment with siRNA, the levels of tgfb1 transcripts and TGFβ1 protein were reduced when compared with control groups treated with RNase-free water or non-targeting siRNA. Mice treated with siRNA also had increased expression of the antimicrobial mediators (NO and iNOS) which effectively reduced the bacterial load by 0.17 and 0.47 log(10) in C57BL/6 and IL-10 KO mice respectively when compared with their respective control mice. More importantly, the bacterial load in siRNA treated IL-10 KO mice four weeks after the last treatment remained 0.32 log(10) lower than in control mice.
Collapse
Affiliation(s)
- Adrian G Rosas-Taraco
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | |
Collapse
|
277
|
Zhang J, Wang JHC. Platelet-rich plasma releasate promotes differentiation of tendon stem cells into active tenocytes. Am J Sports Med 2010; 38:2477-86. [PMID: 20802092 DOI: 10.1177/0363546510376750] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Platelet-rich plasma (PRP) has been used to enhance tendon healing in clinical settings. However, the cellular mechanisms underlying PRP treatment of injured tendons remain unclear. The aim of this study was to determine the effects of PRP, in the form of PRP-clot releasate (PRCR), on tendon stem cells (TSCs), a newly discovered cell population in tendons. HYPOTHESIS The PRCR treatment promotes differentiation of TSCs into tenocytes that are activated to proliferate quickly and increase collagen production. STUDY DESIGN Controlled laboratory study. METHODS After PRCR treatment, cell morphology, expression of stem/progenitor cell marker nucleostemin, and population doubling time were examined. In addition, gene and protein analyses were performed using reverse transcription-polymerase chain reaction, immunocytochemistry, and Western blot to characterize the type of cells that had differentiated after PRCR treatment. RESULTS The TSCs without PRCR treatment were small and exhibited an irregular shape, whereas with increasing PRCR dosage, TSCs became large, well spread, and highly elongated with downregulation of nucleostemin expression. The PRCR treatment also markedly enhanced TSC proliferation, tenocyte-related gene and protein expression, and total collagen production, all of which indicated that PRCR treatment induced differentiation of TSCs into activated tenocytes. CONCLUSION The PRCR treatment promotes differentiation of TSCs into active tenocytes exhibiting high proliferation rates and collagen production capability. CLINICAL RELEVANCE The findings of this study suggest that PRP treatment of injured tendons is "safe" as it promotes TSC differentiation into tenocytes rather than nontenocytes, which would compromise the structure and function of healing tendons by formation of nontendinous tissues. Moreover, they suggest that PRP treatment can enhance tendon healing because tenocytes induced to differentiate by PRP are activated to proliferate quickly and produce abundant collagen to repair injured tendons that have lost cells and matrix.
Collapse
Affiliation(s)
- Jianying Zhang
- Department of Orthopaedic Surgery, University of Pittsburgh, PA 15213, USA
| | | |
Collapse
|
278
|
Dihazi H, Dihazi GH, Mueller C, Lahrichi L, Asif AR, Bibi A, Eltoweissy M, Vasko R, Mueller GA. Proteomics characterization of cell model with renal fibrosis phenotype: osmotic stress as fibrosis triggering factor. J Proteomics 2010; 74:304-18. [PMID: 21118732 DOI: 10.1016/j.jprot.2010.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/15/2010] [Accepted: 11/10/2010] [Indexed: 11/29/2022]
Abstract
Renal fibroblasts are thought to play a major role in the development of renal fibrosis (RF). The mechanisms leading to this renal alteration remain poorly understood. We performed differential proteomic analyses with two established fibroblast cell lines with RF phenotype to identify new molecular pathways associated with RF. Differential 2-DE combined with mass spectrometry analysis revealed the alteration of more than 30 proteins in fibrotic kidney fibroblasts (TK188) compared to normal kidney fibroblast (TK173). Among these proteins, markers of the endoplasmic reticulum (ER) stress- and the unfolded protein response (UPR) pathway (GRP78, GRP94, ERP57, ERP72, and CALR) and the oxidative stress pathway proteins (PRDX1, PRDX2, PRDX6, HSP70, HYOU1) were highly up-regulated in fibrotic cells. Activation of these stress pathways through long time exposition of TK173, to high NaCl or glucose concentrations resulted in TK188 like phenotype. Parallel to an increase in reactive oxygen species, the stressed cells showed significant alteration of fibrosis markers, ER-stress and oxidative stress proteins. Similar effects of osmotic stress could be also observed on renal proximal tubule cells. Our data suggest an important role of the ER-stress proteins in fibrosis and highlights the pro-fibrotic effect of osmotic stress through activation of oxidative stress and ER-stress pathways.
