251
|
Ejje N, Soe CZ, Gu J, Codd R. The variable hydroxamic acid siderophore metabolome of the marine actinomycete Salinispora tropica CNB-440. Metallomics 2013; 5:1519-28. [DOI: 10.1039/c3mt00230f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
252
|
Erb W, Zhu J. From natural product to marketed drug: the tiacumicin odyssey. Nat Prod Rep 2013; 30:161-74. [DOI: 10.1039/c2np20080e] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
253
|
Scharf DH, Brakhage AA. Engineering fungal secondary metabolism: A roadmap to novel compounds. J Biotechnol 2013; 163:179-83. [DOI: 10.1016/j.jbiotec.2012.06.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 02/03/2023]
|
254
|
Abstract
The iterative type I polyketide synthases (IPKSs) are central to the biosynthesis of an enormously diverse array of natural products in fungi. These natural products, known as polyketides, exhibit a wide range of biological activities and include clinically important drugs as well as undesirable toxins. The PKSs synthesize these structurally diverse polyketides via a series of decarboxylative condensations of malonyl-CoA extender units and β-keto modifications in a highly programmed manner. Significant progress has been made over the past few years in understanding the biosynthetic mechanism and programming of fungal PKSs. The continuously expanding fungal genome sequence data have sparked genome-directed discoveries of new fungal PKSs and associated products. The increasing number of fungal PKSs that have been linked to their products along with in-depth biochemical and structural characterizations of these large enzymes have remarkably improved our knowledge on the molecular basis for polyketide structural diversity in fungi. This Perspective highlights the recent advances and examines how the newly expanded paradigm has contributed to our ability to link fungal PKS genes to chemical structures and vice versa. The knowledge will help us navigate through the logarithmically expanding seas of genomic information for polyketide compound discovery and provided opportunities to reprogram these megasynthases to generate new chemical entities.
Collapse
Affiliation(s)
- Yit-Heng Chooi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| |
Collapse
|
255
|
Nakamura H, Hamer HA, Sirasani G, Balskus EP. Cylindrocyclophane biosynthesis involves functionalization of an unactivated carbon center. J Am Chem Soc 2012; 134:18518-21. [PMID: 23106426 DOI: 10.1021/ja308318p] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cylindrocyclophanes are a family of natural products that share a remarkable paracyclophane carbon scaffold. Using genome sequencing and bioinformatic analyses, we have discovered a biosynthetic gene cluster involved in the assembly of cylindrocyclophane F. Through a combination of in vitro enzyme characterization and feeding studies, we confirm the connection between this gene cluster and cylindrocyclophane production, elucidate the chemical events involved in initiating and terminating an unusual type I polyketide synthase assembly line, and discover that macrocycle assembly involves functionalization of an unactivated carbon center.
Collapse
Affiliation(s)
- Hitomi Nakamura
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | | | | | | |
Collapse
|
256
|
Detection and purification of non-ribosomal peptide synthetase products in Neosartorya fischeri. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 944:111-9. [PMID: 23065611 DOI: 10.1007/978-1-62703-122-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are important enzymes of production machinery for natural products including clinically used antibiotics, antifungal, and anticancer agents. NRPS products are usually further modified by tailoring enzymes, resulting in the formation of diverse structures. We demonstrate here the production and isolation of metabolites produced by two bi-modular NRPSs, i.e., acetylaszonalenin and fumitremorgin-type alkaloids in Neosartorya fischeri NRRL181.
Collapse
|
257
|
Wyatt MA, Mok MCY, Junop M, Magarvey NA. Heterologous expression and structural characterisation of a pyrazinone natural product assembly line. Chembiochem 2012; 13:2408-15. [PMID: 23070851 DOI: 10.1002/cbic.201200340] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Indexed: 11/07/2022]
Abstract
Through a number of strategies nonribosomal peptide assembly lines give rise to a metabolic diversity not possible by ribosomal synthesis. One distinction within nonribosomal assembly is that products are elaborated on an enzyme-tethered substrate, and their release is enzyme catalysed. Reductive release by NAD(P)H-dependent catalysts is one observed nonribosomal termination and release strategy. Here we probed the selectivity of a terminal reductase domain by using a full-length heterologously expressed nonribosomal peptide synthetase for the dipeptide aureusimine and were able to generate 17 new analogues. Further, we generated an X-ray structure of aureusimine terminal reductase to gain insight into the structural details associated with this enzymatic domain.
Collapse
Affiliation(s)
- Morgan A Wyatt
- Michael G. Degroote Institute for Infectious Disease Research, McMaster University, 1200 Main St. W, Hamilton ON, L8N 3Z5, Canada
| | | | | | | |
Collapse
|
258
|
Sasaki E, Lin CI, Lin KY, Liu HW. Construction of the octose 8-phosphate intermediate in lincomycin A biosynthesis: characterization of the reactions catalyzed by LmbR and LmbN. J Am Chem Soc 2012; 134:17432-5. [PMID: 22989310 DOI: 10.1021/ja308221z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lincomycin A is a potent antimicrobial agent noted for its unusual C1 methylmercapto-substituted 8-carbon sugar. Despite its long clinical history for the treatment of Gram-positive infections, the biosynthesis of the C(8)-sugar, methylthiolincosamide (MTL), is poorly understood. Here, we report our studies of the two initial enzymatic steps in the MTL biosynthetic pathway leading to the identification of D-erythro-D-gluco-octose 8-phosphate as a key intermediate. Our experiments demonstrate that this intermediate is formed via a transaldol reaction catalyzed by LmbR using D-fructose 6-phosphate or D-sedoheptulose 7-phosphate as the C(3) donor and D-ribose 5-phosphate as the C(5) acceptor. Subsequent 1,2-isomerization catalyzed by LmbN converts the resulting 2-keto C(8)-sugar (octulose 8-phosphate) to octose 8-phosphate. These results provide, for the first time, in vitro evidence for the biosynthetic origin of the C(8) backbone of MTL.
Collapse
Affiliation(s)
- Eita Sasaki
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
259
|
Condurso HL, Bruner SD. Structure and noncanonical chemistry of nonribosomal peptide biosynthetic machinery. Nat Prod Rep 2012; 29:1099-110. [PMID: 22729219 PMCID: PMC3442147 DOI: 10.1039/c2np20023f] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Structural biology has provided significant insights into the complex chemistry and macromolecular organization of nonribosomal peptide synthetases. In addition, novel pathways are continually described, expanding the knowledge of known biosynthetic chemistry.
