251
|
Lu Y, Li L, Zhu Y, Wang X, Li M, Lin Z, Hu X, Zhang Y, Yin Q, Xia H, Mao C. Multifunctional Copper-Containing Carboxymethyl Chitosan/Alginate Scaffolds for Eradicating Clinical Bacterial Infection and Promoting Bone Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:127-138. [PMID: 29256580 PMCID: PMC5764773 DOI: 10.1021/acsami.7b13750] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Repairing infected bone defects relies on a scaffold that can not only fill the defects to promote bone formation but also kill clinically present bacterial pathogens such as Staphylococcus aureus (S. aureus). To meet this demand, here, we develop a new copper (Cu) containing natural polymeric scaffold with a full potential for repairing infected bone defects. Instead of directly adding antibacterial Cu2+ ions to the polymer mixtures, which caused uncontrolled polymer cross-linking, we added Cu nanoparticles to the mixture of anionic carboxymethyl chitosan (CMC) and alginate (Alg). Then, the Cu2+ ions released from the Cu nanoparticles gradually cross-linked the polymer mixtures, which was further turned into a scaffold (CMC/Alg/Cu) with an interconnected porous structure by freeze-drying. We found that the CMC/Alg/Cu scaffolds showed significantly improved capabilities of osteogenesis and killing clinical bacteria compared to CMC/Alg scaffolds fabricated by the same procedure but without adding Cu nanoparticles. Specifically, in vitro studies showed that the CMC/Alg/Cu scaffolds with excellent biocompatibility could enhance preosteoblastic cell adhesion by upregulating the expression level of adhesion-related genes (focal adhesion kinase (FAK), paxillin (PXN), and vinculin (VCL)), promoting osteogenic differentiation and mineralization by upregulating the osteogenesis-related gene expression and extracellular calcium deposition. In vivo studies further demonstrated that CMC/Alg/Cu scaffolds could induce the formation of vascularized new bone tissue in 4 weeks while avoiding clinical bacterial infection even when the implantation sites were challenged with the clinically collected S. aureus bacteria. This work represents a facile and innovative approach to the fabrication of Cu containing polymer scaffolds that can potentially be used to repair infected bone defects.
Collapse
Affiliation(s)
- Yao Lu
- Southern Medical University, No. 1023 Shatai Road, Guangzhou, Guangdong 510515, China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, No. 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Lihua Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, No. 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Xiaolan Wang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, No. 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Mei Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, No. 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, No. 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Xiaoming Hu
- Southern Medical University, No. 1023 Shatai Road, Guangzhou, Guangdong 510515, China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, No. 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Yu Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, No. 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Qingshui Yin
- Southern Medical University, No. 1023 Shatai Road, Guangzhou, Guangdong 510515, China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, No. 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Hong Xia
- Southern Medical University, No. 1023 Shatai Road, Guangzhou, Guangdong 510515, China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, No. 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73072, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
252
|
Sizochenko N, Mikolajczyk A, Jagiello K, Puzyn T, Leszczynski J, Rasulev B. How the toxicity of nanomaterials towards different species could be simultaneously evaluated: a novel multi-nano-read-across approach. NANOSCALE 2018; 10:582-591. [PMID: 29168526 DOI: 10.1039/c7nr05618d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Application of predictive modeling approaches can solve the problem of missing data. Numerous studies have investigated the effects of missing values on qualitative or quantitative modeling, but only a few studies have discussed it for the case of applications in nanotechnology-related data. The present study is aimed at the development of a multi-nano-read-across modeling technique that helps in predicting the toxicity of different species such as bacteria, algae, protozoa, and mammalian cell lines. Herein, the experimental toxicity of 184 metal and silica oxide (30 unique chemical types) nanoparticles from 15 datasets is analyzed. A hybrid quantitative multi-nano-read-across approach that combines interspecies correlation analysis and self-organizing map analysis is developed. In the first step, hidden patterns of toxicity among nanoparticles are identified using a combination of methods. Subsequently, the developed model based on categorization of the toxicity of the metal oxide nanoparticle outcomes is evaluated via the combination of supervised and unsupervised machine learning techniques to determine the underlying factors responsible for the toxicity.
Collapse
Affiliation(s)
- Natalia Sizochenko
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
253
|
Siew QY, Tham SY, Loh HS, Khiew PS, Chiu WS, Tan MTT. One-step green hydrothermal synthesis of biocompatible graphene/TiO2 nanocomposites for non-enzymatic H2O2 detection and their cytotoxicity effects on human keratinocyte and lung fibroblast cells. J Mater Chem B 2018; 6:1195-1206. [DOI: 10.1039/c7tb02891a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple, safe, and efficient approach to synthesise graphene/titanium dioxide (G/TiO2) nanocomposites with potential in electrochemical sensing application and relatively good biocompatibility to human cells.
