251
|
Schneemilch M, Quirke N. Free energy of adsorption of supported lipid bilayers from molecular dynamics simulation. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
252
|
Kulkarni A, Natarajan SK, Chandrasekar V, Pandey PR, Sengupta S. Combining Immune Checkpoint Inhibitors and Kinase-Inhibiting Supramolecular Therapeutics for Enhanced Anticancer Efficacy. ACS NANO 2016; 10:9227-9242. [PMID: 27656909 DOI: 10.1021/acsnano.6b01600] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A major limitation of immune checkpoint inhibitors is that only a small subset of patients achieve durable clinical responses. This necessitates the development of combinatorial regimens with immunotherapy. However, some combinations, such as MEK- or PI3K-inhibitors with a PD1-PDL1 checkpoint inhibitor, are pharmacologically challenging to implement. We rationalized that such combinations can be enabled using nanoscale supramolecular targeted therapeutics, which spatially home into tumors and exert temporally sustained inhibition of the target. Here we describe two case studies where nanoscale MEK- and PI3K-targeting supramolecular therapeutics were engineered using a quantum mechanical all-atomistic simulation-based approach. The combinations of nanoscale MEK- and PI3K-targeting supramolecular therapeutics with checkpoint PDL1 and PD1 inhibitors exert enhanced antitumor outcome in melanoma and breast cancers in vivo, respectively. Additionally, the temporal sequence of administration impacts the outcome. The combination of supramolecular therapeutics and immunotherapy could emerge as a paradigm shift in the treatment of cancer.
Collapse
Affiliation(s)
- Ashish Kulkarni
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts 02139, United States
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts 02115, United States
| | - Siva Kumar Natarajan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts 02115, United States
| | - Vineethkrishna Chandrasekar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts 02115, United States
| | - Prithvi Raj Pandey
- India Innovation Research Center and Invictus Oncology , New Delhi 110092, India
| | - Shiladitya Sengupta
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts 02139, United States
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts 02115, United States
- Dana Farber Cancer Institute , Boston, Massachusetts 02115, United States
| |
Collapse
|
253
|
Kostritskii AY, Kondinskaia DA, Nesterenko AM, Gurtovenko AA. Adsorption of Synthetic Cationic Polymers on Model Phospholipid Membranes: Insight from Atomic-Scale Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10402-10414. [PMID: 27642663 DOI: 10.1021/acs.langmuir.6b02593] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although synthetic cationic polymers represent a promising class of effective antibacterial agents, the molecular mechanisms behind their antimicrobial activity remain poorly understood. To this end, we employ atomic-scale molecular dynamics simulations to explore adsorption of several linear cationic polymers of different chemical structure and protonation (polyallylamine (PAA), polyethylenimine (PEI), polyvinylamine (PVA), and poly-l-lysine (PLL)) on model bacterial membranes (4:1 mixture of zwitterionic phosphatidylethanolamine (PE) and anionic phosphatidylglycerol (PG) lipids). Overall, our findings show that binding of polycations to the anionic membrane surface effectively neutralizes its charge, leading to the reorientation of water molecules close to the lipid/water interface and to the partial release of counterions to the water phase. In certain cases, one has even an overcharging of the membrane, which was shown to be a cooperative effect of polymer charges and lipid counterions. Protonated amine groups of polycations are found to interact preferably with head groups of anionic lipids, giving rise to formation of hydrogen bonds and to a noticeable lateral immobilization of the lipids. While all the above findings are mostly defined by the overall charge of a polymer, we found that the polymer architecture also matters. In particular, PVA and PEI are able to accumulate anionic PG lipids on the membrane surface, leading to lipid segregation. In turn, PLL whose charge twice exceeds charges of PVA/PEI does not induce such lipid segregation due to its considerably less compact architecture and relatively long side chains. We also show that partitioning of a polycation into the lipid/water interface is an interplay between its protonation level (the overall charge) and hydrophobicity of the backbone. Therefore, a possible strategy in creating highly efficient antimicrobial polymeric agents could be in tuning these polycation's properties through proper combination of protonated and hydrophobic blocks.
Collapse
Affiliation(s)
- Andrei Yu Kostritskii
- Faculty of Physics, St. Petersburg State University , Ulyanovskaya str. 3, Petrodvorets, St. Petersburg 198504 Russia
| | - Diana A Kondinskaia
- Faculty of Physics, St. Petersburg State University , Ulyanovskaya str. 3, Petrodvorets, St. Petersburg 198504 Russia
| | - Alexey M Nesterenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow 119991 Russia
| | - Andrey A Gurtovenko
- Faculty of Physics, St. Petersburg State University , Ulyanovskaya str. 3, Petrodvorets, St. Petersburg 198504 Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences , Bolshoi Prospect V.O. 31, St. Petersburg 199004 Russia
| |
Collapse
|
254
|
Kulkarni A, Pandey P, Rao P, Mahmoud A, Goldman A, Sabbisetti V, Parcha S, Natarajan SK, Chandrasekar V, Dinulescu D, Roy S, Sengupta S. Algorithm for Designing Nanoscale Supramolecular Therapeutics with Increased Anticancer Efficacy. ACS NANO 2016; 10:8154-68. [PMID: 27452234 DOI: 10.1021/acsnano.6b00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the chemical world, evolution is mirrored in the origin of nanoscale supramolecular structures from molecular subunits. The complexity of function acquired in a supramolecular system over a molecular subunit can be harnessed in the treatment of cancer. However, the design of supramolecular nanostructures is hindered by a limited atomistic level understanding of interactions between building blocks. Here, we report the development of a computational algorithm, which we term Volvox after the first multicellular organism, that sequentially integrates quantum mechanical energy-state- and force-field-based models with large-scale all-atomistic explicit water molecular dynamics simulations to design stable nanoscale lipidic supramolecular structures. In one example, we demonstrate that Volvox enables the design of a nanoscale taxane supramolecular therapeutic. In another example, we demonstrate that Volvox can be extended to optimizing the ratio of excipients to form a stable nanoscale supramolecular therapeutic. The nanoscale taxane supramolecular therapeutic exerts greater antitumor efficacy than a clinically used taxane in vivo. Volvox can emerge as a powerful tool in the design of nanoscale supramolecular therapeutics for effective treatment of cancer.
Collapse
Affiliation(s)
- Ashish Kulkarni
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts 02139, United States
| | - Prithvi Pandey
- India Innovation Research Center , Invictus Oncology, New Delhi 110092, India
| | | | | | - Aaron Goldman
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts 02139, United States
- Harvard Digestive Diseases Center , Boston, Massachusetts 02115, United States
| | - Venkata Sabbisetti
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | | | | | | - Sudip Roy
- India Innovation Research Center , Invictus Oncology, New Delhi 110092, India
| | - Shiladitya Sengupta
- Department of Medicine, Harvard Medical School , Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts 02139, United States
- Dana Farber Cancer Institute , Boston, Massachusetts 02115, United States
| |
Collapse
|
255
|
An extensive simulation study of lipid bilayer properties with different head groups, acyl chain lengths, and chain saturations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3093-3104. [PMID: 27664502 DOI: 10.1016/j.bbamem.2016.09.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
Previous MD simulations of six phosphocholine (PC) lipid bilayers demonstrated the accuracy of the CHARMM36 force field (C36FF) for PC bilayer simulation at varied temperatures (BBA-Biomembranes, 1838 (2014): 2520-2529). In this work, we further examine the accuracy of C36FF over a wide temperature range for a broader range of lipid types such as various head groups (phosphatidic acid (PA), PC, phosphoethanolamine (PE), phosphoglycerol (PG), and phosphoserine (PS)), and tails (saturated, mono-, mixed- and poly-unsaturated acyl chains with varied chain lengths). The structural properties (surface area per lipid (SA/lip), overall bilayer thickness, hydrophobic thickness, headgroup-to-headgroup thickness, deuterium order parameter (SCD), and spin-lattice relaxation time (T1)) obtained from simulations agree well with nearly all available experimental data. Our analyses indicate that PS lipids have the most inter-lipid hydrogen bonds, while PG lipids have the most intra-lipid hydrogen bonds, which play the main role in their low SA/lip in PS lipids and low thicknesses in PG lipids, respectively. PS, PE, and PA lipids have the largest contact clusters with on average 5-8 lipids per cluster, while PC and PG have clusters of 4 lipids based on a cutoff distance of 6.5Å. PS lipids have much slower lipid wobble (i.e., higher correlation time) than other head groups at a given temperature as the hydrogen bonded network significantly reduces a lipid's mobility, and the rate of lipid wobble increases dramatically as temperature increases. These in-depth analyses facilitate further understanding of lipid bilayers at the atomic level.