Collapse
Affiliation(s)
- Heather L. Condurso
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA. Fax: 352 392 8758; Tel: 352 392 0525
| | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA. Fax: 352 392 8758; Tel: 352 392 0525
| |
Collapse
|
260
|
Oguri H, Mizoguchi H, Oikawa H, Ishiyama A, Iwatsuki M, Otoguro K, Omura S. Parallel and four-step synthesis of natural-product-inspired scaffolds through modular assembly and divergent cyclization. Beilstein J Org Chem 2012; 8:930-40. [PMID: 23015843 PMCID: PMC3388883 DOI: 10.3762/bjoc.8.105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/01/2012] [Indexed: 12/22/2022] Open
Abstract
By emulating the universal biosynthetic strategy, which employs modular assembly and divergent cyclizations, we have developed a four-step synthetic process to yield a collection of natural-product-inspired scaffolds. Modular assembly of building blocks onto a piperidine-based manifold 6, having a carboxylic acid group, was achieved through Ugi condensation, N-acetoacetylation and diazotransfer, leading to cyclization precursors. The rhodium-catalyzed tandem cyclization and divergent cycloaddition gave rise to tetracyclic and hexacyclic scaffolds by the appropriate choice of dipolarophiles installed at modules 3 and 4. A different piperidine-based manifold 15 bearing an amino group was successfully applied to demonstrate the flexibility and scope of the unified four-step process for the generation of structural diversity in the fused scaffolds. Evaluation of in vitro antitrypanosomal activities of the collections and preliminary structure–activity relationship (SAR) studies were also undertaken.
Collapse
Affiliation(s)
- Hiroki Oguri
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Kita-ku, Hokkaido 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
261
|
Kusari S, Hertweck C, Spiteller M. Chemical Ecology of Endophytic Fungi: Origins of Secondary Metabolites. ACTA ACUST UNITED AC 2012; 19:792-8. [DOI: 10.1016/j.chembiol.2012.06.004] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 05/08/2012] [Accepted: 06/04/2012] [Indexed: 11/26/2022]
|
262
|
Traxler MF, Kolter R. A massively spectacular view of the chemical lives of microbes. Proc Natl Acad Sci U S A 2012; 109:10128-9. [PMID: 22711837 PMCID: PMC3387107 DOI: 10.1073/pnas.1207725109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Matthew F. Traxler
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Roberto Kolter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
263
|
JACS Perspectives. J Am Chem Soc 2012. [DOI: 10.1021/ja305068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
264
|
Fowler BS, Laemmerhold KM, Miller SJ. Catalytic site-selective thiocarbonylations and deoxygenations of vancomycin reveal hydroxyl-dependent conformational effects. J Am Chem Soc 2012; 134:9755-61. [PMID: 22621706 PMCID: PMC3374881 DOI: 10.1021/ja302692j] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have examined peptide-based catalysts for the site-selective thiocarbonylation of a protected form of vancomycin. Several catalysts were identified that either enhanced or altered the inherent selectivity profile exhibited by the substrate. Two catalysts, one identified through screening and another through rational design, were demonstrated to be effective on 0.50-g scale. Deoxygenations led ultimately to two new deoxy-vancomycin derivatives, and surprising conformational consequences of deoxygenation were revealed for one of the new compounds. These effects were mirrored in the biological activities of the new analogues and support a structural role for certain hydroxyls in the native structure.
Collapse
Affiliation(s)
- Brandon S. Fowler
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107
| | - Kai M. Laemmerhold
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107
| |
Collapse
|
265
|
Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O, Kelley ST, Methé B, Schloss PD, Gevers D, Mitreva M, Huttenhower C. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 2012; 8:e1002358. [PMID: 22719234 PMCID: PMC3374609 DOI: 10.1371/journal.pcbi.1002358] [Citation(s) in RCA: 728] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 12/07/2011] [Indexed: 12/18/2022] Open
Abstract
Microbial communities carry out the majority of the biochemical activity on the planet, and they play integral roles in processes including metabolism and immune homeostasis in the human microbiome. Shotgun sequencing of such communities' metagenomes provides information complementary to organismal abundances from taxonomic markers, but the resulting data typically comprise short reads from hundreds of different organisms and are at best challenging to assemble comparably to single-organism genomes. Here, we describe an alternative approach to infer the functional and metabolic potential of a microbial community metagenome. We determined the gene families and pathways present or absent within a community, as well as their relative abundances, directly from short sequence reads. We validated this methodology using a collection of synthetic metagenomes, recovering the presence and abundance both of large pathways and of small functional modules with high accuracy. We subsequently applied this method, HUMAnN, to the microbial communities of 649 metagenomes drawn from seven primary body sites on 102 individuals as part of the Human Microbiome Project (HMP). This provided a means to compare functional diversity and organismal ecology in the human microbiome, and we determined a core of 24 ubiquitously present modules. Core pathways were often implemented by different enzyme families within different body sites, and 168 functional modules and 196 metabolic pathways varied in metagenomic abundance specifically to one or more niches within the microbiome. These included glycosaminoglycan degradation in the gut, as well as phosphate and amino acid transport linked to host phenotype (vaginal pH) in the posterior fornix. An implementation of our methodology is available at http://huttenhower.sph.harvard.edu/humann. This provides a means to accurately and efficiently characterize microbial metabolic pathways and functional modules directly from high-throughput sequencing reads, enabling the determination of community roles in the HMP cohort and in future metagenomic studies.