Collapse
Affiliation(s)
- Qi Yan Siew
- Department of Electrical and Electronic Engineering
- Faculty of Engineering
- University of Nottingham Malaysia Campus
- 43500 Semenyih
- Malaysia
| | - Shiau Ying Tham
- School of Biosciences
- Faculty of Science
- University of Nottingham Malaysia Campus
- 43500 Semenyih
- Malaysia
| | - Hwei-San Loh
- School of Biosciences
- Faculty of Science
- University of Nottingham Malaysia Campus
- 43500 Semenyih
- Malaysia
| | - Poi Sim Khiew
- Center of Nanotechnology and Advanced Materials
- Faculty of Engineering
- University of Nottingham Malaysia Campus
- 43500 Semenyih
- Malaysia
| | - Wee Siong Chiu
- Low Dimensional Materials Research Center
- Department of Physics
- Faculty of Science
- University Malaya
- 50603 Kuala Lumpur
| | - Michelle T. T. Tan
- Department of Electrical and Electronic Engineering
- Faculty of Engineering
- University of Nottingham Malaysia Campus
- 43500 Semenyih
- Malaysia
| |
Collapse
|
254
|
Kadiyala U, Kotov NA, VanEpps JS. Antibacterial Metal Oxide Nanoparticles: Challenges in Interpreting the Literature. Curr Pharm Des 2018; 24:896-903. [PMID: 29468956 PMCID: PMC5959755 DOI: 10.2174/1381612824666180219130659] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
Metal oxide nanoparticles (MO-NPs) are known to effectively inhibit the growth of a wide range of Gram-positive and Gram-negative bacteria. They have emerged as promising candidates to challenge the rising global issue of antimicrobial resistance. However, a comprehensive understanding of their mechanism of action and identifying the most promising NP materials for future clinical translation remain a major challenge due to variations in NP preparation and testing methods. With various types of MO-NPs being rapidly developed, a robust, standardized, in vitro assessment protocol for evaluating the antibacterial potency and efficiency of these NPs is needed. Calculating the number of NPs that actively interact with each bacterial cell is critical for assessing the dose response for toxicity. Here we discuss methods to evaluate MO-NPs antibacterial efficiency with focus on issues related to NPs in these assays. We also highlight sources of experimental variability including NP preparation, initial bacterial concentration, bacterial strains tested, culture microenvironment, and reported dose.
Collapse
Affiliation(s)
- Usha Kadiyala
- Department of Emergency Medicine; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
- Michigan Center for Integrative Research in Critical Care; University of Michigan; Ann Arbor, USA
| | - Nicholas A. Kotov
- Department of Biomedical Engineering; University of Michigan; Ann Arbor, USA
- Department of Chemical Engineering, Ann Arbor, MI, USA
- Department of Materials Science and Engineering, Ann Arbor, MI, USA
- Departmentof Macromolecular Science and Engineering, Ann Arbor, MI, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
| | - J. Scott VanEpps
- Department of Emergency Medicine; University of Michigan; Ann Arbor, USA
- Department of Biomedical Engineering; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
- Michigan Center for Integrative Research in Critical Care; University of Michigan; Ann Arbor, USA
| |
Collapse
|
255
|
Qiu TA, Clement PL, Haynes CL. Linking nanomaterial properties to biological outcomes: analytical chemistry challenges in nanotoxicology for the next decade. Chem Commun (Camb) 2018; 54:12787-12803. [DOI: 10.1039/c8cc06473c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article provides our perspective on the analytical challenges in nanotoxicology as the field is entering its third decade.
Collapse
Affiliation(s)
- Tian A. Qiu
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | | | | |
Collapse
|
256
|
Talkar S, Dhoble S, Majumdar A, Patravale V. Transmucosal Nanoparticles: Toxicological Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:37-57. [PMID: 29453531 DOI: 10.1007/978-3-319-72041-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanoparticles have specific physicochemical properties different to bulk materials of the same composition and such properties make them very attractive for commercial and medical applications. Mucoadhesive nanoparticulate dosage forms are designed to enable prolonged retention of these nanoparticles at the site of application, providing a controlled drug release for improved therapeutic outcome. Moreover, drug delivery across the mucosa bypasses the first-pass hepatic metabolism and avoids the degradation by gastrointestinal enzymes. However, like most new technologies, there is a rising debate concerning the possible transmucosal side effects resulting from the use of particles at the nano level. In fact, these nanoparticles on entering the body, deposit in several organs and may cause adverse biological reactions by modifying the physiochemical properties of living matter. Several investigators have found nanoparticles responsible for toxicity in different organs. In addition, the toxicity of nanoparticles also depends on whether they are persistent or cleared from the different organs of entry and whether the host can raise an effective response to sequester or dispose of the particles. In contrast to many efforts aimed at exploiting desirable properties of nanoparticles for medicine, there are limited attempts to evaluate potentially undesirable effects of these particles when administered intentionally for medical purposes. This chapter focuses on the overview of the mucosal systems, fate of nanoparticles, mechanism of nanoparticle's toxicity and the various toxicity issues associated with nanoparticles through mucosal routes.
