251
|
|
252
|
Xiong R, Cheng L, Tian Y, Tang W, Xu K, Yuan Y, Hu A. Hyperbranched polyethylenimine based polyamine-N-oxide-carboxylate chelates of gadolinium for high relaxivity MRI contrast agents. RSC Adv 2016. [DOI: 10.1039/c6ra03589b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polydentate amine-N-oxide carboxylates were used as ligands for the formation of Gd(iii) complexes with high relaxivity as MRI contrast agents. Cytotoxicity assays revealed good cytocompatibility of these complexes for clinical applications.
Collapse
Affiliation(s)
- Rulin Xiong
- Shanghai Key Laboratory of Advanced Polymeric Materials
- East China University of Science and Technology
- Shanghai 20237
- China
| | - Likun Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials
- East China University of Science and Technology
- Shanghai 20237
- China
| | - Yu Tian
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weijun Tang
- Department of Radiology
- Huashan Hospital Affiliated to Fudan University
- Shanghai 200237
- China
| | - Kehan Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- East China University of Science and Technology
- Shanghai 20237
- China
| | - Yuan Yuan
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- East China University of Science and Technology
- Shanghai 20237
- China
| |
Collapse
|
253
|
Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM. SENSORS 2015; 15:31973-86. [PMID: 26694418 PMCID: PMC4721819 DOI: 10.3390/s151229900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Abstract
Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r1) values about four times higher than that of clinically used Gd-DTPA (Magnevist®, Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (Ka) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The Ka values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo.
Collapse
|
254
|
Ornelas C. Brief Timelapse on Dendrimer Chemistry: Advances, Limitations, and Expectations. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500393] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Catia Ornelas
- Institute of Chemistry; University of Campinas - Unicamp; Campinas SP 13083-970 Brazil
| |
Collapse
|
255
|
Esmaeilpour M, Javidi J, Dehghani F. Preparation, characterization and catalytic activity of dendrimer-encapsulated phosphotungstic acid nanoparticles immobilized on nanosilica for the synthesis of 2H-indazolo[2,1-b]phthalazine-triones under solvent-free or sonochemical conditions. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0782-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
256
|
Gadolinium(III)-DOTA Complex Functionalized with BODIPY as a Potential Bimodal Contrast Agent for MRI and Optical Imaging. INORGANICS 2015. [DOI: 10.3390/inorganics3040516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
257
|
Lawson D, Barge A, Terreno E, Parker D, Aime S, Botta M. Optimizing the high-field relaxivity by self-assembling of macrocyclic Gd(III) complexes. Dalton Trans 2015; 44:4910-7. [PMID: 25411928 DOI: 10.1039/c4dt02971b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Using recognition moieties that bind to the inner co-ordination sphere of a monomeric DO3A-type di-aqua complex, dimeric poly(aminocarboxylate) gadolinium(III) compounds can be formed with greatly enhanced relaxivities, arising from optimized contributions of inner- and second spheres of hydration.
Collapse
Affiliation(s)
- Dale Lawson
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza, 52, 10126, Torino, Italy
| | | | | | | | | | | |
Collapse
|
258
|
Zhu S, Xu X, Rong R, Li B, Wang X. Evaluation of zinc-doped magnetite nanoparticle toxicity in the liver and kidney of mice after sub-chronic intragastric administration. Toxicol Res (Camb) 2015; 5:97-106. [PMID: 30090329 DOI: 10.1039/c5tx00292c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/02/2015] [Indexed: 01/04/2023] Open
Abstract
Super-paramagnetic iron oxide nanoparticles (SPIONs) have been approved for clinical use due to their salient super-paramagnetic properties and low toxicity. Zn2+ doped SPIONs possess significantly higher magnetic susceptibility than that of conventional SPIONs. Here we evaluated the potential toxicity of Zn2+ doped Fe3O4 nanoparticles (Zn0.4Fe2.6O4 NPs) in the liver and kidney of mice after repeated intragastric administration for 30 days. Zn0.4Fe2.6O4 NPs did not cause significant changes in their body weights and the coefficients of the liver and kidney, but increased the levels of Fe and Zn in the two organs. Zn0.4Fe2.6O4 NP induced slight oxidative stress in the liver and kidney, which could be successfully counteracted by their intrinsic antioxidant systems and had no observable hazardous effects on the histopathology, ultrastructure and functions of the two organs. These results demonstrated that high-performance magnetic Zn0.4Fe2.6O4 NPs did not produce apparent toxicity in the liver and kidney of mice even after sub-chronic intragastric administration. In addition, Zn2+ doping not only markedly enhanced magnetic susceptibility of Zn0.4Fe2.6O4 NPs but also significantly increased the stability of Zn0.4Fe2.6O4 NPs in biological conditions, making them appropriate for use in magnetic resonance imaging and drug delivery by the oral route.
Collapse
Affiliation(s)
- Shanshan Zhu
- Department of Chemistry , University of Science and Technology of China , Hefei , 230026 , P. R. China . ; ; Tel: +86 551 63603214
| | - Xiaolong Xu
- Department of Chemistry , University of Science and Technology of China , Hefei , 230026 , P. R. China . ; ; Tel: +86 551 63603214
| | - Rui Rong
- Department of Chemistry , University of Science and Technology of China , Hefei , 230026 , P. R. China . ; ; Tel: +86 551 63603214
| | - Bing Li
- Department of Chemistry , University of Science and Technology of China , Hefei , 230026 , P. R. China . ; ; Tel: +86 551 63603214
| | - Xue Wang
- Department of Chemistry , University of Science and Technology of China , Hefei , 230026 , P. R. China . ; ; Tel: +86 551 63603214
| |
Collapse
|
259
|
Sierra-Martin B, Fernandez-Barbero A. Multifunctional hybrid nanogels for theranostic applications. SOFT MATTER 2015; 11:8205-8216. [PMID: 26371991 DOI: 10.1039/c5sm01789k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper reviews a wide set of theranostic applications based on the special properties associated with composite nanogels. The nanogels presented here are mostly hybridized with quantum dots, magnetic nanoparticles, and plasmonic metal noble nanoparticles. These inorganic components confer nanogels multifunctional properties that extend their applications from drug delivery systems to diagnosis and therapy. Nanogels can also be surface functionalized with specific ligands to achieve targeted therapy and reduce toxicity. This versatility makes hybrid nanogels very promising agents for imaging, diagnosis and treatment of cancer and other diseases.
