251
|
Bera K, Maiti S, Maity M, Mandal C, Maiti NC. Porphyrin-Gold Nanomaterial for Efficient Drug Delivery to Cancerous Cells. ACS OMEGA 2018; 3:4602-4619. [PMID: 30023896 PMCID: PMC6045359 DOI: 10.1021/acsomega.8b00419] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/17/2018] [Indexed: 05/11/2023]
Abstract
With an aim to overcome multidrug resistance (MDR), nontargeted delivery, and drug toxicity, we developed a new nanochemotherapeutic system with tetrasodium salt of meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) armored on gold nanoparticles (TPPS-AuNPs). The nanocarrier is able to be selectively internalized within tumor cells than in normal cells followed by endocytosis and therefore delivers the antitumor drug doxorubicin (DOX) particularly to the nucleus of diseased cells. The embedment of TPPS on the gold nanosurface provides excellent stability and biocompatibility to the nanoparticles. Porphyrin interacts with the gold nanosurface through the coordination interaction between gold and pyrrolic nitrogen atoms of the porphyrin and forms a strong association complex. DOX-loaded nanocomposite (DOX@TPPS-AuNPs) demonstrated enhanced cellular uptake with significantly reduced drug efflux in MDR brain cancer cells, thereby increasing the retention time of the drug within tumor cells. It exhibited about 9 times greater potency for cellular apoptosis via triggered release commenced by acidic pH. DOX has been successfully loaded on the porphyrin-modified gold nanosurface noncovalently with high encapsulation efficacy (∼90%) and tightly associated under normal physiological conditions but capable of releasing ∼81% of drug in a low-pH environment. Subsequently, DOX-loaded TPPS-AuNPs exhibited higher inhibition of cellular metastasis, invasion, and angiogenesis, suggesting that TPPS-modified AuNPs could improve the therapeutic efficacy of the drug molecule. Unlike free DOX, drug-loaded TPPS-AuNPs did not show toxicity toward normal cells. Therefore, higher drug encapsulation efficacy with selective targeting potential and acidic-pH-mediated intracellular release of DOX at the nucleus make TPPS-AuNPs a "magic bullet" for implication in nanomedicine.
Collapse
Affiliation(s)
- Kaushik Bera
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Samarpan Maiti
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Mritunjoy Maity
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Chitra Mandal
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Nakul C. Maiti
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
252
|
Dutta Chowdhury A, Ganganboina AB, Tsai YC, Chiu HC, Doong RA. Multifunctional GQDs-Concanavalin A@Fe 3O 4 nanocomposites for cancer cells detection and targeted drug delivery. Anal Chim Acta 2018; 1027:109-120. [PMID: 29866260 DOI: 10.1016/j.aca.2018.04.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/05/2018] [Indexed: 01/08/2023]
Abstract
Multifunctional nanocomposites containing intrinsic property for serving as the sensing elements as well as targeted nanoconjugates are highly preferred in various therapeutic applications. In this work, nanocomposites of graphene quantum dots (GQDs) and Fe3O4 with conjugation of lectin protein, concanavalin A, to form GQD-ConA@Fe3O4 nanocomposites are developed for both detection of cancer cell and release of drugs to HeLa cells. The GQD-ConA@Fe3O4 nanocomposites deposited on Pt electrode can detect cancerous HeLa cells over normal endothelial cells with a dynamic linear range of 5 × 102 to 1 × 105 cells mL-1 with a detection limit of 273 cell mL-1. The GQD-ConA@Fe3O4 also can serve as nanocarriers for loading and delivering doxorubicin (Dox). The in vitro cell images show that the Dox concentration in HeLa cells is enhanced more than double in the presence of external magnetic field due to the incorporation of Fe3O4 in the nanocarrier. The cytotoxicity assay indicates that the susceptibility of cancerous HeLa cells to Dox is 13% higher than that of normal cells, confirming the selective role of ConA in nanocarriers. Results clearly indicate the GQD-ConA@Fe3O4 nanocomposites as a promising material for cancer cell detection and targeted Dox release toward HeLa cells which can serve as the multifunctional platform for novel cancer cell diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ankan Dutta Chowdhury
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan, ROC
| | - Akhilesh Babu Ganganboina
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - Yuan-Chung Tsai
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| | - Ruey-An Doong
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan, ROC; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| |
Collapse
|
253
|
Sun CY, Cao Z, Zhang XJ, Sun R, Yu CS, Yang X. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers. Theranostics 2018; 8:2939-2953. [PMID: 29896295 PMCID: PMC5996363 DOI: 10.7150/thno.24015] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/08/2018] [Indexed: 12/17/2022] Open
Abstract
The simple integration of chemotherapeutic drugs and photosensitizers (PSs) into the same nanocarriers only achieves a combination of chemo-photodynamic therapy but may not confer synergistic effects. The boosted intracellular release of chemotherapeutic drugs during the photodynamic therapy (PDT) process is necessary to achieve a cascade of amplified synergistic therapeutic effects of chemo-photodynamic therapy. Methods: In this study, we explored an innovative hyperbranched polyphosphate (RHPPE) containing a singlet oxygen (SO)-labile crosslinker to boost drug release during the PDT process. The photosensitizer chlorin e6 (Ce6) and doxorubicin (DOX) were simultaneously loaded into RHPPE nanoparticles (denoted as SOHNPCe6/DOX). The therapeutic efficacy of SOHNPCe6/DOX against drug-resistant cancer was evaluated in vitro and in vivo. Results: Under 660-nm light irradiation, SOHNPCe6/DOX can produce SO, which not only induces PDT against cancer but also cleaves the thioketal linkers to destroy the nanoparticles. Subsequently, boosted DOX release can be achieved, activating a chemotherapy cascade to synergistically destroy the remaining tumor cells after the initial round of PDT. Furthermore, SOHNPCe6/DOX also efficiently detected the tumor area by photoacoustic/magnetic resonance bimodal imaging. Under the guidance of bimodal imaging, the laser beam was precisely focused on the tumor areas, and subsequently, SOHNPCe6/DOX realized a cascade of amplified synergistic chemo-photodynamic therapeutic effects. High antitumor efficacy was achieved even in a drug-resistant tumor model. Conclusion: The designed SOHNPCe6/DOX with great biocompatibility is promising for use as a co-delivery carrier for combined chemo-photodynamic therapy, providing an alternative avenue to achieve a cascade of amplified synergistic effects of chemo-photodynamic therapy for cancer treatment.
Collapse
|
254
|
Hameed S, Bhattarai P, Dai Z. Cerasomes and Bicelles: Hybrid Bilayered Nanostructures With Silica-Like Surface in Cancer Theranostics. Front Chem 2018; 6:127. [PMID: 29721494 PMCID: PMC5915561 DOI: 10.3389/fchem.2018.00127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/03/2018] [Indexed: 01/10/2023] Open
Abstract
Over years, theranostic nanoplatforms have provided a new avenue for the diagnosis and treatment of various cancer types. To this end, a myriad of nanocarriers such as polymeric micelles, liposomes, and inorganic nanoparticles (NPs) with distinct physiochemical and biological properties are routinely investigated for preclinical and clinical studies. So far, liposomes have received great attention for various biomedical applications, however, it still suffers from insufficient morphological stability. On the other hand, inorganic NPs depicting excellent therapeutic ability have failed to address biocompatibility issues. This has raised a serious concern about the clinical approval of multifunctional organic or inorganic-based theranostic agents. Recently, partially silica coated nanohybrids such as cerasomes and bicelles demonstrating both diagnostic and therapeutic ability in a single system, have drawn profound attention as a fascinating novel drug delivery system. Compared with traditional liposomal or inorganic-based nanoformulations, this new and highly stable nanocarriers integrates the functional attributes of biomimetic liposomes and silica NPs, therefore, synergize strengths and functions, or even surpass weaknesses of individual components. This review at its best enlightens the emerging concept of such partially silica coated nanohybrids, fabrication strategies, and theranostic opportunities to combat cancer and related diseases.
Collapse
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
255
|
Aftab S, Shah A, Nadhman A, Kurbanoglu S, Aysıl Ozkan S, Dionysiou DD, Shukla SS, Aminabhavi TM. Nanomedicine: An effective tool in cancer therapy. Int J Pharm 2018; 540:132-149. [PMID: 29427746 DOI: 10.1016/j.ijpharm.2018.02.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 12/24/2022]
Abstract
Various types of nanoparticles (NPs) have been used in delivering anticancer drugs to the site of action. This area has become more attractive in recent years due to optimal size and negligible undesirable side effects caused by the NPs. The focus of this review is to explore various types of NPs and their surface/chemical modifications as well as attachment of targeting ligands for tuning their properties in order to facilitate targeted delivery to the cancer sites in a rate-controlled manner. Heme compatibility, biodistribution, longer circulation time, hydrophilic lipophilic balance for high bioavailability, prevention of drug degradation and leakage are important in transporting drugs to the targeted cancer sites. The review discusses advantages of polymeric, magnetic, gold, and mesoporous silica NPs in delivering chemotherapeutic agents over the conventional dosage formulations along with their shortcomings/risks and possible solutions/alternatives.
