251
|
Carey DE, Zitomer DH, Hristova KR, Kappell AD, McNamara PJ. Triclocarban Influences Antibiotic Resistance and Alters Anaerobic Digester Microbial Community Structure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:126-134. [PMID: 26588246 DOI: 10.1021/acs.est.5b03080] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Triclocarban (TCC) is one of the most abundant organic micropollutants detected in biosolids. Lab-scale anaerobic digesters were amended with TCC at concentrations ranging from the background concentration of seed biosolids (30 mg/kg) to toxic concentrations of 850 mg/kg to determine the effect on methane production, relative abundance of antibiotic resistance genes, and microbial community structure. Additionally, the TCC addition rate was varied to determine the impacts of acclimation time. At environmentally relevant TCC concentrations (max detect = 440 mg/kg), digesters maintained function. Digesters receiving 450 mg/kg of TCC maintained function under gradual TCC addition, but volatile fatty acid concentrations increased, pH decreased, and methane production ceased when immediately fed this concentration. The concentrations of the mexB gene (encoding for a multidrug efflux pump) were higher with all concentrations of TCC compared to a control, but higher TCC concentrations did not correlate with increased mexB abundance. The relative abundance of the gene tet(L) was greater in the digesters that no longer produced methane, and no effect on the relative abundance of the class 1 integron integrase encoding gene (intI1) was observed. Illumina sequencing revealed substantial community shifts in digesters that functionally failed from increased levels of TCC. More subtle, yet significant, community shifts were observed in digesters amended with TCC levels that did not inhibit function. This research demonstrates that TCC can select for a multidrug resistance encoding gene in mixed community anaerobic environments, and this selection occurs at concentrations (30 mg/kg) that can be found in full-scale anaerobic digesters (U.S. median concentration = 22 mg/kg, mean = 39 mg/kg).
Collapse
Affiliation(s)
- Daniel E Carey
- Department of Civil, Construction, and Environmental Engineering, 1637 West Wisconsin Avenue, Marquette University , Milwaukee 53213, Wisconsin, United States
| | - Daniel H Zitomer
- Department of Civil, Construction, and Environmental Engineering, 1637 West Wisconsin Avenue, Marquette University , Milwaukee 53213, Wisconsin, United States
| | - Krassimira R Hristova
- Department of Biological Sciences, Marquette University , 530 N. 15th Street, Milwaukee 53213, Wisconsin, United States
| | - Anthony D Kappell
- Department of Biological Sciences, Marquette University , 530 N. 15th Street, Milwaukee 53213, Wisconsin, United States
| | - Patrick J McNamara
- Department of Civil, Construction, and Environmental Engineering, 1637 West Wisconsin Avenue, Marquette University , Milwaukee 53213, Wisconsin, United States
| |
Collapse
|
252
|
Wang FH, Qiao M, Chen Z, Su JQ, Zhu YG. Antibiotic resistance genes in manure-amended soil and vegetables at harvest. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:215-21. [PMID: 26124067 DOI: 10.1016/j.jhazmat.2015.05.028] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/23/2015] [Accepted: 05/16/2015] [Indexed: 05/22/2023]
Abstract
Lettuce and endive, which can be eaten raw, were planted on the manure-amended soil in order to explore the influence of plants on the abundance of antibiotic resistance genes (ARGs) in bulk soil and rhizosphere soil, and the occurrence of ARGs on harvested vegetables. Twelve ARGs and one integrase gene (intI1) were detected in all soil samples. Five ARGs (sulI, tetG, tetC, tetA, and tetM) showed lower abundance in the soil with plants than those without. ARGs and intI1 gene were also detected on harvested vegetables grown in manure-amended soil, including endophytes and phyllosphere microorganisms. The results demonstrated that planting had an effect on the distribution of ARGs in manure-amended soil, and ARGs were detected on harvested vegetables after growing in manure-amended soil, which had potential threat to human health.
Collapse
Affiliation(s)
- Feng-Hua Wang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Qiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Zheng Chen
- Department of Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
253
|
Modeling the fate of antibiotic resistance genes and class 1 integrons during thermophilic anaerobic digestion of municipal wastewater solids. Appl Microbiol Biotechnol 2015; 100:1437-1444. [DOI: 10.1007/s00253-015-7043-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/15/2015] [Accepted: 09/24/2015] [Indexed: 01/18/2023]
|
254
|
Zhang S, Han B, Gu J, Wang C, Wang P, Ma Y, Cao J, He Z. Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes. CHEMOSPHERE 2015; 135:138-145. [PMID: 25950407 DOI: 10.1016/j.chemosphere.2015.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 05/29/2023]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs.
Collapse
Affiliation(s)
- Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL 34945, USA.
| | - Bing Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Ju Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yanyan Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL 34945, USA
| |
Collapse
|
255
|
Su JQ, Wei B, Ou-Yang WY, Huang FY, Zhao Y, Xu HJ, Zhu YG. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7356-63. [PMID: 26018772 DOI: 10.1021/acs.est.5b01012] [Citation(s) in RCA: 643] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Composting is widely used for recycling of urban sewage sludge to improve soil properties, which represents a potential pathway of spreading antibiotic resistant bacteria and genes to soils. However, the dynamics of antibiotic resistance genes (ARGs) and the underlying mechanisms during sewage sludge composting were not fully explored. Here, we used high-throughput quantitative PCR and 16S rRNA gene based illumina sequencing to investigate the dynamics of ARGs and bacterial communities during a lab-scale in-vessel composting of sewage sludge. A total of 156 unique ARGs and mobile genetic elements (MGEs) were detected encoding resistance to almost all major classes of antibiotics. ARGs were detected with significantly increased abundance and diversity, and distinct patterns, and were enriched during composting. Marked shifts in bacterial community structures and compositions were observed during composting, with Actinobacteria being the dominant phylum at the late phase of composting. The large proportion of Actinobacteria may partially explain the increase of ARGs during composting. ARGs patterns were significantly correlated with bacterial community structures, suggesting that the dynamic of ARGs was strongly affected by bacterial phylogenetic compositions during composting. These results imply that direct application of sewage sludge compost on field may lead to the spread of abundant ARGs in soils.