Collapse
Affiliation(s)
- Sahar Abubucker
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Qu X, Pang B, Zhang Z, Chen M, Wu Z, Zhao Q, Zhang Q, Wang Y, Liu Y, Liu W. Caerulomycins and Collismycins Share a Common Paradigm for 2,2′-Bipyridine Biosynthesis via an Unusual Hybrid Polyketide–Peptide Assembly Logic. J Am Chem Soc 2012; 134:9038-41. [DOI: 10.1021/ja3016457] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xudong Qu
- State Key Laboratory of Bioorganic and Natural
Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,
China
| | - Bo Pang
- State Key Laboratory of Bioorganic and Natural
Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,
China
| | - Zhicong Zhang
- State Key Laboratory of Bioorganic and Natural
Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,
China
| | - Ming Chen
- State Key Laboratory of Bioorganic and Natural
Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,
China
| | - Zhuhua Wu
- State Key Laboratory of Bioorganic and Natural
Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,
China
| | - Qunfei Zhao
- State Key Laboratory of Bioorganic and Natural
Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,
China
| | - Qinglin Zhang
- State Key Laboratory of Bioorganic and Natural
Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,
China
| | - Yinyan Wang
- State Key Laboratory of Bioorganic and Natural
Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,
China
| | - Yun Liu
- State Key Laboratory of Bioorganic and Natural
Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,
China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural
Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,
China
| |
Collapse
|
267
|
Huang W, Xu H, Li Y, Zhang F, Chen XY, He QL, Igarashi Y, Tang GL. Characterization of yatakemycin gene cluster revealing a radical S-adenosylmethionine dependent methyltransferase and highlighting spirocyclopropane biosynthesis. J Am Chem Soc 2012; 134:8831-40. [PMID: 22612591 DOI: 10.1021/ja211098r] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Yatakemycin (YTM), an antitumor natural product, represents the most potent member of a class of potent anticancer natural products including CC-1065 and duocarmycins. Herein we describe the biosynthetic gene cluster of YTM, which was identified by genome scanning of Streptomyces sp. TP-A0356. This cluster consists of 31 open reading frames (ORFs) and was localized to a 36 kb DNA segment. Moreover, its involvement in YTM biosynthesis was confirmed by cluster deletion, gene replacement, and complementation. Inactivation of ytkT, which encodes a radical S-adenosylmethionine (SAM) protein, created a mutant strain that failed to produce YTM but accumulated a new metabolite, which was structurally elucidated as a precursor that was related to the formation of the cyclopropane ring. More importantly, biochemical characterization of the radical SAM-dependent enzyme YtkT revealed that it is a novel C-methyltransferase and contributes to an advanced intermediate during formation of the cyclopropane ring through a radical mechanism in the YTM biosynthetic pathway. On the basis of in silico analysis, genetic experiments, structure elucidation of the novel intermediate, and biochemical characterization, a biosynthetic pathway for yatakemycin was proposed, which sets the stage to further investigate the novel enzymatic mechanisms and engineer the biosynthetic machinery for the production of novel analogues.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Hou Y, Braun DR, Michel CR, Klassen J, Adnani N, Wyche TP, Bugni TS. Microbial strain prioritization using metabolomics tools for the discovery of natural products. Anal Chem 2012; 84:4277-83. [PMID: 22519562 PMCID: PMC3352271 DOI: 10.1021/ac202623g] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 04/22/2012] [Indexed: 12/16/2022]
Abstract
Natural products profoundly impact many research areas, including medicine, organic chemistry, and cell biology. However, discovery of new natural products suffers from a lack of high throughput analytical techniques capable of identifying structural novelty in the face of a high degree of chemical redundancy. Methods to select bacterial strains for drug discovery have historically been based on phenotypic qualities or genetic differences and have not been based on laboratory production of secondary metabolites. Therefore, untargeted LC/MS-based secondary metabolomics was evaluated to rapidly and efficiently analyze marine-derived bacterial natural products using LC/MS-principal component analysis (PCA). A major goal of this work was to demonstrate that LC/MS-PCA was effective for strain prioritization in a drug discovery program. As proof of concept, we evaluated LC/MS-PCA for strain selection to support drug discovery, for the discovery of unique natural products, and for rapid assessment of regulation of natural product production.
Collapse
Affiliation(s)
- Yanpeng Hou
- Pharmaceutical Sciences Division,
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical Sciences Division,
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Cole R. Michel
- Pharmaceutical Sciences Division,
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Jonathan
L. Klassen
- Department of Bacteriology, University of Wisconsin,
Madison, Wisconsin 53705,
United States
| | - Navid Adnani
- Pharmaceutical Sciences Division,
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Thomas P. Wyche
- Pharmaceutical Sciences Division,
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical Sciences Division,
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
269
|
Hijacking a hydroxyethyl unit from a central metabolic ketose into a nonribosomal peptide assembly line. Proc Natl Acad Sci U S A 2012; 109:8540-5. [PMID: 22586110 DOI: 10.1073/pnas.1204232109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) usually catalyze the biosynthesis of peptide natural products by sequential selection, activation, and condensation of amino acid precursors. It was reported that some fatty acids, α-ketoacids, and α-hydroxyacids originating from amino acid metabolism as well as polyketide-derived units can also be used by NRPS assembly lines as an alternative to amino acids. Ecteinascidin 743 (ET-743), naphthyridinomycin (NDM), and quinocarcin (QNC) are three important antitumor natural products belonging to the tetrahydroisoquinoline family. Although ET-743 has been approved as an anticancer drug, the origin of an identical two-carbon (C(2)) fragment among these three antibiotics has not been elucidated despite much effort in the biosynthetic research in the past 30 y. Here we report that two unexpected two-component transketolases (TKases), NapB/NapD in the NDM biosynthetic pathway and QncN/QncL in QNC biosynthesis, catalyze the transfer of a glycolaldehyde unit from ketose to the lipoyl group to yield the glycolicacyl lipoic acid intermediate and then transfer the C(2) unit to an acyl carrier protein (ACP) to form glycolicacyl-S-ACP as an extender unit for NRPS. Our results demonstrate a unique NRPS extender unit directly derived from ketose phosphates through (α,β-dihydroxyethyl)-thiamin diphosphate and a lipoyl group-tethered ester intermediate catalyzed by the TKase-ACP platform in the context of NDM and QNC biosynthesis, all of which also highlights the biosynthesis of ET-743. This hybrid system and precursor are distinct from the previously described universal modes involving the NRPS machinery. They exemplify an alternate strategy in hybrid NRPS biochemistry and enrich the diversity of precursors for NRPS combinatorial biosynthesis.