Collapse
Affiliation(s)
- B Sierra-Martin
- Applied Physics Section, University of Almeria, 04120 Almeria, Spain.
| | | |
Collapse
|
260
|
Wang X, Tu M, Yan K, Li P, Pang L, Gong Y, Li Q, Liu R, Xu Z, Xu H, Chu PK. Trifunctional Polymeric Nanocomposites Incorporated with Fe₃O₄/Iodine-Containing Rare Earth Complex for Computed X-ray Tomography, Magnetic Resonance, and Optical Imaging. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24523-24532. [PMID: 26484385 DOI: 10.1021/acsami.5b08802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, a novel polymerizable CT contrast agent integrating iodine with europium(III) has been developed by a facile and universal coordination chemistry method. The Fe3O4 nanoparticles are then incorporated into this iodine-containing europium complex by seed-emulsifier-free polymerization. The nanocomposites combining the difunctional complex and superparamagnetic Fe3O4 nanoparticles, which have uniform size dispersion and high encapsulation rate, are suitable for computed X-ray tomography (CT), magnetic resonance imaging (MRI), and optical imaging. They possess good paramagnetic properties with a maximum saturation magnetization of 2.16 emu/g and a transverse relaxivity rate of 260 mM(-1) s(-1), and they exhibit obvious contrast effects with an iodine payload less than 4.8 mg I/mL. In the in vivo optical imaging assessment, vivid fluorescent dots can be observed in the liver and spleen by two-photon confocal scanning laser microscopy (CLSM). All the results showed that nanocomposites as polymeric trifunctional contrast agents have great clinical potential in CT, MR, and optical imaging.
Collapse
Affiliation(s)
- Xin Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Mengqi Tu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei 430030, China
| | - Kai Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Penghui Li
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Long Pang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Ying Gong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Qing Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Ruiqing Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Materials, Hubei University , Wuhan, Hubei 430062, China
| | - Haibo Xu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei 430030, China
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
261
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
262
|
Nottelet B, Darcos V, Coudane J. Aliphatic polyesters for medical imaging and theranostic applications. Eur J Pharm Biopharm 2015; 97:350-70. [DOI: 10.1016/j.ejpb.2015.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 01/04/2023]
|
263
|
Regueiro-Figueroa M, Gündüz S, Patinec V, Logothetis NK, Esteban-Gómez D, Tripier R, Angelovski G, Platas-Iglesias C. Gd(3+)-Based Magnetic Resonance Imaging Contrast Agent Responsive to Zn(2+). Inorg Chem 2015; 54:10342-50. [PMID: 26468992 DOI: 10.1021/acs.inorgchem.5b01719] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report the heteroditopic ligand H5L, which contains a DO3A unit for Gd(3+) complexation connected to an NO2A moiety through a N-propylacetamide linker. The synthesis of the ligand followed a convergent route that involved the preparation of 1,4-bis(tert-butoxycarbonylmethyl)-1,4,7-triazacyclononane following the orthoamide strategy. The luminescence lifetimes of the Tb((5)D4) excited state measured for the TbL complex point to the absence of coordinated water molecules. Density functional theory calculations and (1)H NMR studies indicate that the EuL complex presents a square antiprismatic coordination in aqueous solution, where eight coordination is provided by the seven donor atoms of the DO3A unit and the amide oxygen atom of the N-propylacetamide linker. Addition of Zn(2+) to aqueous solutions of the TbL complex provokes a decrease of the emission intensity as the emission lifetime becomes shorter, which is a consequence of the coordination of a water molecule to the Tb(3+) ion upon Zn(2+) binding to the NO2A moiety. The relaxivity of the GdL complex recorded at 7 T (25 °C) increases by almost 150% in the presence of 1 equiv of Zn(2+), while Ca(2+) and Mg(2+) induced very small relaxivity changes. In vitro magnetic resonance imaging experiments confirmed the ability of GdL to provide response to the presence of Zn(2+).
Collapse
Affiliation(s)
- Martín Regueiro-Figueroa
- Grupo QUICOOR, Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña , Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Serhat Gündüz
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics , Spemannstr. 41, 72076 Tübingen, Germany
| | - Véronique Patinec
- UFR des Sciences et Techniques, Université de Bretagne Occidentale, UMR-CNRS 6521 , 6 avenue Victor le Gorgeu, C.S. 93837, 29238 BREST Cedex 3, France
| | - Nikos K Logothetis
- Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics , Tübingen, Germany.,Department of Imaging Science and Biomedical Engineering, University of Manchester , Manchester, U.K
| | - David Esteban-Gómez
- Grupo QUICOOR, Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña , Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Raphaël Tripier
- UFR des Sciences et Techniques, Université de Bretagne Occidentale, UMR-CNRS 6521 , 6 avenue Victor le Gorgeu, C.S. 93837, 29238 BREST Cedex 3, France
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics , Spemannstr. 41, 72076 Tübingen, Germany
| | - Carlos Platas-Iglesias
- Grupo QUICOOR, Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Universidade da Coruña , Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| |
Collapse
|
264
|
Zhou ZX, Mondjinou Y, Hyun SH, Kulkarni A, Lu ZR, Thompson DH. Gd3+-1,4,7,10-Tetraazacyclododecane-1,4,7-triacetic-2-hydroxypropyl-β-cyclodextrin/Pluronic Polyrotaxane as a Long Circulating High Relaxivity MRI Contrast Agent. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22272-6. [PMID: 26417911 PMCID: PMC4768309 DOI: 10.1021/acsami.5b05393] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A multivalent magnetic resonance imaging agent based on a 2-hydroxypropyl-β-cyclodextrin (HPCD):Pluronic F127 polyrotaxane carrier has been synthesized, and its blood pool contrast properties have been characterized. This Gd3+-DO3A-HPCD/Pluronic polyrotaxane construct is shown to circulate for more than 30 min and provide >100-fold vascular enhancement relative to the monomeric Gd3+-DO3A-HPCD control that is rapidly cleared via the kidney. The high r1 relaxivity at 37 °C (23.83 mM(-1) s(-1) at 1.5 T; 34.08 mM(-1) s(-1) at 0.5 T), extended blood circulation, well-known pharmacology of the polyrotaxane precursors, and absence of acute toxicity make it a highly attractive blood pool contrast agent candidate.