Collapse
Affiliation(s)
- Jian-Qiang Su
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Bei Wei
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- ‡University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Ying Ou-Yang
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- ‡University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu-Yi Huang
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yi Zhao
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Hui-Juan Xu
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- ‡University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|
256
|
Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach. Appl Microbiol Biotechnol 2015; 99:7771-9. [DOI: 10.1007/s00253-015-6688-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/18/2023]
|
257
|
Zhuang Y, Ren H, Geng J, Zhang Y, Zhang Y, Ding L, Xu K. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7037-44. [PMID: 25483976 DOI: 10.1007/s11356-014-3919-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/25/2014] [Indexed: 05/12/2023]
Abstract
This study investigated the inactivation of two antibiotic resistance genes (ARGs)-sul1 and tetG, and the integrase gene of class 1 integrons-intI1 by chlorination, ultraviolet (UV), and ozonation disinfection. Inactivation of sul1, tetG, and intI1 underwent increased doses of three disinfectors, and chlorine disinfection achieved more inactivation of ARGs and intI1 genes (chlorine dose of 160 mg/L with contact time of 120 min for 2.98-3.24 log reductions of ARGs) than UV irradiation (UV dose of 12,477 mJ/cm(2) for 2.48-2.74 log reductions of ARGs) and ozonation disinfection (ozonation dose of 177.6 mg/L for 1.68-2.55 log reductions of ARGs). The 16S rDNA was more efficiently removed than ARGs by ozone disinfection. The relative abundance of selected genes (normalized to 16S rDNA) increased during ozonation and with low doses of UV and chlorine disinfection. Inactivation of sul1 and tetG showed strong positive correlations with the inactivation of intI1 genes (for sul1, R (2) = 0.929 with p < 0.01; for tetG, R (2) = 0.885 with p < 0.01). Compared to other technologies (ultraviolet disinfection, ozonation disinfection, Fenton oxidation, and coagulation), chlorination is an alternative method to remove ARGs from wastewater effluents. At a chlorine dose of 40 mg/L with 60 min contact time, the selected genes inactivation efficiency could reach 1.65-2.28 log, and the cost was estimated at 0.041 yuan/m(3).
Collapse
Affiliation(s)
- Yao Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
258
|
Tian Z, Zhang Y, Li Y, Chi Y, Yang M. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. WATER RESEARCH 2015; 69:9-19. [PMID: 25463927 DOI: 10.1016/j.watres.2014.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/25/2014] [Accepted: 11/02/2014] [Indexed: 06/04/2023]
Abstract
The purpose of this study was to explore how fast the thermophilic anaerobic microbial community could be established during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Stable thermophilic anaerobic digestion was achieved within 20 days from a mesophilic digester treating sewage sludge by adopting the one-step startup strategy. The succession of archaeal and bacterial populations over a period of 60 days after the temperature increment was followed by using 454-pyrosequencing and quantitative PCR. After the increase of temperature, thermophilic methanogenic community was established within 11 days, which was characterized by the fast colonization of Methanosarcina thermophila and two hydrogenotrophic methanogens (Methanothermobacter spp. and Methanoculleus spp.). At the same time, the bacterial community was dominated by Fervidobacterium, whose relative abundance rapidly increased from 0 to 28.52 % in 18 days, followed by other potential thermophilic genera, such as Clostridium, Coprothermobacter, Anaerobaculum and EM3. The above result demonstrated that the one-step startup strategy could allow the rapid establishment of the thermophilic anaerobic microbial community.
Collapse
Affiliation(s)
- Zhe Tian
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Yu Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06, Aramakiaza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yongzhi Chi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| |
Collapse
|
259
|
Carey DE, McNamara PJ. The impact of triclosan on the spread of antibiotic resistance in the environment. Front Microbiol 2015; 5:780. [PMID: 25642217 PMCID: PMC4295542 DOI: 10.3389/fmicb.2014.00780] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/19/2014] [Indexed: 12/22/2022] Open
Abstract
Triclosan (TCS) is a commonly used antimicrobial agent that enters wastewater treatment plants (WWTPs) and the environment. An estimated 1.1 × 10(5) to 4.2 × 10(5) kg of TCS are discharged from these WWTPs per year in the United States. The abundance of TCS along with its antimicrobial properties have given rise to concern regarding its impact on antibiotic resistance in the environment. The objective of this review is to assess the state of knowledge regarding the impact of TCS on multidrug resistance in environmental settings, including engineered environments such as anaerobic digesters. Pure culture studies are reviewed in this paper to gain insight into the substantially smaller body of research surrounding the impacts of TCS on environmental microbial communities. Pure culture studies, mainly on pathogenic strains of bacteria, demonstrate that TCS is often associated with multidrug resistance. Research is lacking to quantify the current impacts of TCS discharge to the environment, but it is known that resistance to TCS and multidrug resistance can increase in environmental microbial communities exposed to TCS. Research plans are proposed to quantitatively define the conditions under which TCS selects for multidrug resistance in the environment.
Collapse
Affiliation(s)
| | - Patrick J. McNamara
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
260
|
Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu YG. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME JOURNAL 2014; 9:1269-79. [PMID: 25500508 PMCID: PMC4438328 DOI: 10.1038/ismej.2014.226] [Citation(s) in RCA: 875] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/18/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022]
Abstract
Around all human activity, there are zones of pollution with pesticides, heavy metals, pharmaceuticals, personal care products and the microorganisms associated with human waste streams and agriculture. This diversity of pollutants, whose concentration varies spatially and temporally, is a major challenge for monitoring. Here, we suggest that the relative abundance of the clinical class 1 integron-integrase gene, intI1, is a good proxy for pollution because: (1) intI1 is linked to genes conferring resistance to antibiotics, disinfectants and heavy metals; (2) it is found in a wide variety of pathogenic and nonpathogenic bacteria; (3) its abundance can change rapidly because its host cells can have rapid generation times and it can move between bacteria by horizontal gene transfer; and (4) a single DNA sequence variant of intI1 is now found on a wide diversity of xenogenetic elements, these being complex mosaic DNA elements fixed through the agency of human selection. Here we review the literature examining the relationship between anthropogenic impacts and the abundance of intI1, and outline an approach by which intI1 could serve as a proxy for anthropogenic pollution.