Collapse
|
270
|
Sanchez LM, Wong WR, Riener RM, Schulze CJ, Linington RG. Examining the fish microbiome: vertebrate-derived bacteria as an environmental niche for the discovery of unique marine natural products. PLoS One 2012; 7:e35398. [PMID: 22574119 PMCID: PMC3344833 DOI: 10.1371/journal.pone.0035398] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/16/2012] [Indexed: 01/11/2023] Open
Abstract
Historically, marine invertebrates have been a prolific source of unique natural products, with a diverse array of biological activities. Recent studies of invertebrate-associated microbial communities are revealing microorganisms as the true producers of many of these compounds. Inspired by the human microbiome project, which has highlighted the human intestine as a unique microenvironment in terms of microbial diversity, we elected to examine the bacterial communities of fish intestines (which we have termed the fish microbiome) as a new source of microbial and biosynthetic diversity for natural products discovery. To test the hypothesis that the fish microbiome contains microorganisms with unique capacity for biosynthesizing natural products, we examined six species of fish through a combination of dissection and culture-dependent evaluation of intestinal microbial communities. Using isolation media designed to enrich for marine Actinobacteria, we have found three main clades that show taxonomic divergence from known strains, several of which are previously uncultured. Extracts from these strains exhibit a wide range of activities against both Gram-positive and Gram-negative human pathogens, as well as several fish pathogens. Exploration of one of these extracts has identified the novel bioactive lipid sebastenoic acid as an anti-microbial agent, with activity against Staphylococcus aureus, Bacillus subtilis, Enterococcus faecium, and Vibrio mimicus.
Collapse
Affiliation(s)
- Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Weng Ruh Wong
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Romina M. Riener
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Christopher J. Schulze
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Roger G. Linington
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
271
|
Pu X, Li G, Yang T, Li G, Yi J, Zhang G, Luo Y. A new cyclododeca[d]oxazole derivative from Streptomyces spp. CIBYL1. Nat Prod Res 2012; 27:603-8. [DOI: 10.1080/14786419.2012.682997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xiang Pu
- a Center for Natural Products Research , Chengdu Institute of Biology of the Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China
- b Graduate University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Guangzhou Li
- a Center for Natural Products Research , Chengdu Institute of Biology of the Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China
- c Institute of Chinese Materia Medica , Sichuan Academy of Chinese Medicine Sciences , Chengdu 610041 , People's Republic of China
- d School of Chinese Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengu 610075 , People's Republic of China
| | - Tao Yang
- a Center for Natural Products Research , Chengdu Institute of Biology of the Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China
| | - Guoyou Li
- a Center for Natural Products Research , Chengdu Institute of Biology of the Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China
| | - Jinhai Yi
- c Institute of Chinese Materia Medica , Sichuan Academy of Chinese Medicine Sciences , Chengdu 610041 , People's Republic of China
- d School of Chinese Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengu 610075 , People's Republic of China
| | - Guolin Zhang
- a Center for Natural Products Research , Chengdu Institute of Biology of the Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China
| | - Yinggang Luo
- a Center for Natural Products Research , Chengdu Institute of Biology of the Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China
| |
Collapse
|
272
|
Parthier C, Görlich S, Jaenecke F, Breithaupt C, Bräuer U, Fandrich U, Clausnitzer D, Wehmeier UF, Böttcher C, Scheel D, Stubbs MT. The O-carbamoyltransferase TobZ catalyzes an ancient enzymatic reaction. Angew Chem Int Ed Engl 2012; 51:4046-52. [PMID: 22383337 DOI: 10.1002/anie.201108896] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Christoph Parthier
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Parthier C, Görlich S, Jaenecke F, Breithaupt C, Bräuer U, Fandrich U, Clausnitzer D, Wehmeier UF, Böttcher C, Scheel D, Stubbs MT. Die O-Carbamoyltransferase TobZ katalysiert eine enzymatische Reaktion frühen Ursprungs. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
274
|
Abstract
As the field of synthetic biology is developing, the prospects for de novo design of biosynthetic pathways are becoming more and more realistic. Hence, there is an increasing need for computational tools that can support these efforts. A range of algorithms has been developed that can be used to identify all possible metabolic pathways and their corresponding enzymatic parts. These can then be ranked according to various properties and modelled in an organism-specific context. Finally, design software can aid the biologist in the integration of a selected pathway into smartly regulated transcriptional units. Here, we review key existing tools and offer suggestions for how informatics can help to shape the future of synthetic microbiology.
Collapse
|
275
|
Winter JM, Tang Y. Synthetic biological approaches to natural product biosynthesis. Curr Opin Biotechnol 2012; 23:736-43. [PMID: 22221832 DOI: 10.1016/j.copbio.2011.12.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Small molecules produced in Nature possess exquisite chemical diversity and continue to be an inspiration for the development of new therapeutic agents. In their host organisms, natural products are assembled and modified using dedicated biosynthetic pathways. By rationally reprogramming and manipulating these pathways, unnatural metabolites containing enhanced structural features that were otherwise inaccessible can be obtained. Additionally, new chemical entities can be synthesized by developing the enzymes that carry out these complicated chemical reactions into biocatalysts. In this review, we will discuss a variety of combinatorial biosynthetic strategies, their technical challenges, and highlight some recent (since 2007) examples of rationally designed metabolites, as well as platforms that have been established for the production and modification of clinically important pharmaceutical compounds.
Collapse
Affiliation(s)
- Jaclyn M Winter
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | | |
Collapse
|
276
|
|
277
|
Johnston C, Ibrahim A, Magarvey N. Informatic strategies for the discovery of polyketides and nonribosomal peptides. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20120h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A modern challenge and opportunity exists for in the ability to link genomic and metabolomic data, using novel informatic methods to find new bioactive natural products.