Collapse
Affiliation(s)
- Swapnil Talkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Anuradha Majumdar
- Department of Pharmacology and Toxicology, Bombay College of Pharmacy, Mumbai, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
257
|
Noventa S, Hacker C, Rowe D, Elgy C, Galloway T. Dissolution and bandgap paradigms for predicting the toxicity of metal oxide nanoparticles in the marine environment: an in vivo study with oyster embryos. Nanotoxicology 2017; 12:63-78. [DOI: 10.1080/17435390.2017.1418920] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Seta Noventa
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Christian Hacker
- College of Life and Environmental Sciences, Bioimaging Centre, University of Exeter, Exeter, UK
| | - Darren Rowe
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Christine Elgy
- Department of Geography, Earth and Environmental Sciences, Facility for Environmental Nanoscience Analysis and Characterization, University of Birmingham, Birmingham, UK
| | - Tamara Galloway
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
258
|
Gao J, Li R, Wang F, Liu X, Zhang J, Hu L, Shi J, He B, Zhou Q, Song M, Zhang B, Qu G, Liu S, Jiang G. Determining the Cytotoxicity of Rare Earth Element Nanoparticles in Macrophages and the Involvement of Membrane Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13938-13948. [PMID: 29121463 DOI: 10.1021/acs.est.7b04231] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rare earthelement nanomaterials (REE NPs) hold considerable promise, with high availability and potential applications as superconductors, imaging agents, glass additives, fertilizers additives and feed additives. These results in potential REE NP exposure to humans and the environment through different routes and adverse effects induced by biological application of these materials are becoming an increasing concern. This study investigates the cytotoxicity of REE NPs: nLa2O3, nEu2O3, nDy2O3 and nYb2O3 from 2.5 to 80 μg/mL, in macrophages. A significant difference was observed in the extent of cytotoxicity induced in macrophages by differential REE NPs. The high-atomic number materials (i.e., nYb2O3) tending to be no toxic whereas low-atomic number materials (nLa2O3 and nEu2O3 and nDy2O3) induced 75.1%, 53.6% and 20.7% dead cells. With nLa2O3 as the representative material, we demonstrated that nLa2O3 induced cellular membrane permeabilization, through the sequestration of phosphates from membrane. The further mechanistic investigation established that membrane damage induced intracellular calcium increased to 3.0- to 7.3-fold compared to control cells. This caused the sustained overload of mitochondrial calcium by approximately 2.4-fold, which regulated cell necrosis. In addition, the injury of cellular membrane led to the release of cathepsins into cytosol which also contributed to cell death. This detailed investigation of signaling pathways driving REE NP-induced toxicity to macrophages is essential for better understanding of their potential health risks to humans and the environment.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Ruibin Li
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou, Jiangsu 215123, People's Republic of China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Xiaolei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| |
Collapse
|
259
|
McCall J, Smith JJ, Marquardt KN, Knight KR, Bane H, Barber A, DeLong RK. ZnO Nanoparticles Protect RNA from Degradation Better than DNA. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E378. [PMID: 29117135 PMCID: PMC5707595 DOI: 10.3390/nano7110378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/23/2017] [Accepted: 10/31/2017] [Indexed: 11/25/2022]
Abstract
Gene therapy and RNA delivery require a nanoparticle (NP) to stabilize these nucleic acids when administered in vivo. The presence of degradative hydrolytic enzymes within these environments limits the nucleic acids' pharmacologic activity. This study compared the effects of nanoscale ZnO and MgO in the protection afforded to DNA and RNA from degradation by DNase, serum or tumor homogenate. For double-stranded plasmid DNA degradation by DNase, our results suggest that the presence of MgO NP can protect DNA from DNase digestion at an elevated temperature (65 °C), a biochemical activity not present in ZnO NP-containing samples at any temperature. In this case, intact DNA was remarkably present for MgO NP after ethidium bromide staining and agarose gel electrophoresis where these same stained DNA bands were notably absent for ZnO NP. Anticancer RNA, polyinosinic-polycytidylic acid (poly I:C) is now considered an anti-metastatic RNA targeting agent and as such there is great interest in its delivery by NP. For it to function, the NP must protect it from degradation in serum and the tumor environment. Surprisingly, ZnO NP protected the RNA from degradation in either serum-containing media or melanoma tumor homogenate after gel electrophoretic analysis, whereas the band was much more diminished in the presence of MgO. For both MgO and ZnO NP, buffer-dependent rescue from degradation occurred. These data suggest a fundamental difference in the ability of MgO and ZnO NP to stabilize nucleic acids with implications for DNA and RNA delivery and therapy.
Collapse
Affiliation(s)
- Jayden McCall
- Nanotechnology Innovation Center Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Joshua J Smith
- Department of Biomedical Sciences, College of Health and Human Services, Missouri State University, Springfield, MO 65897, USA.
| | - Kelsey N Marquardt
- Department of Biomedical Sciences, College of Health and Human Services, Missouri State University, Springfield, MO 65897, USA.
| | - Katelin R Knight
- Department of Biomedical Sciences, College of Health and Human Services, Missouri State University, Springfield, MO 65897, USA.
| | - Hunter Bane
- Department of Biomedical Sciences, College of Health and Human Services, Missouri State University, Springfield, MO 65897, USA.
| | - Alice Barber
- Department of Biomedical Sciences, College of Health and Human Services, Missouri State University, Springfield, MO 65897, USA.
| | - Robert K DeLong
- Nanotechnology Innovation Center Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Manhattan, KS 66506, USA.