Collapse
Affiliation(s)
- Michael R Gillings
- Department of Biological Sciences, Genes to Geoscience Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Royal Cornwall Hospital, Truro, UK
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
261
|
Resende J, Diniz C, Silva V, Otenio M, Bonnafous A, Arcuri P, Godon JJ. Dynamics of antibiotic resistance genes and presence of putative pathogens during ambient temperature anaerobic digestion. J Appl Microbiol 2014; 117:1689-99. [DOI: 10.1111/jam.12653] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/09/2014] [Accepted: 09/19/2014] [Indexed: 01/25/2023]
Affiliation(s)
- J.A. Resende
- Department of Parasitology, Microbiology and Immunology; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora Brazil
- INRA-Institute National Recherche Agronomique; Laboratoire de Biotechnologie de l'Environnement; Narbonne France
| | - C.G. Diniz
- Department of Parasitology, Microbiology and Immunology; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora Brazil
| | - V.L. Silva
- Department of Parasitology, Microbiology and Immunology; Institute of Biological Sciences; Federal University of Juiz de Fora; Juiz de Fora Brazil
| | - M.H. Otenio
- EMBRAPA Dairy Cattle-Brazilian Agricultural Research Corporation; Juiz de Fora Brazil
| | - A. Bonnafous
- INRA-Institute National Recherche Agronomique; Laboratoire de Biotechnologie de l'Environnement; Narbonne France
| | - P.B. Arcuri
- EMBRAPA Brazilian Agricultural Research Corporation; Secretariat for International Relations, Headquarters; Brasilia Brazil
| | - J.-J. Godon
- INRA-Institute National Recherche Agronomique; Laboratoire de Biotechnologie de l'Environnement; Narbonne France
| |
Collapse
|
262
|
Miller J, Novak J, Knocke W, Pruden A. Elevation of antibiotic resistance genes at cold temperatures: implications for winter storage of sludge and biosolids. Lett Appl Microbiol 2014; 59:587-93. [DOI: 10.1111/lam.12325] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/06/2014] [Accepted: 08/23/2014] [Indexed: 11/30/2022]
Affiliation(s)
- J.H. Miller
- Charles E. Via, Jr. Department of Civil and Environmental Engineering; Virginia Tech; Blacksburg VA USA
| | - J.T. Novak
- Charles E. Via, Jr. Department of Civil and Environmental Engineering; Virginia Tech; Blacksburg VA USA
| | - W.R. Knocke
- Charles E. Via, Jr. Department of Civil and Environmental Engineering; Virginia Tech; Blacksburg VA USA
| | - A. Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering; Virginia Tech; Blacksburg VA USA
| |
Collapse
|
263
|
Yang Y, Li B, Zou S, Fang HHP, Zhang T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. WATER RESEARCH 2014; 62:97-106. [PMID: 24937359 DOI: 10.1016/j.watres.2014.05.019] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 05/08/2023]
Abstract
Antibiotic resistance has become a serious threat to human health. Sewage treatment plant (STP) is one of the major sources of antibiotic resistance genes (ARGs) in natural environment. High-throughput sequencing-based metagenomic approach was applied to investigate the broad-spectrum profiles and fate of ARGs in a full scale STP. Totally, 271 ARGs subtypes belonging to 18 ARGs types were identified by the broad scanning of metagenomic analysis. Influent had the highest ARGs abundance, followed by effluent, anaerobic digestion sludge and activated sludge. 78 ARGs subtypes persisted through the biological wastewater and sludge treatment process. The high removal efficiency of 99.82% for total ARGs in wastewater suggested that sewage treatment process is effective in reducing ARGs. But the removal efficiency of ARGs in sludge treatment was not as good as that in sewage treatment. Furthermore, the composition of microbial communities was examined and the correlation between microbial community and ARGs was investigated using redundancy analysis. Significant correlation between 6 genera and the distribution of ARGs were found and 5 of the 6 genera included potential pathogens. This is the first study on the fate of ARGs in STP using metagenomic analysis with high-throughput sequencing and hopefully would enhance our knowledge on fate of ARGs in STP.
Collapse
Affiliation(s)
- Ying Yang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Bing Li
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Shichun Zou
- Institute of Marine Science and Technology, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510000, China
| | - Herbert H P Fang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
264
|
Guo X, Li J, Yang F, Yang J, Yin D. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:626-31. [PMID: 24984233 DOI: 10.1016/j.scitotenv.2014.06.035] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 05/21/2023]
Abstract
The occurrence and distribution of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) and finished water are not well understood, and even less is known about the contribution of each treatment process to resistance gene reduction. The prevalence of ten commonly detected sulfonamide and tetracycline resistance genes, namely, sul I, sul II, tet(C), tet(G), tet(X), tet(A), tet(B), tet(O), tet(M) and tet(W) as well as 16S-rRNA genes, were surveyed in seven DWTPs in the Yangtze River Delta, China, with SYBR Green I-based real-time quantitative polymerase chain reaction. All of the investigated ARGs were detected in the source waters of the seven DWTPs, and sul I, sul II, tet(C) and tet(G) were the four most abundant ARGs. Total concentrations of ARGs belonging to either the sulfonamide or tetracycline resistance gene class were above 10(5) copies/mL. The effects of a treatment process on ARG removal varied depending on the overall treatment scheme of the DWTP. With combinations of the treatment procedures, however, the copy numbers of resistance genes were reduced effectively, but the proportions of ARGs to bacteria numbers increased in several cases. Among the treatment processes, the biological treatment tanks might serve as reservoirs of ARGs. ARGs were found in finished water of two plants, imposing a potential risk to human health. The results presented in this study not only provide information for the management of antibiotics and ARGs but also facilitate improvement of drinking water quality.