Collapse
Affiliation(s)
- Chad Johnston
- Department of Biochemistry and Biomedical Sciences
- Department of Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
| | - Ashraf Ibrahim
- Department of Biochemistry and Biomedical Sciences
- Department of Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
| | - Nathan Magarvey
- Department of Biochemistry and Biomedical Sciences
- Department of Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
| |
Collapse
|
278
|
Wright G. Antibiotics: A New Hope. ACTA ACUST UNITED AC 2012; 19:3-10. [DOI: 10.1016/j.chembiol.2011.10.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 10/12/2011] [Accepted: 10/14/2011] [Indexed: 12/21/2022]
|
279
|
Lin S, Huang T, Shen B. Tailoring Enzymes Acting on Carrier Protein-Tethered Substrates in Natural Product Biosynthesis. Methods Enzymol 2012; 516:321-43. [DOI: 10.1016/b978-0-12-394291-3.00008-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
280
|
Saleh O, Bonitz T, Flinspach K, Kulik A, Burkard N, Mühlenweg A, Vente A, Polnick S, Lämmerhofer M, Gust B, Fiedler HP, Heide L. Activation of a silent phenazine biosynthetic gene cluster reveals a novel natural product and a new resistance mechanism against phenazines. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20045g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
281
|
Dimise EJ, Condurso HL, Stoker GE, Bruner SD. Synthesis and structure confirmation of fuscachelins A and B, structurally unique natural product siderophores from Thermobifida fusca. Org Biomol Chem 2012; 10:5353-6. [DOI: 10.1039/c2ob26010g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
282
|
Mann FM, Peters RJ. Isotuberculosinol: the unusual case of an immunomodulatory diterpenoid from Mycobacterium tuberculosis.. MEDCHEMCOMM 2012; 3:899-904. [PMID: 23926455 DOI: 10.1039/c2md20030a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Francis M Mann
- Department of Chemistry, Winona Sate University, Winona, MN 55987
| | | |
Collapse
|
283
|
Comparative analysis of a cryptic thienamycin-like gene cluster identified in Streptomyces flavogriseus by genome mining. Arch Microbiol 2011; 194:549-55. [DOI: 10.1007/s00203-011-0781-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/28/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
|
284
|
Mitchell W. Natural products from synthetic biology. Curr Opin Chem Biol 2011; 15:505-15. [PMID: 21684801 DOI: 10.1016/j.cbpa.2011.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/10/2011] [Accepted: 05/23/2011] [Indexed: 01/31/2023]
Abstract
DNA sequencing has uncovered microbial secondary metabolic potential that never surfaced in fermentation based screens. Deep and cheap sequencing of a genus such as Streptomyces can rapidly expose hundreds of metabolic genes and operons. Meanwhile, synthetic biologists, in their quest to engineer advanced biofuels, are mastering metabolic engineering. Natural products, a reliable source of new therapeutic leads for many years, have fallen into disfavor with drug discoverers partly because these molecules are rarely available as pure compounds and sourcing is often problematic. The convergence of next generation sequencing and synthetic biology, along with less spectacular progress in analytic technologies such as mass spectroscopy, opens the door to the creation of large, reliable libraries of pure natural products for drug discovery.
Collapse
Affiliation(s)
- Wayne Mitchell
- Experimental Therapeutics Centre, Agency for Science and Technology Research (A*STAR), 31 Biopolis Way, #03-01 Nanos, Biopolis, Singapore 138669, Singapore.
| |
Collapse
|
285
|
Cortina NS, Krug D, Plaza A, Revermann O, Müller R. Myxoprincomid: Entdeckung eines Naturstoffs mithilfe einer umfassenden Analyse des sekundären Metaboloms von Myxococcusxanthus. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
286
|
Cortina NS, Krug D, Plaza A, Revermann O, Müller R. Myxoprincomide: A Natural Product from Myxococcus xanthus Discovered by Comprehensive Analysis of the Secondary Metabolome. Angew Chem Int Ed Engl 2011; 51:811-6. [DOI: 10.1002/anie.201106305] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/17/2011] [Indexed: 11/07/2022]
|
287
|
Wang C, Henkes LM, Doughty LB, He M, Wang D, Meyer-Almes FJ, Cheng YQ. Thailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities. JOURNAL OF NATURAL PRODUCTS 2011; 74:2031-8. [PMID: 21793558 PMCID: PMC3204160 DOI: 10.1021/np200324x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Histone deacetylase (HDAC) inhibitors have emerged as a new class of anticancer drugs, with one synthetic compound, SAHA (vorinostat, Zolinza; 1), and one natural product, FK228 (depsipeptide, romidepsin, Istodax; 2), approved by FDA for clinical use. Our studies of FK228 biosynthesis in Chromobacterium violaceum no. 968 led to the identification of a cryptic biosynthetic gene cluster in the genome of Burkholderia thailandensis E264. Genome mining and genetic manipulation of this gene cluster further led to the discovery of two new products, thailandepsin A (6) and thailandepsin B (7). HDAC inhibition assays showed that thailandepsins have selective inhibition profiles different from that of FK228, with comparable inhibitory activities to those of FK228 toward human HDAC1, HDAC2, HDAC3, HDAC6, HDAC7, and HDAC9 but weaker inhibitory activities than FK228 toward HDAC4 and HDAC8, the latter of which could be beneficial. NCI-60 anticancer screening assays showed that thailandepsins possess broad-spectrum antiproliferative activities with GI50 for over 90% of the tested cell lines at low nanomolar concentrations and potent cytotoxic activities toward certain types of cell lines, particularly for those derived from colon, melanoma, ovarian, and renal cancers. Thailandepsins thus represent new naturally produced HDAC inhibitors that are promising for anticancer drug development.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Biological Sciences, and Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201, United States
| | - Leonhard M. Henkes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, 64287 Darmstadt, Germany
| | - Leah B. Doughty
- Department of Biological Sciences, and Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201, United States
| | - Min He
- Developmental Therapeutics Program, the US National Cancer Institute, Frederick, MD 21701, United States
| | - Difei Wang
- Laboratory of Cell Biology, the US National Cancer Institute, Bethesda, MD 20892, Unites States
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, 64287 Darmstadt, Germany
| | - Yi-Qiang Cheng
- Department of Biological Sciences, and Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201, United States
- MoE Laboratory of Combinatorial Biosynthesis and New Drug Discovery, Wuhan University College of Pharmacy, Wuhan 430072, China
- Corresponding author: Tel: (414) 229-4739. Fax: (414) 229-3926.
| |
Collapse
|
288
|
Liu WT, Kersten RD, Yang YL, Moore BS, Dorrestein PC. Imaging mass spectrometry and genome mining via short sequence tagging identified the anti-infective agent arylomycin in Streptomyces roseosporus. J Am Chem Soc 2011; 133:18010-3. [PMID: 21999343 DOI: 10.1021/ja2040877] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we described the discovery of anti-infective agent arylomycin and its biosynthetic gene cluster in an industrial daptomycin producing strain Streptomyces roseosporus. This was accomplished via the use of MALDI imaging mass spectrometry (IMS) along with peptidogenomic approach in which we have expanded to short sequence tagging (SST) described herein. Using IMS, we observed that prior to the production of daptomycin, a cluster of ions (1-3) was produced by S. roseosporus and correlated well with the decreased staphylococcal cell growth. With a further adopted SST peptidogenomics approach, which relies on the generation of sequence tags from tandem mass spectrometric data and query against genomes to identify the biosynthetic genes, we were able to identify these three molecules (1-3) to arylomycins, a class of broad-spectrum antibiotics that target type I signal peptidase. The gene cluster was then identified. This highlights the strength of IMS and MS guided genome mining approaches in effectively bridging the gap between phenotypes, chemotypes, and genotypes.