Collapse
|
256
|
Robison AD, Sun S, Poyton MF, Johnson GA, Pellois JP, Jungwirth P, Vazdar M, Cremer PS. Polyarginine Interacts More Strongly and Cooperatively than Polylysine with Phospholipid Bilayers. J Phys Chem B 2016; 120:9287-96. [PMID: 27571288 PMCID: PMC5912336 DOI: 10.1021/acs.jpcb.6b05604] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The interactions of two highly positively charged short peptide sequences with negatively charged lipid bilayers were explored by fluorescence binding assays and all-atom molecular dynamics simulations. The bilayers consisted of mixtures of phosphatidylglycerol (PG) and phosphatidylcholine (PC) lipids as well as a fluorescence probe that was sensitive to the interfacial potential. The first peptide contained nine arginine repeats (Arg9), and the second one had nine lysine repeats (Lys9). The experimentally determined apparent dissociation constants and Hill cooperativity coefficients demonstrated that the Arg9 peptides exhibited weakly anticooperative binding behavior at the bilayer interface at lower PG concentrations, but this anticooperative effect vanished once the bilayers contained at least 20 mol % PG. By contrast, Lys9 peptides showed strongly anticooperative binding behavior at all PG concentrations, and the dissociation constants with Lys9 were approximately 2 orders of magnitude higher than with Arg9. Moreover, only arginine-rich peptides could bind to the phospholipid bilayers containing just PC lipids. These results along with the corresponding molecular dynamics simulations suggested two important distinctions between the behavior of Arg9 and Lys9 that led to these striking differences in binding and cooperativity. First, the interactions of the guanidinium moieties on the Arg side chains with the phospholipid head groups were stronger than for the amino group. This helped facilitate stronger Arg9 binding at all PG concentrations that were tested. However, at PG concentrations of 20 mol % or greater, the Arg9 peptides came into sufficiently close proximity with each other so that favorable like-charge pairing between the guanidinium moieties could just offset the long-range electrostatic repulsions. This led to Arg9 aggregation at the bilayer surface. By contrast, Lys9 molecules experienced electrostatic repulsion from each other at all PG concentrations. These insights may help explain the propensity for cell penetrating peptides containing arginine to more effectively cross cell membranes in comparison with lysine-rich peptides.
Collapse
Affiliation(s)
| | | | | | | | | | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo nám. 2, Prague 6 16610, Czech Republic
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Mario Vazdar
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute , P.O.B. 180, HR-10002 Zagreb, Croatia
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | | |
Collapse
|
257
|
Fisette O, Päslack C, Barnes R, Isas JM, Langen R, Heyden M, Han S, Schäfer LV. Hydration Dynamics of a Peripheral Membrane Protein. J Am Chem Soc 2016; 138:11526-35. [PMID: 27548572 DOI: 10.1021/jacs.6b07005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Water dynamics in the hydration shell of the peripheral membrane protein annexin B12 were studied using MD simulations and Overhauser DNP-enhanced NMR. We show that retardation of water motions near phospholipid bilayers is extended by the presence of a membrane-bound protein, up to around 10 Å above that protein. Near the membrane surface, electrostatic interactions with the lipid head groups strongly slow down water dynamics, whereas protein-induced water retardation is weaker and dominates only at distances beyond 10 Å from the membrane surface. The results can be understood from a simple model based on additive contributions from the membrane and the protein to the activation free energy barriers of water diffusion next to the biomolecular surfaces. Furthermore, analysis of the intermolecular vibrations of the water network reveals that retarded water motions near the membrane shift the vibrational modes to higher frequencies, which we used to identify an entropy gradient from the membrane surface toward the bulk water. Our results have implications for processes that take place at lipid membrane surfaces, including molecular recognition, binding, and protein-protein interactions.
Collapse
Affiliation(s)
- Olivier Fisette
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University , 44780 Bochum, Germany
| | - Christopher Päslack
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University , 44780 Bochum, Germany.,Max-Planck Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Ryan Barnes
- Department of Chemistry and Biochemistry and Department of Chemical Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - J Mario Isas
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California 90089, United States
| | - Ralf Langen
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California 90089, United States
| | - Matthias Heyden
- Max-Planck Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Songi Han
- Department of Chemistry and Biochemistry and Department of Chemical Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University , 44780 Bochum, Germany
| |
Collapse
|
258
|
Genheden S, Eriksson LA. Estimation of Liposome Penetration Barriers of Drug Molecules with All-Atom and Coarse-Grained Models. J Chem Theory Comput 2016; 12:4651-61. [PMID: 27541708 DOI: 10.1021/acs.jctc.6b00557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Liposomes are common carriers of drug molecules, providing enhanced delivery and accumulation of hydrophilic agents or larger biomolecules. Molecular simulations can be used to estimate key features of the drug molecules upon interaction with the liposomes, such as penetration barriers and localization. Herein, we investigate several aspects of the computational estimation of penetration barriers, viz. the potential of mean force (PMFs) along a vector spanning the membrane. First, we provide an evaluation of the all-atom (AA) and coarse-grained (CG) parametrization of 5-aminolevulinic acid (5-ALA) and two of its alkyl esters by computing n-octanol/water partition coefficients. We find that the CG parametrization of the esters performs significantly better than the CG model of 5-ALA, highlighting the difficulty to coarse-grain small, polar molecules. However, the expected trend in partition coefficients is reproduced also with the CG models. Second, we compare PMFs in a small membrane slab described with either the AA or CG models. Here, we are able to reproduce the all-atom PMF of 5-ALA with CG. However, for the alkyl esters it is unfortunately not possible to correctly reproduce both the depth and the penetration barrier of the PMF seen in the AA simulations with any of the tested CG models. We argue that it is more important to choose a CG parametrization that reproduces the depth of the PMF. Third, we compare, using the CG model, PMFs in the membrane slab with PMFs in a large, realistic liposome. We find similar depths but slightly different penetration barriers most likely due to differences in the lipid density along the membrane axis. Finally, we compute PMFs in liposomes with three different lipid compositions. Unfortunately, differences in the PMFs could not be quantified, and it remains to be investigated to what extent liposome simulations can fully reproduce experimental findings.
Collapse
Affiliation(s)
- Samuel Genheden
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, SE-405 30 Göteborg, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, SE-405 30 Göteborg, Sweden
| |
Collapse
|
259
|
Neale C, Herce HD, Pomès R, García AE. Can Specific Protein-Lipid Interactions Stabilize an Active State of the Beta 2 Adrenergic Receptor? Biophys J 2016; 109:1652-62. [PMID: 26488656 DOI: 10.1016/j.bpj.2015.08.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022] Open
Abstract
G-protein-coupled receptors are eukaryotic membrane proteins with broad biological and pharmacological relevance. Like all membrane-embedded proteins, their location and orientation are influenced by lipids, which can also impact protein function via specific interactions. Extensive simulations totaling 0.25 ms reveal a process in which phospholipids from the membrane's cytosolic leaflet enter the empty G-protein binding site of an activated β2 adrenergic receptor and form salt-bridge interactions that inhibit ionic lock formation and prolong active-state residency. Simulations of the receptor embedded in an anionic membrane show increased lipid binding, providing a molecular mechanism for the experimental observation that anionic lipids can enhance receptor activity. Conservation of the arginine component of the ionic lock among Rhodopsin-like G-protein-coupled receptors suggests that intracellular lipid ingression between receptor helices H6 and H7 may be a general mechanism for active-state stabilization.
Collapse
Affiliation(s)
- Chris Neale
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York
| | - Henry D Herce
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York
| | - Régis Pomès
- Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Angel E García
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.
| |
Collapse
|
260
|
Zhang H, Pluhackova K, Jiang Z, Böckmann RA. Binding Characteristics of Sphingosine-1-Phosphate to ApoM hints to Assisted Release Mechanism via the ApoM Calyx-Opening. Sci Rep 2016; 6:30655. [PMID: 27476912 PMCID: PMC4967915 DOI: 10.1038/srep30655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/07/2016] [Indexed: 11/09/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lysophospholipid mediator carried by the HDL-associated apoM protein in blood, regulating many physiological processes by activating the G protein-coupled S1P receptor in mammals. Despite the solved crystal structure of the apoM-S1P complex, the mechanism of S1P release from apoM as a part of the S1P pathway is unknown. Here, the dynamics of the wild type apoM-S1P complex as well as of mutants were investigated by means of atomistic molecular dynamics simulations. The potential of mean force for S1P unbinding from apoM reflected a large binding strength of more than 60 kJ/mol. This high unbinding free energy for S1P underlines the observed specificity of the physiological effects of S1P as it suggests that the spontaneous release of S1P from apoM is unlikely. Instead, S1P release and thus the control of this bioactive lipid probably requires the tight interaction with other molecules, e.g. with the S1P receptor. Mutations of specific S1P anchoring residues of apoM decreased the energetic barrier by up to 20 kJ/mol. Moreover, the ligand-free apoM protein is shown to adopt a more open upper hydrophilic binding pocket and to result in complete closure of the lower hydrophobic cavity, suggesting a mechanism for adjusting the gate for ligand access.