Collapse
Affiliation(s)
- Xueping Guo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jie Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
265
|
Liu L, Liu YH, Wang Z, Liu CX, Huang X, Zhu GF. Behavior of tetracycline and sulfamethazine with corresponding resistance genes from swine wastewater in pilot-scale constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:304-10. [PMID: 24992455 DOI: 10.1016/j.jhazmat.2014.06.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 05/10/2023]
Abstract
Four pilot-scale constructed wetlands (free water surface, SF; horizontal subsurface flow, HSF; vertical subsurface flows with different water level, VSF-L and VSF-H) were operated to assess their ability to remove sulfamethazine (SMZ) and tetracycline (TC) from wastewaters, and to investigate the abundance level of corresponding resistance genes (sulI, sulII, tetM, tetW and tetO) in the CWs. The results indicated that CWs could significantly reduce the concentration of antibiotics in wastewater, and the mass removal rate range of SMZ and TC were respectively 11%-95% and 85%-95% in the four systems on the basis of hydraulic equilibrium; further relatively high removal rate was observed in VSF with low water level. Seasonal condition had a significant effect on SMZ removal in the CWs (especially SMZ in SF), but TC removal in VSFs were not considered to have statistically significant differences in winter and summer. At the end period, the relative abundances of target genes in the CWs showed obvious increases compared to initial levels, ranging from 2.98 × 10(-5) to 1.27 × 10(-1) for sul genes and 4.68 × 10(-6) to 1.54 × 10(-1) for tet genes after treatment, and those abundances showed close relation to both characteristic of wastewater and configuration of CWs.
Collapse
Affiliation(s)
- Lin Liu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yu-Hong Liu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhen Wang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chao-Xiang Liu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xu Huang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ge-Fu Zhu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
266
|
Calero-Cáceres W, Melgarejo A, Colomer-Lluch M, Stoll C, Lucena F, Jofre J, Muniesa M. Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7602-11. [PMID: 24873655 DOI: 10.1021/es501851s] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs found in bacteria can become mobilized in bacteriophage particles in the environment. Sludge derived from secondary treatment in wastewater treatment plants (WWTPs) constitutes a concentrated pool of bacteria and phages that are removed during the treatment process. This study evaluates the prevalence of ARGs in the bacterial and phage fractions of anaerobic digested sludge; five ARGs (blaTEM, blaCTX-M, qnrA, qnrS, and sul1) are quantified by qPCR. Comparison between the wastewater and sludge revealed a shift in the prevalence of ARGs (blaTEM and sul1 became more prevalent in sludge), suggesting there is a change in the bacterial and phage populations from wastewater to those selected during the secondary treatment and the later anaerobic mesophilic digestion of the sludge. ARGs densities were higher in the bacterial than in the phage fraction, with high densities in both fractions; particularly for blaTEM and sul1 (5 and 8 log10 gene copies (GC)/g, respectively, in bacterial DNA; 5.5 and 4.4 log10 GC/g, respectively, in phage DNA). These results question the potential agricultural uses of treated sludge, as it could contribute to the spread of ARGs in the environment and have an impact on the bacterial communities of the receiving ecosystem.
Collapse
Affiliation(s)
- William Calero-Cáceres
- Department of Microbiology, University of Barcelona , Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
267
|
McNamara PJ, LaPara TM, Novak PJ. The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7393-7400. [PMID: 24915110 DOI: 10.1021/es501388v] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan.
Collapse
Affiliation(s)
- Patrick J McNamara
- Department of Civil Engineering, University of Minnesota , 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| | | | | |
Collapse
|
268
|
Burch TR, Sadowsky MJ, LaPara TM. Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5620-5627. [PMID: 24762092 DOI: 10.1021/es501098g] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Substantial quantities of antibiotic resistance genes (ARGs) are discharged with treated residual municipal wastewater solids and subsequently applied to soil. The objective of this work was to determine the decay rates for ARGs and class 1 integrons following simulated land application of treated wastewater solids. Treated residual solids from two full-scale treatment plants were applied to sets of triplicate soil microcosms in two independent experiments. Experiment 1 investigated loading rates of 20, 40, and 100 g kg(-1) of residual solids to a sandy soil, while experiment 2 investigated a loading rate of 40 g kg(-1) to a silty-loamy soil. Five ARGs (erm(B), sul1, tet(A), tet(W), and tet(X)), the integrase of class 1 integrons (intI1), 16S rRNA genes, 16S rRNA genes of all Bacteroides spp., and 16S rRNA genes of human-specific Bacteroides spp. were quantified using real-time polymerase chain reaction. ARGs and intI1 quantities declined in most microcosms, with statistically significant (P < 0.05) half-lives varying between 13 d (erm(B), experiment 1, 100 g kg(-1)) and 81 d (intI1, experiment 1, 40 g kg(-1)). These kinetic rates were much slower than have been previously reported for unit operations used to treat wastewater solids (e.g., anaerobic digestion). This research suggests that the design and operation of municipal wastewater treatment facilities with the explicit goal of mitigating the release of ARGs should focus on using technologies within the treatment facility, rather than depending on attenuation subsequent to land application.