Collapse
Affiliation(s)
- Hassan Dihazi
- Department of Nephrology and Rheumatology, Georg-August University Goettingen, Goettingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Loai Y, Yeger H, Coz C, Antoon R, Islam SS, Moore K, Farhat WA. Bladder tissue engineering: tissue regeneration and neovascularization of HA-VEGF-incorporated bladder acellular constructs in mouse and porcine animal models. J Biomed Mater Res A 2010; 94:1205-15. [PMID: 20694987 DOI: 10.1002/jbm.a.32777] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Successful tissue engineering requires appropriate recellularization and vascularization. Herein, we assessed the regenerative and angiogenic effects of porcine bladder acellular matrix (ACM) incorporated with hyaluronic acid (HA) and vascular endothelial growth factor (VEGF) in mouse and porcine models. Prepared HA-ACMs were rehydrated in different concentrations of VEGF (1, 2, 3, 10, and 50 ng/g ACM). Grafts were implanted in mice peritoneum in situ for 1 week. Angiogenesis was quantified with CD31 and Factor VIII immunostaining using Simple PCI. Selected optimal VEGF concentration that induced maximum vascularization was then used in porcine bladder augmentation model. Implants were left in for 4 and 10 weeks. Three groups of six pigs each were implanted with ACM alone, HA-ACM, and HA-VEGF-ACM. Histological, immunohistochemical (Uroplakin III, alpha-SMA, Factor VIII), and immunofluorescence (CD31) analysis were performed to assess graft regenerative capacity and angiogenesis. In mouse model, statistically significant increase in microvascular density was demonstrated in the 2 ng/g ACM group. When this concentration was used in porcine model, recellularization increased significantly from weeks 4 to 10 in HA-VEGF-ACM, with progressive decrease in fibrosis. Significantly increased vascularization, coupled with increased urothelium and smooth muscle cell (SMC) regeneration, was observed in HA-VEGF grafts at week 10 in the center and periphery, compared with week 4. HA-VEGF grafts displayed highest in vivo epithelialization, neovascularization, and SMCs regeneration. A total of 2 ng/g tissue VEGF when incorporated with HA proved effective in stimulating robust graft recellularization and vascularization, coordinated with increased urothelial bladder development and SMC augmentation into bundles by week 10.
Collapse
Affiliation(s)
- Yasir Loai
- Department of Developmental and Stem Cell Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
280
|
Ranzer MJ, Chen L, DiPietro LA. Fibroblast function and wound breaking strength is impaired by acute ethanol intoxication. Alcohol Clin Exp Res 2010; 35:83-90. [PMID: 20958333 DOI: 10.1111/j.1530-0277.2010.01324.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Alcohol intoxication occurs in nearly half of all trauma patients and increases the morbidity, mortality, and healing complications of these patients. Prior studies in our laboratory and elsewhere have demonstrated impairments in re-epithelialization, angiogenesis, and inflammation in wounds following acute ethanol exposure. Clinically, acute ethanol exposure has been shown to cause an increased breakdown of wounds. To date, the mechanisms by which acute ethanol exposure modifies wound strength have received little experimental attention. METHODS To examine how ethanol influences functions critical to the development of wound strength, the effect of ethanol exposure on fibroblast proliferation and extracellular matrix production was examined. Normal human dermal fibroblasts (NHDF) were exposed to ethanol (100 mg/dl) and then examined for proliferative capacity and mRNA production of collagen I, collagen III, and lysyl oxidase (LOX). In in vivo studies, the wound breaking strength, LOX activity, collagen, and hyaluronic acid (HA) contents of wounds of ethanol-exposed (100 mg/dl) mice were examined. RESULTS At 24, 48, and 72 hours after acute ethanol exposure (8 hours duration), NHDF displayed a significant impairment in proliferative capacity (up to 50% at 24 hours p < 0.001). After ethanol exposure, NHDF produced less collagen I and LOX mRNA, but more collagen III mRNA than control fibroblasts (p < 0.05). Ethanol exposure in vivo caused a reduction in wound breaking strength of up to 40% when compared to control mice (p < 0.01). LOX activity, collagen, and HA contents in the wounds of ethanol-exposed mice were significantly reduced (p < 0.01). CONCLUSIONS These studies reveal that a single exposure to ethanol prior to injury can cause a significant decrease in wound breaking strength. Our studies suggest that ethanol directly impairs fibroblast function, leading to decreased collagen production. The results provide a possible explanation for how acute ethanol exposure might increase in wound complications and wound failure.
Collapse
Affiliation(s)
- Matthew J Ranzer
- Center for Wound Healing & Tissue Regeneration, University of Illinois at Chicago, USA
| | | | | |
Collapse
|
281
|
Abstract
With >10,000,000 cancer survivors in the U.S. alone, the late effects of cancer treatment are a significant public health issue. Over the past 15 years, much work has been done that has led to an improvement in our understanding of the molecular mechanisms underlying the development of normal tissue injury after cancer therapy. In many cases, these injuries are characterized at the histologic level by loss of parenchymal cells, excessive fibrosis, and tissue atrophy. Among the many cytokines involved in this process, transforming growth factor (TGF)-beta1 is thought to play a pivotal role. TGF-beta1 has a multitude of functions, including both promoting the formation and inhibiting the breakdown of connective tissue. It also inhibits epithelial cell proliferation. TGF-beta1 is overexpressed at sites of injury after radiation and chemotherapy. Thus, TGF-beta1 represents a logical target for molecular therapies designed to prevent or reduce normal tissue injury after cancer therapy. Herein, the evidence supporting the critical role of TGF-beta1 in the development of normal tissue injury after cancer therapy is reviewed and the results of recent research aimed at preventing normal tissue injury by targeting the TGF-beta1 pathway are presented.