Collapse
Affiliation(s)
- Saima Aftab
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, 06100 Ankara, Turkey.
| | - Akhtar Nadhman
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, 06100 Ankara, Turkey
| | - Sibel Aysıl Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, 06100 Ankara, Turkey
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Shyam S Shukla
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Tejraj M Aminabhavi
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA.
| |
Collapse
|
256
|
Effect of Chemical Binding of Doxorubicin Hydrochloride to Gold Nanoparticles, Versus Electrostatic Adsorption, on the In Vitro Drug Release and Cytotoxicity to Breast Cancer Cells. Pharm Res 2018; 35:112. [DOI: 10.1007/s11095-018-2393-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022]
|
257
|
Payne JN, Badwaik VD, Waghwani HK, Moolani HV, Tockstein S, Thompson DH, Dakshinamurthy R. Development of dihydrochalcone-functionalized gold nanoparticles for augmented antineoplastic activity. Int J Nanomedicine 2018; 13:1917-1926. [PMID: 29636609 PMCID: PMC5880570 DOI: 10.2147/ijn.s143506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Phloridzin, an antidiabetic and antineoplastic agent usually found in fruit trees, is a dihydrochalcone constituent that has a clinical/pharmaceutical significance as a sodium-glucose linked transport 2 (SGLT2) inhibitor. While the aglycone metabolite of phloridzin, phloretin, displays a reduced capacity of SGLT2 inhibition, this nutraceutical displays enhanced antineoplastic activity in comparison to phloridzin. Purpose The objective of this study was to develop gold nanoparticle (AuNP) mediated delivery of phloridzin and phloretin and explore their anticancer mechanism through conjugation of the dihydrochalcones and the AuNP cores. Methods Phloridzin and phloretin conjugated AuNPs (Phl-AuNP and Pht-AuNP) were synthesized in single-step, rapid, biofriendly processes. The synthesized AuNPs morphology was characterized via transmission electron microscopy and ultraviolet-visible spectroscopy. The presence of phloridzin or phloretin was confirmed using scanning electron microscopy-energy dispersive x-ray spectroscopy. The percentage of organic component (phloridzin/phloretin) onto AuNPs surface was characterized using thermogravimetric analysis. Assessment of the antineoplastic potency of the dihydrochalcones conjugated AuNPs against cancerous cell lines (HeLa) was accomplished through monitoring via flow cytometry. Results The functionalized AuNPs were synthesized via a single-step method that relied only upon the redox potential of the conjugate itself and required no toxic chemicals. The synthesized Phl-AuNPs were found to be in the size range of 15±5 nm, whereas the Pht-AuNP were found to be 8±3 nm, placing both conjugated AuNPs well within the size range necessary for successful pharmaceutical applications. These assays demonstrate a significant increase in the cancerous cell toxicities as a result of the conjugation of the drugs to AuNPs, as indicated by the 17.45-fold increase in the efficacy of Pht-AuNPs over pure phloretin, and the 4.49-fold increase in efficacy of Phl-AuNP over pure phloridzin. Conclusion We report a simple, biofriendly process using the reducing and capping potential of the dihydrochalcones, phloridzin and phloretin, to synthesize stable AuNPs that have promising futures as potential antineoplastic agents.
Collapse
Affiliation(s)
- Jason N Payne
- Department of Chemistry, Austin Peay State University, Clarksville, TN, USA.,Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - Vivek D Badwaik
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, West Lafayette, IN, USA
| | - Hitesh K Waghwani
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - Harsh V Moolani
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - Sarah Tockstein
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - David H Thompson
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, West Lafayette, IN, USA
| | | |
Collapse
|
258
|
Wu C, Chen H, Wu X, Cong X, Wang L, Wang Y, Yang Y, Li W, Sun T. The influence of tumor-induced immune dysfunction on the immune cell distribution of gold nanoparticles in vivo. Biomater Sci 2018; 5:1531-1536. [PMID: 28589972 DOI: 10.1039/c7bm00335h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Gold nanoparticles (AuNPs) have been extensively explored as a drug carrier and have been widely used to provide advanced biomedical research tools in diagnostic imaging and therapy for cancer. Although the mononuclear phagocyte system and immune system are known to play the main roles in the clearance of AuNPs during the circulation, the particle distribution within the immune cells under the condition of immune dysfunction caused by tumor growth has not been thoroughly studied. Here, the cellular distribution of Cy5 labeled AuNPs with diameters of 5, 30 and 50 nm is characterized within the immune populations of the blood, spleen and bone marrow from tumor free and tumor bearing mice using flow cytometry. Tumor-associated immune dysfunction was observed in all immune organs and cell lineages, and it changed with tumor growth. Furthermore, the particle cellular distribution significantly changed in the tumor bearing mice compared with the tumor free mice. Finally, the particle distribution in the immune cells was also different at different stages of the tumor. Overall, these results can help inform and influence future AuNP design criteria including the future applications for nanoparticle-mediated cancer therapy.
Collapse
Affiliation(s)
- Chenxi Wu
- The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Hongmei Chen
- The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Xuan Wu
- The First Hospital of Jilin University, Changchun, Jilin, 130021, China. and Institute of Immunology, Jilin University, Changchun, Jilin, China
| | - Xiuxiu Cong
- The First Hospital of Jilin University, Changchun, Jilin, 130021, China. and Institute of Immunology, Jilin University, Changchun, Jilin, China
| | - Li Wang
- School of Life Science, University of Science & Technology of China, Hefei, Anhui, China
| | - Yucai Wang
- School of Life Science, University of Science & Technology of China, Hefei, Anhui, China
| | - Yongguang Yang
- The First Hospital of Jilin University, Changchun, Jilin, 130021, China. and Institute of Immunology, Jilin University, Changchun, Jilin, China and Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Wei Li
- The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Tianmeng Sun
- The First Hospital of Jilin University, Changchun, Jilin, 130021, China. and Institute of Immunology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
259
|
Huang W, Lang Y, Hakeem A, Lei Y, Gan L, Yang X. Surfactin-based nanoparticles loaded with doxorubicin to overcome multidrug resistance in cancers. Int J Nanomedicine 2018; 13:1723-1736. [PMID: 29606866 PMCID: PMC5868599 DOI: 10.2147/ijn.s157368] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Multidrug resistance (MDR) is one of the major obstacles to successful cancer chemotherapy. Developing efficient strategies to reverse MDR remains a major challenge. Surfactin (SUR), a cyclic lipopeptide biosurfactant, has been found to display anticancer activity. METHODS In this paper, SUR was assembled by solvent-emulsion method to load the anticancer drug doxorubicin (DOX). The cytotoxicity of DOX-loaded SUR nanoparticles (DOX@SUR) against DOX-resistant human breast cancer MCF-7/ADR is measured by MTT assay. The cellular uptake and intracellular retention of DOX@SUR are determined by flow cytometry. The tumor accumulation and anticancer activity of DOX@SUR are evaluated in MCF-7/ADR-bearing nude mice. RESULTS DOX@SUR induce stronger cytotoxicity against DOX-resistant human breast cancer MCF-7/ADR cells compared to free DOX. DOX@SUR nanoparticles exhibit enhanced cellular uptake and decreased cellular efflux, which might be associated with reduced P-glycoprotein expression. After internalization into MCF-7/ADR cells by macropinocytosis- and caveolin-mediated endocytosis, DOX@SUR nanoparticles are colocalized with the lysosomes and translocated to the nucleus to exert cytotoxicity. Furthermore, in vivo animal experiment shows that the DOX@ SUR nanoparticles are accumulated more efficiently in tumors than free DOX. Meanwhile, DOX@SUR nanoparticles display stronger tumor inhibition activity and fewer side effects in MCF-7/ADR-bearing nude mice. CONCLUSION This study indicates that SUR-based nanocarrier might present a promising platform to reverse MDR in cancer chemotherapy.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Nanomedicine and Biopharmaceuticals, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan Lang
- Department of Nanomedicine and Biopharmaceuticals, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Abdul Hakeem
- Department of Nanomedicine and Biopharmaceuticals, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan Lei
- Pharmacy of School Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Gan
- Department of Nanomedicine and Biopharmaceuticals, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
260
|
Li J, Tian B, Li T, Dai S, Weng Y, Lu J, Xu X, Jin Y, Pang R, Hua Y. Biosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity. Int J Nanomedicine 2018; 13:1411-1424. [PMID: 29563796 PMCID: PMC5849937 DOI: 10.2147/ijn.s149079] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Biosynthesis of noble metallic nanoparticles (NPs) has attracted significant interest due to their environmental friendly and biocompatible properties. Methods In this study, we investigated syntheses of Au, Ag and Au–Ag bimetallic NPs using protein extracts of Deinococcus radiodurans, which demonstrated powerful metal-reducing ability. The obtained NPs were characterized and analyzed by various spectroscopy techniques. Results The D. radiodurans protein extract-mediated silver nanoparticles (Drp-AgNPs) were preferably monodispersed and stably distributed compared to D. radiodurans protein extract-mediated gold nanoparticles (Drp-AuNPs). Drp-AgNPs and Drp-AuNPs exhibited spherical morphology with average sizes of 37.13±5.97 nm and 51.72±7.38 nm and zeta potential values of −18.31±1.39 mV and −15.17±1.24 mV at pH 7, respectively. The release efficiencies of Drp-AuNPs and Drp-AgNPs measured at 24 h were 3.99% and 18.20%, respectively. During the synthesis process, Au(III) was reduced to Au(I) and further to Au(0) and Ag(I) was reduced to Ag(0) by interactions with the hydroxyl, amine, carboxyl, phospho or sulfhydryl groups of proteins and subsequently stabilized by these groups. Some characteristics of Drp-AuNPs were different from those of Drp-AgNPs, which could be attributed to the interaction of the NPs with different binding groups of proteins. The Drp-AgNPs could be further formed into Au–Ag bimetallic NPs via galvanic replacement reaction. Drp-AuNPs and Au–Ag bimetallic NPs showed low cytotoxicity against MCF-10A cells due to the lower level of intracellular reactive oxygen species (ROS) generation than that of Drp-AgNPs. Conclusions These results are crucial to understand the biosynthetic mechanism and properties of noble metallic NPs using the protein extracts of bacteria. The biocompatible Au or Au–Ag bimetallic NPs are applicable in biosensing, bioimaging and biomedicine.