Collapse
Affiliation(s)
- Zhu xian Zhou
- Case Western Reserve University, Department of Biomedical Engineering, 10900 Euclid Avenue, Cleveland, OH, USA 44106. Tel: 216-368-0187
| | - Yawo Mondjinou
- Purdue University, Department of Chemistry, Multi-disciplinary Cancer Research Facility, 1203 W. State Street, West Lafayette, IN, USA 47907. Tel: 765-494-0386
| | - Seok Hee Hyun
- Purdue University, Department of Chemistry, Multi-disciplinary Cancer Research Facility, 1203 W. State Street, West Lafayette, IN, USA 47907. Tel: 765-494-0386
| | - Aditya Kulkarni
- Purdue University, Department of Chemistry, Multi-disciplinary Cancer Research Facility, 1203 W. State Street, West Lafayette, IN, USA 47907. Tel: 765-494-0386
| | - Zheng Rong Lu
- Case Western Reserve University, Department of Biomedical Engineering, 10900 Euclid Avenue, Cleveland, OH, USA 44106. Tel: 216-368-0187
- Corresponding authors: ;
| | - David H. Thompson
- Purdue University, Department of Chemistry, Multi-disciplinary Cancer Research Facility, 1203 W. State Street, West Lafayette, IN, USA 47907. Tel: 765-494-0386
- Corresponding authors: ;
| |
Collapse
|
265
|
Nithyakumar A, Alexander V. Synthesis, relaxivity, and in vitro fluorescence imaging studies of a novel d-f heterometallic trinuclear complex as a potential bimodal imaging probe for MRI and optical imaging. Dalton Trans 2015; 44:17800-9. [PMID: 26400754 DOI: 10.1039/c5dt02123e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new trinuclear heterometallic Ru(II)-Gd complex of 4-aminopyridine appended DO3A (DO3A = 1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane) with 2,2'-bipyridine as ancillary ligands is synthesized and its relaxometry and in vitro fluorescence imaging studies are reported. The complex [Ru(bpy)2{Gd(DOTA-AMpy)(H2O)}2]Cl2 (7) exhibits a "per Gd" longitudinal relaxivity (r1p) of 5.80 and 14.30 mM(-1) s(-1) in aqueous solution and in the presence of HSA, respectively (20 MHz, pH = 7.4, PBS, 37 °C). The complex 7 exhibits an intense (1)MLCT absorption band at 480 nm and luminesces at 595 nm with a luminescence quantum yield of 3.2%. The fluorescence microscopy imaging study of HeLa cells incubated with 7 and stained with ethidium bromide and acridine orange confirms that the cells are viable throughout the imaging experiments and its cytotoxicity against HeLa cells, studied by the MTT assay, demonstrates its use for bioimaging studies. HeLa cell lines treated with the complex 7 and stained with Hoechst-33342 showed marked morphological signs of apoptosis in a dose-dependent manner by inducing changes in cell cycle arrest at the G2/M phase. Furthermore, apoptosis of HeLa cells, studied by the DNA ladder assay, indicates apoptotic cell death lending support for the antitumor activity of 7. A molecular docking study reveals that the complex 7 intercalates into the major groove of the DNA stabilized by hydrogen bonding and it binds with HSA by electrostatic- and hydrogen bonding interactions. The relaxometry, luminescence and fluorescence imaging studies indicate that the Ru(II)-Gd complex 7 has a good cell membrane permeability and could be considered as a potential bimodal imaging probe.
Collapse
Affiliation(s)
- A Nithyakumar
- Department of Chemistry, Loyola College, Chennai 600034, India.
| | | |
Collapse
|
266
|
Cai H, Li K, Li J, Wen S, Chen Q, Shen M, Zheng L, Zhang G, Shi X. Dendrimer-Assisted Formation of Fe3O4/Au Nanocomposite Particles for Targeted Dual Mode CT/MR Imaging of Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4584-4593. [PMID: 26061810 DOI: 10.1002/smll.201500856] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/01/2015] [Indexed: 06/04/2023]
Abstract
A unique dendrimer-assisted approach is reported to create Fe3O4/Au nanocomposite particles (NCPs) for targeted dual mode computed tomography/magnetic resonance (CT/MR) imaging of tumors. In this approach, preformed Fe3O4 nanoparticles (NPs) are assembled with multilayers of poly(γ-glutamic acid) (PGA)/poly(L-lysine)/PGA/folic acid (FA)-modified dendrimer-entrapped gold nanoparticles via a layer-by-layer self-assembly technique. The interlayers are crosslinked via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide chemistry, the assembled Au core NPs are then used as seed particles for subsequent seed-mediated growth of Au shells via iterative Au salt reduction process, and subsequent acetylation of the remaining amines of dendrimers leads to the formation of Fe3O4/Au(n.)Ac-FA NCPs with a tunable molar ratio of Au/Fe3O4. It is shown that the Fe3O4/Au(n.)Ac-FA NCPs at an optimized Au/Fe3O4 molar ratio of 2.02 display a relatively high R2 relaxivity (92.67 × 10(-3) M(-1) s(-1)) and good X-ray attenuation property, and are cytocompatible and hemocompatible in the given concentration range. Importantly, with the FA-mediated targeting, the Fe3O4/Au(n.)Ac-FA NCPs are able to be specifically uptaken by cancer cells overexpressing FA receptors, and be used as an efficient nanoprobe for targeted dual mode CT/MR imaging of a xenografted tumor model. With the versatile dendrimer chemistry, the developed Fe3O4/Au NCPs may be differently functionalized, thereby providing a unique platform for diagnosis and therapy of different biological systems.
Collapse
Affiliation(s)
- Hongdong Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Kangan Li
- Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, P. R. China
| | - Jingchao Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Shihui Wen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Qian Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Linfeng Zheng
- Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, P. R. China
| | - Guixiang Zhang
- Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
267
|
Li J, Hong CY, Wu SX, Liang H, Wang LP, Huang G, Chen X, Yang HH, Shangguan D, Tan W. Facile Phase Transfer and Surface Biofunctionalization of Hydrophobic Nanoparticles Using Janus DNA Tetrahedron Nanostructures. J Am Chem Soc 2015; 137:11210-3. [PMID: 26302208 PMCID: PMC4925166 DOI: 10.1021/jacs.5b05650] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrophobic nanoparticles have shown substantial potential for bioanalysis and biomedical applications. However, their use is hindered by complex phase transfer and inefficient surface modification. This paper reports a facile and universal strategy for phase transfer and surface biofunctionalization of hydrophobic nanomaterials using aptamer-pendant DNA tetrahedron nanostructures (Apt-tet). The Janus DNA tetrahedron nanostructures are constructed by three carboxyl group modified DNA strands and one aptamer sequence. The pendant linear sequence is an aptamer, in this case AS1411, known to specifically bind nucleolin, typically overexpressed on the plasma membranes of tumor cells. The incorporation of the aptamers adds targeting ability and also enhances intracellular uptake. Phase-transfer efficiency using Apt-tet is much higher than that achieved using single-stranded DNA. In addition, the DNA tetrahedron nanostructures can be programmed to permit the incorporation of other functional nucleic acids, such as DNAzymes, siRNA, or antisense DNA, allowing, in turn, the construction of promising theranostic nanoagents for bioanalysis and biomedical applications. Given these unique features, we believe that our strategy of surface modification and functionalization may become a new paradigm in phase-transfer-agent design and further expand biomedical applications of hydrophobic nanomaterials.