Collapse
Affiliation(s)
- Mitchell S Anscher
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
282
|
Abstract
A healthy ocular surface environment is essential to preserve visual function, and as such the eye has evolved a complex network of mechanisms to maintain homeostasis. Fundamental to the health of the ocular surface is the immune system, designed to respond rapidly to environmental and microbial insults, whereas maintaining tolerance to self-antigens and commensal microbes. To this end, activation of the innate and adaptive immune response is tightly regulated to limit bystander tissue damage. However, aberrant activation of the immune system can result in autoimmunity to self-antigens localized to the ocular surface and associated tissues. Environmental, microbial and endogenous stress, antigen localization, and genetic factors provide the triggers underlying the immunological events that shape the outcome of the diverse spectrum of autoimmune-based ocular surface disorders.
Collapse
|
283
|
Zarin AA, Behmanesh M, Tavallaei M, Shohrati M, Ghanei M. Overexpression of transforming growth factor (TGF)-beta1 and TGF-beta3 genes in lung of toxic-inhaled patients. Exp Lung Res 2010; 36:284-91. [PMID: 20497023 DOI: 10.3109/01902140903578868] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Iraq frequently used toxic inhalants during the war with Iran, exposing over 100,000 people to chemical reagents. Bronchiolitis obliterans (BO) is a major pulmonary disease caused by exposure to harmful gases. Recently defect in clearance of apoptotic cells (efferocytosis) has been suggested as a mechanism that leads to several lung diseases. Transforming growth factor (TGF)-beta, a cytokine produced by efferocytotic macrophages, suppresses the inflammation and enhances the regeneration of tissue. In this study, the authors compared the expression of these 3 isoforms of TGF-beta at mRNA level in lung biopsies of Iranian victims of chemical gases with lung biopsies of control healthy volunteers. Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) technique was used to examine the expression level of TGF-beta isoforms using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene as an internal control. The results indicated that that levels of TGF-beta1 and TGF-beta3 mRNAs were significantly higher in chemical gas-injured patients than noninjured group (P < .05). Therefore, the authors speculate that TGF-beta1 and TGFbeta3, but not TGF-beta2, secretion is a result of efficient efferocytosis in chemically injured patients, playing a protective role by improving airway remodeling and lung homeostasis in this group. These properties of TGF-beta are consistent with long-time survival of chemical-injured people suffering from BO.
Collapse
Affiliation(s)
- Aref Arzan Zarin
- Department of Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
284
|
Cao Y, Szabolcs A, Dutta SK, Yaqoob U, Jagavelu K, Wang L, Leof EB, Urrutia RA, Shah VH, Mukhopadhyay D. Neuropilin-1 mediates divergent R-Smad signaling and the myofibroblast phenotype. J Biol Chem 2010; 285:31840-8. [PMID: 20675371 DOI: 10.1074/jbc.m110.151696] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor-beta (TGF-β) superfamily is one of the most diversified cell signaling pathways and regulates many physiological and pathological processes. Recently, neuropilin-1 (NRP-1) was reported to bind and activate the latent form of TGF-β1 (LAP-TGF-β1). We investigated the role of NRP-1 on Smad signaling in stromal fibroblasts upon TGF-β stimulation. Elimination of NRP-1 in stromal fibroblast cell lines increases Smad1/5 phosphorylation and downstream responses as evidenced by up-regulation of inhibitor of differentiation (Id-1). Conversely, NRP-1 loss decreases Smad2/3 phosphorylation and its responses as shown by down-regulation of α-smooth muscle actin (α-SMA) and also cells exhibit more quiescent phenotypes and growth arrest. Moreover, we also observed that NRP-1 expression is increased during the culture activation of hepatic stellate cells (HSCs), a liver resident fibroblast. Taken together, our data suggest that NRP-1 functions as a key determinant of the diverse responses downstream of TGF-β1 that are mediated by distinct Smad proteins and promotes myofibroblast phenotype.
Collapse
Affiliation(s)
- Ying Cao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
|
286
|
Fibrocytes can be reprogrammed to promote tissue remodeling capacity of dermal fibroblasts. Mol Cell Biochem 2010; 344:11-21. [PMID: 20563835 DOI: 10.1007/s11010-010-0524-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 06/05/2010] [Indexed: 01/09/2023]
Abstract
Fibroblasts play a pivotal role in wound healing process participating in both tissue fibrosis and remodeling. However, it remains unclear which factors activate such diversity of fibroblast responses and how this decision-making process is made. Previous reports have demonstrated that wound milieu stimulates the transformation of circulating precursor cells into fibrocytes. These pro-fibrogenic cells promote the collagen production by resident fibroblasts. Conversely, recruited cells with anti-fibrogenic profile that can compete with fibrocytes have not been identified. This report describes a novel transdifferentiation process of fibrocytes induced by changing culture conditions. The reprogrammed fibrocytes markedly increased cell proliferation and MMP-1 expression in dermal fibroblasts. The MMP-1 up-regulation was directly related to the number of fibrocytes that followed this cell transformation. In vitro and in vivo results have confirmed that TGF-β deprivation plays an important role in this novel fibrocyte differentiation pathway. Our findings demonstrate that, changing the fibrocyte commitment, it is possible to exponentially stimulate the tissue remodeling capacity of dermal fibroblasts. These results will open new research approaches to understand the role of cell transdifferentiation and local environment not only in the wound healing process of skin, but also in several other fibrocyte-associated diseases such as lung fibrosis, asthma, liver cirrhosis, chronic pancreatitis, and atherosclerosis.