Collapse
Affiliation(s)
- Jiulong Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Tao Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Shang Dai
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yulan Weng
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jianjiang Lu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, People's Republic of China
| | - Xiaolin Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, People's Republic of China
| | - Ye Jin
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Renjiang Pang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
261
|
Zhang C, Liu LH, Qiu WX, Zhang YH, Song W, Zhang L, Wang SB, Zhang XZ. A Transformable Chimeric Peptide for Cell Encapsulation to Overcome Multidrug Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703321. [PMID: 29325204 DOI: 10.1002/smll.201703321] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Multidrug resistance (MDR) remains one of the biggest obstacles in chemotherapy of tumor mainly due to P-glycoprotein (P-gp)-mediated drug efflux. Here, a transformable chimeric peptide is designed to target and self-assemble on cell membrane for encapsulating cells and overcoming tumor MDR. This chimeric peptide (C16 -K(TPE)-GGGH-GFLGK-PEG8 , denoted as CTGP) with cathepsin B-responsive and cell membrane-targeting abilities can self-assemble into nanomicelles and further encapsulate the therapeutic agent doxorubicin (termed as CTGP@DOX). After the cleavage of the Gly-Phe-Leu-Gly (GFLG) sequence by pericellular overexpressed cathepsin B, CTGP@DOX is dissociated and transformed from spherical nanoparticles to nanofibers due to the hydrophilic-hydrophobic conversion and hydrogen bonding interactions. Thus obtained nanofibers with cell membrane-targeting 16-carbon alkyl chains can adhere firmly to the cell membrane for cell encapsulation and restricting DOX efflux. In comparison to free DOX, 45-time higher drug retention and 49-fold greater anti-MDR ability of CTGP@DOX to drug-resistant MCF-7R cells are achieved. This novel strategy to encapsulate cells and reverse tumor MDR via morphology transformation would open a new avenue towards chemotherapy of tumor.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Li-Han Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wen-Xiu Qiu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yao-Hui Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wen Song
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Lu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Shi-Bo Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
262
|
TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
263
|
Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci Rep 2018; 8:3815. [PMID: 29491463 PMCID: PMC5830607 DOI: 10.1038/s41598-018-22172-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/15/2018] [Indexed: 02/06/2023] Open
Abstract
Development of drug delivery system conjugated with doxorubicin (dox) on the surface of AuNPs with polyvinylpyrrolidone (Dox@PVP-AuNPs), we have demonstrated that human lung cancer cells can significantly overcome by the combination of highly effective cellular entry and responsive intracellular release of doxorubicin from Dox@PVP-AuNPs complex. Previously drug release from doxorubicin-conjugated AuNPs was confirmed by the recovered fluorescence of doxorubicin from quenching due to the nanosurface energy transfer between doxorubicinyl groups and AuNPs. Dox@PVP-AuNPs achieved enhanced inhibition of lung cancer cells growth than free Doxorubicin and PVP-AuNPs. The in vitro cytotoxic effect of PVP-AuNPs, free Dox and Dox@PVP-AuNPs inhibited the proliferation of human lung cancer cells with IC50 concentration. Compared with control cells, PVP-AuNPs and free Dox, Dox@PVP-AuNPs can increases ROS generation, sensitize mitochondrial membrane potential and induces both early and late apoptosis in lung cancer cells. Moreover, Dox@PVP-AuNPs highly upregulates the expression of tumor suppressor genes than free Dox and PVP-AuNPs and induces intrinsic apoptosis in lung cancer cells. From the results, Dox@PVP-AuNPs can be considered as an potential drug delivery system for effective treatment of human lung cancer.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- DNA Barcoding and Marine Genomics lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Krishnamoorthy Varunkumar
- Cancer Biology Lab, Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Vilwanathan Ravikumar
- Cancer Biology Lab, Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Rajendran Rajaram
- DNA Barcoding and Marine Genomics lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
264
|
Núñez C, Estévez SV, del Pilar Chantada M. Inorganic nanoparticles in diagnosis and treatment of breast cancer. J Biol Inorg Chem 2018; 23:331-345. [DOI: 10.1007/s00775-018-1542-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/04/2018] [Indexed: 12/26/2022]
|
265
|
Ulicny J, Kozar T. Roadmap for Computer-Aided Modeling of Theranostics and Related Nanosystems. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201817305017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Detailed understanding of the interactions of novel metal-containing nanoparticles with biological membranes, macromolecules and other molecular targets of the living cell is crucial for the elucidation of the biological actions of such functionalized nanosystems. We present here the construction and modeling of thiolate-protected gold clusters and the prediction of their static and dynamic properties.
Collapse
|
266
|
Qiu L, Zhao L, Xing C, Zhan Y. Redox-responsive polymer prodrug/AgNPs hybrid nanoparticles for drug delivery. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
267
|
Barnoy EA, Popovtzer R, Fixler D. Development of a molecular bioswitch using fluorescence lifetime imaging: Incremental activation of fluorescein diacetate. JOURNAL OF BIOPHOTONICS 2018; 11:e201700084. [PMID: 28700140 DOI: 10.1002/jbio.201700084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Molecular bioswitches offer an invaluable asset in the shift from systemic to targeted treatments. Within the growing arsenal of switches are imaging probes that functionalize only in given locations or situations. Acetate esters are a common fluorescent example, known to activate upon interaction with esterases. Fluorescein diacetate (FDA) is one such fluorophore used in cell viability assays. These assays rely on the fact that the compound begins colorless and with no fluorescent signature whatsoever, and only after internalization into cells it is possible to detect a fluorescence signal. In this study, using fluorescence intensity (FI) and fluorescence lifetime (FLT) imaging, FDA is shown to be fluorescent even when unactivated. Furthermore, the FLT is shown to change with pH. Finally, the ability to image FDA in different environments simulated by tissue-imitating phantoms is explored. Altogether, the ability of FDA to serve as a bioswitch when measured using FLT imaging microscopy (FLIM) is assessed. The combination of a spectrum of FDA activation and FLIM serves as a bioswitch, where biologically relevant stimulation can generate detectable and incremental variations.
Collapse
Affiliation(s)
- Eran A Barnoy
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
268
|
Goswami U, Dutta A, Raza A, Kandimalla R, Kalita S, Ghosh SS, Chattopadhyay A. Transferrin-Copper Nanocluster-Doxorubicin Nanoparticles as Targeted Theranostic Cancer Nanodrug. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3282-3294. [PMID: 29278317 DOI: 10.1021/acsami.7b15165] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transferrin (Tf)-templated luminescent blue copper nanoclusters (Tf-Cu NCs) are synthesized. They are further formulated into spherical Tf-Cu NC-doxorubicin nanoparticles (Tf-Cu NC-Dox NPs) based on electrostatic interaction with doxorubicin (Dox). The as-synthesized Tf-Cu NC-Dox NPs are explored for bioimaging and targeted drug delivery to delineate high therapeutic efficacy. Förster resonance energy transfer (FRET) within the Tf-Cu NC-Dox NPs exhibited striking red luminescence, wherein the blue luminescence of Tf-Cu NCs (donor) is quenched due to absorption by Dox (acceptor). Interestingly, blue luminescence of Tf-Cu NCs is restored in the cytoplasm of cancer cells upon internalization of the NPs through overexpressed transferrin receptor (TfR) present on the cell surface. Finally, gradual release of Dox from the NPs leads to the generation of its red luminescence inside the nucleus. The biocompatible Tf-Cu NC-Dox NPs displayed superior targeting efficiency on TfR overexpressed cells (HeLa and MCF-7) as compared to the cells expressing less TfR (HEK-293 and 3T3-L1). Combination index (CI) revealed synergistic activity of Tf-Cu NCs and Dox in Tf-Cu NC-Dox NPs. In vivo assessment of the NPs on TfR positive Daltons lymphoma ascites (DLA) bearing mice revealed significant inhibition of tumor growth rendering prolonged survival of the mice.