Collapse
Affiliation(s)
- Tucker R Burch
- Department of Civil Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | |
Collapse
|
269
|
Fahrenfeld N, Knowlton K, Krometis LA, Hession WC, Xia K, Lipscomb E, Libuit K, Green BL, Pruden A. Effect of manure application on abundance of antibiotic resistance genes and their attenuation rates in soil: field-scale mass balance approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2643-50. [PMID: 24483241 DOI: 10.1021/es404988k] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of models for understanding antibiotic resistance gene (ARG) persistence and transport is a critical next step toward informing mitigation strategies to prevent the spread of antibiotic resistance in the environment. A field study was performed that used a mass balance approach to gain insight into the transport and dissipation of ARGs following land application of manure. Soil from a small drainage plot including a manure application site, an unmanured control site, and an adjacent stream and buffer zone were sampled for ARGs and metals before and after application of dairy manure slurry and a dry stack mixture of equine, bovine, and ovine manure. Results of mass balance suggest growth of bacterial hosts containing ARGs and/or horizontal gene transfer immediately following slurry application with respect to ermF, sul1, and sul2 and following a lag (13 days) for dry-stack-amended soils. Generally no effects on tet(G), tet(O), or tet(W) soil concentrations were observed despite the presence of these genes in applied manure. Dissipation rates were fastest for ermF in slurry-treated soils (logarithmic decay coefficient of -3.5) and for sul1 and sul2 in dry-stack-amended soils (logarithmic decay coefficients of -0.54 and -0.48, respectively), and evidence for surface and subsurface transport was not observed. Results provide a mass balance approach for tracking ARG fate and insights to inform modeling and limiting the transport of manure-borne ARGs to neighboring surface water.
Collapse
Affiliation(s)
- Nicole Fahrenfeld
- Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Pruden A. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5-14. [PMID: 24279909 DOI: 10.1021/es403883p] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Global initiatives are underway to advance the sustainability of urban water infrastructure through measures such as water reuse. However, there are growing concerns that wastewater effluents are enriched in antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes, and thus could serve as a contributing factor to growing rates of antibiotic resistance in human infections. Evidence for the role of the water environment as a source and pathway for the spread of antimicrobial resistance is examined and key knowledge gaps are identified with respect to implications for sustainable water systems. Efforts on the part of engineers along with investment in research in epidemiology, risk assessment, water treatment and water delivery could advance current and future sustainable water strategies and help avoid unintended consequences.
Collapse
Affiliation(s)
- Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24061, United States
| |
Collapse
|
271
|
Burch TR, Sadowsky MJ, LaPara TM. Air-drying beds reduce the quantities of antibiotic resistance genes and class 1 integrons in residual municipal wastewater solids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9965-9971. [PMID: 23909386 DOI: 10.1021/es4024749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study investigated whether air-drying beds reduce antibiotic resistance gene (ARG) concentrations in residual municipal wastewater solids. Three laboratory-scale drying beds were operated for a period of nearly 100 days. Real-time PCR was used to quantify 16S rRNA genes, 16S rRNA genes specific to fecal bacteria (AllBac) and human fecal bacteria (HF183), the integrase gene of class 1 integrons (intI1), and five ARGs representing a cross-section of antibiotic classes and resistance mechanisms (erm(B), sul1, tet(A), tet(W), and tet(X)). Air-drying beds were capable of reducing all gene target concentrations by 1 to 5 orders of magnitude, and the nature of this reduction was consistent with both a net decrease in the number of bacterial cells and a lack of selection within the microbial community. Half-lives varied between 1.5 d (HF183) and 5.4 d (tet(X)) during the first 20 d of treatment. After the first 20 d of treatment, however, half-lives varied between 8.6 d (tet(X)) and 19.3 d (AllBac), and 16S rRNA gene, intI1, and sul1 concentrations did not change (P > 0.05). These results demonstrate that air-drying beds can reduce ARG and intI1 concentrations in residual municipal wastewater solids within timeframes typical of operating practices.
Collapse
MESH Headings
- Anti-Bacterial Agents/analysis
- Anti-Bacterial Agents/pharmacology
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacteria/metabolism
- Bacterial Proteins/analysis
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Drug Resistance, Microbial
- Integrons
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/isolation & purification
- RNA, Ribosomal, 16S/metabolism
- Real-Time Polymerase Chain Reaction
- Waste Disposal, Fluid/methods
- Wastewater/analysis
- Wastewater/microbiology
- Water Pollutants, Chemical/analysis
- Water Pollutants, Chemical/pharmacology
- Water Pollution, Chemical/prevention & control
Collapse
Affiliation(s)
- Tucker R Burch
- Department of Civil Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | |
Collapse
|
272
|
Potera C. Germ warfare? Strategies for reducing the spread of antibiotic resistance. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:A255. [PMID: 23907147 PMCID: PMC3733681 DOI: 10.1289/ehp.121-a255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
273
|
Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Lazorchak JM, Suzuki S, Silley P, Snape JR, Topp E, Zhang T, Zhu YG. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:878-85. [PMID: 23735422 PMCID: PMC3734499 DOI: 10.1289/ehp.1206446] [Citation(s) in RCA: 467] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/30/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance. OBJECTIVE Our aim in this study was to identify management options for reducing the spread of antibiotics and antibiotic-resistance determinants via environmental pathways, with the ultimate goal of extending the useful life span of antibiotics. We also examined incentives and disincentives for action. METHODS We focused on management options with respect to limiting agricultural sources; treatment of domestic, hospital, and industrial wastewater; and aquaculture. DISCUSSION We identified several options, such as nutrient management, runoff control, and infrastructure upgrades. Where appropriate, a cross-section of examples from various regions of the world is provided. The importance of monitoring and validating effectiveness of management strategies is also highlighted. Finally, we describe a case study in Sweden that illustrates the critical role of communication to engage stakeholders and promote action. CONCLUSIONS Environmental releases of antibiotics and antibiotic-resistant bacteria can in many cases be reduced at little or no cost. Some management options are synergistic with existing policies and goals. The anticipated benefit is an extended useful life span for current and future antibiotics. Although risk reductions are often difficult to quantify, the severity of accelerating worldwide morbidity and mortality rates associated with antibiotic resistance strongly indicate the need for action.