Collapse
Affiliation(s)
- Wei-Ting Liu
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, Unites States
| | | | | | | | | |
Collapse
|
289
|
Li WL, Zhan GH, Zheng H. [Advances on actinomycetic terpenoid biosynthesis]. YI CHUAN = HEREDITAS 2011; 33:1087-92. [PMID: 21993283 DOI: 10.3724/sp.j.1005.2011.01087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Terpenoids are the most diverse class of natural products. Recently, a series of terpenoids with novel structures have been isolated from actinomyces. Their biosynthetic gene clusters have been identified and characterized either by direct cloning or genomic mining, which promoted investigations of their biosynthetic pathways, as well as the key enzymatic mechanisms. This paper provides a brief overview of the major research published in the last five years.
Collapse
Affiliation(s)
- Wen-Li Li
- Ocean University of China, Qingdao, China.
| | | | | |
Collapse
|
290
|
Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity. Proc Natl Acad Sci U S A 2011; 108:17649-54. [PMID: 21987796 DOI: 10.1073/pnas.1108484108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycosyltransferases are useful synthetic catalysts for generating natural products with sugar moieties. Although several natural product glycosyltransferase structures have been reported, design principles of glycosyltransferase engineering for the generation of glycodiversified natural products has fallen short of its promise, partly due to a lack of understanding of the relationship between structure and function. Here, we report structures of all four calicheamicin glycosyltransferases (CalG1, CalG2, CalG3, and CalG4), whose catalytic functions are clearly regiospecific. Comparison of these four structures reveals a conserved sugar donor binding motif and the principles of acceptor binding region reshaping. Among them, CalG2 possesses a unique catalytic motif for glycosylation of hydroxylamine. Multiple glycosyltransferase structures in a single natural product biosynthetic pathway are a valuable resource for understanding regiospecific reactions and substrate selectivities and will help future glycosyltransferase engineering.
Collapse
|
291
|
Hou J, Robbel L, Marahiel MA. Identification and characterization of the lysobactin biosynthetic gene cluster reveals mechanistic insights into an unusual termination module architecture. ACTA ACUST UNITED AC 2011; 18:655-64. [PMID: 21609846 DOI: 10.1016/j.chembiol.2011.02.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 11/17/2022]
Abstract
Lysobactin (katanosin B) is a macrocyclic depsipeptide, displaying high antibacterial activity against human pathogens. In this work, we have identified and characterized the entire biosynthetic gene cluster responsible for lysobactin assembly. Sequential analysis of the Lysobacter sp. ATCC 53042 genome revealed the lysobactin gene cluster to encode two multimodular nonribosomal peptide synthetases. As the number of modules found within the synthetases LybA and LybB directly correlates with the primary sequence of lysobactin, a linear logic of lysobactin biosynthesis is proposed. Investigation of adenylation domain specificities in vitro confirmed the direct association between the synthetases and lysobactin biosynthesis. Furthermore, an unusual tandem thioesterase architecture of the LybB termination module was identified. Biochemical characterization of the individual thioesterases in vitro provides evidence that solely penultimate thioesterase domain mediates the cyclization and simultaneous release of lysobactin.
Collapse
Affiliation(s)
- Jie Hou
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, Germany
| | | | | |
Collapse
|
292
|
Toward improvement of erythromycin A production in an industrial Saccharopolyspora erythraea strain via facilitation of genetic manipulation with an artificial attB site for specific recombination. Appl Environ Microbiol 2011; 77:7508-16. [PMID: 21841022 DOI: 10.1128/aem.06034-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Large-scale production of erythromycin A (Er-A) relies on the organism Saccharopolyspora erythraea, in which lack of a typical attB site largely impedes the application of phage ΦC31 integrase-mediated recombination into site-specific engineering. We herein report construction of an artificial attB site in an industrial S. erythraea strain, HL3168 E3, in an effort to break the bottleneck previously encountered during genetic manipulation mainly from homologous or unpredictable nonspecific integration. Replacement of a cryptic gene, nrps1-1, with a cassette containing eight attB DNA sequences did not affect the high Er-producing ability, setting the stage for precisely engineering the industrial Er-producing strain for foreign DNA introduction with a reliable conjugation frequency. Transfer of either exogenous or endogenous genes of importance to Er-A biosynthesis, including the S-adenosylmethionine synthetase gene for positive regulation, vhb for increasing the oxygen supply, and two tailoring genes, eryK and eryG, for optimizing the biotransformation at the late stage, was achieved by taking advantage of this facility, allowing systematic improvement of Er-A production as well as elimination of the by-products Er-B and Er-C in fermentation. The strategy developed here can generally be applicable to other strains that lack the attB site.