Collapse
Affiliation(s)
- Hansi Zhang
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Zhenyan Jiang
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| |
Collapse
|
261
|
do Canto AMTM, Robalo JR, Santos PD, Carvalho AJP, Ramalho JPP, Loura LMS. Diphenylhexatriene membrane probes DPH and TMA-DPH: A comparative molecular dynamics simulation study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2647-2661. [PMID: 27475296 DOI: 10.1016/j.bbamem.2016.07.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
Fluorescence spectroscopy and microscopy have been utilized as tools in membrane biophysics for decades now. Because phospholipids are non-fluorescent, the use of extrinsic membrane probes in this context is commonplace. Among the latter, 1,6-diphenylhexatriene (DPH) and its trimethylammonium derivative (TMA-DPH) have been extensively used. It is widely believed that, owing to its additional charged group, TMA-DPH is anchored at the lipid/water interface and reports on a bilayer region that is distinct from that of the hydrophobic DPH. In this study, we employ atomistic MD simulations to characterize the behavior of DPH and TMA-DPH in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and POPC/cholesterol (4:1) bilayers. We show that although the dynamics of TMA-DPH in these membranes is noticeably more hindered than that of DPH, the location of the average fluorophore of TMA-DPH is only ~3-4Å more shallow than that of DPH. The hindrance observed in the translational and rotational motions of TMA-DPH compared to DPH is mainly not due to significant differences in depth, but to the favorable electrostatic interactions of the former with electronegative lipid atoms instead. By revealing detailed insights on the behavior of these two probes, our results are useful both in the interpretation of past work and in the planning of future experiments using them as membrane reporters.
Collapse
Affiliation(s)
- António M T M do Canto
- Centro de Química de Évora e Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís Verney, Rua Romão Ramalho 59, P-7002-554 Évora, Portugal
| | - João R Robalo
- Centro de Química de Évora e Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís Verney, Rua Romão Ramalho 59, P-7002-554 Évora, Portugal; Theory and Bio-Systems Department, Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Golm, D-14424 Potsdam, Germany
| | - Patrícia D Santos
- Centro de Química de Évora e Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís Verney, Rua Romão Ramalho 59, P-7002-554 Évora, Portugal
| | - Alfredo J Palace Carvalho
- Centro de Química de Évora e Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís Verney, Rua Romão Ramalho 59, P-7002-554 Évora, Portugal
| | - J P Prates Ramalho
- Centro de Química de Évora e Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís Verney, Rua Romão Ramalho 59, P-7002-554 Évora, Portugal
| | - Luís M S Loura
- Faculdade de Farmácia, Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, P-3000-548 Coimbra, Portugal; Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, P-3004-535 Coimbra, Portugal.
| |
Collapse
|
262
|
Sridhar A, Kumar A, Dasmahapatra AK. Multi-scale molecular dynamics study of cholera pentamer binding to a GM1-phospholipid membrane. J Mol Graph Model 2016; 68:236-251. [PMID: 27474868 DOI: 10.1016/j.jmgm.2016.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
The AB5 type toxin produced by the Vibrio cholerae bacterium is the causative agent of the cholera disease. The cholera toxin (CT) has been shown to bind specifically to GM1 glycolipids on the membrane surface. This binding of CT to the membrane is the initial step in its endocytosis and has been postulated to cause significant disruption to the membrane structure. In this work, we have carried out a combination of coarse-grain and atomistic simulations to study the binding of CT to a membrane modelled as an asymmetrical GM1-DPPC bilayer. Simulation results indicate that the toxin binds to the membrane through only three of its five B subunits, in effect resulting in a tilted bound configuration. Additionally, the binding of the CT can increase the area per lipid of GM1 leaflet, which in turn can cause the membrane regions interacting with the bound subunits to experience significant bilayer thinning and lipid tail disorder across both the leaflets.
Collapse
Affiliation(s)
- Akshay Sridhar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Amit Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
263
|
Poger D, Caron B, Mark AE. Validating lipid force fields against experimental data: Progress, challenges and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1556-65. [DOI: 10.1016/j.bbamem.2016.01.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/07/2016] [Accepted: 01/27/2016] [Indexed: 01/16/2023]
|
264
|
Wang H, Meng F. Concentration effect of cimetidine with POPC bilayer: a molecular dynamics simulation study. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1185793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Huanjie Wang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, P.R. China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, P.R. China
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, P.R. China
| |
Collapse
|
265
|
Dhara M, Yarzagaray A, Makke M, Schindeldecker B, Schwarz Y, Shaaban A, Sharma S, Böckmann RA, Lindau M, Mohrmann R, Bruns D. v-SNARE transmembrane domains function as catalysts for vesicle fusion. eLife 2016; 5:e17571. [PMID: 27343350 PMCID: PMC4972536 DOI: 10.7554/elife.17571] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022] Open
Abstract
Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion.
Collapse
Affiliation(s)
- Madhurima Dhara
- Institute for Physiology, Saarland University, Homburg, Germany
| | | | - Mazen Makke
- Institute for Physiology, Saarland University, Homburg, Germany
| | | | - Yvonne Schwarz
- Institute for Physiology, Saarland University, Homburg, Germany
| | - Ahmed Shaaban
- Zentrum für Human- und Molekularbiologie, Saarland University, Homburg, Germany
| | - Satyan Sharma
- Group Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University, Erlangen, Germany
| | - Manfred Lindau
- Group Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf Mohrmann
- Zentrum für Human- und Molekularbiologie, Saarland University, Homburg, Germany
| | - Dieter Bruns
- Institute for Physiology, Saarland University, Homburg, Germany
| |
Collapse
|
266
|
A peptide from human β thymosin as a platform for the development of new anti-biofilm agents for Staphylococcus spp. and Pseudomonas aeruginosa. World J Microbiol Biotechnol 2016; 32:124. [DOI: 10.1007/s11274-016-2096-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/11/2016] [Indexed: 12/01/2022]
|
267
|
Qi Z, Xu W, Meng F, Zhang Q, Chen C, Shao R. Cloning and Expression of β-Defensin from Soiny Mullet (Liza haematocheila), with Insights of its Antibacterial Mechanism. PLoS One 2016; 11:e0157544. [PMID: 27322675 PMCID: PMC4913945 DOI: 10.1371/journal.pone.0157544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/01/2016] [Indexed: 11/18/2022] Open
Abstract
Beta-defensins are important part of innate immunity of fish, which are the first defense line against invading pathogens. In this study, the β-defensin (Lhβ-defensin) gene was cloned from spleen tissue of soiny mullet (Liza haematocheila). Lhβ-defensin cDNA was 747 bp in length, encoding 63 amino acids. Sequence alignment revealed that Lhβ-defensin contained six conserved cysteine residues and shared 97.5% sequence identities with grouper (Epinephelus coioides) β-defensin. Realtime PCR revealed that Lhβ-defensin was highest expressed in the immune related organs, such as spleen, kidney and gut of healthy fish. Following Streptococcus dysgalactiae infection, Lhβ-defensin was up-regulated in immune related organs, e.g. 17.6-fold in spleen and 10.87-fold in gut at 24 h post infection (hpi). Lhβ-defensin possessed a monomeric structure of a three-stranded anti-parallel β-sheet and an α-helix stabilized by three disulfide bonds formed by Cys30-Cys58, Cys36-Cys52, and Cys40-Cys59. In addition to the experimental work, computer simulation was also carried out to determine the possible conformation of β-defensin and its interaction with palmitoyloleoylphosphatidylglycerol (POPG), a model of bacteria membrane. The Lhβ-defensin was found to form dimeric structure stabilized by the van der Waals contacts of Leu35 and Cys37 in two anti-parallel β1-strands and the cation-π interaction between Tyr32 and Arg54 respectively in the two β1-strands. The most important interactions between β-defensin and membrane are the electrostatic interactions between Arg residues in β-defensin and head group of POPG bilayer as well as hydrogen bond interactions between them. Our results were useful for further understanding the potential mechanism of antimicrobial property of fish β-defensins.
Collapse
Affiliation(s)
- Zhitao Qi
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Wei Xu
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Fancui Meng
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China
| | - Qihuan Zhang
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Chenglung Chen
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC
| | - Rong Shao
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| |
Collapse
|
268
|
Han J, Pluhackova K, Wassenaar TA, Böckmann RA. Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations. Biophys J 2016; 109:760-71. [PMID: 26287628 DOI: 10.1016/j.bpj.2015.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 11/25/2022] Open
Abstract
Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin's TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes.