| |
Collapse
|
260
|
Li Y, Wang J, Zhao F, Bai B, Nie G, Nel AE, Zhao Y. Nanomaterial libraries and model organisms for rapid high-content analysis of nanosafety. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Safety analysis of engineered nanomaterials (ENMs) presents a formidable challenge regarding environmental health and safety, due to their complicated and diverse physicochemical properties. Although large amounts of data have been published regarding the potential hazards of these materials, we still lack a comprehensive strategy for their safety assessment, which generates a huge workload in decision-making. Thus, an integrated approach is urgently required by government, industry, academia and all others who deal with the safe implementation of nanomaterials on their way to the marketplace. The rapid emergence and sheer number of new nanomaterials with novel properties demands rapid and high-content screening (HCS), which could be performed on multiple materials to assess their safety and generate large data sets for integrated decision-making. With this approach, we have to consider reducing and replacing the commonly used rodent models, which are expensive, time-consuming, and not amenable to high-throughput screening and analysis. In this review, we present a ‘Library Integration Approach’ for high-content safety analysis relevant to the ENMs. We propose the integration of compositional and property-based ENM libraries for HCS of cells and biologically relevant organisms to be screened for mechanistic biomarkers that can be used to generate data for HCS and decision analysis. This systematic approach integrates the use of material and biological libraries, automated HCS and high-content data analysis to provide predictions about the environmental impact of large numbers of ENMs in various categories. This integrated approach also allows the safer design of ENMs, which is relevant to the implementation of nanotechnology solutions in the pharmaceutical industry.
Collapse
Affiliation(s)
- Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - André E Nel
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
261
|
Kodali VK, Roberts JR, Shoeb M, Wolfarth MG, Bishop L, Eye T, Barger M, Roach KA, Friend S, Schwegler-Berry D, Chen BT, Stefaniak A, Jordan KC, Whitney RR, Porter DW, Erdely AD. Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture. Nanotoxicology 2017; 11:1040-1058. [DOI: 10.1080/17435390.2017.1390177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vamsi K. Kodali
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jenny R. Roberts
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mohammad Shoeb
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Lindsey Bishop
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Tracy Eye
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Barger
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Katherine A. Roach
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Sherri Friend
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Bean T. Chen
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | | | | | - Dale W. Porter
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aaron D. Erdely
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
262
|
Shin HK, Kim KY, Park JW, No KT. Use of metal/metal oxide spherical cluster and hydroxyl metal coordination complex for descriptor calculation in development of nanoparticle cytotoxicity classification model. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:875-888. [PMID: 29189078 DOI: 10.1080/1062936x.2017.1400998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Computational approaches have been suggested as an informative tool for risk assessment of nanomaterials. Nano (quantitative) structure-activity relationship, nano-(Q)SAR, models have been developed to predict toxicity of metal oxide (MOx) nanoparticles (NPs); however, the packing structure and cluster of nanoparticle have been included for the descriptor calculation in only two studies. This study proposed spherical cluster and hydroxyl metal coordination complex to calculate descriptors for development of nanoparticle cytotoxicity classification model. The model cluster was generated from metal (M) or MOx crystal structure to calculate physicochemical properties of M/MOx NPs and the hydroxyl metal coordination complex was used to calculate the properties of the metal cation in an aqueous environment. Data were collected for 2 M and 19 MOx NPs in human bronchial epithelial cell lines and murine myeloid cell lines at 100 μg/ml after 24 hours exposure. The model was developed with scaled HOMO energy of the model cluster and polarizability of the hydroxyl metal coordination complex, as reactivity of the particles and the cations explained cause of cytotoxic action by M/MOx NPs. As the developed model achieved 90.31% accuracy, the classification model in this work can be used for virtual screening of toxic action of M/MOx NPs.
Collapse
Affiliation(s)
- H K Shin
- a Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| | - K Y Kim
- b Bioinformatics and Molecular Design Research Center , Yonsei Engineering Research Park , Seoul , Republic of Korea
| | - J W Park
- c Gyeongnam Department of Environmental Toxicology and Chemistry , Korea Institute of Toxicology , Jinju-si , Gyeongsangnam-do , Republic of Korea
| | - K T No
- a Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
- b Bioinformatics and Molecular Design Research Center , Yonsei Engineering Research Park , Seoul , Republic of Korea
| |
Collapse
|
263
|
Jin SE, Hwang W, Lee HJ, Jin HE. Dual UV irradiation-based metal oxide nanoparticles for enhanced antimicrobial activity in Escherichia coli and M13 bacteriophage. Int J Nanomedicine 2017; 12:8057-8070. [PMID: 29138562 PMCID: PMC5677303 DOI: 10.2147/ijn.s144236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Metal oxide (MO) nanoparticles have been studied as nano-antibiotics due to their antimicrobial activities even in antibiotic-resistant microorganisms. We hypothesized that a hybrid system of dual UV irradiation and MO nanoparticles would have enhanced antimicrobial activities compared with UV or MO nanoparticles alone. In this study, nanoparticles of ZnO, ZnTiO3, MgO, and CuO were selected as model nanoparticles. A dual UV collimated beam device of UV-A and UV-C was developed depending upon the lamp divided by coating. Physicochemical properties of MO nanoparticles were determined using powder X-ray diffractometry (PXRD), Brunauer-Emmett-Teller analysis, and field emission-scanning electron microscopy with energy-dispersive X-ray spectroscopy. Atomic force microscopy with an electrostatic force microscopy mode was used to confirm the surface topology and electrostatic characteristics after dual UV irradiation. For antimicrobial activity test, MO nanoparticles under dual UV irradiation were applied to Escherichia coli and M13 bacteriophage (phage). The UV-A and UV-C showed differential intensities in the coated and uncoated areas (UV-A, coated = uncoated; UV-C, coated ≪ uncoated). MO nanoparticles showed sharp peaks in PXRD patterns, matched to pure materials. Their primary particle sizes were less than 100 nm with irregular shapes, which had an 8.6~25.6 m2/g of specific surface area with mesopores of 22~262 nm. The electrostatic properties of MO nanoparticles were modulated after UV irradiation. ZnO, MgO, and CuO nanoparticles, except ZnTiO3 nanoparticles, showed antibacterial effects on E. coli. Antimicrobial effects on E. coli and phages were also enhanced after cyclic exposure of dual UV and MO nanoparticle treatment using the uncoated area, except ZnO nanoparticles. Our results demonstrate that dual UV-MO nanoparticle hybrid system has a potential for disinfection. We anticipate that it can be developed as a next-generation disinfection system in pharmaceutical industries and water purification systems.