Collapse
Affiliation(s)
- Juan Li
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Cheng-Yi Hong
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Shu-Xian Wu
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Hong Liang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Li-Ping Wang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Guoming Huang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xian Chen
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Huang-Hao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Dihua Shangguan
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weihong Tan
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
268
|
Shukla S, Steinmetz NF. Virus-based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:708-21. [PMID: 25683790 PMCID: PMC4620044 DOI: 10.1002/wnan.1335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/15/2014] [Indexed: 01/17/2023]
Abstract
Viruses have recently emerged as ideal protein scaffolds for a new class of contrast agents that can be used in medical imaging procedures such as positron emission tomography (PET) and magnetic resonance imaging (MRI). Whereas synthetic nanoparticles are difficult to produce as homogeneous formulations due to the inherently stochastic nature of the synthesis process, virus-based nanoparticles are genetically encoded and are therefore produced as homogeneous and monodisperse preparations with a high degree of quality control. Because the virus capsids have a defined chemical structure that has evolved to carry cargoes of nucleic acids, they can be modified to carry precisely defined cargoes of contrast agents and can be decorated with spatially defined contrast reagents on the internal or external surfaces. Viral nanoparticles can also be genetically programed or conjugated with targeting ligands to deliver contrast agents to specific cells, and the natural biocompatibility of viruses means that they are cleared rapidly from the body. Nanoparticles based on bacteriophages and plant viruses are safe for use in humans and can be produced inexpensively in large quantities as self-assembling recombinant proteins. Based on these considerations, a new generation of contrast agents has been developed using bacteriophages and plant viruses as scaffolds to carry positron-emitting radioisotopes such as [(18) F] fluorodeoxyglucose for PET imaging and iron oxide or Gd(3+) for MRI. Although challenges such as immunogenicity, loading efficiency, and regulatory compliance remain to be address, virus-based nanoparticles represent a promising new enabling technology for a new generation of highly biocompatible and biodegradable targeted imaging reagents.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Radiology, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Materials Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland OH 44106
| |
Collapse
|
269
|
Kuda-Wedagedara ANW, Allen MJ. Enhancing magnetic resonance imaging with contrast agents for ultra-high field strengths. Analyst 2015; 139:4401-10. [PMID: 25054827 DOI: 10.1039/c4an00990h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Contrast agents are diagnostic tools that often complement magnetic resonance imaging. At ultra-high field strengths (≥7 T), magnetic resonance imaging is capable of generating desirable high signal-to-noise ratios, but clinically available contrast agents are less effective at ultra-high field strengths relative to lower fields. This gap in effectiveness demands the development of contrast agents for ultra-high field strengths. In this minireview, we summarize contrast agents reported during the last three years that focused on ultra-high field strengths.
Collapse
|
270
|
Carron S, Li QY, Vander Elst L, Muller RN, Parac-Vogt TN, Capobianco JA. Assembly of near infra-red emitting upconverting nanoparticles and multiple Gd(III)-chelates as a potential bimodal contrast agent for MRI and optical imaging. Dalton Trans 2015; 44:11331-9. [PMID: 26011519 DOI: 10.1039/c5dt00919g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Linking multiple paramagnetic gadolinium(III)-chelates based on the 2-[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl]acetate (DOTA) ligand to the surface of NaGdF4:Yb(3+),Tm(3+) upconverting nanoparticles with an average particle size of 20 nm resulted in an assembly that has favorable properties for bimodal Magnetic Resonance Imaging (MRI) and Optical Imaging (OI). An improved synthetic pathway was used to couple the paramagnetic precursor to the nanoparticles. The nanoparticles were rendered water dispersible via citrate capping, leaving one acid group free for amide coupling with the mono-amino precursor of the DOTA ligand. Luminescence spectroscopy measurements have shown that the excitation of the nanoconstruct at 980 nm resulted in intense upconverted emission of thulium(III) at 800 nm. The assembly of several paramagnetic centers on the nanoparticle scaffold reduces the overall tumbling rate, resulting in enhanced longitudinal relaxation times and improved relaxivity. The proton NMRD profiles show a characteristic hump at higher frequencies, which is caused by the slow rotation of the nanoconstruct, resulting in r1 values of 25 mM(-1) s(-1) per gadolinium(III)-ion at 60 MHz and 310 K. This is a significant improvement compared to the Gd-DO3A-ethylamine precursor (4) for which a value of r1 of 3.23 mM(-1) s(-1) was observed under the same conditions. Theoretical fitting by two different approaches showed an increase of τR from 57.3 ps for the Gd-DO3A-ethylamine precursor (4) to 392.0 ps for the nanoconstruct, which is responsible for the overall substantial increase in relaxivity.
Collapse
Affiliation(s)
- Sophie Carron
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
271
|
Yiwei W, Xiaoqin Z, Jun D, Song H, Jianmin G. Studies on Interactions between Sulfadiazine and Peptide Amides. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/biotech.2015.233.240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
272
|
Ceulemans M, Debroye E, Vander Elst L, De Borggraeve W, Parac‐Vogt TN. Luminescence and Relaxometric Properties of Heteropolymetallic Metallostar Complexes with Selectively Incorporated Lanthanide(III) Ions. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Matthias Ceulemans
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium, http://chem.kuleuven.be/lbc/
| | - Elke Debroye
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium, http://chem.kuleuven.be/lbc/
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Wim De Borggraeve
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium, http://chem.kuleuven.be/lbc/
| | - Tatjana N. Parac‐Vogt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium, http://chem.kuleuven.be/lbc/
| |
Collapse
|
273
|
Grillone A, Riva ER, Mondini A, Forte C, Calucci L, Innocenti C, de Julian Fernandez C, Cappello V, Gemmi M, Moscato S, Ronca F, Sacco R, Mattoli V, Ciofani G. Active Targeting of Sorafenib: Preparation, Characterization, and In Vitro Testing of Drug-Loaded Magnetic Solid Lipid Nanoparticles. Adv Healthc Mater 2015; 4:1681-90. [PMID: 26039933 DOI: 10.1002/adhm.201500235] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/13/2015] [Indexed: 01/02/2023]
Abstract
Sorafenib is an anticancer drug approved by the Food and Drug Administration for the treatment of hepatocellular and advanced renal carcinoma. The clinical application of sorafenib is promising, yet limited by its severe toxic side effects. The aim of this study is to develop sorafenib-loaded magnetic nanovectors able to enhance the drug delivery to the disease site with the help of a remote magnetic field, thus enabling cancer treatment while limiting negative effects on healthy tissues. Sorafenib and superparamagnetic iron oxide nanoparticles are encapsulated in solid lipid nanoparticles by a hot homogenization technique using cetyl palmitate as lipid matrix. The obtained nanoparticles (Sor-Mag-SLNs) have a sorafenib loading efficiency of about 90% and are found to be very stable in an aqueous environment. Plain Mag-SLNs exhibit good cytocompatibility, whereas an antiproliferative effect against tumor cells (human hepatocarcinoma HepG2) is observed for drug-loaded Sor-Mag-SLNs. The obtained results show that it is possible to prepare stable Sor-Mag-SLNs able to inhibit cancer cell proliferation through the sorafenib cytotoxic action, and to enhance/localize this effect in a desired area thanks to a magnetically driven accumulation of the drug. Moreover, the relaxivity properties observed in water suspensions hold promise for Sor-Mag-SLN tracking through clinical magnetic resonance imaging.