Collapse
|
287
|
Lindke AL, Middleton FA, Miller MW. Regulating the availability of transforming growth factor ß1 in B104 neuroblastoma cells. Exp Neurol 2010; 225:123-32. [PMID: 20547156 DOI: 10.1016/j.expneurol.2010.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/27/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Transforming growth factor (TGF) beta1 is a key player in early brain development, hence, its availability (i.e., synthesis and release) affects neuronogenesis. TGFbeta1 moves proliferating cells out of the cell cycle and promotes their subsequent migration. The present study tested the hypothesis that neural progenitors self-regulate TGFbeta1. B104 neuroblastoma cells which can grow in the absence of serum or growth factors were used in systematic studies of transcription, translation, release, and activation. These studies relied on quantitative enzyme-linked immunosorbent assays and real-time polymerase chain reactions. TGFbeta1 positively upregulated its own intracellular expression and promoted increased release of TGFbeta1 from cells. The induction of TGFbeta1 was independent of a change in transcription, but it depended on cycloheximide-inhibited translation. Signaling mediated by downstream Smad2/3 through the TGFbeta receptors and intracellular protein transport were also required for release of TGFbeta1 from B104 cells. Thus, TGFbeta1 production and release were mediated through a feed-forward mechanism and were pivotally regulated at the level of translation. These activities appear to be key for the role of TGFbeta1 in the proliferation and migration of young neurons.
Collapse
Affiliation(s)
- Amanda L Lindke
- Department of Neuroscience and Physiology, State University of New York-Upstate Medical University, Syracuse NY 13210, USA
| | | | | |
Collapse
|
288
|
da Silva JP, da Silva MB, Campelo SR, Salgado UI, Diniz JAP, Esterre P, Rozental S, Salgado CG. TGF-beta plasma levels in chromoblastomycosis patients during itraconazole treatment. Cytokine 2010; 51:202-6. [PMID: 20621721 DOI: 10.1016/j.cyto.2010.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/27/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Chromoblastomycosis (CBM) is a dermal mycosis. The disease evolves to a chronic state, presenting a suppurative granulomatous dermatitis, combined with variable dermal fibrosis. Pathogenesis of the inflammation and tissue repair in CBM are poorly understood. AIM To quantify Transforming Growth Factor-beta (TGF-beta) plasma levels of CBM patients during itraconazole (ITZ) treatment. METHODS Blood plasma of 12 CBM patients was subjected to TGF-beta titration with ELISA at 0, 3, 6 and 12months of 200mg per day of ITZ therapy, and correlated with the clinical aspects. Plasma of 12 healthy individuals were used for control. RESULTS CBM patients present high plasma levels of TGF-beta (7.016+/-1988pg/ml), decreasing after 03months (4.625+/-645pg/ml) of ITZ treatment, which correlates with a rapid clinical improvement. However, after 6 (6.566+/-777pg/ml) and 12months (6.908+/-776) of treatment, TGF-beta levels increase to almost the same levels observed before treatment, which is related to a slow clinical improvement, fungal persistence on the lesion, and fibrotic scars. CONCLUSION TGF-beta plasma levels are high in CBM patients. Fungal destruction by ITZ correlates with TGF-beta downregulation, but tissue remodeling and fungal persistence probably raises its levels again, interfering with cellular immune responses.