Collapse
Affiliation(s)
- Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - D.G. Joakim Larsson
- Institute for Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alejandro Amézquita
- Unilever-Safety & Environmental Assurance Centre, Sharnbrook, United Kingdom
| | - Peter Collignon
- Australian National University, Canberra, Australia
- Canberra Hospital, Canberra, Australia
| | - Kristian K. Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - David W. Graham
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - James M. Lazorchak
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| | - Peter Silley
- MB Consult Limited, Southampton, United Kingdom
- University of Bradford, Bradford, United Kingdom
| | - Jason R. Snape
- AstraZeneca, Brixham Environmental Laboratory, Brixham, United Kingdom
| | - Edward Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Tong Zhang
- Department of Civil Engineering, University of Hong Kong, Hong Kong
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
274
|
Stalder T, Alrhmoun M, Louvet JN, Casellas M, Maftah C, Carrion C, Pons MN, Pahl O, Ploy MC, Dagot C. Dynamic assessment of the floc morphology, bacterial diversity, and integron content of an activated sludge reactor processing hospital effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7909-7917. [PMID: 23789899 DOI: 10.1021/es4008646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The treatment of hospital effluents (HE) is a major concern, as they are suspected of disseminating drugs and antibiotic resistance determinants in the environment. In order to assess HE influence on wastewater treatment plant biomass, lab-scale conventional activated sludge systems (CAS) were continuously fed with real HE or urban effluent as a control. To gain insights into the main hurdles linked to HE treatment, we conducted a multiparameter study using classical physicochemical characterization, phase contrast and confocal laser scaning microscopy, and molecular biology (i.e., pyrosequencing) tools. HE caused erosion of floc structure and the production of extracellular polymeric substances attributed to the development of floc-forming bacteria. Adaptation of the sludge bacterial community to the HE characteristics, thus maintaining the purification performance of the biomass, was observed. Finally, the comparative metagenomic analysis of the CAS showed that HE treatment resulted in an increase of class 1 resistance integrons (RIs) and the introduction of Pseudomonas spp. into the bacterial community. HE treatment did not reduce the CAS process performance; nevertheless it increases the risk of dissemination into the environment of bacterial species and genetic determinants (RIs) involved in antibiotic resistance acquisition.
Collapse
|
275
|
Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Appl Environ Microbiol 2013; 79:5701-9. [PMID: 23851089 DOI: 10.1128/aem.01682-13] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Consumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and soil samples were evaluated for viable antibiotic-resistant bacteria by plate count on Chromocult medium supplemented with antibiotics at clinical breakpoint concentrations. DNA was extracted from soil and vegetables and evaluated by PCR for the presence of 46 gene targets associated with plasmid incompatibility groups, integrons, or antibiotic resistance genes. Soil receiving manure was enriched in antibiotic-resistant bacteria and various antibiotic resistance determinants. There was no coherent corresponding increase in the abundance of antibiotic-resistant bacteria enumerated from any vegetable grown in manure-fertilized soil. Numerous antibiotic resistance determinants were detected in DNA extracted from vegetables grown in unmanured soil. A smaller number of determinants were additionally detected on vegetables grown only in manured and not in unmanured soil. Overall, consumption of raw vegetables represents a route of human exposure to antibiotic-resistant bacteria and resistance determinants naturally present in soil. However, the detection of some determinants on vegetables grown only in freshly manured soil reinforces the advisability of pretreating manure through composting or other stabilization processes or mandating offset times between manuring and harvesting vegetables for human consumption.
Collapse
|
276
|
Kaplan E, Ofek M, Jurkevitch E, Cytryn E. Characterization of fluoroquinolone resistance and qnr diversity in Enterobacteriaceae from municipal biosolids. Front Microbiol 2013; 4:144. [PMID: 23781217 PMCID: PMC3678080 DOI: 10.3389/fmicb.2013.00144] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/21/2013] [Indexed: 01/21/2023] Open
Abstract
Municipal biosolids produced during activated sludge treatment applied in wastewater treatment plants, are significant reservoirs of antibiotic resistance, since they assemble both natural and fecal microbiota, as well as residual concentrations of antibiotic compounds. This raises major concerns regarding the environmental and epidemiological consequences of using them as fertilizers for crops. The second generation fluoroquinolone ciprofloxacin is probably the most abundant antibiotic compound detected in municipal biosolids due to its widespread use and sorption properties. Although fluoroquinolone resistance was originally thought to result from mutations in bacterial gyrase and topoisomerase IV genes, it is becoming apparent that it is also attributed to plasmid-associated resistance factors, which may propagate environmental antibiotic resistance. The objective of this study was to assess the impact of the activated sludge process on fluoroquinolone resistance. The scope of resistances and mobile genetic mechanisms associated with fluoroquinolone resistance were evaluated by screening large collections of ciprofloxacin-resistant Enterobacteriaceae strains from sludge (n = 112) and from raw sewage (n = 89). Plasmid-mediated quinolone resistance determinants (qnrA, B, and S) were readily detected in isolates from both environments, the most dominant being qnrS. Interestingly, all qnr variants were significantly more abundant in sludge isolates than in the isolates from raw sewage. Almost all ciprofloxacin-resistant isolates were resistant to multiple antibiotic compounds. The sludge isolates were on the whole resistant to a broader range of antibiotic compounds than the raw sewage isolates; however, this difference was not statistically significant. Collectively, this study indicates that the activated sludge harbors multi-resistant bacterial strains, and that mobile quinolone-resistance elements may have a selective advantage in the activated sludge.