Collapse
Affiliation(s)
- Jing Han
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tsjerk A Wassenaar
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
269
|
Hills RD, McGlinchey N. Model parameters for simulation of physiological lipids. J Comput Chem 2016; 37:1112-8. [PMID: 26864972 PMCID: PMC5067697 DOI: 10.1002/jcc.24324] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/19/2015] [Accepted: 01/17/2016] [Indexed: 12/16/2022]
Abstract
Coarse grain simulation of proteins in their physiological membrane environment can offer insight across timescales, but requires a comprehensive force field. Parameters are explored for multicomponent bilayers composed of unsaturated lipids DOPC and DOPE, mixed-chain saturation POPC and POPE, and anionic lipids found in bacteria: POPG and cardiolipin. A nonbond representation obtained from multiscale force matching is adapted for these lipids and combined with an improved bonding description of cholesterol. Equilibrating the area per lipid yields robust bilayer simulations and properties for common lipid mixtures with the exception of pure DOPE, which has a known tendency to form nonlamellar phase. The models maintain consistency with an existing lipid-protein interaction model, making the force field of general utility for studying membrane proteins in physiologically representative bilayers.
Collapse
Affiliation(s)
- Ronald D Hills
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Ave, Portland, Maine, 04103
| | - Nicholas McGlinchey
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Ave, Portland, Maine, 04103
| |
Collapse
|
270
|
Permeability across lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2254-2265. [PMID: 27085977 DOI: 10.1016/j.bbamem.2016.03.032] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 11/22/2022]
Abstract
Molecular permeation through lipid membranes is a fundamental biological process that is important for small neutral molecules and drug molecules. Precise characterization of free energy surface and diffusion coefficients along the permeation pathway is required in order to predict molecular permeability and elucidate the molecular mechanisms of permeation. Several recent technical developments, including improved molecular models and efficient sampling schemes, are illustrated in this review. For larger penetrants, explicit consideration of multiple collective variables, including orientational, conformational degrees of freedom, are required to be considered in addition to the distance from the membrane center along the membrane normal. Although computationally demanding, this method can provide significant insights into the molecular mechanisms of permeation for molecules of medical and pharmaceutical importance. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
|
271
|
Melcr J, Bonhenry D, Timr Š, Jungwirth P. Transmembrane Potential Modeling: Comparison between Methods of Constant Electric Field and Ion Imbalance. J Chem Theory Comput 2016; 12:2418-25. [DOI: 10.1021/acs.jctc.5b01202] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Josef Melcr
- Institute of Organic
Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo
nám. 2, 16610 Prague 6, Czech Republic
| | - Daniel Bonhenry
- Institute of Organic
Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo
nám. 2, 16610 Prague 6, Czech Republic
| | - Štěpán Timr
- Institute of Organic
Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo
nám. 2, 16610 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic
Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo
nám. 2, 16610 Prague 6, Czech Republic
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| |
Collapse
|
272
|
Skjevik ÅA, Madej BD, Dickson CJ, Lin C, Teigen K, Walker RC, Gould IR. Simulation of lipid bilayer self-assembly using all-atom lipid force fields. Phys Chem Chem Phys 2016; 18:10573-84. [PMID: 27034995 DOI: 10.1039/c5cp07379k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this manuscript we expand significantly on our earlier communication by investigating the bilayer self-assembly of eight different types of phospholipids in unbiased molecular dynamics (MD) simulations using three widely used all-atom lipid force fields. Irrespective of the underlying force field, the lipids are shown to spontaneously form stable lamellar bilayer structures within 1 microsecond, the majority of which display properties in satisfactory agreement with the experimental data. The lipids self-assemble via the same general mechanism, though at formation rates that differ both between lipid types, force fields and even repeats on the same lipid/force field combination. In addition to zwitterionic phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipids, anionic phosphatidylserine (PS) and phosphatidylglycerol (PG) lipids are represented. To our knowledge this is the first time bilayer self-assembly of phospholipids with negatively charged head groups is demonstrated in all-atom MD simulations.
Collapse
Affiliation(s)
- Åge A Skjevik
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, California 92093-0505, USA.
| | | | | | | | | | | | | |
Collapse
|
273
|
Casciola M, Tarek M. A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2278-2289. [PMID: 27018309 DOI: 10.1016/j.bbamem.2016.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 11/26/2022]
Abstract
The transport of chemical compounds across the plasma membrane into the cell is relevant for several biological and medical applications. One of the most efficient techniques to enhance this uptake is reversible electroporation. Nevertheless, the detailed molecular mechanism of transport of chemical species (dyes, drugs, genetic materials, …) following the application of electric pulses is not yet fully elucidated. In the past decade, molecular dynamics (MD) simulations have been conducted to model the effect of pulsed electric fields on membranes, describing several aspects of this phenomenon. Here, we first present a comprehensive review of the results obtained so far modeling the electroporation of lipid membranes, then we extend these findings to study the electrotransfer across lipid bilayers subject to microsecond pulsed electric fields of Tat11, a small hydrophilic charged peptide, and of siRNA. We use in particular a MD simulation protocol that allows to characterize the transport of charged species through stable pores. Unexpectedly, our results show that for an electroporated bilayer subject to transmembrane voltages in the order of 500mV, i.e. consistent with experimental conditions, both Tat11 and siRNA can translocate through nanoelectropores within tens of ns. We discuss these results in comparison to experiments in order to rationalize the mechanism of drug uptake by cells. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Maura Casciola
- Université de Lorraine, UMR 7565, F-54506 Vandoeuvre les Nancy, France; Department of Information Engineering, Electronics and Telecommunications (D.I.E.T), Sapienza University of Rome, 00184 Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Mounir Tarek
- Université de Lorraine, UMR 7565, F-54506 Vandoeuvre les Nancy, France; CNRS, UMR 7565, F-54506 Vandoeuvre les Nancy, France.
| |
Collapse
|
274
|
Javanainen M, Martinez-Seara H. Efficient preparation and analysis of membrane and membrane protein systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2468-2482. [PMID: 26947184 DOI: 10.1016/j.bbamem.2016.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 11/25/2022]
Abstract
Molecular dynamics (MD) simulations have become a highly important technique to consider lipid membrane systems, and quite often they provide considerable added value to laboratory experiments. Rapid development of both software and hardware has enabled the increase of time and size scales reachable by MD simulations to match those attainable by several accurate experimental techniques. However, until recently, the quality and maturity of software tools available for building membrane models for simulations as well as analyzing the results of these simulations have seriously lagged behind. Here, we discuss the recent developments of such tools from the end-users' point of view. In particular, we review the software that can be employed to build lipid bilayers and other related structures with or without embedded membrane proteins to be employed in MD simulations. Additionally, we provide a brief critical insight into force fields and MD packages commonly used for membrane and membrane protein simulations. Finally, we list analysis tools that can be used to study the properties of membrane and membrane protein systems. In all these points we comment on the respective compatibility of the covered tools. We also share our opinion on the current state of the available software. We briefly discuss the most commonly employed tools and platforms on which new software can be built. We conclude the review by providing a few ideas and guidelines on how the development of tools can be further boosted to catch up with the rapid pace at which the field of membrane simulation progresses. This includes improving the compatibility between software tools and promoting the openness of the codes on which these applications rely. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Matti Javanainen
- Department of Physics, Tampere University of Technology, Tampere, Finland.
| | - Hector Martinez-Seara
- Department of Physics, Tampere University of Technology, Tampere, Finland; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
275
|
The Lipid Bilayer Provides a Site for Cortisone Crystallization at High Cortisone Concentrations. Sci Rep 2016; 6:22425. [PMID: 26936102 PMCID: PMC4776104 DOI: 10.1038/srep22425] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022] Open
Abstract
Cortisone is an injected anti-inflammatory drug that can cause painful side effects known as "steroid flares" which are caused by cortisone crystallizing at the injection site. We used molecular dynamics simulations and X-ray diffraction to study the interaction of cortisone with model lipid membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at drug concentrations from 0 mol% to 50 mol%. Cortisone was found to partition in the lipid bilayer and locate in the hydrophilic to hydrophobic interface of the membranes. Cortisone strongly affects the integrity of the membrane, as quantified by a decreased membrane thickness, increased area per lipid, and decreased lipid tail order parameters. At cortisone concentrations of more than 20 mol%, signals from crystallized cortisone were observed. These crystallites are embedded in the bilayers and orient with the membranes. While the cortisone molecules align parallel to the bilayers at low concentrations, they start to penetrate the hydrophobic core at higher concentrations. Trans-membrane crystallites start to nucleate when the membrane thickness has decreased such that cortisone molecules in the different leaflets can find partners from the opposite leaflet resulting in a non-zero density of cortisone molecules in the bilayer center. We suggest that the lipid bilayer provides a site for cortisone crystallization.