Collapse
Affiliation(s)
- Agostina Grillone
- Istituto Italiano di Tecnologia; Center for Micro-BioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
- Scuola Superiore Sant'Anna; The BioRobotics Institute; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
| | - Eugenio Redolfi Riva
- Istituto Italiano di Tecnologia; Center for Micro-BioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
- Scuola Superiore Sant'Anna; The BioRobotics Institute; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
| | - Alessio Mondini
- Istituto Italiano di Tecnologia; Center for Micro-BioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
| | - Claudia Forte
- Istituto di Chimica dei Composti OrganoMetallici; Consiglio Nazionale delle Ricerche - CNR; Via Giuseppe Moruzzi 1 56124 Pisa Italy
| | - Lucia Calucci
- Istituto di Chimica dei Composti OrganoMetallici; Consiglio Nazionale delle Ricerche - CNR; Via Giuseppe Moruzzi 1 56124 Pisa Italy
| | - Claudia Innocenti
- INSTM and Department of Chemistry “Ugo Shiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Firenze Italy
| | - Cesar de Julian Fernandez
- Istituto dei Materiali per l'Elettronica e il Magnetismo; Consiglio Nazionale delle Ricerche - CNR; Parco Area delle Scienze 37/A 43124 Parma Italy
| | - Valentina Cappello
- Istituto Italiano di Tecnologia; Center for Nanotechnology Innovation @NEST; Piazza San Silvestro 12 56127 Pisa Italy
| | - Mauro Gemmi
- Istituto Italiano di Tecnologia; Center for Nanotechnology Innovation @NEST; Piazza San Silvestro 12 56127 Pisa Italy
| | - Stefania Moscato
- Dipartimento di Medicina Clinica e Sperimentale; Università di Pisa; Via Savi 10 56126 Pisa Italy
| | - Francesca Ronca
- Università di Pisa; Dipartimento di Patologia Chirurgica; Medica, Molecolare e dell'Area Critica; Via Savi 10 56126 Pisa Italy
| | - Rodolfo Sacco
- Unità Operativa di Gastroenterologia e Malattie del Ricambio; Azienda Ospedaliera-Universitaria Pisana; Via Paradisa 2 56124 Pisa Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia; Center for Micro-BioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia; Center for Micro-BioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
| |
Collapse
|
274
|
Wu Z, Huang J, Yan Y. Electrostatic Polyion Micelles with Fluorescence and MRI Dual Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7926-7933. [PMID: 26146850 DOI: 10.1021/acs.langmuir.5b01516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report in this work the formation of fluorescence and MRI bimodal imaging nanoparticles achieved by electrostatic self-assembly. The nanoparticles are micelles formed with Gd(3+) ion, a bisligand that contains aggregation induced emission (AIE) group, and a block copolymer. The coordination between the Gd(3+) ion and the bisligand produces a negatively charged coordination complex, which interacted with the positive-neutral block copolymer to form polyion micelles. The micelles exhibit considerable fluorescence owing to the rotation restriction of the AIE group; meanwhile, the longitudinal relaxation of water was significantly slowed down which provide T1 contrast for magnetic resonance imaging. In vitro fluorescence imaging and in vivo MRI measurements verified this micelle indeed exhibit dual imaging ability. We expect that this orthogonal imaging may provide more accurate diagnosis in practical applications and will pave the way for the development of an advanced technique for diagnosis.
Collapse
Affiliation(s)
- Zheng Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
275
|
Dextran gadolinium complex containing folate groups as a potential magnetic resonance imaging contrast agent. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1681-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
276
|
Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem Rev 2015; 115:10725-815. [DOI: 10.1021/acs.chemrev.5b00091] [Citation(s) in RCA: 799] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Dong
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Shuo-Ren Du
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Xiao-Yu Zheng
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Guang-Ming Lyu
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Ling-Dong Sun
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Lin-Dong Li
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Pei-Zhi Zhang
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Chao Zhang
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Chun-Hua Yan
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
277
|
Miyake Y, Kimura Y, Orito N, Imai H, Matsuda T, Toshimitsu A, Kondo T. Synthesis and functional evaluation of chiral dendrimer-triamine-coordinated Gd complexes with polyaminoalcohol end groups as highly sensitive MRI contrast agents. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
278
|
Magnetic resonance imaging of tumor with a self-traceable polymer conjugated with an antibody fragment. Bioorg Med Chem Lett 2015; 25:2675-8. [PMID: 25958246 DOI: 10.1016/j.bmcl.2015.04.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 11/21/2022]
Abstract
A (13)C-enriched phosphorylcholine polymer ((13)C-PMPC) as a self-traceable MR (magnetic resonance) tag was conjugated with a fragment (scFv) of Herceptin, a clinical antibody against antigen Her2. When injected in model mice bearing Her2(+) (gastric) and Her2(-) (pancreatic) tumors, the antibody-tag conjugate (13)C-PMPC-scFv selectively accumulated in the Her2(+) tumor with a rapid build-up/decay (accumulation/clearance) profile and, with the use of the (1)H-(13)C double-resonance (heteronuclear correlation) technique, the Her2(+) gastric tumor was clearly MR imaged.
Collapse
|
279
|
Harris M, Carron S, Vander Elst L, Laurent S, Parac-Vogt TN. Magnetofluorescent Nanoaggregates Incorporating Terbium(III) Complexes as Potential Bimodal Agents for Magnetic Resonance and Optical Imaging. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
280
|
Yang J, Zhang Q, Chang H, Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem Rev 2015; 115:5274-300. [PMID: 25944558 DOI: 10.1021/cr500542t] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiepin Yang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Qiang Zhang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hong Chang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yiyun Cheng
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
281
|
Carron S, Bloemen M, Vander Elst L, Laurent S, Verbiest T, Parac-Vogt TN. Potential theranostic and multimodal iron oxide nanoparticles decorated with rhenium-bipyridine and -phenanthroline complexes. J Mater Chem B 2015; 3:4370-4376. [PMID: 32262780 DOI: 10.1039/c5tb00460h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two structurally similar nanoparticles were designed for multimodal imaging and possible radiotherapy. The assembly consists of ultrasmall superparamagnetic iron oxide nanoparticles that act as contrast agents for MRI with a luminescent rhenium complex, for optical imaging, attached to the surface. Rhenium has the advantage of being luminescent and carries two radio-isotopes 186Re and 188Re making it possible to act as a contrast agent for SPECT (γ) and to be used for radiotherapy (β). The iron oxide nanoparticles were treated with a silane and further functionalized with picolyl. This picolyl was used to capture rhenium(i)(CO)3-1,10-phenanthroline (ReL1) or rhenium(i)(CO)3-2,2'-bipyridine (ReL2) and forms the final product Fe3O4-picolyl-rhenium(i)(CO)3-1,10-phenanthroline (IO-ReL1) or Fe3O4-silica-picolyl-rhenium(i)(CO)3-2,2'-bipyridine (IO-ReL2), respectively. All products were characterized properly (TEM, XRD, NMR, IR and TXRF) and a full investigation of the relaxometric and optical properties was conducted. Although iron oxide nanoparticles suffer from strong Rayleigh scattering, an efficient sensitized luminescence was observed and the orange emission wavelength was found to be 585 nm for IO-ReL1 and 592 nm for IO-ReL2 after irradiation at 395 nm. The relaxometric study of these ultrasmall nanoparticles showed very promising results. The r2 values measured at a magnetic field strength of 60 MHz of the nanoparticles being 92.9 mM-1 s-1 and 97.5 mM-1 s-1 for IO-ReL1 and IO-ReL2, respectively, were at least 1.5 times larger than Sinerem®.