Collapse
Affiliation(s)
- Jorge Pereira da Silva
- Laboratório de Dermato-Imunologia, Universidade do Estado do Pará (UEPA), Universidade Federal do Pará (UFPA), Unidade de Referência em Dermatologia Sanitária do Estado do Pará Dr. Marcello Candia (MC), Brazil
| | | | | | | | | | | | | | | |
Collapse
|
289
|
Buday A, Orsy P, Godó M, Mózes M, Kökény G, Lacza Z, Koller A, Ungvári Z, Gross ML, Benyó Z, Hamar P. Elevated systemic TGF-beta impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE(-/-) mice. Am J Physiol Heart Circ Physiol 2010; 299:H386-95. [PMID: 20511416 DOI: 10.1152/ajpheart.01042.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The role of circulating, systemic TGF-beta levels in endothelial function is not clear. TGF-beta(1) may cause endothelial dysfunction in apolipoprotein E-deficient (apoE(-/-)) mice via stimulation of reactive oxygen species (ROS) production by the NADPH oxidase (NOX) system and aggravate aortic and heart remodeling and hypertension. Thoracic aorta (TA) were isolated from 4-mo-old control (C57Bl/6), apoE(-/-), TGF-beta(1)-overexpressing (TGFbeta(1)), and crossbred apoE(-/-) x TGFbeta(1) mice. Endothelium-dependent relaxation was measured before and after incubation with apocynin (NOX inhibitor) or superoxide dismutase (SOD; ROS scavenger). Superoxide production within the vessel wall was determined by dihydroethidine staining under confocal microscope. In 8-mo-old mice, aortic and myocardial morphometric changes, plaque formation by en face fat staining, and blood pressure were determined. Serum TGF-beta(1) levels (ELISA) were elevated in TGFbeta(1) mice without downregulation of TGF-beta-I receptor (immunohistochemistry). In the aortic wall, superoxide production was enhanced and NO-dependent relaxation diminished in apoE(-/-) x TGFbeta(1) mice but improved significantly after apocynin or SOD. Myocardial capillary density was reduced, fibrocyte density increased, aortic wall was thicker, combined lesion area was greater, and blood pressure was higher in the apoE(-/-) x TGFbeta vs. C57Bl/6 mice. Our results demonstrate that elevated circulating TGF-beta(1) causes endothelial dysfunction through NOX activation-induced oxidative stress, accelerating atherosclerosis and hypertension in apoE(-/-) mice. These findings may provide a mechanism explaining accelerated atherosclerosis in patients with elevated plasma TGFbeta(1).
Collapse
Affiliation(s)
- Anna Buday
- Institute of Pathophysiology, Dept. of Medicine, Semmelweis Univ., Budapest, 1089 Nagyvárad tér 4, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Kim JH, Song HY, Park JH, Yoon HJ, Park HG, Kim DK. IN-1233, an ALK-5 inhibitor: prevention of granulation tissue formation after bare metallic stent placement in a rat urethral model. Radiology 2010; 255:75-82. [PMID: 20308445 DOI: 10.1148/radiol.09090670] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate the efficacy of an activin receptor-like kinase-5 inhibitor, IN-1233, for the prevention of tissue hyperplasia after bare stent placement in a rat urethral model. MATERIALS AND METHODS Procedures were performed in accordance with the National Institutes of Health guidelines for humane handling of animals; approval of the committee of animal research was obtained. In 20 Sprague-Dawley male rats (weight range, 300-350 g), a self-expanding metallic bare stent was inserted in the urethra by using fluoroscopic guidance. One group of 10 rats (group A) was treated with IN-1233, the other group of 10 rats (group B) received no treatment. Retrograde urethrography was performed 4 and 8 weeks after stent placement. All rats were sacrificed at 8 weeks for histologic analysis. RESULTS Stent placement was technically successful in all rats. The average stent diameter was significantly larger in group A compared with group B at follow-up retrograde urethrography performed 4 (P = .006) and 8 (P < .001) weeks after stent placement. At histologic analysis, the percentage of granulation tissue area (P < .001), thickness of submucosal fibrosis (P < .001), and number of epithelial layers (P < .001) were significantly decreased in group A compared with group B. Inflammatory cell infiltration (P < .001) was significantly increased in group A compared with group B. CONCLUSION IN-1233 is effective for the prevention of granulation tissue formation after bare metallic stent placement in a rat urethral model.
Collapse
Affiliation(s)
- Jin Hyoung Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap-2 dong, Songpa-gu, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
291
|
Kim HJ, Song SB, Choi JM, Kim KM, Cho BK, Cho DH, Park HJ. IL-18 Downregulates Collagen Production in Human Dermal Fibroblasts via the ERK Pathway. J Invest Dermatol 2010; 130:706-15. [DOI: 10.1038/jid.2009.302] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
292
|
Seet LF, Su R, Barathi VA, Lee WS, Poh R, Heng YM, Manser E, Vithana EN, Aung T, Weaver M, Sage EH, Wong TT. SPARC deficiency results in improved surgical survival in a novel mouse model of glaucoma filtration surgery. PLoS One 2010; 5:e9415. [PMID: 20195533 PMCID: PMC2828474 DOI: 10.1371/journal.pone.0009415] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/05/2010] [Indexed: 01/06/2023] Open
Abstract
Glaucoma is a disease frequently associated with elevated intraocular pressure that can be alleviated by filtration surgery. However, the post-operative subconjunctival scarring response which blocks filtration efficiency is a major hurdle to the achievement of long-term surgical success. Current application of anti-proliferatives to modulate the scarring response is not ideal as these often give rise to sight-threatening complications. SPARC (secreted protein, acidic and rich in cysteine) is a matricellular protein involved in extracellular matrix (ECM) production and organization. In this study, we investigated post-operative surgical wound survival in an experimental glaucoma filtration model in SPARC-null mice. Loss of SPARC resulted in a marked (87.5%) surgical wound survival rate compared to 0% in wild-type (WT) counterparts. The larger SPARC-null wounds implied that aqueous filtration through the subconjunctival space was more efficient in comparison to WT wounds. The pronounced increase in both surgical survival and filtration efficiency was associated with a less collagenous ECM, smaller collagen fibril diameter, and a loosely-organized subconjunctival matrix in the SPARC-null wounds. In contrast, WT wounds exhibited a densely packed collagenous ECM with no evidence of filtration capacity. Immunolocalization assays confirmed the accumulation of ECM proteins in the WT but not in the SPARC-null wounds. The observations in vivo were corroborated by complementary data performed on WT and SPARC-null conjunctival fibroblasts in vitro. These findings indicate that depletion of SPARC bestows an inherent change in post-operative ECM remodeling to favor wound maintenance. The evidence presented in this report is strongly supportive for the targeting of SPARC to increase the success of glaucoma filtration surgery.