Collapse
|
276
|
Bartuzi D, Kaczor AA, Matosiuk D. Interplay between Two Allosteric Sites and Their Influence on Agonist Binding in Human μ Opioid Receptor. J Chem Inf Model 2016; 56:563-70. [PMID: 26863088 DOI: 10.1021/acs.jcim.5b00705] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Allostery is a widespread mechanism that allows for precise protein tuning. Its underlying mechanisms are elusive, particularly when there are multiple allosteric sites at the protein. This concerns also G-protein-coupled receptors (GPCRs), which are targets for a vast part of currently used drugs. To address this issue, we performed molecular dynamics simulations of a GPCR-human μ opioid receptor (MOR) in a native-like environment, with full agonist (R)-methadone, Na(+) ions, and a positive modulator BMS986122 in various configurations. We found that MOR's seventh transmembrane helix (TM VII) is central for allosteric signal transmission, and modulators affect its bending and rotation. The PAM stabilizes favorable agonist interactions, while Na(+) tends to disrupt agonist binding. We identified two residues involved in allosteric signal transmission: Trp 7.35 at the top and Tyr 7.53 at the bottom of TM VII.
Collapse
Affiliation(s)
- Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin , 4A Chodźki Str., PL20093 Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin , 4A Chodźki Str., PL20093 Lublin, Poland.,University of Eastern Finland , School of Pharmacy, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin , 4A Chodźki Str., PL20093 Lublin, Poland
| |
Collapse
|
277
|
Wayment-Steele HK, Jing Y, Swann MJ, Johnson LE, Agnarsson B, Svedhem S, Johal MS, Kunze A. Effects of Al(3+) on Phosphocholine and Phosphoglycerol Containing Solid Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1771-1781. [PMID: 26783873 DOI: 10.1021/acs.langmuir.5b03999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aluminum has attracted great attention recently as it has been suggested by several studies to be associated with increased risks for Alzheimer's and Parkinson's disease. The toxicity of the trivalent ion is assumed to derive from structural changes induced in lipid bilayers upon binding, though the mechanism of this process is still not well understood. In the present study we elucidate the effect of Al(3+) on supported lipid bilayers (SLBs) using fluorescence microscopy, the quartz crystal microbalance with dissipation (QCM-D) technique, dual-polarization interferometry (DPI), and molecular dynamics (MD) simulations. Results from these techniques show that binding of Al(3+) to SLBs containing negatively charged and neutral phospholipids induces irreversible changes such as domain formation. The measured variations in SLB thickness, birefringence, and density indicate a phase transition from a disordered to a densely packed ordered phase.
Collapse
Affiliation(s)
- Hannah K Wayment-Steele
- Department of Chemistry, Pomona College , 645 North College Ave., Claremont, California 91711, United States
| | - Yujia Jing
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
| | - Marcus J Swann
- Swann Scientific Consulting Ltd., 110 Sandy Lane, Lymm, Cheshire, U.K
| | - Lewis E Johnson
- Department of Chemistry, Pomona College , 645 North College Ave., Claremont, California 91711, United States
- Department of Chemistry, University of Washington , 109 Bagley Hall, Seattle, Washington 98195, United States
| | - Björn Agnarsson
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
| | - Sofia Svedhem
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
| | - Malkiat S Johal
- Department of Chemistry, Pomona College , 645 North College Ave., Claremont, California 91711, United States
| | - Angelika Kunze
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
- Institute of Physical Chemistry, University of Göttingen , 37077 Göttingen, Germany
| |
Collapse
|
278
|
Sun L, Bertelshofer F, Greiner G, Böckmann RA. Characteristics of Sucrose Transport through the Sucrose-Specific Porin ScrY Studied by Molecular Dynamics Simulations. Front Bioeng Biotechnol 2016; 4:9. [PMID: 26913282 PMCID: PMC4753733 DOI: 10.3389/fbioe.2016.00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/25/2016] [Indexed: 11/17/2022] Open
Abstract
Sucrose-specific porin (ScrY) is a transmembrane protein that allows for the uptake of sucrose under growth-limiting conditions. The crystal structure of ScrY was resolved before by X-ray crystallography, both in its uncomplexed form and with bound sucrose. However, little is known about the molecular characteristics of the transport mechanism of ScrY. To date, there has not yet been any clear demonstration for sucrose transport through the ScrY. Here, the dynamics of the ScrY trimer embedded in a phospholipid bilayer as well as the characteristics of sucrose translocation were investigated by means of atomistic molecular dynamics (MD) simulations. The potential of mean force (PMF) for sucrose translocation through the pore showed two main energy barriers within the constriction region of ScrY. Energy decomposition allowed to pinpoint three aspartic acids as key residues opposing the passage of sucrose, all located within the L3 loop. Mutation of two aspartic acids to uncharged residues resulted in an accordingly modified electrostatics and decreased PMF barrier. The chosen methodology and results will aid in the design of porins with modified transport specificities.
Collapse
Affiliation(s)
- Liping Sun
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Franziska Bertelshofer
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Computer Graphics Group, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Günther Greiner
- Computer Graphics Group, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
279
|
Affiliation(s)
- Zhenyan Jiang
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, 91058Germany
| | - Hansi Zhang
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, 91058Germany
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, 91058Germany
| |
Collapse
|
280
|
Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, Wei S, Buckner J, Jeong JC, Qi Y, Jo S, Pande VS, Case DA, Brooks CL, MacKerell AD, Klauda JB, Im W. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput 2016. [PMID: 26631602 DOI: 10.1021/acs.jctc.5b00935/asset/images/large/ct-2015-00935e0005.jpeg] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.
Collapse
Affiliation(s)
- Jumin Lee
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Xi Cheng
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Jason M Swails
- Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Min Sun Yeom
- Korean Institute of Science and Technology Information , Yuseong-gu, Daejeon 305-806, Korea
| | - Peter K Eastman
- Department of Bioengineering, Stanford University , Stanford, California 94035, United States
| | - Justin A Lemkul
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Shuai Wei
- Department of Chemistry and the Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Joshua Buckner
- Department of Chemistry and the Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jong Cheol Jeong
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Yifei Qi
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Sunhwan Jo
- Leadership Computing Facility, Argonne National Laboratory , 9700 Cass Avenue, Building 240, Argonne, Illinois 60439, United States
| | - Vijay S Pande
- Department of Bioengineering, Stanford University , Stanford, California 94035, United States
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Charles L Brooks
- Department of Chemistry and the Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Program, University of Maryland , College Park, Maryland 20742, United States
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| |
Collapse
|
281
|
Saita E, Albanesi D, de Mendoza D. Sensing membrane thickness: Lessons learned from cold stress. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:837-846. [PMID: 26776056 DOI: 10.1016/j.bbalip.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
The lipid bilayer component of biological membranes is important for the distribution, organization, and function of bilayer spanning proteins. These physical barriers are subjected to bilayer perturbations. As a consequence, nature has evolved proteins that are able to sense changes in the bilayer properties and transform these lipid-mediated stimuli into intracellular signals. A structural feature that most signal-transducing membrane-embedded proteins have in common is one or more α-helices that traverse the lipid bilayer. Because of the interaction with the surrounding lipids, the organization of these transmembrane helices will be sensitive to membrane properties, like hydrophobic thickness. The helices may adapt to the lipids in different ways, which in turn can influence the structure and function of the intact membrane proteins. We review recent insights into the molecular basis of thermosensing via changes in membrane thickness and consider examples in which the hydrophobic matching can be demonstrated using reconstituted membrane systems. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
- Emilio Saita
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET Rosario, 2000 Rosario, Argentina
| | - Daniela Albanesi
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET Rosario, 2000 Rosario, Argentina
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET Rosario, 2000 Rosario, Argentina.
| |
Collapse
|
282
|
Mori T, Miyashita N, Im W, Feig M, Sugita Y. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1635-51. [PMID: 26766517 DOI: 10.1016/j.bbamem.2015.12.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 12/15/2022]
Abstract
This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Takaharu Mori
- iTHES Research Group and Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoyuki Miyashita
- Laboratory for Biomolecular Function Simulation, RIKEN Quantitative Biology Center, Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Faculty of Biology-Oriented Science and Technology, KINDAI University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Wonpil Im
- Department of Molecular Sciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Michael Feig
- Laboratory for Biomolecular Function Simulation, RIKEN Quantitative Biology Center, Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Yuji Sugita
- iTHES Research Group and Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory for Biomolecular Function Simulation, RIKEN Quantitative Biology Center, Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States; Computational Biophysics Research Team, RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
283
|
Lyubartsev AP, Rabinovich AL. Force Field Development for Lipid Membrane Simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2483-2497. [PMID: 26766518 DOI: 10.1016/j.bbamem.2015.12.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 02/04/2023]
Abstract
With the rapid development of computer power and wide availability of modelling software computer simulations of realistic models of lipid membranes, including their interactions with various molecular species, polypeptides and membrane proteins have become feasible for many research groups. The crucial issue of the reliability of such simulations is the quality of the force field, and many efforts, especially in the latest several years, have been devoted to parametrization and optimization of the force fields for biomembrane modelling. In this review, we give account of the recent development in this area, covering different classes of force fields, principles of the force field parametrization, comparison of the force fields, and their experimental validation. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, SE 106 91, Stockholm, Sweden.