Collapse
Affiliation(s)
| | | | | | - Raghuram Kandimalla
- Drug Discovery Lab, Institute of Advanced Study in Science and Technology , Guwahati 781035, Assam, India
| | - Sanjeeb Kalita
- Drug Discovery Lab, Institute of Advanced Study in Science and Technology , Guwahati 781035, Assam, India
| | | | | |
Collapse
|
269
|
Metallic gold and bioactive quinacrine hybrid nanoparticles inhibit oral cancer stem cell and angiogenesis by deregulating inflammatory cytokines in p53 dependent manner. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:883-896. [PMID: 29366881 DOI: 10.1016/j.nano.2018.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 01/13/2023]
Abstract
Complete eradication of aggressive oral cancer remains a challenge due to the presence of CSCs. They resist conventional chemotherapeutic agents due to their self-renewal, drug efflux, and efficient DNA repair capacity. Here, we formulated a hybrid-nanoparticle (QAuNP) using quinacrine and gold and characterized/investigated its anti-angiogenic and anti-metastatic effect on OSCC-CSCs. QAuNP significantly inhibited cellular proliferation, caused apoptosis in vitro, and disrupted angiogenesis in vivo and tumor regression in xenograft mice model. It not only inhibited crucial angiogenic markers Ang-1, Ang-2 and VEGF but also depleted MMP-2 in H-357-PEMT cells in a p53 and p21-dependent manner. QAuNP also increased the ROS and NO generation in OSCC-CSCs and reduced the mitochondrial membrane potential. It altered the level of inflammatory cytokines IL-6, IL-1β, TNF-α and metastasis-associated markers (CD-44, CD-133) in H-357-PEMT and CM-treated endothelial cells (HUVEC) in p53/p21-dependent manner. Therefore, QAuNP will be a useful therapeutic agent against metastatic OSCC.
Collapse
|
270
|
Dzwonek M, Załubiniak D, Piątek P, Cichowicz G, Męczynska-Wielgosz S, Stępkowski T, Kruszewski M, Więckowska A, Bilewicz R. Towards potent but less toxic nanopharmaceuticals – lipoic acid bioconjugates of ultrasmall gold nanoparticles with an anticancer drug and addressing unit. RSC Adv 2018; 8:14947-14957. [PMID: 35541347 PMCID: PMC9079921 DOI: 10.1039/c8ra01107a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/15/2018] [Indexed: 01/25/2023] Open
Abstract
Modification of ultrasmall gold nanoparticles (AuNPs) with the lipoic acid derivative of folic acid was found to enhance their accumulation in the cancer cell, as compared to AuNPs without addressing units.
Collapse
Affiliation(s)
| | | | - Piotr Piątek
- Faculty of Chemistry
- University of Warsaw
- Warsaw
- Poland
| | - Grzegorz Cichowicz
- Czochralski Laboratory of Advanced Crystal Engineering
- Biological and Chemical Research Centre
- Faculty of Chemistry
- University of Warsaw
- 02-089 Warsaw
| | - Sylwia Męczynska-Wielgosz
- Center for Radiobiology and Biological Dosimetry
- Institute of Nuclear Chemistry and Technology
- 03-195 Warszawa
- Poland
| | - Tomasz Stępkowski
- Center for Radiobiology and Biological Dosimetry
- Institute of Nuclear Chemistry and Technology
- 03-195 Warszawa
- Poland
| | - Marcin Kruszewski
- Center for Radiobiology and Biological Dosimetry
- Institute of Nuclear Chemistry and Technology
- 03-195 Warszawa
- Poland
- Department of Molecular Biology and Translational Research
| | | | | |
Collapse
|
271
|
Hassanzadeh P, Atyabi F, Dinarvand R. Linkers: The key elements for the creation of efficient nanotherapeutics. J Control Release 2018; 270:260-267. [DOI: 10.1016/j.jconrel.2017.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 01/16/2023]
|
272
|
Lin SY, Wang MR, Chiu SJ, Lin CY, Hu TM. S-Nitrosothiols (SNO) as light-responsive molecular activators for post-synthesis fluorescence augmentation in fluorophore-loaded nanospheres. J Mater Chem B 2018; 6:153-164. [DOI: 10.1039/c7tb02233f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For the first time S-nitrosothiol is engineered into fluorophore-loaded silica nanospheres for post-synthesis, light-triggered fluorescence augmentation.
Collapse
Affiliation(s)
- Shu-Yi Lin
- School of Pharmacy, National Defense Medical Center
- Taipei
- Republic of China
| | - Meng-Ren Wang
- School of Pharmacy, National Defense Medical Center
- Taipei
- Republic of China
| | - Shih-Jiuan Chiu
- School of Pharmacy, Taipei Medical University
- Taipei
- Republic of China
| | - Chien-Yu Lin
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University
- Taipei
- Republic of China
| | - Teh-Min Hu
- School of Pharmacy, National Defense Medical Center
- Taipei
- Republic of China
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University
- Taipei
| |
Collapse
|
273
|
Li JY, Qiu L, Xu XF, Pan CY, Hong CY, Zhang WJ. Photo-responsive camptothecin-based polymeric prodrug coated silver nanoparticles for drug release behaviour tracking via the nanomaterial surface energy transfer (NSET) effect. J Mater Chem B 2018; 6:1678-1687. [DOI: 10.1039/c7tb02998e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A photo-responsive hybrid drug delivery system for drug release behaviour tracking via the nanomaterial surface energy transfer (NSET) effect.
Collapse
Affiliation(s)
- Jiao-Yang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China
- Hefei 230026
- China
| | - Liang Qiu
- Institute of Biophysics, Hebei University of Technology
- Tianjin 300401
- China
| | - Xiao-Fei Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China
- Hefei 230026
- China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China
- Hefei 230026
- China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China
- Hefei 230026
- China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China
- Hefei 230026
- China
| |
Collapse
|
274
|
Pandita D, Munjal A, Godara S, Lather V. Nanocarriers in Drug and Gene Delivery. ADVANCES IN ANIMAL BIOTECHNOLOGY AND ITS APPLICATIONS 2018:71-102. [DOI: 10.1007/978-981-10-4702-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
275
|
Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging. Acta Biomater 2017; 64:223-236. [PMID: 29030300 DOI: 10.1016/j.actbio.2017.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 01/11/2023]
Abstract
A pH-sensitive copolymer PAsp(DIP)-b-PAsp(MEA) (PDPM) was synthesized and self-assembled to micelle loading chemotherapeutic drug doxorubicin (DOX) and introducing a gold nanocage structure for photothermo-chemotherapy and photoacoustic imaging. After further surface modification with polyethylene glycol (PEG), the DOX-loaded pH-sensitive gold nanocage (D-PGNC) around 100 nm possessed a uniform spherical structure with a pH-sensitive core of PAsp(DIP) incorporating DOX, an interlayer crosslinked via disulfide bonds and decorated with discontinuous gold shell, and a PEG corona. The release of DOX from D-PGNC was turned off in bloodstream due to the cross-linking and gold decoration of interlayer but turned on inside tumor tissue by multiple stimulations including the low pH value of tumor tissue (≈6.8), the low lysosomal pH value of cancer cells (≈5.0) and near-infrared (NIR) irradiation. The gold nanocage receiving NIR irradiation could generate hyperthermia to ablate tumor cells. Moreover, the photoacoustic (PA) imaging and analysis of DOX fluorescence inside tumor tissue demonstrated that photothermal therapy based on the gold nanocage effectively drove DOX penetration inside tumor. Owing to the rapid intratumor release and deep tissue penetration of drug favorable for killing cancer cells survived the photothermal therapy, the combined therapy based on D-PGNC via NIR irradiation exhibited a synergistic treatment effect superior to either chemotherapy or NIR-induced photothermal therapy alone. STATEMENT OF SIGNIFICANCE The novelty of the manuscript is its multifunctional system which incorporates anticancer drug DOX in its pH-sensitive core and acts as a template to introduce a gold nanocage. This nanomedicine presents potentials of sequestrating drug molecules in blood circulation but releasing them inside tumor upon responding to the acidic microenvironment therein. Exposure to NIR laser further expedited the pH-sensitive DOX release and promoted DOX penetration into cancer tissues far away from the vasculature. Consequently, the combined photothermo-chemotherapy showed synergistic effects to inhibit tumor growth and prolong animal survival in nude mice bearing human SKOV-3 ovarian tumor. Moreover, owing to the decoration with gold nanocage, the tumor accumulation and intratumor diffusion of the micelles were easily trackable using photoacoustic imaging.
Collapse
|
276
|
Qiu L, Li JW, Hong CY, Pan CY. Silver Nanoparticles Covered with pH-Sensitive Camptothecin-Loaded Polymer Prodrugs: Switchable Fluorescence "Off" or "On" and Drug Delivery Dynamics in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40887-40897. [PMID: 29088537 DOI: 10.1021/acsami.7b14070] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A unique drug delivery system, in which silver nanoparticles (AgNPs) are covered with camptothecin (CPT)-based polymer prodrug, has been developed, and the polymer prodrug, in which the CPT is linked to the polymer side chains via an acid-labile β-thiopropionate bond, is prepared by RAFT polymerization. For poly(2-(2-hydroxyethoxy)ethyl methacrylate-co-methacryloyloxy-3-thiahexanoyl-camptothecin)@AgNPs [P(HEO2MA-co-MACPT)@AgNPs], the polymer thickness on the AgNP surface is around 5.9 nm (TGA method). In vitro tests in buffer solutions at pH = 7.4 reveal that fluorescence of the CPT in the hybrid nanoparticles is quenched due to the nanoparticle surface energy transfer (NSET) effect, but under acidic conditions, the CPT fluorescence is gradually recovered with gradual release of the CPT molecules from the hybrid nanoparticles through cleavage of the acid-labile bond. The NSET "on" and "off" is induced by the CPT-AgNP distance change. This unique property makes it possible to track the CPT delivery and release process from the hybrid nanoparticles in the living cells in a real-time manner. The internalization and intracellular releasing tests of the hybrid nanoparticles in the HeLa cells demonstrate that the lysosome containing the hybrid nanoparticles displays CPT blue fluorescence due to release of the CPT under acidic conditions, and the drug-releasing kinetics shows fluorescence increase of the released CPT with incubation time. The cytotoxicity of hybrid nanoparticles is dependent on activity of the acid-labile bond. Therefore, this is a potential efficient drug delivery system in cancer therapy and a useful approach to study the mechanism of release process in the cells.