Collapse
Affiliation(s)
- Li-Fong Seet
- Ocular Wound Healing and Therapeutics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Roseline Su
- Ocular Wound Healing and Therapeutics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - V. A. Barathi
- Ocular Wound Healing and Therapeutics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Wing Sum Lee
- Ocular Wound Healing and Therapeutics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Rebekah Poh
- Ocular Wound Healing and Therapeutics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Yee Meng Heng
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ed Manser
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Eranga N. Vithana
- Ocular Genetics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Tin Aung
- Department of Glaucoma, Singapore National Eye Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ocular Genetics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Matt Weaver
- The Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - E. Helene Sage
- The Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Tina T. Wong
- Ocular Wound Healing and Therapeutics Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Glaucoma, Singapore National Eye Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
293
|
van der Windt AE, Jahr H, Farrell E, Verhaar JAN, Weinans H, van Osch GJVM. Calcineurin inhibitors promote chondrogenic marker expression of dedifferentiated human adult chondrocytes via stimulation of endogenous TGFbeta1 production. Tissue Eng Part A 2010; 16:1-10. [PMID: 19604038 DOI: 10.1089/ten.tea.2009.0082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro chondrocyte expansion is required for several cell-based approaches for the repair of chondral lesions. During expansion, loss of chondrogenic phenotype takes place (dedifferentiation). The objective of this study was to investigate calcineurin (Cn) as a potential target to improve chondrocyte phenotype for cartilage repair purposes. Cn activity in human articular chondrocytes was significantly increased during dedifferentiation and decreased during redifferentiation in vitro. Inhibition of Cn activity by FK506 increased the expression of chondrogenic markers collagen type 2, aggrecan, and SOX9 in culture-expanded cells. Addition of FK506 increased endogenous transforming growth factor 2 (TGF) beta1 expression on both mRNA and protein level. The effect of FK506 on chondrogenic markers was abolished by addition of anti-TGFbeta1 antibody, indicating that the endogenous TGFbeta1 was necessary to increase chondrogenic marker expression. We also showed that chondrocyte redifferentiation by TGFbeta requires calcium influx and does not depend on changes in Cn activity. In conclusion, inhibition of Cn activity by FK506 increases the expression of chondrogenic markers via endogenous TGFbeta1 production in human articular chondrocytes. Cn inhibitors might be an alternative for the application of (recombinant) TGFbeta, to promote chondrocyte phenotype for cell-based cartilage repair procedures.
Collapse
Affiliation(s)
- Anna E van der Windt
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
294
|
Castello L, Froio T, Maina M, Cavallini G, Biasi F, Leonarduzzi G, Donati A, Bergamini E, Poli G, Chiarpotto E. Alternate-day fasting protects the rat heart against age-induced inflammation and fibrosis by inhibiting oxidative damage and NF-kB activation. Free Radic Biol Med 2010; 48:47-54. [PMID: 19818847 DOI: 10.1016/j.freeradbiomed.2009.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 09/29/2009] [Accepted: 10/02/2009] [Indexed: 11/22/2022]
Abstract
The free radical theory of aging is currently one of the most popular. In parallel, many studies have demonstrated the association of fibrosis and increased oxidative stress in the pathogenesis of some chronic human diseases, and fibrosis is often characteristic of aging tissues. One of the few interventions that effectively slow aging is calorie restriction and the protection against the age-associated increase of oxidative stress remains one of the foremost hypotheses to explain this action. As an alternative to traditional calorie restriction, another dietary regimen, termed alternate-day fasting, has also been tested, whose antiaging mechanisms have not been explored so much extensively. We thus studied the effects of alternate-day fasting, started at 2 months of age, on oxidative stress and fibrosis in the heart during aging. In the left ventricle of the heart of elderly (aged 24 months) versus young (aged 6 months) male rats we found a significant increase in oxidative stress paralleled by increased fibrosis. In parallel there was a significant increase in inflammatory cytokine levels and in NF-kB DNA binding activity with advancing age. Alternate-day fasting protected against all these age-related phenomena. These data support the hypothesis that this kind of dietary restriction protects against age-related fibrosis, at least in part by reducing inflammation and oxidative damage, and this protection can thus be considered a factor in the prevention of age-related diseases with sclerotic evolution.