| | - Alexander L Rabinovich
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya 11, Petrozavodsk, 185910, Russian Federation.
| |
Collapse
|
284
|
Kong X, Sun H, Pan P, Tian S, Li D, Li Y, Hou T. Molecular principle of the cyclin-dependent kinase selectivity of 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine-5-carbonitrile derivatives revealed by molecular modeling studies. Phys Chem Chem Phys 2016; 18:2034-46. [DOI: 10.1039/c5cp05622e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the high sequence identity of the binding pockets of cyclin-dependent kinases (CDKs), designing highly selective inhibitors towards a specific CDK member remains a big challenge.
Collapse
Affiliation(s)
- Xiaotian Kong
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- P. R. China
- College of Pharmaceutical Sciences
| | - Huiyong Sun
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- P. R. China
| | - Peichen Pan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- P. R. China
| | - Sheng Tian
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- P. R. China
| | - Dan Li
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- P. R. China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- P. R. China
| | - Tingjun Hou
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- P. R. China
- College of Pharmaceutical Sciences
| |
Collapse
|
285
|
Singh MK, Shweta H, Khan MF, Sen S. New insight into probe-location dependent polarity and hydration at lipid/water interfaces: comparison between gel- and fluid-phases of lipid bilayers. Phys Chem Chem Phys 2016; 18:24185-97. [DOI: 10.1039/c6cp01201a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Location dependent polarity and hydration probed by a new series of 4-aminophthalimide-based fluorescent molecules (4AP-Cn;n= 2–10, 12) show different behaviour at gel- and fluid-phase lipid/water interfaces.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Spectroscopy Laboratory
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Him Shweta
- Spectroscopy Laboratory
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Mohammad Firoz Khan
- Spectroscopy Laboratory
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Sobhan Sen
- Spectroscopy Laboratory
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| |
Collapse
|
286
|
Qian Z, Jia Y, Wei G. Binding Orientations and Lipid Interactions of Human Amylin at Zwitterionic and Anionic Lipid Bilayers. J Diabetes Res 2016; 2016:1749196. [PMID: 26649316 PMCID: PMC4663351 DOI: 10.1155/2016/1749196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/22/2015] [Accepted: 04/15/2015] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence suggests that the interaction of human islet amyloid polypeptide (hIAPP) with lipids may facilitate hIAPP aggregation and cause the death of pancreatic islet β-cells. However, the detailed hIAPP-membrane interactions and the influences of lipid compositions are unclear. In this study, as a first step to understand the mechanism of membrane-mediated hIAPP aggregation, we investigate the binding behaviors of hIAPP monomer at zwitterionic palmitoyloleoyl-phosphatidylcholine (POPC) bilayer by performing atomistic molecular dynamics simulations. The results are compared with those of hIAPP at anionic palmitoyloleoyl-phosphatidylglycerol (POPG) bilayers. We find that the adsorption of hIAPP to POPC bilayer is mainly initiated from the C-terminal region and the peptide adopts a helical structure with multiple binding orientations, while the adsorption to POPG bilayer is mostly initiated from the N-terminal region and hIAPP displays one preferential binding orientation, with its hydrophobic residues exposed to water. hIAPP monomer inserts into POPC lipid bilayers more readily than into POPG bilayers. Peptide-lipid interaction analyses show that the different binding features of hIAPP at POPC and POPG bilayers are attributed to different magnitudes of electrostatic and hydrogen-bonding interactions with lipids. This study provides mechanistic insights into the different interaction behaviors of hIAPP with zwitterionic and anionic lipid bilayers.
Collapse
Affiliation(s)
- Zhenyu Qian
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yan Jia
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
- *Guanghong Wei:
| |
Collapse
|
287
|
Computer Simulation and Modeling Techniques in the Study of Nanoparticle-Membrane Interactions. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/bs.arcc.2016.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
288
|
Catte A, Girych M, Javanainen M, Loison C, Melcr J, Miettinen MS, Monticelli L, Määttä J, Oganesyan VS, Ollila OHS, Tynkkynen J, Vilov S. Molecular electrometer and binding of cations to phospholipid bilayers. Phys Chem Chem Phys 2016; 18:32560-32569. [DOI: 10.1039/c6cp04883h] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The molecular electrometer – reorientation of lipid head due to bound charge – allows direct quantitative vetting of simulations against noninvasive NMR experiments; most simulation models overestimated lipid–cation affinities.
Collapse
|
289
|
Kirsch SA, Böckmann RA. Membrane pore formation in atomistic and coarse-grained simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:2266-2277. [PMID: 26748016 DOI: 10.1016/j.bbamem.2015.12.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/26/2022]
Abstract
Biological cells and their organelles are protected by ultra thin membranes. These membranes accomplish a broad variety of important tasks like separating the cell content from the outer environment, they are the site for cell-cell interactions and many enzymatic reactions, and control the in- and efflux of metabolites. For certain physiological functions e.g. in the fusion of membranes and also in a number of biotechnological applications like gene transfection the membrane integrity needs to be compromised to allow for instance for the exchange of polar molecules across the membrane barrier. Mechanisms enabling the transport of molecules across the membrane involve membrane proteins that form specific pores or act as transporters, but also so-called lipid pores induced by external fields, stress, or peptides. Recent progress in the simulation field enabled to closely mimic pore formation as supposed to occur in vivo or in vitro. Here, we review different simulation-based approaches in the study of membrane pores with a focus on lipid pore properties such as their size and energetics, poration mechanisms based on the application of external fields, charge imbalances, or surface tension, and on pores that are induced by small molecules, peptides, and lipids. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Sonja A Kirsch
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
290
|
Botan A, Favela-Rosales F, Fuchs PFJ, Javanainen M, Kanduč M, Kulig W, Lamberg A, Loison C, Lyubartsev A, Miettinen MS, Monticelli L, Määttä J, Ollila OHS, Retegan M, Róg T, Santuz H, Tynkkynen J. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions. J Phys Chem B 2015; 119:15075-88. [PMID: 26509669 PMCID: PMC4677354 DOI: 10.1021/acs.jpcb.5b04878] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/19/2015] [Indexed: 11/28/2022]
Abstract
Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C-H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P-N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files ( https://zenodo.org/collection/user-nmrlipids ) has become the most extensive publicly available collection of molecular dynamics simulation trajectories of lipid bilayers.