Collapse
|
293
|
Zhu F, Qin C, Tao L, Liu X, Shi Z, Ma X, Jia J, Tan Y, Cui C, Lin J, Tan C, Jiang Y, Chen Y. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc Natl Acad Sci U S A 2011; 108:12943-8. [PMID: 21768386 PMCID: PMC3150889 DOI: 10.1073/pnas.1107336108] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many drugs are nature derived. Low drug productivity has renewed interest in natural products as drug-discovery sources. Nature-derived drugs are composed of dozens of molecular scaffolds generated by specific secondary-metabolite gene clusters in selected species. It can be hypothesized that drug-like structures probably are distributed in selective groups of species. We compared the species origins of 939 approved and 369 clinical-trial drugs with those of 119 preclinical drugs and 19,721 bioactive natural products. In contrast to the scattered distribution of bioactive natural products, these drugs are clustered into 144 of the 6,763 known species families in nature, with 80% of the approved drugs and 67% of the clinical-trial drugs concentrated in 17 and 30 drug-prolific families, respectively. Four lines of evidence from historical drug data, 13,548 marine natural products, 767 medicinal plants, and 19,721 bioactive natural products suggest that drugs are derived mostly from preexisting drug-productive families. Drug-productive clusters expand slowly by conventional technologies. The lack of drugs outside drug-productive families is not necessarily the result of under-exploration or late exploration by conventional technologies. New technologies that explore cryptic gene clusters, pathways, interspecies crosstalk, and high-throughput fermentation enable the discovery of novel natural products. The potential impact of these technologies on drug productivity and on the distribution patterns of drug-productive families is yet to be revealed.
Collapse
Affiliation(s)
- Feng Zhu
- Key Laboratory of Chemical Biology, Guangdong Province Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, People's Republic of China
- Bioinformatics and Drug Design Group, Department of Pharmacy, and
- Center for Computational Science and Engineering, National University of Singapore, Singapore 117543
| | - Chu Qin
- Bioinformatics and Drug Design Group, Department of Pharmacy, and
- Center for Computational Science and Engineering, National University of Singapore, Singapore 117543
- Department of Pharmacy, National University of Singapore Graduate School for Integrative Sciences and Engineering, Singapore 117456; and
| | - Lin Tao
- Bioinformatics and Drug Design Group, Department of Pharmacy, and
- Center for Computational Science and Engineering, National University of Singapore, Singapore 117543
- Department of Pharmacy, National University of Singapore Graduate School for Integrative Sciences and Engineering, Singapore 117456; and
| | - Xin Liu
- Bioinformatics and Drug Design Group, Department of Pharmacy, and
- Center for Computational Science and Engineering, National University of Singapore, Singapore 117543
| | - Zhe Shi
- Bioinformatics and Drug Design Group, Department of Pharmacy, and
- Center for Computational Science and Engineering, National University of Singapore, Singapore 117543
| | - Xiaohua Ma
- Bioinformatics and Drug Design Group, Department of Pharmacy, and
- Center for Computational Science and Engineering, National University of Singapore, Singapore 117543
| | - Jia Jia
- Bioinformatics and Drug Design Group, Department of Pharmacy, and
- Center for Computational Science and Engineering, National University of Singapore, Singapore 117543
| | - Ying Tan
- Key Laboratory of Chemical Biology, Guangdong Province Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, People's Republic of China
| | - Cheng Cui
- Key Laboratory of Chemical Biology, Guangdong Province Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, People's Republic of China
| | - Jinshun Lin
- Key Laboratory of Chemical Biology, Guangdong Province Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, People's Republic of China
| | - Chunyan Tan
- Key Laboratory of Chemical Biology, Guangdong Province Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, People's Republic of China
| | - Yuyang Jiang
- Key Laboratory of Chemical Biology, Guangdong Province Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, People's Republic of China
- School of Medicine and Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yuzong Chen
- Key Laboratory of Chemical Biology, Guangdong Province Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, People's Republic of China
- Bioinformatics and Drug Design Group, Department of Pharmacy, and
- Center for Computational Science and Engineering, National University of Singapore, Singapore 117543
| |
Collapse
|
294
|
Abstract
The study of bacterial symbionts of eukaryotic hosts has become a powerful discovery engine for chemistry. This highlight looks at four case studies that exemplify the range of chemistry and biology involved in these symbioses: a bacterial symbiont of a fungus and a marine invertebrate that produce compounds with significant anticancer activity, and bacterial symbionts of insects and nematodes that produce compounds that regulate multilateral symbioses.
Collapse
Affiliation(s)
- Jason M Crawford
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
295
|
Jiang W, Heemstra JR, Forseth RR, Neumann CS, Manaviazar S, Schroeder FC, Hale KJ, Walsh CT. Biosynthetic chlorination of the piperazate residue in kutzneride biosynthesis by KthP. Biochemistry 2011; 50:6063-72. [PMID: 21648411 PMCID: PMC3129693 DOI: 10.1021/bi200656k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kutznerides 2 and 8 of the cyclic hexadepsipeptide family of antifungal natural products from the soil actinomycete Kutzneria sp. 744 contain two sets of chlorinated residues, a 6,7-dichlorohexahydropyrroloindole moiety derived from dichlorotryptophan and a 5-chloropiperazate moiety, as well as a methylcyclopropylglycine residue that may arise from isoleucine via a cryptic chlorination pathway. Previous studies identified KtzD, KtzQ, and KtzR as three halogenases in the kutzneride pathway but left no candidate for installing the C5 chlorine on piperazate. On the basis of analysis of the complete genome sequence of Kutzneria, we now identify a fourth halogenase in the pathway whose gene is separated from the defined kutzneride cluster by 12 open reading frames. KthP (kutzneride halogenase for piperazate) is a mononuclear nonheme iron halogenase that acts on the piperazyl ring tethered by a thioester linkage to the holo forms of thiolation domains. MS analysis of the protein-bound product confirmed chlorination of the piperazate framework from the (3S)- but not the (3R)-piperazyl-S-pantetheinyl thiolation proteins. After thioesterase-mediated release, nuclear magnetic resonance was used to assign the free imino acid as (3S,5S)-5-chloropiperazate, distinct from the 3S,5R stereoisomer reported in the mature kutznerides. These results demonstrate that a fourth halogenase, KthP, is active in the kutzneride biosynthetic pathway and suggest further processing of the (3S,5S)-5-chloropiperazate during subsequent incorporation into the kutzneride depsipeptide frameworks.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
296
|
Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011; 39:W339-46. [PMID: 21672958 PMCID: PMC3125804 DOI: 10.1093/nar/gkr466] [Citation(s) in RCA: 1339] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing all the potential gene clusters for secondary metabolites in dozens of newly sequenced genomes has been extremely challenging, due to their biochemical heterogeneity, the presence of unknown enzymes and the dispersed nature of the necessary specialized bioinformatics tools and resources. Here, we present antiSMASH (antibiotics & Secondary Metabolite Analysis Shell), the first comprehensive pipeline capable of identifying biosynthetic loci covering the whole range of known secondary metabolite compound classes (polyketides, non-ribosomal peptides, terpenes, aminoglycosides, aminocoumarins, indolocarbazoles, lantibiotics, bacteriocins, nucleosides, beta-lactams, butyrolactones, siderophores, melanins and others). It aligns the identified regions at the gene cluster level to their nearest relatives from a database containing all other known gene clusters, and integrates or cross-links all previously available secondary-metabolite specific gene analysis methods in one interactive view. antiSMASH is available at http://antismash.secondarymetabolites.org.