Collapse
Affiliation(s)
- Sophie Carron
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F/200D, 3001 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
282
|
Chaabane L, Tei L, Miragoli L, Lattuada L, von Wronski M, Uggeri F, Lorusso V, Aime S. In Vivo MR Imaging of Fibrin in a Neuroblastoma Tumor Model by Means of a Targeting Gd-Containing Peptide. Mol Imaging Biol 2015; 17:819-28. [DOI: 10.1007/s11307-015-0846-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
283
|
Kim YS, Zhou Y, Bryant H, Milenic DE, Baidoo KE, Lewis BK, Frank JA, Brechbiel MW. Synthesis and characterization of gadolinium-Peptidomimetic complex as an αvβ3 integrin targeted MR contrast agent. Bioorg Med Chem Lett 2015; 25:2056-9. [PMID: 25870133 DOI: 10.1016/j.bmcl.2015.03.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
There is growing interest in small and rigid peptidomimetic αvβ3 integrin antagonists that are readily synthesized and characterized and amenable to physiological conditions. Peptidomimetic 4-[2-(3,4,5,6-tetrahydropyrimidine-2-ylamino)ethyloxy]benzoyl-2-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonyl-amino-β-alanine (IAC) was successfully conjugated to DOTA, complexed with Gd(III) and radiolabeled with (153)Gd. Radioassay results demonstrated specificity of the labeled conjugate by blocking ∼95% binding with the addition of a 50-fold molar excess of cold IAC to the reaction solution. Relaxometry was used to support the hypothesis that the specificity of the Gd-peptidomimetic targeting αvβ3 integrin would increase the contrast and therefore enhance the sensitivity of an MRI scan of αvβ3 integrin positive tissues. Magnetic resonance imaging of cell pellets (M21 human melanoma) was also performed, and the images clearly show that cells reacted with Gd(III)-DOTA-IAC display a brighter image than cells without the Gd(III)-DOTA-IAC contrast agent. In addition, Gd(III)-DOTA-IAC and IAC, with IC50 of 300nM and 230nM, respectively, are 2.1 and 2.7 times more potent than c(RGDfK) whose IC50 is 625nM. This promising preliminary data fuels further investigation of DOTA-IAC conjugates for targeting tumor associated angiogenesis and αvβ3 integrin positive tumors using magnetic resonance imaging.
Collapse
Affiliation(s)
- Young-Seung Kim
- Radioimmune & Inorganic Chemistry Section, ROB, NCI, NIH, 10 Center Drive, Building 10, Rm B3B69, Bethesda, MD 20892-1002, USA
| | - Yang Zhou
- Radioimmune & Inorganic Chemistry Section, ROB, NCI, NIH, 10 Center Drive, Building 10, Rm B3B69, Bethesda, MD 20892-1002, USA
| | - Henry Bryant
- Laboratory of Diagnostic Radiology Research (CC), NIH, Bethesda, MD, USA
| | - Diane E Milenic
- Radioimmune & Inorganic Chemistry Section, ROB, NCI, NIH, 10 Center Drive, Building 10, Rm B3B69, Bethesda, MD 20892-1002, USA
| | - Kwamena E Baidoo
- Radioimmune & Inorganic Chemistry Section, ROB, NCI, NIH, 10 Center Drive, Building 10, Rm B3B69, Bethesda, MD 20892-1002, USA
| | - Bobbi K Lewis
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA; National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| | - Martin W Brechbiel
- Radioimmune & Inorganic Chemistry Section, ROB, NCI, NIH, 10 Center Drive, Building 10, Rm B3B69, Bethesda, MD 20892-1002, USA.
| |
Collapse
|
284
|
Leiro V, Garcia JP, Tomás H, Pêgo AP. The Present and the Future of Degradable Dendrimers and Derivatives in Theranostics. Bioconjug Chem 2015; 26:1182-97. [PMID: 25826129 DOI: 10.1021/bc5006224] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interest in dendrimer-based nanomedicines has been growing recently, as it is possible to precisely manipulate the molecular weight, chemical composition, and surface functionality of dendrimers, tuning their properties according to the desired biomedical application. However, one important concern about dendrimer-based therapeutics remains-the nondegradability under physiological conditions of the most commonly used dendrimers. Therefore, biodegradable dendrimers represent an attractive class of nanomaterials, since they present advantages over conventional nondegradable dendrimers regarding the release of the loaded molecules and the prevention of bioaccumulation of synthetic materials and subsequent cytotoxicity. Here, we present an overview of the state-of-the-art of the design of biodegradable dendritic structures, with particular focus on the hurdles regarding the use of these as vectors of drugs and nucleic acids, as well as macromolecular contrast agents.
Collapse
Affiliation(s)
| | | | - Helena Tomás
- ⊥CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Portugal
| | | |
Collapse
|
285
|
Rotz MW, Culver KSB, Parigi G, MacRenaris KW, Luchinat C, Odom TW, Meade TJ. High relaxivity Gd(III)-DNA gold nanostars: investigation of shape effects on proton relaxation. ACS NANO 2015; 9:3385-96. [PMID: 25723190 PMCID: PMC4489565 DOI: 10.1021/nn5070953] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gadolinium(III) nanoconjugate contrast agents (CAs) have distinct advantages over their small-molecule counterparts in magnetic resonance imaging. In addition to increased Gd(III) payload, a significant improvement in proton relaxation efficiency, or relaxivity (r1), is often observed. In this work, we describe the synthesis and characterization of a nanoconjugate CA created by covalent attachment of Gd(III) to thiolated DNA (Gd(III)-DNA), followed by surface conjugation onto gold nanostars (DNA-Gd@stars). These conjugates exhibit remarkable r1 with values up to 98 mM(-1) s(-1). Additionally, DNA-Gd@stars show efficient Gd(III) delivery and biocompatibility in vitro and generate significant contrast enhancement when imaged at 7 T. Using nuclear magnetic relaxation dispersion analysis, we attribute the high performance of the DNA-Gd@stars to an increased contribution of second-sphere relaxivity compared to that of spherical CA equivalents (DNA-Gd@spheres). Importantly, the surface of the gold nanostar contains Gd(III)-DNA in regions of positive, negative, and neutral curvature. We hypothesize that the proton relaxation enhancement observed results from the presence of a unique hydrophilic environment produced by Gd(III)-DNA in these regions, which allows second-sphere water molecules to remain adjacent to Gd(III) ions for up to 10 times longer than diffusion. These results establish that particle shape and second-sphere relaxivity are important considerations in the design of Gd(III) nanoconjugate CAs.
Collapse
Affiliation(s)
- Matthew W. Rotz
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kayla S. B. Culver
- Departments of Chemistry, Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Keith W. MacRenaris
- Quantitative Bio-elemental Imaging Center, Department of Molecular Biosciences, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Teri W. Odom
- Departments of Chemistry, Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas J. Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
286
|
Abstract
This perspective outlines strategies towards the development of MR imaging probes that our lab has explored over the last 15 years. Namely, we discuss methods to enhance the signal generating capacity of MR probes and how to achieve tissue specificity through protein targeting or probe activation within the tissue microenvironment.