Collapse
Affiliation(s)
- Liang Qiu
- Institute of Biophysics, Hebei University of Technology , Tianjin 300401, P. R. China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jia-Wei Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
277
|
Mishra SK, Kannan S. Doxorubicin-Conjugated Bimetallic Silver–Gadolinium Nanoalloy for Multimodal MRI-CT-Optical Imaging and pH-Responsive Drug Release. ACS Biomater Sci Eng 2017; 3:3607-3619. [DOI: 10.1021/acsbiomaterials.7b00498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sandeep K. Mishra
- Centre for Nanoscience and Technology, Pondicherry University, R. V. Nagar, Kalapet, Puducherry 605 014, India
| | - S. Kannan
- Centre for Nanoscience and Technology, Pondicherry University, R. V. Nagar, Kalapet, Puducherry 605 014, India
| |
Collapse
|
278
|
Wu J, Zhang H, Hu X, Liu R, Jiang W, Li Z, Luan Y. Reduction-sensitive mixed micelles assembled from amphiphilic prodrugs for self-codelivery of DOX and DTX with synergistic cancer therapy. Colloids Surf B Biointerfaces 2017; 161:449-456. [PMID: 29127937 DOI: 10.1016/j.colsurfb.2017.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/29/2017] [Accepted: 11/04/2017] [Indexed: 11/16/2022]
Abstract
Clinically, codelivery of chemotherapeutics has been limited by poor water-solubility and severe systemic toxicity. In this work, we developed a new reduction-sensitive mixed micellar system for self-codelivery of doxorubicin (DOX) and docetaxel (DTX). Biodegradable methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) was coupled with DOX and DTX by a reduction-sensitive disulfide bond, resulting in mPEG-PCL-SS-DOX and mPEG-PCL-SS-DTX, respectively. mPEG-PCL-SS-DOX was mixed with mPEG-PCL-SS-DTX at a mole ratio of 1:1 in water, forming a mixed micellar system. The mixed micelles had a diameter of 223.7nm and a low critical micelle concentration. Reductive-triggered drug release revealed a "smart" characteristic of the mixed micelles. A cellular uptake and cytotoxicity assay in vitro showed that the mixed micelles could efficiently accumulate in MCF-7 cells and suppress the growth of tumour cells. The proposed reduction-sensitive mixed micelles assembled from amphiphilic prodrugs can be used as a promising drug codelivery system for cancer therapy.
Collapse
Affiliation(s)
- Jilian Wu
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, 250012, China
| | - Huiyuan Zhang
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, 250012, China
| | - Xu Hu
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, 250012, China
| | - Ruiling Liu
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, 250012, China
| | - Wei Jiang
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, 250012, China
| | - Zhonghao Li
- Key Lab of Colloid & Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China
| | - Yuxia Luan
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, 250012, China.
| |
Collapse
|
279
|
Doxorubicin encapsulated clicked gold nanoparticle clusters exhibiting tumor-specific disassembly for enhanced tumor localization and computerized tomographic imaging. J Control Release 2017; 269:52-62. [PMID: 29113793 DOI: 10.1016/j.jconrel.2017.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 11/22/2022]
Abstract
Gold nanoparticles (AuNPs) and matrix metalloproteinase (MMP)-2 cleavable peptides are clicked into gold nanoparticle clusters (AuNCs) for enhanced drug localization and micro computerized tomography (μCT) theranostic of tumors. AuNPs are co-functionalized with doxorubicin (DOX) and an azide-terminated polymer (DOX/N3@AuNPs), and the DOX/N3@AuNPs are associated into DOX@AuNCs in the presence of an alkyne-terminated MMP-2 cleavable peptide (alkyne-peptide-alkyne; APA) by click chemistry. MMP-2-dependent dissociation shows that DOX@AuNCs are highly sensitive to the MMP-2 and are almost completed digested into single nanoparticles. DOX liberation shows that > 75% of the conjugated DOX is bursted out from the digested DOX@AuNCs while < 20% of DOX is released from the integrate DOX@AuNCs within 3 h in acidic conditions, suggesting that DOX is only liberated from dissociated DOX@AuNCs in acidic conditions. In vivo study shows that DOX@AuNCs accumulate in tumor ~ 150 times higher than DOX/N3@AuNPs do and efficiently suppress tumor growth. Mice administered with AuNCs shows clearer μCT images of tumors. Thus, DOX@AuNCs are expected promising carriers for both anticancer therapy and tumor imaging.
Collapse
|
280
|
Duan Z, Chen C, Qin J, Liu Q, Wang Q, Xu X, Wang J. Cell-penetrating peptide conjugates to enhance the antitumor effect of paclitaxel on drug-resistant lung cancer. Drug Deliv 2017; 24:752-764. [PMID: 28468542 PMCID: PMC8253140 DOI: 10.1080/10717544.2017.1321060] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 01/01/2023] Open
Abstract
To conquer the drug resistance of tumors and the poor solubility of paclitaxel (PTX), two PTX-cell-penetrating peptide conjugates (PTX-CPPs), PTX-TAT and PTX-LMWP, were synthesized and evaluated for the first time. Compared with free PTX, PTX-CPPs displayed significantly enhanced cellular uptake, elevated cell toxicity, increased cell apoptosis, and decreased mitochondrial membrane potential (Δψm) in both A549 and A549T cells. PTX-LMWP exhibited a stronger inhibitory effect than PTX-TAT in A549T cells. Analysis of cell-cycle distribution showed that PTX-LMWP influenced mitosis in drug-resistant A549T tumor cells via a different mechanism than PTX. PTX-CPPs were more efficient in inhibiting tumor growth in tumor-bearing mice than free PTX, which suggested their better in vivo antitumor efficacy. Hence, this study demonstrates that PTX-CPPs, particularly PTX-LMWP, have outstanding potential for inhibiting the growth of tumors and are a promising approach for treating lung cancer, especially drug-resistant lung cancer.
Collapse
Affiliation(s)
- Ziqing Duan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, PR China
| | - Cuitian Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, PR China
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, PR China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, PR China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Traditional Chinese Medicine, Guangzhou, PR China, and
| | - Xinchun Xu
- Shanghai Xuhui Central Hospital, Shanghai, PR China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, PR China
| |
Collapse
|
281
|
Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles. Acta Biomater 2017; 62:144-156. [PMID: 28842335 DOI: 10.1016/j.actbio.2017.08.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 01/08/2023]
Abstract
To concurrently suppress multidrug resistance (MDR) and metastasis of breast cancer cells, paclitaxel (PTX) and honokiol (HNK) were coencapsulated into pH-sensitive polymeric micelles based on poly(2-ethyl-2-oxazoline)-poly(d,l-lactide) (PEOz-PLA). The physicochemical properties of dual drug-loaded PEOz-PLA micelles were characterized in size, drug loading and in vitro release. The efficiency of MDR reversal for the micelles was testified by synergetic enhancement of cytotoxicity and uptake by MCF-7/ADR cells. The flow cytometry and fluorescence polarization measurement results reinforced the conclusion that down-regulation of P-gp expression and increase of plasma membrane fluidity appeared to be possible mechanisms of MDR reversal by dual drug-loaded PEOz-PLA micelles. Further, the efficient inhibition of tumor metastasis by dual drug-loaded PEOz-PLA micelles was demonstrated by in vitro anti-invasion and anti-migration assessment in MDA-MB-231 cells and in vivo bioluminescence imaging in nude mice. The suppression of MDR and metastasis by the micelles was assigned to synergistic effects of pH-triggered drug release and HNK/PEOz-PLA-aroused P-gp inhibition, and pH-triggered drug release and PTX/HNK-aroused MMPs inhibition, respectively. In conclusion, our findings strengthen the usefulness of co-delivery of PTX and HNK by pH-responsive polymeric micelles for suppression of tumor MDR and metastasis. STATEMENT OF SIGNIFICANCE Multidrug resistance (MDR) and metastasis are considered to be two of the major barriers for successful chemotherapy. The combination of a chemotherapeutic drug with a modulator has emerged as a promising strategy for efficiently treating MDR cancer and preventing tumor metastasis. Herein, a dual drug (paclitaxel and honokiol)-loaded pH-sensitive polymeric micelle system based on PEOz-PLA was successfully fabricated to ensure that tumor MDR and metastasis could be concurrently suppressed, therefore achieving distinguishing endo/lysosomal pH from physiological pH by accelerating drug release and then enhancing the cytotoxicity of paclitaxel to drug-resistant tumor cells MCF-7/ADR by increasing cellular uptake of paclitaxel, preventing in vitro invasion and migration for MDA-MB-231 cells and in vivo metastasis in nude mice. Further, the mechanism of MDR reversal by dual drug-loaded PEOz-PLA micelles was elucidated to be down-regulation of P-gp expression and increase of plasma membrane fluidity of MCF-7/ADR cells. The present findings strengthen the usefulness of co-delivery of PTX and HNK by pH-responsive polymeric micelles for suppression of tumor MDR and metastasis.