Collapse
Affiliation(s)
- Alexandru Botan
- Institut
Lumière Matière, UMR5306 Université
Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Fernando Favela-Rosales
- Departamento
de Física, Centro de Investigación
y de Estudios Avanzados del IPN, Apartado, Postal 14-740, Mexico City, 07000 México
D.F., México
| | - Patrick F. J. Fuchs
- Institut
Jacques Monod, UMR 7592 CNRS, Université Paris
Diderot, Sorbonne, Paris Cité, F-75205 Paris, France
| | - Matti Javanainen
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Matej Kanduč
- Fachbereich
Physik, Freie Universität Berlin, Berlin, 14195 Germany
| | - Waldemar Kulig
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Antti Lamberg
- Department
of Chemical Engineering, Kyoto University, 615-8510 Kyoto, Japan
| | - Claire Loison
- Institut
Lumière Matière, UMR5306 Université
Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Alexander Lyubartsev
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | | | - Luca Monticelli
- Institut
de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5086, Lyon 69 367, France
| | - Jukka Määttä
- Department of Chemistry, Aalto University, 00076 Aalto, Finland
| | - O. H. Samuli Ollila
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Aalto, Finland
| | - Marius Retegan
- Max Planck Institute
for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany
| | - Tomasz Róg
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Hubert Santuz
- INSERM, UMR_S 1134, DSIMB, Paris 75739, France
- Université
Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France
- Institut
National de la Transfusion Sanguine (INTS), Paris 75739, France
- Laboratoire d’Excellence GR-Ex, Paris 75015, France
| | - Joona Tynkkynen
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| |
Collapse
|
291
|
Lindahl L, Genheden S, Eriksson LA, Olsson L, Bettiga M. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii. Biotechnol Bioeng 2015; 113:744-53. [PMID: 26416641 PMCID: PMC5064642 DOI: 10.1002/bit.25845] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/21/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022]
Abstract
Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic‐acid‐tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingolipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin‐treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress. Biotechnol. Bioeng. 2016;113: 744–753. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lina Lindahl
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Samuel Genheden
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Maurizio Bettiga
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
292
|
Bovigny C, Tamò G, Lemmin T, Maïno N, Dal Peraro M. LipidBuilder: A Framework To Build Realistic Models for Biological Membranes. J Chem Inf Model 2015; 55:2491-9. [PMID: 26606666 DOI: 10.1021/acs.jcim.5b00501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The physical and chemical characterization of biological membranes is of fundamental importance for understanding the functional role of lipid bilayers in shaping cells and organelles, steering vesicle trafficking and promoting membrane-protein signaling. Molecular dynamics simulations stand as a powerful tool to probe the properties of membranes at atomistic level. However, the biological membrane is highly complex, and closely mimicking its physiological constitution in silico is not a straightforward task. Here, we present LipidBuilder, a framework for creating and storing models of biologically relevant phospholipid species with acyl tails of heterogeneous composition. LipidBuilder also enables the assembly of these database-stored lipids into realistic bilayers featuring asymmetric distribution on layer leaflets and concentration of given membrane constituents as defined, for example, by lipidomics experiments. The ability of LipidBuilder to assemble robust membrane models was validated by simulating membranes of homogeneous lipid composition for which experimental data are available. Furthermore, taking advantage of the extensive lipid headgroup repertoire, we assembled models of membranes of heterogeneous nature as naturally found in viral (phage PRD1), bacterial (Salmonella enterica, Laurinavicius , S. ; Kakela , R. ; Somerharju , P. ; Bamford , D. H. ; Virology 2004 , 322 , 328 - 336 ) and plant (Chlorella kessleri, Rezanka , T. ; Podojil , M. ; J. Chromatogr. 1989 , 463 , 397 - 408 ) organisms. These realistic membrane models were built using a near-exact lipid composition revealed from analytical chemistry experiments. We suggest LipidBuilder as a useful tool to model biological membranes of near-biological complexity, and as a robust complement to the current efforts to characterize the biophysical properties of biological membrane using molecular simulation.
Collapse
Affiliation(s)
- Christophe Bovigny
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB) , CH-1015 Lausanne, Switzerland
| | - Giorgio Tamò
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB) , CH-1015 Lausanne, Switzerland
| | - Thomas Lemmin
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Nicolas Maïno
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB) , CH-1015 Lausanne, Switzerland
| |
Collapse
|
293
|
Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, Wei S, Buckner J, Jeong JC, Qi Y, Jo S, Pande VS, Case DA, Brooks CL, MacKerell AD, Klauda JB, Im W. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput 2015; 12:405-13. [PMID: 26631602 PMCID: PMC4712441 DOI: 10.1021/acs.jctc.5b00935] [Citation(s) in RCA: 2315] [Impact Index Per Article: 257.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Proper treatment of nonbonded interactions
is essential for the
accuracy of molecular dynamics (MD) simulations, especially in studies
of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in
different MD simulation programs can result in disagreements with
published simulations performed with CHARMM due to differences in
the protocols used to treat the long-range and 1-4 nonbonded interactions.
In this study, we systematically test the use of the C36 lipid FF
in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of
Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested
to find the optimal simulation protocol to best match bilayer properties
of six lipids with varying acyl chain saturation and head groups.
MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine
(DPPC) bilayer were used to obtain the optimal protocol for each program.
MD simulations with all programs were found to reasonably match the
DPPC bilayer properties (surface area per lipid, chain order parameters,
and area compressibility modulus) obtained using the standard protocol
used in CHARMM as well as from experiments. The optimal simulation
protocol was then applied to the other five lipid simulations and
resulted in excellent agreement between results from most simulation
programs as well as with experimental data. AMBER compared least favorably
with the expected membrane properties, which appears to be due to
its use of the hard-truncation in the LJ potential versus a force-based
switching function used to smooth the LJ potential as it approaches
the cutoff distance. The optimal simulation protocol for each program
has been implemented in CHARMM-GUI. This protocol is expected to be
applicable to the remainder of the additive C36 FF including the proteins,
nucleic acids, carbohydrates, and small molecules.
Collapse
Affiliation(s)
- Jumin Lee
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Xi Cheng
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Jason M Swails
- Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Min Sun Yeom
- Korean Institute of Science and Technology Information , Yuseong-gu, Daejeon 305-806, Korea
| | - Peter K Eastman
- Department of Bioengineering, Stanford University , Stanford, California 94035, United States
| | - Justin A Lemkul
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Shuai Wei
- Department of Chemistry and the Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Joshua Buckner
- Department of Chemistry and the Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jong Cheol Jeong
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Yifei Qi
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Sunhwan Jo
- Leadership Computing Facility, Argonne National Laboratory , 9700 Cass Avenue, Building 240, Argonne, Illinois 60439, United States
| | - Vijay S Pande
- Department of Bioengineering, Stanford University , Stanford, California 94035, United States
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Charles L Brooks
- Department of Chemistry and the Biophysics Program, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Program, University of Maryland , College Park, Maryland 20742, United States
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas , Lawrence, Kansas 66047, United States
| |
Collapse
|
294
|
Jovanovic O, Pashkovskaya AA, Annibal A, Vazdar M, Burchardt N, Sansone A, Gille L, Fedorova M, Ferreri C, Pohl EE. The molecular mechanism behind reactive aldehyde action on transmembrane translocations of proton and potassium ions. Free Radic Biol Med 2015; 89:1067-76. [PMID: 26520807 PMCID: PMC7115859 DOI: 10.1016/j.freeradbiomed.2015.10.422] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022]
Abstract
Membrane transporters are involved in enormous number of physiological and pathological processes. Under oxidative stress they become targets for reactive oxygen species and its derivatives which cause protein damage and/or influence protein function(s). The molecular mechanisms of this interaction are poorly understood. Here we describe a novel lipid-mediated mechanism by which biologically important reactive aldehydes (RAs; 4-hydroxy-2-nonenal, 4-hydroxy-2-hexenal and 4-oxo-2-nonenal) modify the activity of several membrane transporters. We revealed that investigated RAs covalently modify the membrane lipid phosphatidylethanolamine (PE), that lead to the formation of different membrane active adducts. Molecular dynamic simulations suggested that anchoring of PE-RA adducts in the lipid headgroup region is primarily responsible for changes in the lipid membrane properties, such as membrane order parameter, boundary potential and membrane curvature. These caused the alteration of transport activity of mitochondrial uncoupling protein 1, potassium carrier valinomycin and ionophore CCCP. In contrast, neither direct protein modification by RAs as previously shown for cytosolic proteins, nor its insertion into membrane bilayers influenced the studied transporters. Our results explain the diversity of aldehyde action on cell proteins and open a new field in the investigation of lipid-mediated effects of biologically important RAs on membrane receptors, channels and transporters.
Collapse
Affiliation(s)
- Olga Jovanovic
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Alina A Pashkovskaya
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Andrea Annibal
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, University of Leipzig, Germany
| | - Mario Vazdar
- Division of Organic Chemistry and Biochemistry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nadine Burchardt
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Anna Sansone
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Lars Gille
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, University of Leipzig, Germany
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
295
|
Wennberg CL, Murtola T, Páll S, Abraham MJ, Hess B, Lindahl E. Direct-Space Corrections Enable Fast and Accurate Lorentz-Berthelot Combination Rule Lennard-Jones Lattice Summation. J Chem Theory Comput 2015; 11:5737-46. [PMID: 26587968 DOI: 10.1021/acs.jctc.5b00726] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Long-range lattice summation techniques such as the particle-mesh Ewald (PME) algorithm for electrostatics have been revolutionary to the precision and accuracy of molecular simulations in general. Despite the performance penalty associated with lattice summation electrostatics, few biomolecular simulations today are performed without it. There are increasingly strong arguments for moving in the same direction for Lennard-Jones (LJ) interactions, and by using geometric approximations of the combination rules in reciprocal space, we have been able to make a very high-performance implementation available in GROMACS. Here, we present a new way to correct for these approximations to achieve exact treatment of Lorentz-Berthelot combination rules within the cutoff, and only a very small approximation error remains outside the cutoff (a part that would be completely ignored without LJ-PME). This not only improves accuracy by almost an order of magnitude but also achieves absolute biomolecular simulation performance that is an order of magnitude faster than any other available lattice summation technique for LJ interactions. The implementation includes both CPU and GPU acceleration, and its combination with improved scaling LJ-PME simulations now provides performance close to the truncated potential methods in GROMACS but with much higher accuracy.