Collapse
Affiliation(s)
- Eszter Boros
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
287
|
Synthesis and antioxidant studies of novel bi-, tri-, and tetrapodal 9-aryl-1,8-dioxo-octahydroxanthenes. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
288
|
Abd-El-Aziz AS, Agatemor C, Etkin N, Bissessur R. Toward a New Family of Bifunctional Organoiron Dendrimers: Facile Synthesis, Redox, and Photophysical Fingerprints. MACROMOL CHEM PHYS 2015; 216:369-379. [DOI: 10.1002/macp.201400452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Alaa S. Abd-El-Aziz
- Department of Chemistry; University of Prince Edward Island; 550 University Avenue Charlottetown Prince Edward Island C1A 4P3 Canada
| | - Christian Agatemor
- Department of Chemistry; University of Prince Edward Island; 550 University Avenue Charlottetown Prince Edward Island C1A 4P3 Canada
| | | | - Rabin Bissessur
- Department of Chemistry; University of Prince Edward Island; 550 University Avenue Charlottetown Prince Edward Island C1A 4P3 Canada
| |
Collapse
|
289
|
Liu Q, Chen S, Chen J, Du J. An Asymmetrical Polymer Vesicle Strategy for Significantly Improving T1 MRI Sensitivity and Cancer-Targeted Drug Delivery. Macromolecules 2015. [DOI: 10.1021/ma502255s] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiuming Liu
- School
of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Shuai Chen
- School
of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jing Chen
- School
of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- School
of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
290
|
Boulay A, Deraeve C, Vander Elst L, Leygue N, Maury O, Laurent S, Muller RN, Mestre-Voegtlé B, Picard C. Terpyridine-Based Heteroditopic Ligand for RuIILn3III Metallostar Architectures (Ln = Gd, Eu, Nd, Yb) with MRI/Optical or Dual-Optical Responses. Inorg Chem 2015; 54:1414-25. [DOI: 10.1021/ic502342x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexandre Boulay
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB, UMR-5068, 118 Route de Narbonne, F-31062 Toulouse cedex 9, France
- Université de Toulouse, UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Céline Deraeve
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB, UMR-5068, 118 Route de Narbonne, F-31062 Toulouse cedex 9, France
- Université de Toulouse, UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Luce Vander Elst
- NMR
and Molecular Imaging Laboratory, Department of General, Organic and
Biomedical Chemistry, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium
| | - Nadine Leygue
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB, UMR-5068, 118 Route de Narbonne, F-31062 Toulouse cedex 9, France
- Université de Toulouse, UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Olivier Maury
- Université de Lyon 1, Laboratoire de Chimie de l’ENS Lyon, CNRS UMR 5182, 46 allée d’Italie, 69364 Lyon, France
| | - Sophie Laurent
- NMR
and Molecular Imaging Laboratory, Department of General, Organic and
Biomedical Chemistry, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium
| | - Robert N. Muller
- NMR
and Molecular Imaging Laboratory, Department of General, Organic and
Biomedical Chemistry, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium
| | - Béatrice Mestre-Voegtlé
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB, UMR-5068, 118 Route de Narbonne, F-31062 Toulouse cedex 9, France
- Université de Toulouse, UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Claude Picard
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB, UMR-5068, 118 Route de Narbonne, F-31062 Toulouse cedex 9, France
- Université de Toulouse, UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| |
Collapse
|
291
|
Li Y, Duong HTT, Laurent S, MacMillan A, Whan RM, Elst LV, Muller RN, Hu J, Lowe A, Boyer C, Davis TP. Nanoparticles based on star polymers as theranostic vectors: endosomal-triggered drug release combined with MRI sensitivity. Adv Healthc Mater 2015; 4:148-56. [PMID: 24985790 DOI: 10.1002/adhm.201400164] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/27/2014] [Indexed: 12/12/2022]
Abstract
Dual-functional star polymers (diameters 15 nm) are synthesized producing nanoparticles with excellent colloidal stability in both water and serum. The nanoparticles are built with aldehyde groups in the core and activated esters in the arms. The different reactivity of the two functional groups to sequentially react with different amino compounds is exploited; doxorubicin (DOX) and 1-(5-amino-3-aza-2-oxypentyl)-4,7,10-tris(tert-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane (DO3A-tBu-NH2 )-a chelating agent effective for the complexation of Gadolinium ions (Gd). The activated ester group is employed to attach the DO3A chelating agent, while the aldehyde groups are exploited for DOX conjugation, providing a controlled release mechanism for DOX in acidic environments. DOX/Gd-loaded nanoparticles are rapidly taken up by MCF-7 breast cancer cells, subsequently releasing DOX as demonstrated using in vitro fluorescence lifetime imaging microscopy (FLIM). Endosomal, DOX release is observed, using a phasor plot representation of the fluorescence lifetime data, showing an increase of native DOX with time. The MRI properties of the stars are assessed and the relaxivity of Gd loaded in stars is three times higher than conventional organic Gd/DO3A complexes. The DOX/Gd-conjugated nanoparticles yield a similar IC50 to native DOX for breast cancer cell lines, confirming that DOX integrity is conserved during nanoparticle attachment and release.
Collapse
Affiliation(s)
- Yang Li
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Hien T. T. Duong
- Australian Centre for Nanomedicine, School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry; University of Mons; 7000 Mons Belgium
| | - Alexandre MacMillan
- Biomedical Imaging Facility; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Renee Megan Whan
- Biomedical Imaging Facility; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Luce Vander Elst
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry; University of Mons; 7000 Mons Belgium
| | - Robert N. Muller
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry; University of Mons; 7000 Mons Belgium
- CMMI - Center of Microscopy and Molecular Imaging; Rue Adrienne Bolland, 8 B-6041 Gosselies Belgium
| | - Jinming Hu
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
| | - Andrew Lowe
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Victoria 3052 Australia
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
| |
Collapse
|
292
|
Yamada H, Hasegawa Y, Imai H, Takayama Y, Sugihara F, Matsuda T, Tochio H, Shirakawa M, Sando S, Kimura Y, Toshimitsu A, Aoyama Y, Kondo T. Magnetic Resonance Imaging of Tumor with a Self-Traceable Phosphorylcholine Polymer. J Am Chem Soc 2015; 137:799-806. [DOI: 10.1021/ja510479v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hisatsugu Yamada
- Advanced
Biomedical Engineering Research Unit, Center for the Promotion of
Interdisciplinary Education and Research, Kyoto University, Katsura, Nishikyo-ku,
Kyoto 615-8510, Japan
| | - Yoshinori Hasegawa
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hirohiko Imai
- Department
of Systems Science, Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takayama
- Department
of Systems Science, Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fuminori Sugihara
- Department
of Systems Science, Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tetsuya Matsuda
- Department
of Systems Science, Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hidehito Tochio
- Department
of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Shirakawa
- Department
of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shinsuke Sando
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yu Kimura
- Research
and Educational Unit of Leaders for Integrated Medical System, Center
for the Promotion of Interdisciplinary Education and Research, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Akio Toshimitsu
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Division
of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Gokanosho, Uji, Kyoto 611-0011, Japan
| | - Yasuhiro Aoyama
- Kyoto University, Katsura, Nishikyo-ku,
Kyoto 615-8510, Japan
| | - Teruyuki Kondo
- Advanced
Biomedical Engineering Research Unit, Center for the Promotion of
Interdisciplinary Education and Research, Kyoto University, Katsura, Nishikyo-ku,
Kyoto 615-8510, Japan
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
293
|
Parat A, Kryza D, Degoul F, Taleb J, Viallard C, Janier M, Garofalo A, Bonazza P, Heinrich-Balard L, Cohen R, Miot-Noirault E, Chezal JM, Billotey C, Felder-Flesch D. Radiolabeled dendritic probes as tools for high in vivo tumor targeting: application to melanoma. J Mater Chem B 2015; 3:2560-2571. [DOI: 10.1039/c5tb00235d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A small-sized and bifunctional111In-radiolabeled dendron shows highin vivotargeting efficiency towards an intracellular target in a murine melanoma model.