Collapse
|
282
|
Wang H, Zhu W, Huang Y, Li Z, Jiang Y, Xie Q. Facile encapsulation of hydroxycamptothecin nanocrystals into zein-based nanocomplexes for active targeting in drug delivery and cell imaging. Acta Biomater 2017; 61:88-100. [PMID: 28433787 DOI: 10.1016/j.actbio.2017.04.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 11/16/2022]
Abstract
Nano-drug delivery systems that integrate inorganic and organic or even bioactive components into a single nanoscale platform are playing a hugely important role in cancer treatment. In this article, the fabrication of a versatile nanocarrier based on self-assembled structures of gold nanoparticles (AuNPs)-zein is reported, which displays high drug-loading efficiency for needle-shaped hydroxycamptothecin (HCPT) nanocrystals. The surface modification with folate-conjugated polydopamine (PFA) renders them stable and also facilitates their selective cellular internalization and enhancement of endocytosis. The release of payloads from nanocomplexes (NCs) was shown to be limited at physiological pH (17.1±2.8%) but significantly elevated at endosomal/lysosomal pH (58.4±3.0%) and at enzymatic environment (81.4±4.2%). Compared to free HCPT and its non-targeting equivalent, HCPT@AuNPs-Zein-PFA exerted a superior tumor suppression capacity as well as low side effects due to its active and passive targeting delivery both in vitro and in vivo. These results suggest that the NCs with well-defined core@shell nanostructures encapsulated with HCPT nanocrystals hold great promise to improve cancer therapy with high efficiency in the clinic. STATEMENT OF SIGNIFICANCE A novel nanocomplex with HCPT nanocrystals encapsulated was designed to achieve selective cellular uptake by endocytosis, acid responsive release in the tumor microenvironment and excellent tumor suppression without toxicity. This nanocomplex with conjugation of folate was stable in the bloodstream, with minimal drug release in extracellular conditions, leading to prolonged blood circulation and high accumulation in tumor tissues. The entrapment of a nanocrystal drug into nanomaterials might be capable of delivering drugs in a predictable and controllable manner.
Collapse
Affiliation(s)
- Hongdi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wei Zhu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yunna Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhixian Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbin Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qiuling Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; National Engineering Research Centre of Genetic Medicine, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China.
| |
Collapse
|
283
|
Strategies in the design of gold nanoparticles for intracellular targeting: opportunities and challenges. Ther Deliv 2017; 8:879-897. [DOI: 10.4155/tde-2017-0049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
With unique physicochemical properties, gold nanoparticles (Au NPs) have demonstrated their potential as drug carriers or therapeutic agents. Effective guidance of Au NPs into specific intracellular destinations becomes increasingly important as we strive to further improve the efficiency of drug delivery and modulate controllable cellular responses. In this review, we summarized recent advances in designing Au NPs with the capabilities of cellular penetration and internalization, endosomal escape, intracellular trafficking and subcellular localization via various approaches including physical injection, tuning the physiochemical parameters of Au NPs, and surface modification with targeting ligands. Strategies for delivering Au NPs to specific subcellular destinations including the nucleus, mitochondria, endoplasmic reticulum, lysosomes are also discussed. Moreover, current challenges associated with intracellular targeting of Au NPs are discussed with future perspectives proposed.
Collapse
|
284
|
Khutale GV, Casey A. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. Eur J Pharm Biopharm 2017; 119:372-380. [DOI: 10.1016/j.ejpb.2017.07.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/27/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022]
|
285
|
Ye M, Han Y, Tang J, Piao Y, Liu X, Zhou Z, Gao J, Rao J, Shen Y. A Tumor-Specific Cascade Amplification Drug Release Nanoparticle for Overcoming Multidrug Resistance in Cancers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702342. [PMID: 28833669 DOI: 10.1002/adma.201702342] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/09/2017] [Indexed: 05/24/2023]
Abstract
A cascade amplification release nanoparticle (CARN) is constructed by the coencapsulation of β-lapachone and a reactive-oxygen-species (ROS)-responsive doxorubicin (DOX) prodrug, BDOX, in polymeric nanoparticles. Releasing β-lapachone first from the CARNs selectively increases the ROS level in cancer cells via NAD(P)H:quinone oxidoreductase-1 (NQO1) catalysis, which induces the cascade amplification release of DOX and overcomes multidrug resistance (MDR) in cancer cells, producing a remarkably improved therapeutic efficacy against MDR tumors with minimal side effects.
Collapse
Affiliation(s)
- Mingzhou Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxin Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Piao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianghong Rao
- Molecular Imaging Program at Stanford Department of Radiology, School of Medicine, Stanford University, CA, 94305, USA
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
286
|
Wang Z, He Q, Zhao W, Luo J, Gao W. Tumor-homing, pH- and ultrasound-responsive polypeptide-doxorubicin nanoconjugates overcome doxorubicin resistance in cancer therapy. J Control Release 2017; 264:66-75. [DOI: 10.1016/j.jconrel.2017.08.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/05/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022]
|
287
|
Kanwal U, Irfan Bukhari N, Ovais M, Abass N, Hussain K, Raza A. Advances in nano-delivery systems for doxorubicin: an updated insight. J Drug Target 2017; 26:296-310. [DOI: 10.1080/1061186x.2017.1380655] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ummarah Kanwal
- University College of Pharmacy, University of Punjab, Lahore, Pakistan
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
| | | | - Muhammad Ovais
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nasir Abass
- University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | - Khalid Hussain
- University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | - Abida Raza
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
| |
Collapse
|
288
|
Chen S, Fan JX, Qiu WX, Liu LH, Cheng H, Liu F, Yan GP, Zhang XZ. Self-Assembly Drug Delivery System Based on Programmable Dendritic Peptide Applied in Multidrug Resistance Tumor Therapy. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/23/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Si Chen
- School of Material Science and Engineering; Wuhan Institute of Technology; Wuhan 430074 PR China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 PR China
| | - Wen-Xiu Qiu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 PR China
| | - Li-Han Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 PR China
| | - Han Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 PR China
| | - Fan Liu
- School of Material Science and Engineering; Wuhan Institute of Technology; Wuhan 430074 PR China
| | - Guo-Ping Yan
- School of Material Science and Engineering; Wuhan Institute of Technology; Wuhan 430074 PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 PR China
| |
Collapse
|
289
|
Wen ZM, Jie J, Zhang Y, Liu H, Peng LP. A self-assembled polyjuglanin nanoparticle loaded with doxorubicin and anti-Kras siRNA for attenuating multidrug resistance in human lung cancer. Biochem Biophys Res Commun 2017; 493:1430-1437. [PMID: 28958938 DOI: 10.1016/j.bbrc.2017.09.132] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/23/2017] [Indexed: 01/08/2023]
Abstract
Lung cancer is a leading cause of cancer-associated mortality worldwide, which has a low survival rate. Multidrug resistance (MDR) is a major obstacle that hinders the treatment of lung cancer. Doxorubicin (DOX) is an anthracycline glycoside antibiotic, having a broad spectrum of anticancer activity against various solid tumors. Juglanin is a natural production, mainly extracted from green walnut husks of Juglans mandshurica, exhibiting various bioactivities. Here, we demonstrated that the combination of drug, gene and nanoparticle overcame MDR, inhibiting lung cancer progression. A novel nanoparticular pre-chemosensitizer was applied to develop a self-assembled nanoparticle formula of amphiphilic poly(juglanin (Jug) dithiodipropionic acid (DA))-b-poly(ethylene glycol) (PEG)-siRNA Kras with DOX in the core (DOX/PJAD-PEG-siRNA). The formed nanoparticles, appeared spherical shape, had mean particle size of 81.8 nm, and the zeta potential was -18.62 mV. The in vitro drug release results suggested that a sustained release was observed in DOX/PJAD-PEG-siRNA nanoparticles compared to the free DOX. Jug could improve the cytotoxicity of DOX to cancer cells with MDR. Oncogene, Kras, was dose-dependently reduced by treatment of DOX/PJAD-PEG-siRNA nanoparticles. Additionally, P-glycoprotein (MDR1) and c-Myc, contributing to tumor progression, were suppressed by the nanoparticles, while p53 was improved in drug-resistant cells. Colony formation analysis suggested that DOX/PJAD-PEG-siRNA nanoparticles showed the most effective role in reducing cancer cell proliferation. In vivo, DOX/PJAD-PEG-siRNA nanoparticles reduced tumor growth compared to the free DOX, accompanied with reduced KI-67 and enhanced TUNEL positive levels in drug-resistant xenografted nude mice. Thus, the findings above indicated that juglanin, as a chemosensitizer, potentiate the anti-cancer role of DOX in drug-resistant cancer cells. And the nanoparticles exhibited stronger antitumor efficiency, suggesting potential value in the treatment of lung cancer.