Collapse
Affiliation(s)
- Ella Kaplan
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization Beit Dagan, Israel ; Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Jerusalem, Israel
| | | | | | | |
Collapse
|
277
|
Fahrenfeld N, Ma Y, O'Brien M, Pruden A. Reclaimed water as a reservoir of antibiotic resistance genes: distribution system and irrigation implications. Front Microbiol 2013; 4:130. [PMID: 23755046 PMCID: PMC3664959 DOI: 10.3389/fmicb.2013.00130] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/06/2013] [Indexed: 12/21/2022] Open
Abstract
Treated wastewater is increasingly being reused to achieve sustainable water management in arid regions. The objective of this study was to quantify the distribution of antibiotic resistance genes (ARGs) in recycled water, particularly after it has passed through the distribution system, and to consider point-of-use implications for soil irrigation. Three separate reclaimed wastewater distribution systems in the western U.S. were examined. Quantitative polymerase chain reaction (qPCR) was used to quantify ARGs corresponding to resistance to sulfonamides (sul1, sul2), macrolides (ermF), tetracycline [tet(A), tet(O)], glycopeptides (vanA), and methicillin (mecA), in addition to genes present in waterborne pathogens Legionella pneumophila (Lmip), Escherichia coli (gadAB), and Pseudomonas aeruginosa (ecfx, gyrB). In a parallel lab study, the effect of irrigating an agricultural soil with secondary, chlorinated, or dechlorinated wastewater effluent was examined in batch microcosms. A broader range of ARGs were detected after the reclaimed water passed through the distribution systems, highlighting the importance of considering bacterial re-growth and the overall water quality at the point of use (POU). Screening for pathogens with qPCR indicated presence of Lmip and gadAB genes, but not ecfx or gyrB. In the lab study, chlorination was observed to reduce 16S rRNA and sul2 gene copies in the wastewater effluent, while dechlorination had no apparent effect. ARGs levels did not change with time in soil slurries incubated after a single irrigation event with any of the effluents. However, when irrigated repeatedly with secondary wastewater effluent (not chlorinated or dechlorinated), elevated levels of sul1 and sul2 were observed. This study suggests that reclaimed water may be an important reservoir of ARGs, especially at the POU, and that attention should be directed toward the fate of ARGs in irrigation water and the implications for human health.
Collapse
Affiliation(s)
- Nicole Fahrenfeld
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg, VA, USA
| | | | | | | |
Collapse
|
278
|
Ling AL, Pace NR, Hernandez MT, LaPara TM. Tetracycline resistance and Class 1 integron genes associated with indoor and outdoor aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4046-52. [PMID: 23517146 DOI: 10.1021/es400238g] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Genes encoding tetracycline resistance and the integrase of Class 1 integrons were enumerated using quantitative PCR from aerosols collected from indoor and outdoor environments. Concentrated animal feeding operations (CAFOs) and human-occupied indoor environments (two clinics and a homeless shelter) were found to be a source of airborne tet(X) and tet(W) genes. The CAFOs had 10- to 100-times higher concentrations of airborne 16S rRNA, tet(X), and tet(W) genes than other environments sampled, and increased concentrations of aerosolized bacteria correlated with increased concentrations of airborne resistance genes. The two CAFOs studied had statistically similar concentrations of resistance genes in their aerosol samples, even though antibiotic use was markedly different between the two operations. Additionally, tet(W) genes were recovered in outdoor air within 2 km of livestock operations, which suggests that antibiotic resistance genes may be transported via aerosols on local scales. The integrase gene (intI1) from Class 1 integrons, which has been associated with multidrug resistance, was detected in CAFOs but not in human-occupied indoor environments, suggesting that CAFO aerosols could serve as a reservoir of multidrug resistance. In conclusion, our results show that CAFOs and clinics are sources of aerosolized antibiotic resistance genes that can potentially be transported via air movement.
Collapse
Affiliation(s)
- Alison L Ling
- Department of Civil, Environmental, and Agricultural Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
279
|
Chen H, Zhang M. Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China. ENVIRONMENT INTERNATIONAL 2013; 55:9-14. [PMID: 23454279 DOI: 10.1016/j.envint.2013.01.019] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/23/2013] [Accepted: 01/29/2013] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance genes (ARGs) are emerging environmental contaminants and pose a threat to public health. In this study, four tetracycline resistance genes (tetM, tetO, tetQ and tetW) and two sulfonamide resistance genes (sulI and sulII) were evaluated in 4 municipal wastewater and 8 rural domestic sewage treatment systems with different wastewater handling abilities and treatment processes using quantitative polymerase chain reaction (qPCR). In the influents, the relative abundance of different ARGs showed significant variations among the sampling sites. In addition, significant correlations (tetQ: R(2)=0.712, P<0.05; tetO: R(2)=0.394, P<0.05) between the gene copy numbers and wastewater-receiving capacity were observed. Statistical analysis revealed a positive correlation (R(2)=0.756, P<0.05) between the gene copy numbers of sulI and intI1, whereas the gene numbers of tetM and sulI were strongly correlated with 16S rDNA. Significant reductions (1-3 orders of magnitude) in ARGs were observed in municipal wastewater treatment systems, but a smaller reduction was found in the rural domestic sewage treatment systems. These results provide insights into the occurrence and removal of ARGs in wastewater treatment systems in both rural and urban areas in eastern China.
Collapse
Affiliation(s)
- Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | | |
Collapse
|
280
|
Burch TR, Sadowsky MJ, Lapara TM. Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids. Front Microbiol 2013; 4:17. [PMID: 23407455 PMCID: PMC3569665 DOI: 10.3389/fmicb.2013.00017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/24/2013] [Indexed: 11/13/2022] Open
Abstract
Numerous initiatives have been undertaken to circumvent the problem of antibiotic resistance, including the development of new antibiotics, the use of narrow spectrum antibiotics, and the reduction of inappropriate antibiotic use. We propose an alternative but complimentary approach to reduce antibiotic resistant bacteria (ARB) by implementing more stringent technologies for treating municipal wastewater, which is known to contain large quantities of ARB and antibiotic resistance genes (ARGs). In this study, we investigated the ability of conventional aerobic digestion to reduce the quantity of ARGs in untreated wastewater solids. A bench-scale aerobic digester was fed untreated wastewater solids collected from a full-scale municipal wastewater treatment facility. The reactor was operated under semi-continuous flow conditions for more than 200 days at a residence time of approximately 40 days. During this time, the quantities of tet(A), tet(W), and erm(B) decreased by more than 90%. In contrast, intI1 did not decrease, and tet(X) increased in quantity by 5-fold. Following operation in semi-continuous flow mode, the aerobic digester was converted to batch mode to determine the first-order decay coefficients, with half-lives ranging from as short as 2.8 days for tet(W) to as long as 6.3 days for intI1. These results demonstrated that aerobic digestion can be used to reduce the quantity of ARGs in untreated wastewater solids, but that rates can vary substantially depending on the reactor design (i.e., batch vs. continuous-flow) and the specific ARG.