Collapse
|
294
|
Samuel R, Girard E, Chagnon G, Dejean S, Favier D, Coudane J, Nottelet B. Radiopaque poly(ε-caprolactone) as additive for X-ray imaging of temporary implantable medical devices. RSC Adv 2015. [DOI: 10.1039/c5ra19488a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A family of radiopaque PCL, poly(ε-caprolactone-co-α-triiodobenzoate-ε-caprolactone), has been designed, used and evaluated as macromolecular contrast agent for X-ray imaging of implantable polymeric biomaterials.
Collapse
Affiliation(s)
- Rémi Samuel
- Institute of Biomolecules Max Mousseron (IBMM) UMR 5247
- Department of Artificial Biopolymers
- CNRS
- University of Montpellier
- ENSCM
| | - Edouard Girard
- CHU de Grenoble
- TIMC-IMAG
- F-38000 Grenoble
- France
- Université Grenoble Alpes
| | - Grégory Chagnon
- Université Grenoble Alpes
- TIMC-IMAG
- F-38000 Grenoble
- France
- CNRS
| | - Stéphane Dejean
- Institute of Biomolecules Max Mousseron (IBMM) UMR 5247
- Department of Artificial Biopolymers
- CNRS
- University of Montpellier
- ENSCM
| | - Denis Favier
- Université Grenoble Alpes
- TIMC-IMAG
- F-38000 Grenoble
- France
- CNRS
| | - Jean Coudane
- Institute of Biomolecules Max Mousseron (IBMM) UMR 5247
- Department of Artificial Biopolymers
- CNRS
- University of Montpellier
- ENSCM
| | - Benjamin Nottelet
- Institute of Biomolecules Max Mousseron (IBMM) UMR 5247
- Department of Artificial Biopolymers
- CNRS
- University of Montpellier
- ENSCM
| |
Collapse
|
295
|
Ho LC, Hsu CH, Ou CM, Wang CW, Liu TP, Hwang LP, Lin YY, Chang HT. Unibody core–shell smart polymer as a theranostic nanoparticle for drug delivery and MR imaging. Biomaterials 2015; 37:436-46. [DOI: 10.1016/j.biomaterials.2014.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
|
296
|
Du Q, Huang Z, Wu Z, Meng X, Yin G, Gao F, Wang L. Facile preparation and bifunctional imaging of Eu-doped GdPO4 nanorods with MRI and cellular luminescence. Dalton Trans 2015; 44:3934-40. [PMID: 25630852 DOI: 10.1039/c4dt03444a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eu-doped GdPO4 NRs coated by silk fibroin have been prepared in a template of silk fibroin (SF) peptides via a mineralization process. A growth mechanism of SF-NRs is proposed to explain their stronger luminescence, better cyto-compatibility and higher longitudinal relaxivity r1.
Collapse
Affiliation(s)
- Qijun Du
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Zhongbing Huang
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Zhi Wu
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Research Center for Micro & Nano Materials and Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Guangfu Yin
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Fabao Gao
- Molecular Imaging Center
- Department of Radiology
- West China Hospital of Sichuan University
- Chengdu
- China
| | - Lei Wang
- Molecular Imaging Center
- Department of Radiology
- West China Hospital of Sichuan University
- Chengdu
- China
| |
Collapse
|
297
|
Porsio B, Lemaire L, El Habnouni S, Darcos V, Franconi F, Garric X, Coudane J, Nottelet B. MRI-visible nanoparticles from hydrophobic gadolinium poly(ε-caprolactone) conjugates. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
298
|
Wang L, Zhu X, Tang X, Wu C, Zhou Z, Sun C, Deng SL, Ai H, Gao J. A multiple gadolinium complex decorated fullerene as a highly sensitive T1 contrast agent. Chem Commun (Camb) 2015; 51:4390-3. [DOI: 10.1039/c5cc00285k] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A multiple gadolinium complex decorated fullerene (CGDn) as an enhanced T1 contrast agent was presented.
Collapse
Affiliation(s)
- Lirong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Xianglong Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Xingyan Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Changqiang Wu
- National Engineering Research Centre for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zijian Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Chengjie Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Shun-Liu Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Hua Ai
- National Engineering Research Centre for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
299
|
Prodi L, Rampazzo E, Rastrelli F, Speghini A, Zaccheroni N. Imaging agents based on lanthanide doped nanoparticles. Chem Soc Rev 2015; 44:4922-52. [DOI: 10.1039/c4cs00394b] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes the recent progress of single and multimodal imaging agents based on lanthanide doped nanoparticles.
Collapse
Affiliation(s)
- L. Prodi
- Dipartimento di Chimica “G. Ciamician” and INSTM
- UdR Bologna
- Università di Bologna
- 40126 Bologna
- Italy
| | - E. Rampazzo
- Dipartimento di Chimica “G. Ciamician” and INSTM
- UdR Bologna
- Università di Bologna
- 40126 Bologna
- Italy
| | - F. Rastrelli
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - A. Speghini
- Dipartimento di Biotecnologie
- Università degli Studi di Verona Ca' Vignal 1
- 37134 Verona
- Italy
| | - N. Zaccheroni
- Dipartimento di Chimica “G. Ciamician” and INSTM
- UdR Bologna
- Università di Bologna
- 40126 Bologna
- Italy
| |
Collapse
|
300
|
Caltagirone C, Bettoschi A, Garau A, Montis R. Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev 2015; 44:4645-71. [DOI: 10.1039/c4cs00270a] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review a selection of the most recent examples of imaging techniques applied to silica-based NPs for imaging is reported.
Collapse
Affiliation(s)
- Claudia Caltagirone
- Università degli Studi di Cagliari
- Dipartimento di Scienze Chimiche e Geologiche
- 09042 Monserrato
- Italy
| | - Alexandre Bettoschi
- Università degli Studi di Cagliari
- Dipartimento di Scienze Chimiche e Geologiche
- 09042 Monserrato
- Italy
| | - Alessandra Garau
- Università degli Studi di Cagliari
- Dipartimento di Scienze Chimiche e Geologiche
- 09042 Monserrato
- Italy
| | - Riccardo Montis
- Università degli Studi di Cagliari
- Dipartimento di Scienze Chimiche e Geologiche
- 09042 Monserrato
- Italy
| |
Collapse
|