Collapse
Affiliation(s)
- Su-Eon Jin
- Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon
| | | | - Hyo Jung Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon, Korea
| |
Collapse
|
264
|
Tsubaki AT, Koten MA, Lucis MJ, Zuhlke C, Ianno N, Shield JE, Alexander DR. Formation of aggregated nanoparticle spheres through femtosecond laser surface processing. APPLIED SURFACE SCIENCE 2017; 419:778-787. [PMID: 30410204 PMCID: PMC6218951 DOI: 10.1016/j.apsusc.2017.05.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.
Collapse
Affiliation(s)
- Alfred T. Tsubaki
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 844 N 16th St, Lincoln, NE 68588, USA
| | - Mark A. Koten
- Department of Mechanical and Material Engineering, University of Nebraska-Lincoln, 844 N 16th St, Lincoln, NE 68588, USA
| | - Michael J. Lucis
- Department of Mechanical and Material Engineering, University of Nebraska-Lincoln, 844 N 16th St, Lincoln, NE 68588, USA
| | - Craig Zuhlke
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 844 N 16th St, Lincoln, NE 68588, USA
| | - Natale Ianno
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 844 N 16th St, Lincoln, NE 68588, USA
| | - Jeffrey E. Shield
- Department of Mechanical and Material Engineering, University of Nebraska-Lincoln, 844 N 16th St, Lincoln, NE 68588, USA
| | - Dennis R. Alexander
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 844 N 16th St, Lincoln, NE 68588, USA
| |
Collapse
|
265
|
Stone V, Miller MR, Clift MJD, Elder A, Mills NL, Møller P, Schins RPF, Vogel U, Kreyling WG, Alstrup Jensen K, Kuhlbusch TAJ, Schwarze PE, Hoet P, Pietroiusti A, De Vizcaya-Ruiz A, Baeza-Squiban A, Teixeira JP, Tran CL, Cassee FR. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:106002. [PMID: 29017987 PMCID: PMC5933410 DOI: 10.1289/ehp424] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology data exist for engineered nanomaterials (NMs) despite clear parallels in their physicochemical properties and biological actions in in vitro models. OBJECTIVES NMs are available with a range of physicochemical characteristics, which allows a more systematic toxicological analysis. Therefore, the study of ultrafine particles (UFP, <100 nm in diameter) provides an opportunity to identify plausible health effects for NMs, and the study of NMs provides an opportunity to facilitate the understanding of the mechanism of toxicity of UFP. METHODS A workshop of experts systematically analyzed the available information and identified 19 key lessons that can facilitate knowledge exchange between these discipline areas. DISCUSSION Key lessons range from the availability of specific techniques and standard protocols for physicochemical characterization and toxicology assessment to understanding and defining dose and the molecular mechanisms of toxicity. This review identifies a number of key areas in which additional research prioritization would facilitate both research fields simultaneously. CONCLUSION There is now an opportunity to apply knowledge from NM toxicology and use it to better inform PM health risk research and vice versa. https://doi.org/10.1289/EHP424.