Collapse
Affiliation(s)
- Laura Castello
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, (TO), Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Faust SM, Lu G, Wood SC, Bishop DK. TGFbeta neutralization within cardiac allografts by decorin gene transfer attenuates chronic rejection. THE JOURNAL OF IMMUNOLOGY 2009; 183:7307-13. [PMID: 19917705 DOI: 10.4049/jimmunol.0902736] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic allograft rejection (CR) is the leading cause of late graft failure following organ transplantation. CR is a progressive disease, characterized by deteriorating graft function, interstitial fibrosis, cardiac hypertrophy, and occlusive neointima development. TGFbeta, known for its immunosuppressive qualities, plays a beneficial role in the transplant setting by maintaining alloreactive T cells in a hyporesponsive state, but has also been implicated in promoting graft fibrosis and CR. In the mouse vascularized cardiac allograft model, transient depletion of CD4(+) cells promotes graft survival but leads to CR, which is associated with intragraft TGFbeta expression. Decorin, an extracellular matrix protein, inhibits both TGFbeta bioactivity and gene expression. In this study, gene transfer of decorin into cardiac allografts was used to assess the impact of intragraft TGFbeta neutralization on CR, systemic donor-reactive T cell responses, and allograft acceptance. Decorin gene transfer and neutralization of TGFbeta in cardiac allografts significantly attenuated interstitial fibrosis, cardiac hypertrophy, and improved graft function, but did not result in systemic donor-reactive T cell responses. Thus, donor-reactive T and B cells remained in a hyporesponsive state. These findings indicate that neutralizing intragraft TGFbeta inhibits the cytokine's fibrotic activities, but does not reverse its beneficial systemic immunosuppressive qualities.
Collapse
Affiliation(s)
- Susan M Faust
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
296
|
Faust SM, Lu G, Marini BL, Zou W, Gordon D, Iwakura Y, Laouar Y, Bishop DK. Role of T cell TGFbeta signaling and IL-17 in allograft acceptance and fibrosis associated with chronic rejection. THE JOURNAL OF IMMUNOLOGY 2009; 183:7297-306. [PMID: 19917689 DOI: 10.4049/jimmunol.0902446] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic allograft rejection (CR) is the main barrier to long-term transplant survival. CR is a progressive disease defined by interstitial fibrosis, vascular neointimal development, and graft dysfunction. The underlying mechanisms responsible for CR remain poorly defined. TGFbeta has been implicated in promoting fibrotic diseases including CR, but is beneficial in the transplant setting due to its immunosuppressive activity. To assess the requirement for T cell TGFbeta signaling in allograft acceptance and the progression of CR, we used mice with abrogated T cell TGFbeta signaling as allograft recipients. We compared responses from recipients that were transiently depleted of CD4(+) cells (that develop CR and express intragraft TGFbeta) with responses from mice that received anti-CD40L mAb therapy (that do not develop CR and do not express intragraft TGFbeta). Allograft acceptance and suppression of graft-reactive T and B cells were independent of T cell TGFbeta signaling in mice treated with anti-CD40L mAb. In recipients transiently depleted of CD4(+) T cells, T cell TGFbeta signaling was required for the development of fibrosis associated with CR, long-term graft acceptance, and suppression of graft-reactive T and B cell responses. Furthermore, IL-17 was identified as a critical element in TGFbeta-driven allograft fibrosis. Thus, IL-17 may provide a therapeutic target for preventing graft fibrosis, a measure of CR, while sparing the immunosuppressive activity of TGFbeta.
Collapse
Affiliation(s)
- Susan M Faust
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
297
|
Leppäranta O, Myllärniemi M, Salmenkivi K, Kinnula VL, Keski-Oja J, Koli K. Reduced Phosphorylation of the TGF-β Signal Transducer Smad2 in Emphysematous Human Lung. COPD 2009; 6:234-41. [DOI: 10.1080/15412550903049173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
298
|
Beneficial effect of triple treatment plus immunoglobulin in experimental nephrotic syndrome. Pediatr Nephrol 2009; 24:1173-80. [PMID: 19224250 DOI: 10.1007/s00467-009-1117-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/18/2008] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
Abstract
Combinations of antiproteinurics, including angiotensin I-converting enzyme inhibitors + angiotensin II receptor antagonist + statins, are promising choices in the treatment of steroid-resistant nephrotic syndrome. We aimed to investigate the effects of high doses of immunoglobulin in addition to these combinations in rats with adriamycin-induced nephrosis. The study included 40 rats allocated into five groups: control, nephrotic syndrome without treatment, dual therapy (DT) with enalapril + losartan, triple therapy (TT) with enalapril + losartan + simvastatin, and quadruple therapy (QT) with enalapril + losartan + simvastatin + a high dose of immunoglobulin. The proteinuria levels were not statistically different between DT, TT and QT groups at weeks 5, 8, 12 and 16. At week 16, serum creatinine levels in the QT group were significantly lower than those in the control, DT and TT groups. The glomerulosclerosis index in the DT group was significantly lower than in the TT and QT groups. The scores for interstitial fibrosis and TGF-beta staining were similar among treatment groups. In conclusion, we showed that quadruple therapy including immunoglobulin had a beneficial effect on renal function in the late phase, but it had no additional effects in reducing proteinuria or in glomerulosclerosis score in experimental nephrotic syndrome. Further studies with angiotensin I-converting enzyme inhibitors (ACEIs), angiotensin II receptor antagonists (AIIRAs) and immunoglobulin combinations would offer some benefits in the treatment of nephrotic syndrome.