Collapse
Affiliation(s)
- Christian L Wennberg
- Swedish e-Science Research Center, Department of Theoretical Physics, KTH Royal Institute of Technology , Box 1031, 171 21 Solna, Sweden.,Center for Biomembrane Research, Department of Biophysics & Biochemistry, Stockholm University , 106 91 Stockholm, Sweden
| | - Teemu Murtola
- Swedish e-Science Research Center, Department of Theoretical Physics, KTH Royal Institute of Technology , Box 1031, 171 21 Solna, Sweden.,Center for Biomembrane Research, Department of Biophysics & Biochemistry, Stockholm University , 106 91 Stockholm, Sweden
| | - Szilárd Páll
- Swedish e-Science Research Center, Department of Theoretical Physics, KTH Royal Institute of Technology , Box 1031, 171 21 Solna, Sweden.,Center for Biomembrane Research, Department of Biophysics & Biochemistry, Stockholm University , 106 91 Stockholm, Sweden
| | - Mark J Abraham
- Swedish e-Science Research Center, Department of Theoretical Physics, KTH Royal Institute of Technology , Box 1031, 171 21 Solna, Sweden.,Center for Biomembrane Research, Department of Biophysics & Biochemistry, Stockholm University , 106 91 Stockholm, Sweden
| | - Berk Hess
- Swedish e-Science Research Center, Department of Theoretical Physics, KTH Royal Institute of Technology , Box 1031, 171 21 Solna, Sweden.,Center for Biomembrane Research, Department of Biophysics & Biochemistry, Stockholm University , 106 91 Stockholm, Sweden
| | - Erik Lindahl
- Swedish e-Science Research Center, Department of Theoretical Physics, KTH Royal Institute of Technology , Box 1031, 171 21 Solna, Sweden.,Center for Biomembrane Research, Department of Biophysics & Biochemistry, Stockholm University , 106 91 Stockholm, Sweden
| |
Collapse
|
296
|
Bartuzi D, Kaczor AA, Matosiuk D. Activation and Allosteric Modulation of Human μ Opioid Receptor in Molecular Dynamics. J Chem Inf Model 2015; 55:2421-34. [DOI: 10.1021/acs.jcim.5b00280] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Damian Bartuzi
- Department
of Synthesis and Chemical Technology of Pharmaceutical Substances
with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical
Analytics, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Agnieszka A. Kaczor
- Department
of Synthesis and Chemical Technology of Pharmaceutical Substances
with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical
Analytics, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Dariusz Matosiuk
- Department
of Synthesis and Chemical Technology of Pharmaceutical Substances
with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical
Analytics, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| |
Collapse
|
297
|
Neale C, Huang K, García AE, Tristram-Nagle S. Penetration of HIV-1 Tat47-57 into PC/PE Bilayers Assessed by MD Simulation and X-ray Scattering. MEMBRANES 2015; 5:473-94. [PMID: 26402709 PMCID: PMC4584291 DOI: 10.3390/membranes5030473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/09/2015] [Indexed: 01/07/2023]
Abstract
The interactions of the basic, cell-penetrating region (Y47GRKKRRQRRR57) of the HIV-1 Tat protein with dioleoylphosphatidylcholine (DOPC) bilayers were previously assessed by comparing experimental X-ray diffuse scattering with atomistic molecular dynamics simulations. Here, we extend this investigation by evaluating the influence of phosphatidylethanolamine (PE) lipids. Using experimental bilayer form factors derivedfrom X-ray diffuse scattering data as a guide, our simulations indicate that Tat peptides localize close to the carbonyl-glycerol group in the headgroup region of bilayers composed of either DOPC or DOPC:DOPE (1:1) lipid. Our results also suggest that Tat peptides may more frequently insert into the hydrophobic core of bilayers composed of PC:PE (1:1) lipids than into bilayers composed entirely of PC lipids. PE lipids may facilitate peptide translocation across a lipid bilayer by stabilizing intermediate states in which hydrated peptides span the bilayer.
Collapse
Affiliation(s)
- Chris Neale
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180-3590, USA.
| | - Kun Huang
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180-3590, USA.
| | - Angel E García
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180-3590, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180-3590, USA.
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
298
|
Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering. MEMBRANES 2015; 5:454-72. [PMID: 26402708 PMCID: PMC4584290 DOI: 10.3390/membranes5030454] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
Abstract
We review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach produces robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). From model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid's different moieties (e.g., acyl chains, headgroups, backbones, etc.).
Collapse
|
299
|
Yesylevskyy S, Cardey B, Kraszewski S, Foley S, Enescu M, da Silva AM, Dos Santos HF, Ramseyer C. Empirical force field for cisplatin based on quantum dynamics data: case study of new parameterization scheme for coordination compounds. J Mol Model 2015; 21:268. [PMID: 26386959 DOI: 10.1007/s00894-015-2812-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
Parameterization of molecular complexes containing a metallic compound, such as cisplatin, is challenging due to the unconventional coordination nature of the bonds which involve platinum atoms. In this work, we develop a new methodology of parameterization for such compounds based on quantum dynamics (QD) calculations. We show that the coordination bonds and angles are more flexible than in normal covalent compounds. The influence of explicit solvent is also shown to be crucial to determine the flexibility of cisplatin in quantum dynamics simulations. Two empirical topologies of cisplatin were produced by fitting its atomic fluctuations against QD in vacuum and QD with explicit first solvation shell of water molecules respectively. A third topology built in a standard way from the static optimized structure was used for comparison. The later one leads to an excessively rigid molecule and exhibits much smaller fluctuations of the bonds and angles than QD reveals. It is shown that accounting for the high flexibility of cisplatin molecule is needed for adequate description of its first hydration shell. MD simulations with flexible QD-based topology also reveal a significant decrease of the barrier of passive diffusion of cisplatin accross the model lipid bilayer. These results confirm that flexibility of organometallic compounds is an important feature to be considered in classical molecular dynamics topologies. Proposed methodology based on QD simulations provides a systematic way of building such topologies.
Collapse
Affiliation(s)
- S Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, Kiev-28, 03680, Ukraine
| | - Bruno Cardey
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030, Besançon Cedex, France
| | - S Kraszewski
- Department of Biomedical Engineering (W11/K7), Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Sarah Foley
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030, Besançon Cedex, France
| | - Mironel Enescu
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030, Besançon Cedex, France
| | - Antônio M da Silva
- Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora, MG, 36036-900, Brazil
| | - Hélio F Dos Santos
- Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora, MG, 36036-900, Brazil
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030, Besançon Cedex, France.
| |
Collapse
|
300
|
Gu RX, Corradi V, Singh G, Choudhury HG, Beis K, Tieleman DP. Conformational Changes of the Antibacterial Peptide ATP Binding Cassette Transporter McjD Revealed by Molecular Dynamics Simulations. Biochemistry 2015; 54:5989-98. [PMID: 26334959 DOI: 10.1021/acs.biochem.5b00753] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ATP binding cassette (ABC) transporters form one of the largest protein superfamilies. They use the energy of ATP hydrolysis to transport chemically diverse ligands across membranes. An alternating access mechanism in which the transporter switches between inward- and outward-facing conformations has been proposed to describe the translocation process. One of the main open questions in this process is the degree of opening of the transporter at different stages of the transport cycle, as crystal structures and biochemical data have suggested a wide range of distances between nucleotide binding domains. Recently, the crystal structure of McjD, an antibacterial peptide ABC transporter from Escherichia coli, revealed a new occluded intermediate state of the transport cycle. The transmembrane domain is closed on both sides of the membrane, forming a cavity that can accommodate its ligand, MccJ25, a lasso peptide of 21 amino acids. In this work, we investigate the degree of opening of the transmembrane cavity required for ligand translocation. By means of steered molecular dynamics simulations, the ligand was pulled from the internal cavity to the extracellular side. This resulted in an outward-facing state. Comparison with existing outward-facing crystal structures shows a smaller degree of opening in the simulations, suggesting that the large conformational changes in some crystal structures may not be necessary even for a large substrate like MccJ25.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - Gurpreet Singh
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - Hassanul G Choudhury
- Department of Life Sciences, Imperial College London , South Kensington, London SW7 2AZ, United Kingdom.,Membrane Protein Lab, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, United Kingdom.,Rutherford Appleton Laboratory , Research Complex at Harwell, Oxfordshire OX11 0DE, United Kingdom
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London , South Kensington, London SW7 2AZ, United Kingdom.,Membrane Protein Lab, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, United Kingdom.,Rutherford Appleton Laboratory , Research Complex at Harwell, Oxfordshire OX11 0DE, United Kingdom
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|