Collapse
Affiliation(s)
- Marnix H Medema
- Department of Microbial Physiology, Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Molecular cloning and identification of the laspartomycin biosynthetic gene cluster from Streptomyces viridochromogenes. Gene 2011; 483:11-21. [PMID: 21640802 DOI: 10.1016/j.gene.2011.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 11/21/2022]
Abstract
The biosynthetic gene cluster for laspartomycins, a family of 11 amino acid peptide antibiotics, has been cloned and sequenced from Streptomyces viridochromogenes ATCC 29814. Annotation of a segment of 88912bp of S. viridochromogenes genomic sequence revealed the putative lpm cluster and its flanking regions which harbor 43 open reading frames. The lpm cluster, which spans approximately 60 kb, consists of 21 open reading frames. Those include four NRPS genes (lpmA/orf18, lpmB/orf25, lpmC/orf26 and lpmD/orf27), four genes (orfs 21, 22, 24 and 29) involved in the lipid tail biosynthesis and attachment, four regulatory genes (orfs 13, 19, 32 and 33) and three putative exporters or self-resistance genes (orfs 14, 20 and 30). In addition, the gene involved in the biosynthesis of the nonproteinogenic amino acid Pip was also identified in the lpm cluster while the genes necessary for the biosynthesis of the rare residue diaminopropionic acid (Dap) were found to reside elsewhere on the chromosome. Interestingly, the dabA, dabB and dabC genes predicted to code for the biosynthesis of the unusual amino acid diaminobutyric acid (Dab) are organized into the lpm cluster even though the Dab residue was not found in the laspartomycins. Disruption of the NRPS lpmC gene completely abolished laspartomycin production in the corresponding mutant strain. These findings will allow molecular engineering and combinatorial biosynthesis approaches to expand the structural diversity of the amphomycin-group peptide antibiotics including the laspartomycins and friulimicins.
Collapse
|
298
|
Genome mining in Streptomyces clavuligerus: expression and biochemical characterization of two new cryptic sesquiterpene synthases. ACTA ACUST UNITED AC 2011; 18:32-7. [PMID: 21276937 DOI: 10.1016/j.chembiol.2010.11.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/17/2010] [Accepted: 11/09/2010] [Indexed: 12/26/2022]
Abstract
Two presumptive terpene synthases of unknown biochemical function encoded by the sscg_02150 and sscg_03688 genes of Streptomyces clavuligerus ATCC 27074 were individually expressed in Escherichia coli as N-terminal-His₆-tag proteins, using codon-optimized synthetic genes. Incubation of recombinant SSCG_02150 with farnesyl diphosphate (1, FPP) gave (-)-δ-cadinene (2) while recombinant SSCG_03688 converted FPP to (+)-T-muurolol (3). Individual incubations of (-)-δ-cadinene synthase with [1,1-²H₂]FPP (1a), (1S)-[1-²H]-FPP (1b), and (1R)-[1-²H]-FPP (1c) and NMR analysis of the resulting samples of deuterated (-)-δ-cadinene supported a cyclization mechanism involving the intermediacy of nerolidyl diphosphate (4) leading to a helminthogermacradienyl cation 5. Following a 1,3-hydride shift of the original H-1(si) of FPP, cyclization and deprotonation will give (-)-δ-cadinene. Similar incubations with recombinant SSCG_03688 supported an analogous mechanism for the formation of (+)-T-muurolol (3), also involving a 1,3-hydride shift of the original H-1(si) of FPP.
Collapse
|
299
|
O'Brien J, Wright GD. An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol 2011; 22:552-8. [PMID: 21498065 DOI: 10.1016/j.copbio.2011.03.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/23/2011] [Indexed: 11/26/2022]
Abstract
Bacteria and fungi produce a remarkable array of bioactive small molecules. Many of these have found use in medicine as chemotherapies to treat diseases ranging from infection and cancer to hyperlipidemia and autoimmune disorders. The applications may or may not reflect the actual targets for these compounds. Through careful studies of microbes, their associated molecules and their targets, a growing understanding of the ecology of microbial secondary metabolism is emerging that exposes the central role of secondary metabolites in many complex biological systems.
Collapse
Affiliation(s)
- Jonathan O'Brien
- M.G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | |
Collapse
|
300
|
Donia MS, Fricke WF, Ravel J, Schmidt EW. Variation in tropical reef symbiont metagenomes defined by secondary metabolism. PLoS One 2011; 6:e17897. [PMID: 21445351 PMCID: PMC3062557 DOI: 10.1371/journal.pone.0017897] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 02/14/2011] [Indexed: 11/19/2022] Open
Abstract
The complex evolution of secondary metabolism is important in biology, drug development, and synthetic biology. To examine this problem at a fine scale, we compared the genomes and chemistry of 24 strains of uncultivated cyanobacteria, Prochloron didemni, that live symbiotically with tropical ascidians and that produce natural products isolated from the animals. Although several animal species were obtained along a >5500 km transect of the Pacific Ocean, P. didemni strains are >97% identical across much of their genomes, with only a few exceptions concentrated in secondary metabolism. Secondary metabolic gene clusters were sporadically present or absent in identical genomic locations with no consistent pattern of co-occurrence. Discrete mutations were observed, leading to new chemicals that we isolated from animals. Functional cassettes encoding diverse chemicals are exchanged among a single population of symbiotic P. didemni that spans the tropical Pacific, providing the host animals with a varying arsenal of secondary metabolites.
Collapse
Affiliation(s)
- Mohamed S. Donia
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - W. Florian Fricke
- Institute for Genome Sciences, Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences, Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|