Collapse
Affiliation(s)
- Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Mark R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - Martin J D Clift
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swansea University Medical School, Swansea, Wales, UK
| | - Alison Elder
- University of Rochester Medical Center, Rochester, New York
| | - Nicholas L Mills
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - Peter Møller
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Roel P F Schins
- IUF Leibniz-Institut für Umweltmedizinische Forschung, Düsseldorf, Germany
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Wolfgang G Kreyling
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Munich, Germany
| | | | - Thomas A J Kuhlbusch
- Air Quality & Sustainable Nanotechnology Unit, Institut für Energie- und Umwelttechnik e. V. (IUTA), Duisburg, Germany
- Federal Institute of Occupational Safety and Health, Duisburg, Germany
| | | | - Peter Hoet
- Center for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Antonio Pietroiusti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Andrea De Vizcaya-Ruiz
- Departmento de Toxicología, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, México
| | | | - João Paulo Teixeira
- National Institute of Health, Porto, Portugal
- Instituto de Saúde Pública da Universidade do Porto–Epidemiology (ISPUP-EPI) Unit, Porto, Portugal
| | - C Lang Tran
- Institute of Occupational Medicine, Edinburgh, Scotland, UK
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Institute of Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
266
|
Chang Y, Li K, Feng Y, Cheng Y, Zhang M, Wang Z, Wu Z, Zhang H. Achievement of safer palladium nanocrystals by enlargement of {100} crystallographic facets. Nanotoxicology 2017; 11:907-922. [PMID: 28980841 DOI: 10.1080/17435390.2017.1382598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yun Chang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Yanlin Feng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
- University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Yan Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Mei Zhang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Zuankai Wang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Zhijian Wu
- University of Chinese Academy of Sciences, Beijing, P.R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
- University of Science and Technology of China, Hefei, Anhui, P.R. China
| |
Collapse
|
267
|
Drew NM, Kuempel ED, Pei Y, Yang F. A quantitative framework to group nanoscale and microscale particles by hazard potency to derive occupational exposure limits: Proof of concept evaluation. Regul Toxicol Pharmacol 2017; 89:253-267. [PMID: 28789940 PMCID: PMC5875420 DOI: 10.1016/j.yrtph.2017.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/18/2017] [Accepted: 08/03/2017] [Indexed: 11/28/2022]
Abstract
The large and rapidly growing number of engineered nanomaterials (ENMs) presents a challenge to assessing the potential occupational health risks. An initial database of 25 rodent studies including 1929 animals across various experimental designs and material types was constructed to identify materials that are similar with respect to their potency in eliciting neutrophilic pulmonary inflammation, a response relevant to workers. Doses were normalized across rodent species, strain, and sex as the estimated deposited particle mass dose per gram of lung. Doses associated with specific measures of pulmonary inflammation were estimated by modeling the continuous dose-response relationships using benchmark dose modeling. Hierarchical clustering was used to identify similar materials. The 18 nanoscale and microscale particles were classified into four potency groups, which varied by factors of approximately two to 100. Benchmark particles microscale TiO2 and crystalline silica were in the lowest and highest potency groups, respectively. Random forest methods were used to identify the important physicochemical predictors of pulmonary toxicity, and group assignments were correctly predicted for five of six new ENMs. Proof-of-concept was demonstrated for this framework. More comprehensive data are needed for further development and validation for use in deriving categorical occupational exposure limits.
Collapse
Affiliation(s)
- Nathan M Drew
- National Institute for Occupational Safety and Health (NIOSH), Nanotechnology Research Center (NTRC), Cincinnati, OH 45226, USA.
| | - Eileen D Kuempel
- National Institute for Occupational Safety and Health (NIOSH), Nanotechnology Research Center (NTRC), Cincinnati, OH 45226, USA
| | - Ying Pei
- West Virginia University, Department of Industrial and Management System Engineering, Morgantown, WV 26506, USA
| | - Feng Yang
- West Virginia University, Department of Industrial and Management System Engineering, Morgantown, WV 26506, USA
| |
Collapse
|
268
|
Dankers ACA, Kuper CF, Boumeester AJ, Fabriek BO, Kooter IM, Gröllers-Mulderij M, Tromp P, Nelissen I, Zondervan-Van Den Beuken EK, Vandebriel RJ. A practical approach to assess inhalation toxicity of metal oxide nanoparticles in vitro. J Appl Toxicol 2017; 38:160-171. [DOI: 10.1002/jat.3518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Anita C. A. Dankers
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - C. Frieke Kuper
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - Anja J. Boumeester
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - Babs O. Fabriek
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - Ingeborg M. Kooter
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - Mariska Gröllers-Mulderij
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - Peter Tromp
- The Netherlands Organisation for Applied Scientific Research (TNO); PO Box 360, 3700 AJ Zeist the Netherlands
| | - Inge Nelissen
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit; Boeretang 200 2400 Mol Belgium
| | | | - Rob J. Vandebriel
- National Institute of Public Health and the Environment (RIVM), Centre for Health Protection; PO Box 1, 3720 BA Bilthoven the Netherlands
| |
Collapse
|
269
|
Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology. Food Chem Toxicol 2017; 112:478-494. [PMID: 28943385 DOI: 10.1016/j.fct.2017.09.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 08/31/2017] [Accepted: 09/19/2017] [Indexed: 11/20/2022]
Abstract
Nanotechnology and the production of nanomaterials have been expanding rapidly in recent years. Since many types of engineered nanoparticles are suspected to be toxic to living organisms and to have a negative impact on the environment, the process of designing new nanoparticles and their applications must be accompanied by a thorough risk analysis. (Quantitative) Structure-Activity Relationship ([Q]SAR) modelling creates promising options among the available methods for the risk assessment. These in silico models can be used to predict a variety of properties, including the toxicity of newly designed nanoparticles. However, (Q)SAR models must be appropriately validated to ensure the clarity, consistency and reliability of predictions. This paper is a joint initiative from recently completed European research projects focused on developing (Q)SAR methodology for nanomaterials. The aim was to interpret and expand the guidance for the well-known "OECD Principles for the Validation, for Regulatory Purposes, of (Q)SAR Models", with reference to nano-(Q)SAR, and present our opinions on the criteria to be fulfilled for models developed for nanoparticles.