Collapse
|
299
|
Esposito C, Parrilla B, Cornacchia F, Grosjean F, Mangione F, Serpieri N, Valentino R, Villa L, Arra M, Esposito V, Dal Canton A. The antifibrogenic effect of hepatocyte growth factor (HGF) on renal tubular (HK-2) cells is dependent on cell growth. Growth Factors 2009; 27:173-80. [PMID: 19301208 DOI: 10.1080/08977190902834077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although several reports suggest an antifibrogenic effect of hepatocyte growth factor (HGF), an increased deposition of matrix induced by HGF has also been reported. These conflicting effects could result from a diverse proliferative state of the target cells. Aim of the present study was to evaluate HGF effects on growth arrested (quiescent) and actively proliferating renal tubular epithelial (HK-2) cells. HK-2 cells were cultured in RPMI medium either on agarose gel or on plastic surface in order to inhibit or to allow cell proliferation. Cells were incubated with RPMI containing HGF (50 ng/ml) for 24 h at 37 degrees C. Untreated HK-2 were used as control. After 24 h of incubation, cells were counted by Coulter counter. (alpha2)IV collagen, transforming growth factor-beta (TGF-beta), Tissue inhibitor of metalloproteases (TIMP1 and 2) mRNA levels were determined by RT-PCR. The production of type IV collagen, c-met, proliferating cell nuclear antigen (PCNA), and SnoN, a transcriptional Smad corepressor and thus a TGF-beta inhibitor, was evaluated by ELISA or western blotting. MMP-9 and 2 gelatinolytic activity was studied by zymography. Treatment with HGF did not increase HK-2 cell number and PCNA synthesis when the cells were grown on agarose as it did for cells grown on plastic surface. HGF increased (alpha2)IV collagen in proliferating cells whereas it reduced (alpha2)IV collagen and c-met synthesis in growth arrested cells. HGF treatment increased TGF-beta and TIMP-2 in proliferating cells while reduced TIMP-1 mRNA levels of quiescent cells. Furthermore, production of the co repressor SnoN was significantly decreased by HGF in proliferating cells. Quiescent and proliferating HK-2 showed a different pattern of metalloproteases activity with a prevalence of MMP2 in quiescent and MMP9 in proliferating cells. In summary, HGF showed opposite effects on growth arrested and proliferating HK-2 cells favouring matrix deposition in the latter with increasing expression of collagen, TIMP-1 and TGF-beta. Our results demonstrate that the proliferative state of target cells may influence the effects of HGF on extracellular matrix turnover in HK-2 cells.
Collapse
Affiliation(s)
- Ciro Esposito
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Vitsky A, Waire J, Pawliuk R, Bond A, Matthews D, Lacasse E, Hawes ML, Nelson C, Richards S, Piepenhagen PA, Garman RD, Andrews L, Thurberg BL, Lonning S, Ledbetter S, Ruzek MC. Homeostatic role of transforming growth factor-beta in the oral cavity and esophagus of mice and its expression by mast cells in these tissues. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2137-49. [PMID: 19406991 DOI: 10.2353/ajpath.2009.080723] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is a pleiotropic growth factor; its overexpression has been implicated in many diseases, making it a desirable target for therapeutic neutralization. In initial safety studies, mice were chronically treated (three times per week) with high doses (50 mg/kg) of a murine, pan-neutralizing, anti-TGF-beta antibody. Nine weeks after the initiation of treatment, a subset of mice exhibited weight loss that was concurrent with decreased food intake. Histopathology revealed a unique, nonneoplastic cystic epithelial hyperplasia and tongue inflammation, as well as dental dysplasia and epithelial hyperplasia and inflammation of both the gingiva and esophagus. In an effort to determine the cause of this site-specific pathology, we examined TGF-beta expression in these tissues and saliva under normal conditions. By immunostaining, we found higher expression levels of active TGF-beta1 and TGF-beta3 in normal tongue and esophageal submucosa compared with gut mucosal tissues, as well as detectable TGF-beta1 in normal saliva by Western blot analysis. Interestingly, mast cells within the tongue, esophagus, and skin co-localized predominantly with the TGF-beta1 expressed in these tissues. Our findings demonstrate a novel and restricted pathology in oral and esophageal tissues of mice chronically treated with anti-TGF-beta that is associated with basal TGF-beta expression in saliva and by mast cells within these tissues. These studies illustrate a previously unappreciated biological role of TGF-beta in maintaining homeostasis within both oral and esophageal tissues.
Collapse
Affiliation(s)
- Allison Vitsky
- Genzyme Corporation, 1 The Mountain Rd., Framingham, MA 01701-9322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|