Collapse
Affiliation(s)
- Zhong-Mei Wen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Jing Jie
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuan Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Han Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Li-Ping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
290
|
Zheng T, Wang A, Hu D, Wang Y. Tumor-targeting templated silica nanoparticles as a dual-drug delivery system for anti-angiogenic ovarian cancer therapy. Exp Ther Med 2017; 14:2162-2170. [PMID: 28962137 PMCID: PMC5609177 DOI: 10.3892/etm.2017.4777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 05/05/2017] [Indexed: 01/14/2023] Open
Abstract
The present study indicated the successful construction of a silica nanoparticle (SLN)-based drug delivery system (DDS) for the tumor-targeted co-delivery of two anti-angiogenic drugs, candesartan (CD) and trastuzumab (Tra), for ovarian cancer therapy via different anti-angiogenic mechanisms using hyaluronic acid (HA)/Tra/CD/SLNs. In vitro and in vivo anti-angiogenic assays indicated that CD and Tra exert beneficial functions on suppressing cancer angiogenesis, and exhibited significantly enhanced effects compared with the angiotensin stimulated group (P<0.01). CD and Tra co-delivery also significantly increased the anti-angiogenic effect compared with applying either drug alone (P<0.01). Furthermore, HA on the surface of the DDS was demonstrated to reduce the cytotoxicity of the DDS and also endowed the particles with an advanced tumor-homing property in vitro and in vivo. The present results revealed that HA/Tra/CD/SLNs may be a preferable formulation for anti-angiogenic ovarian cancer therapy.
Collapse
Affiliation(s)
- Tianying Zheng
- Cancer Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Aijun Wang
- Cancer Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dongyan Hu
- Cancer Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yonggang Wang
- Cancer Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
291
|
Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W. Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications. Molecules 2017; 22:E1445. [PMID: 28858253 PMCID: PMC6151763 DOI: 10.3390/molecules22091445] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/11/2017] [Accepted: 08/22/2017] [Indexed: 01/19/2023] Open
Abstract
Nanotechnology has become more and more potentially used in diagnosis or treatment of diseases. Advances in nanotechnology have led to new and improved nanomaterials in biomedical applications. Common nanomaterials applicable in biomedical applications include liposomes, polymeric micelles, graphene, carbon nanotubes, quantum dots, ferroferric oxide nanoparticles, gold nanoparticles (Au NPs), and so on. Among them, Au NPs have been considered as the most interesting nanomaterial because of its unique optical, electronic, sensing and biochemical properties. Au NPs have been potentially applied for medical imaging, drug delivery, and tumor therapy in the early detection, diagnosis, and treatment of diseases. This review focuses on some recent advances in the use of Au NPs as drug carriers for the intracellular delivery of therapeutics and as molecular nanoprobes for the detection and monitoring of target molecules.
Collapse
Affiliation(s)
- Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Jin-Wei Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Rong-Fang Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Wen-Juan Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
292
|
Vishwakarma SK, Sharmila P, Bardia A, Chandrakala L, Raju N, Sravani G, Sastry BVS, Habeeb MA, Khan AA, Dhayal M. Use of Biocompatible Sorafenib-gold Nanoconjugates for Reversal of Drug Resistance in Human Hepatoblatoma Cells. Sci Rep 2017; 7:8539. [PMID: 28819176 PMCID: PMC5561190 DOI: 10.1038/s41598-017-08878-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
The present study identifies the potential of highly biocompatible SF-GNP nano-conjugate to enhance the chemotherapeutic response to combat drug resistance in cancer cells. We developed a stable colloidal suspension of sorafenib-gold nanoconjugate (SF-GNP) of <10 nm size in aqueous medium for reverting the cancer drug resistance in SF-resistant HepG2 cells in a 3D ex-vivo model system. In-vivo biocompatibility assay of SF-GNPs showed absence of systemic toxicological effects including hematological, biochemical and histological parameters. More importantly, the histopathological analysis of vital organs such as liver, brain, lung, kidney and heart showed very least or no sign of inflammation, cell infiltration, necrosis, tissue disorganization or fibrotic reactions after intra-peritoneal administration of SF-GNP nanoconjugates in animals. However, SF-GNP nanoconjugates significantly reduced (>80%) the percentage cell survival and the size and number of SF resistant solid tumor colonies of HepG2 cells in 3D model system. The exposure of SF-GNP nanoconjugate to SF resistant HepG2 cell colonies also provided evidence for anti-proliferative effect and reversal of drug resistance by elucidating the molecular regulatory mechanisms of extracellular matrix factor (CD147), tumor growth factor (TGF-β), hepatoma upregulated protein (hURP) and drug transporter (ABCG-2).
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Clinical Research Facility, Medical Biotechnology Complex, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, Telangana, India
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - Priyanka Sharmila
- Clinical Research Facility, Medical Biotechnology Complex, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, Telangana, India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - Lakkireddy Chandrakala
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - N Raju
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - G Sravani
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - B V S Sastry
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - Md Aejaz Habeeb
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India.
| | - Marshal Dhayal
- Clinical Research Facility, Medical Biotechnology Complex, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, Telangana, India.
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
293
|
Jafarizad A, Aghanejad A, Sevim M, Metin Ö, Barar J, Omidi Y, Ekinci D. Gold Nanoparticles and Reduced Graphene Oxide-Gold Nanoparticle Composite Materials as Covalent Drug Delivery Systems for Breast Cancer Treatment. ChemistrySelect 2017. [DOI: 10.1002/slct.201701178] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Abbas Jafarizad
- Department of Chemistry; Faculty of Sciences; Atatürk University; 25240 Erzurum Turkey
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; 51656-65811 Tabriz Iran
- Department of Chemical Engineering; Sahand University of Technology; 51335-1996 Tabriz Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; 51656-65811 Tabriz Iran
| | - Melike Sevim
- Department of Chemistry; Faculty of Sciences; Atatürk University; 25240 Erzurum Turkey
| | - Önder Metin
- Department of Chemistry; Faculty of Sciences; Atatürk University; 25240 Erzurum Turkey
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; 51656-65811 Tabriz Iran
- Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; 51656-65811 Tabriz Iran
- Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| | - Duygu Ekinci
- Department of Chemistry; Faculty of Sciences; Atatürk University; 25240 Erzurum Turkey
| |
Collapse
|
294
|
Brazzale C, Mastrotto F, Moody P, Watson PD, Balasso A, Malfanti A, Mantovani G, Caliceti P, Alexander C, Jones AT, Salmaso S. Control of targeting ligand display by pH-responsive polymers on gold nanoparticles mediates selective entry into cancer cells. NANOSCALE 2017; 9:11137-11147. [PMID: 28745764 DOI: 10.1039/c7nr02595e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Selective targeting of cells for intracellular delivery of therapeutics represents a major challenge for pharmaceutical intervention in disease. Here we show pH-triggered receptor-mediated endocytosis of nanoparticles via surface ligand exposure. Gold nanoparticles were decorated with two polymers: a 2 kDa PEG with a terminal folate targeting ligand, and a di-block copolymer including a pH-responsive and a hydrophilic block. At the normal serum pH of 7.4, the pH-responsive block (apparent pKa of 7.1) displayed a hydrophilic extended conformation, shielding the PEG-folate ligands, which inhibited cellular uptake of the nanoparticles. Under pH conditions resembling those of the extracellular matrix around solid tumours (pH 6.5), protonation of the pH-responsive polymer triggered a coil-to-globule polymer chain contraction, exposing folate residues on the PEG chains. In line with this, endocytosis of folate-decorated polymer-coated gold nanoparticles in cancer cells overexpressing folate receptor was significantly increased at pH 6.5, compared with pH 7.4. Thus, the tumour acidic environment and high folate receptor expression were effectively exploited to activate cell binding and endocytosis of these nanoparticles. These data provide proof-of-concept for strategies enabling extracellular pH stimuli to selectively enhance cellular uptake of drug delivery vectors and their associated therapeutic cargo.
Collapse
Affiliation(s)
- C Brazzale
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Zhang Y, Zhang C, Chen J, Liu L, Hu M, Li J, Bi H. Trackable Mitochondria-Targeting Nanomicellar Loaded with Doxorubicin for Overcoming Drug Resistance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25152-25163. [PMID: 28697306 DOI: 10.1021/acsami.7b07219] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Multidrug resistance (MDR) has been recognized as a major obstacle to successful chemotherapy for cancer in the clinic. In recent years, more and more nanoscaled drug delivery systems (DDS) are constructed to modulate drug efflux protein (P-gp) and deliver chemotherapeutic drugs for overcoming MDR. Among them, d-α-tocopheryl polyethylene glycol succinate (TPGS) has been widely used as a drug carrier due to its capability of inhibiting overexpression of P-gp and good amphiphilicity favorable for improving permeation and long-circulation property of DDS. In the present work, a novel kind of mitochondria-targeting nanomicelles-based DDS is developed to integrate chemotherapeutics delivery with fluorescence imaging functionalities on a comprehensive nanoplatform. The mitochondria-targeting nanomicelles are prepared by self-assembly of triphenylphosphine (TPP)-modified TPGS and fluorescent carbon quantum dots (CQDs) in an n-hexane/H2O mixed solution, named CQDs-TPGS-TPP. Notably, although the drug loading content of doxorubicin (DOX) in the as-prepared nanomicelles is as low as 3.4%, the calculated resistant index (RI) is greatly decreased from 66.23 of free DOX to 7.16 of DOX-loaded nanomicelles while treating both parental MCF-7 cells and drug-resistant MCF-7/ADR cells. Compared with free DOX, the penetration efficiency of DOX-loaded nanomicelles in three-dimensional multicellular spheroids (MCs) of MCF-7/ADR is obviously increased. Moreover, the released DOX from the nanomicelles can cause much more damage to cells of drug-resistant MCs. These results demonstrate that our constructed mitochondria-targeting nanomicelles-based DDS have potential application in overcoming MDR of cancer cells as well as their MCs that mimic in vivo tumor tissues. The MDR-reversal mechanism of the DOX-loaded CQDs-TPGS-TPP nanomicelles is also discussed.