Collapse
|
270
|
Mercer RR, Scabilloni JF, Wang L, Battelli LA, Antonini JM, Roberts JR, Qian Y, Sisler JD, Castranova V, Porter DW, Hubbs AF. The Fate of Inhaled Nanoparticles: Detection and Measurement by Enhanced Dark-field Microscopy. Toxicol Pathol 2017; 46:28-46. [PMID: 28929951 DOI: 10.1177/0192623317732321] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Assessing the potential health risks for newly developed nanoparticles poses a significant challenge. Nanometer-sized particles are not generally detectable with the light microscope. Electron microscopy typically requires high-level doses, above the physiologic range, for particle examination in tissues. Enhanced dark-field microscopy (EDM) is an adaption of the light microscope that images scattered light. Nanoparticles scatter light with high efficiency while normal tissues do not. EDM has the potential to identify the critical target sites for nanoparticle deposition and injury in the lungs and other organs. This study describes the methods for EDM imaging of nanoparticles and applications. Examples of EDM application include measurement of deposition and clearance patterns. Imaging of a wide variety of nanoparticles demonstrated frequent situations where nanoparticles detected by EDM were not visible by light microscopy. EDM examination of colloidal gold nanospheres (10-100 nm diameter) demonstrated a detection size limit of approximately 15 nm in tissue sections. EDM determined nanoparticle volume density was directly proportional to total lung burden of exposed animals. The results confirm that EDM can determine nanoparticle distribution, clearance, transport to lymph nodes, and accumulation in extrapulmonary organs. Thus, EDM substantially improves the qualitative and quantitative microscopic evaluation of inhaled nanoparticles.
Collapse
Affiliation(s)
- Robert R Mercer
- 1 Pathology and Physiology Research Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA.,2 Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA
| | - James F Scabilloni
- 1 Pathology and Physiology Research Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Liying Wang
- 3 Allergy and Clinical Immunology Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA.,4 Department of Pharmaceutical Science, West Virginia University, Morgantown, West Virginia, USA
| | - Lori A Battelli
- 1 Pathology and Physiology Research Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - James M Antonini
- 3 Allergy and Clinical Immunology Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA.,4 Department of Pharmaceutical Science, West Virginia University, Morgantown, West Virginia, USA
| | - Jenny R Roberts
- 3 Allergy and Clinical Immunology Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA.,4 Department of Pharmaceutical Science, West Virginia University, Morgantown, West Virginia, USA
| | - Yong Qian
- 3 Allergy and Clinical Immunology Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA.,4 Department of Pharmaceutical Science, West Virginia University, Morgantown, West Virginia, USA
| | - Jennifer D Sisler
- 1 Pathology and Physiology Research Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Vincent Castranova
- 4 Department of Pharmaceutical Science, West Virginia University, Morgantown, West Virginia, USA
| | - Dale W Porter
- 1 Pathology and Physiology Research Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA.,2 Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA
| | - Ann F Hubbs
- 1 Pathology and Physiology Research Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| |
Collapse
|
271
|
Mangalampalli B, Dumala N, Grover P. Acute oral toxicity study of magnesium oxide nanoparticles and microparticles in female albino Wistar rats. Regul Toxicol Pharmacol 2017; 90:170-184. [PMID: 28899817 DOI: 10.1016/j.yrtph.2017.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
Advancements in nanotechnology have led to the development of the nanomedicine, which involves nanodevices for diagnostic and therapeutic purposes. A key requirement for the successful use of the nanoparticles (NPs) in biomedical applications is their good dispensability, colloidal stability in biological media, internalization efficiency, and low toxicity. Therefore, toxicological profiling is necessary to understand the mechanism of NPs and microparticles (MPs). MgO NPs have attracted wide scientific interest due to ease of synthesis, chemical stability and unique properties. However, their toxic effects on humans should also be of concern with the increased applications of nano MgO. The present study was aimed to assess the toxicological potential of MgO NPs in comparison to their micron counterparts in female Wistar rats. Toxicity was evaluated using genotoxicity, histological, biochemical, antioxidant and biodistribution parameters post administration of MgO particles to rats through oral route. The results obtained from the investigation revealed that the acute exposure to the high doses of MgO NPs produced significant (p < 0.01) DNA damage and biochemical alterations. Antioxidant assays revealed prominent oxidative stress at the high dose level for both the particles. Toxicokinetic analysis showed significant levels of Mg accumulation in the liver and kidney tissues apart from urine and feces. Further, mechanistic investigational reports are warranted to document safe exposure levels and health implications post exposure to high levels of NPs.