Collapse
Affiliation(s)
- Tucker R Burch
- Department of Civil Engineering, University of Minnesota Minneapolis, MN, USA
| | | | | |
Collapse
|
281
|
Effect of biostimulants on 2,4,6-trinitrotoluene (TNT) degradation and bacterial community composition in contaminated aquifer sediment enrichments. Biodegradation 2012; 24:179-90. [PMID: 22791276 DOI: 10.1007/s10532-012-9569-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/22/2012] [Indexed: 10/28/2022]
Abstract
2,4,6-Trinitrotoluene (TNT) is a toxic and persistent explosive compound occurring as a contaminant at numerous sites worldwide. Knowledge of the microbial dynamics driving TNT biodegradation is limited, particularly in native aquifer sediments where it poses a threat to water resources. The purpose of this study was to quantify the effect of organic amendments on anaerobic TNT biodegradation rate and pathway in an enrichment culture obtained from historically contaminated aquifer sediment and to compare the bacterial community dynamics. TNT readily biodegraded in all microcosms, with the highest biodegradation rate obtained under the lactate amended condition followed by ethanol amended and naturally occurring organic matter (extracted from site sediment) amended conditions. Although a reductive pathway of TNT degradation was observed across all conditions, denaturing gradient gel electrophoresis (DGGE) analysis revealed distinct bacterial community compositions. In all microcosms, Gram-negative γ- or β-Proteobacteria and Gram-positive Negativicutes or Clostridia were observed. A Pseudomonas sp. in particular was observed to be stimulated under all conditions. According to non-metric multidimensional scaling analysis of DGGE profiles, the microcosm communities were most similar to heavily TNT-contaminated field site sediment, relative to moderately and uncontaminated sediments, suggesting that TNT contamination itself is a major driver of microbial community structure. Overall these results provide a new line of evidence of the key bacteria driving TNT degradation in aquifer sediments and their dynamics in response to organic carbon amendment, supporting this approach as a promising technology for stimulating in situ TNT bioremediation in the subsurface.
Collapse
|
282
|
Abelleira J, Pérez-Elvira SI, Portela JR, Sánchez-Oneto J, Nebot E. Advanced thermal hydrolysis: optimization of a novel thermochemical process to aid sewage sludge treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6158-6166. [PMID: 22463756 DOI: 10.1021/es204203y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of this work was to study in depth the behavior and optimization of a novel process, called advanced thermal hydrolysis (ATH), to determine its utility as a pretreatment (sludge solubilization) or postreatment (organic matter removal) for anaerobic digestion (AD) in the sludge line of wastewater treatment plants (WWTPs). ATH is based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H(2)O(2)) addition and takes advantage of a peroxidation/direct steam injection synergistic effect. On the basis of the response surface methodology (RSM) and a modified Doehlert design, an empirical second-order polynomial model was developed for the total yield of: (a) disintegration degree [DD (%)] (solubilization), (b) filtration constant [F(c) (cm(2)/min)] (dewaterability), and (c) organic matter removal (%). The variables considered were operation time (t), temperature reached after initial heating (T), and oxidant coefficient (n = oxygen(supplied)/oxygen(stoichiometric)). As the model predicts, in the case of the ATH process with high levels of oxidant, it is possible to achieve an organic matter removal of up to 92%, but the conditions required are prohibitive on an industrial scale. ATH operated at optimal conditions (oxygen amount 30% of stoichiometric, 115 °C and 24 min) gave promising results as a pretreatment, with similar solubilization and markedly better dewaterability levels in comparison to those obtained with TH at 170 °C. The empirical validation of the model was satisfactory.
Collapse
Affiliation(s)
- Jose Abelleira
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cádiz, 11510 Puerto Real (Cádiz), Spain.
| | | | | | | | | |
Collapse
|
283
|
Stalder T, Barraud O, Casellas M, Dagot C, Ploy MC. Integron involvement in environmental spread of antibiotic resistance. Front Microbiol 2012; 3:119. [PMID: 22509175 PMCID: PMC3321497 DOI: 10.3389/fmicb.2012.00119] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/13/2012] [Indexed: 11/13/2022] Open
Abstract
The spread of antibiotic-resistant bacteria is a growing problem and a public health issue. In recent decades, various genetic mechanisms involved in the spread of resistance genes among bacteria have been identified. Integrons - genetic elements that acquire, exchange, and express genes embedded within gene cassettes (GC) - are one of these mechanisms. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried by mobile genetic elements, plasmids, and transposons, which promote their spread within bacterial communities. Initially studied mainly in the clinical setting for their involvement in antibiotic resistance, their role in the environment is now an increasing focus of attention. The aim of this review is to provide an in-depth analysis of recent studies of antibiotic-resistance integrons in the environment, highlighting their potential involvement in antibiotic-resistance outside the clinical context. We will focus particularly on the impact of human activities (agriculture, industries, wastewater treatment, etc.).
Collapse
|
284
|
Dodd MC. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. ACTA ACUST UNITED AC 2012; 14:1754-71. [DOI: 10.1039/c2em00006g] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|