Collapse
Affiliation(s)
- Ye Zhang
- College of Chemistry and Chemical Engineering, Anhui University , Hefei 230601, China
| | - Congjun Zhang
- Department of Oncology, First Affiliated Hospital, Anhui Medical University , Hefei 230022, China
| | - Jing Chen
- College of Chemistry and Chemical Engineering, Anhui University , Hefei 230601, China
| | - Li Liu
- College of Chemistry and Chemical Engineering, Anhui University , Hefei 230601, China
| | - Mengyue Hu
- College of Chemistry and Chemical Engineering, Anhui University , Hefei 230601, China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Anhui University , Hefei 230601, China
| | - Hong Bi
- College of Chemistry and Chemical Engineering, Anhui University , Hefei 230601, China
| |
Collapse
|
296
|
Ramya AN, Joseph MM, Maniganda S, Karunakaran V, T T S, Maiti KK. Emergence of Gold-Mesoporous Silica Hybrid Nanotheranostics: Dox-Encoded, Folate Targeted Chemotherapy with Modulation of SERS Fingerprinting for Apoptosis Toward Tumor Eradication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 28671767 DOI: 10.1002/smll.201700819] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/03/2017] [Indexed: 05/09/2023]
Abstract
Strategically fabricated theranostic nanocarrier delivery system is an unmet need in personalized medicine. Herein, this study reports a versatile folate receptor (FR) targeted nanoenvelope delivery system (TNEDS) fabricated with gold core silica shell followed by chitosan-folic acid conjugate surface functionalization by for precise loading of doxorubicin (Dox), resembled as Au@SiO2 -Dox-CS-FA. TNEDS possesses up to 90% Dox loading efficiency and internalized through endocytosis pathway leading to pH and redox-sensitive release kinetics. The superior FR-targeted cytotoxicity is evaluated by the nanocarrier in comparison with US Food and Drug Administration (FDA)-approved liposomal Dox conjugate, Lipodox. Moreover, TNEDS exhibits theranostic features through caspase-mediated apoptosis and envisages high surface plasmon resonance enabling the nanoconstruct as a promising surface enhanced Raman scattering (SERS) nanotag. Minuscule changes in the biochemical components inside cells exerted by the TNEDS along with the Dox release are evaluated explicitly in a time-dependent fashion using bimodal SERS/fluorescence nanoprobe. Finally, TNEDS displays superior antitumor response in FR-positive ascites as well as solid tumor syngraft mouse models. Therefore, this futuristic TNEDS is expected to be a potential alternative as a clinically relevant theranostic nanomedicine to effectively combat neoplasia.
Collapse
Affiliation(s)
- Adukkadan N Ramya
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Manu M Joseph
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Laboratory of Biopharmaceutics and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, Kerala, 695011, India
| | - Santhi Maniganda
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Varsha Karunakaran
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Sreelekha T T
- Laboratory of Biopharmaceutics and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram, Kerala, 695011, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| |
Collapse
|
297
|
Huang S, Li C, Wang W, Li H, Sun Z, Song C, Li B, Duan S, Hu Y. A54 peptide-mediated functionalized gold nanocages for targeted delivery of DOX as a combinational photothermal-chemotherapy for liver cancer. Int J Nanomedicine 2017; 12:5163-5176. [PMID: 28790823 PMCID: PMC5529379 DOI: 10.2147/ijn.s131089] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The combination of photothermal therapy and chemotherapy (photothermal–chemotherapy) is a promising strategy for cancer therapy. Gold nanocages (AuNCs), with hollow and porous structures and unique optical properties, have become a rising star in the field of drug delivery. Here, we designed a novel targeted drug delivery system based on functionalized AuNCs and evaluated their therapeutic effects in vitro and in vivo. We then loaded doxorubicin into this promising system, designated as DHTPAuNCs consisting of hyaluronic acid-grafted and A54 peptide-targeted PEGylated AuNCs. Its formation was corroborated by ultraviolet–visible spectroscopy, transmission electron microscopy and dynamic light scattering. This delivery platform needed hyaluronidase to release encapsulated drugs, meanwhile the acidic pH and near-infrared irradiation could accelerate the release. In addition, the results of cellular uptake demonstrate that this system could bind specifically with BEL-7402 cells. In vitro, we evaluated therapeutic effects of the DHTPAuNCs in BEL-7402 cells by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide assay. Moreover, in BEL-7402 tumor-bearing nude mice, its therapy effect in vivo was also evaluated. As expected, DHTPAuNCs exhibited excellent therapeutic effect by photothermal–chemotherapy, both in vitro and in vivo. In short, DHTPAuNCs with low toxicity showed great potential as a drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Shengnan Huang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chunming Li
- Department of Pharmacy, Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing, People's Republic of China
| | - Weiping Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Huanjie Li
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chengzhi Song
- School of Physical Sciences, University of Science and Technology of China, Hefei, People's Republic of China
| | - Benyi Li
- Department of Urology and Cancer Center, the University of Kansas Medical Center, Kansas City, KS, USA
| | - Shaofeng Duan
- College of Pharmacy, Henan University, Kaifeng, People's Republic of China.,Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yurong Hu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Key Technology of Drug Preparation, Ministry of Education, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, People's Republic of China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, People's Republic of China
| |
Collapse
|
298
|
Cai XL, Liu CH, Liu J, Lu Y, Zhong YN, Nie KQ, Xu JL, Gao X, Sun XH, Wang SD. Synergistic Effects in CNTs-PdAu/Pt Trimetallic Nanoparticles with High Electrocatalytic Activity and Stability. NANO-MICRO LETTERS 2017; 9:48. [PMID: 30393743 PMCID: PMC6199041 DOI: 10.1007/s40820-017-0149-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/21/2017] [Indexed: 05/20/2023]
Abstract
We present a straightforward physical approach for synthesizing multiwalled carbon nanotubes (CNTs)-PdAu/Pt trimetallic nanoparticles (NPs), which allows predesign and control of the metal compositional ratio by simply adjusting the sputtering targets and conditions. The small-sized CNTs-PdAu/Pt NPs (~3 nm, Pd/Au/Pt ratio of 3:1:2) act as nanocatalysts for the methanol oxidation reaction (MOR), showing excellent performance with electrocatalytic peak current of 4.4 A mgPt -1 and high stability over 7000 s. The electrocatalytic activity and stability of the PdAu/Pt trimetallic NPs are much superior to those of the corresponding Pd/Pt and Au/Pt bimetallic NPs, as well as a commercial Pt/C catalyst. Systematic investigation of the microscopic, crystalline, and electronic structure of the PdAu/Pt NPs reveals alloying and charge redistribution in the PdAu/Pt NPs, which are responsible for the promotion of the electrocatalytic performance.
Collapse
Affiliation(s)
- Xin-Lei Cai
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Chang-Hai Liu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164 Jiangsu People’s Republic of China
| | - Jie Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Ying Lu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Ya-Nan Zhong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Kai-Qi Nie
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Jian-Long Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Xu Gao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Xu-Hui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Sui-Dong Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| |
Collapse
|
299
|
Chemoresistance and chemosensitization in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1444-1453. [PMID: 28600147 DOI: 10.1016/j.bbadis.2017.06.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/05/2017] [Indexed: 02/07/2023]
Abstract
One of the main difficulties in the management of patients with advanced cholangiocarcinoma (CCA) is their poor response to available chemotherapy. This is the result of powerful mechanisms of chemoresistance (MOC) of quite diverse nature that usually act synergistically. The problem is often worsened by altered MOC gene expression in response to pharmacological treatment. Since CCA includes a heterogeneous group of cancers their genetic signature coding for MOC genes is also diverse; however, several shared traits have been defined. Some of these characteristics are shared with other types of liver cancer, namely hepatocellular carcinoma and hepatoblastoma. An important goal in modern oncologic pharmacology is to develop novel strategies to overcome CCA chemoresistance either by increasing drug specificity, such as in targeted therapies aimed to inhibit receptors with tyrosine kinase activity, or to increase the amounts of active agents inside CCA cells by enhancing drug uptake or reducing efflux through export pumps. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
|
300
|
Rao Q, Si T, Wu Z, Xuan M, He Q. A Light-Activated Explosive Micropropeller. Sci Rep 2017; 7:4621. [PMID: 28676666 PMCID: PMC5496919 DOI: 10.1038/s41598-017-04908-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
Self-propelled micro/nanomotors possess tremendous exciting promise in diverse fields. We describe an asymmetric, fuel-free and near-infrared light-powered torpedo micromotor, which is constructed by using a porous membrane-assisted layer-by-layer sol-gel method to form silica multilayer inside the pores, following by the deposition of gold nanoparticles on one end of the pores. In the absence of chemical fuels, the high propulsion of microtorpedoes under illumination of near-infrared light is owing to the photo-thermal effect of gold clusters, generating a thermal gradient inside the microtorpedoes. The speed of microtorpedoes is dependent on the laser powers and media. More interestingly, such fuel free-powered microtorpedoes could explode triggered by higher laser power at the predefined site and thus provide a new platform for future biomedical applications.
Collapse
Affiliation(s)
- Qianlan Rao
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China
| | - Tieyan Si
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China
| | - Zhiguang Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China. .,Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany.
| | - Mingjun Xuan
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China.
| |
Collapse
|