Collapse
Affiliation(s)
- Bhanuramya Mangalampalli
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Naresh Dumala
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Paramjit Grover
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India.
| |
Collapse
|
272
|
Chen G, Vijver MG, Xiao Y, Peijnenburg WJGM. A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials. MATERIALS 2017; 10:ma10091013. [PMID: 28858269 PMCID: PMC5615668 DOI: 10.3390/ma10091013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/08/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022]
Abstract
Gathering required information in a fast and inexpensive way is essential for assessing the risks of engineered nanomaterials (ENMs). The extension of conventional (quantitative) structure-activity relationships ((Q)SARs) approach to nanotoxicology, i.e., nano-(Q)SARs, is a possible solution. The preliminary attempts of correlating ENMs' characteristics to the biological effects elicited by ENMs highlighted the potential applicability of (Q)SARs in the nanotoxicity field. This review discusses the current knowledge on the development of nano-(Q)SARs for metallic ENMs, on the aspects of data sources, reported nano-(Q)SARs, and mechanistic interpretation. An outlook is given on the further development of this frontier. As concluded, the used experimental data mainly concern the uptake of ENMs by different cell lines and the toxicity of ENMs to cells lines and Escherichia coli. The widely applied techniques of deriving models are linear and non-linear regressions, support vector machine, artificial neural network, k-nearest neighbors, etc. Concluded from the descriptors, surface properties of ENMs are seen as vital for the cellular uptake of ENMs; the capability of releasing ions and surface redox properties of ENMs are of importance for evaluating nanotoxicity. This review aims to present key advances in relevant nano-modeling studies and stimulate future research efforts in this quickly developing field of research.
Collapse
Affiliation(s)
- Guangchao Chen
- Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Yinlong Xiao
- Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, The Netherlands.
- Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands.
| |
Collapse
|
273
|
Dekkers S, Miller MR, Schins RPF, Römer I, Russ M, Vandebriel RJ, Lynch I, Belinga-Desaunay MF, Valsami-Jones E, Connell SP, Smith IP, Duffin R, Boere JAF, Heusinkveld HJ, Albrecht C, de Jong WH, Cassee FR. The effect of zirconium doping of cerium dioxide nanoparticles on pulmonary and cardiovascular toxicity and biodistribution in mice after inhalation. Nanotoxicology 2017; 11:794-808. [PMID: 28741972 DOI: 10.1080/17435390.2017.1357214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Development and manufacture of nanomaterials is growing at an exponential rate, despite an incomplete understanding of how their physicochemical characteristics affect their potential toxicity. Redox activity has been suggested to be an important physicochemical property of nanomaterials to predict their biological activity. This study assessed the influence of redox activity by modification of cerium dioxide nanoparticles (CeO2 NPs) via zirconium (Zr) doping on the biodistribution, pulmonary and cardiovascular effects in mice following inhalation. Healthy mice (C57BL/6 J), mice prone to cardiovascular disease (ApoE-/-, western-diet fed) and a mouse model of neurological disease (5 × FAD) were exposed via nose-only inhalation to CeO2 NPs with varying amounts of Zr-doping (0%, 27% or 78% Zr), or clean air, over a four-week period (4 mg/m3 for 3 h/day, 5 days/week). Effects were assessed four weeks post-exposure. In all three mouse models CeO2 NP exposure had no major toxicological effects apart from some modest inflammatory histopathology in the lung, which was not related to the amount of Zr-doping. In ApoE-/- mice CeO2 did not change the size of atherosclerotic plaques, but there was a trend towards increased inflammatory cell content in relation to the Zr content of the CeO2 NPs. These findings show that subacute inhalation of CeO2 NPs causes minimal pulmonary and cardiovascular effect four weeks post-exposure and that Zr-doping of CeO2 NPs has limited effect on these responses. Further studies with nanomaterials with a higher inherent toxicity or a broader range of redox activities are needed to fully assess the influence of redox activity on the toxicity of nanomaterials.
Collapse
Affiliation(s)
- Susan Dekkers
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Mark R Miller
- b Centre for Cardiovascular Science & Centre for Inflammation Research, University of Edinburgh , Edinburgh , UK
| | - Roel P F Schins
- c IUF - Leibniz Research Institute for Environmental Medicine , Düsseldorf , Germany
| | - Isabella Römer
- d School of Geography, Earth and Environmental Sciences , University of Birmingham , Birmingham , UK
| | - Mike Russ
- e Promethean Particles Ltd. , Nottingham , UK
| | - Rob J Vandebriel
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Iseult Lynch
- d School of Geography, Earth and Environmental Sciences , University of Birmingham , Birmingham , UK
| | | | - Eugenia Valsami-Jones
- d School of Geography, Earth and Environmental Sciences , University of Birmingham , Birmingham , UK
| | - Shea P Connell
- b Centre for Cardiovascular Science & Centre for Inflammation Research, University of Edinburgh , Edinburgh , UK
| | - Ian P Smith
- b Centre for Cardiovascular Science & Centre for Inflammation Research, University of Edinburgh , Edinburgh , UK
| | - Rodger Duffin
- b Centre for Cardiovascular Science & Centre for Inflammation Research, University of Edinburgh , Edinburgh , UK
| | - John A F Boere
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Harm J Heusinkveld
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands.,c IUF - Leibniz Research Institute for Environmental Medicine , Düsseldorf , Germany
| | - Catrin Albrecht
- c IUF - Leibniz Research Institute for Environmental Medicine , Düsseldorf , Germany
| | - Wim H de Jong
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Flemming R Cassee
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands.,f Institute for Risk Assessment Sciences, Utrecht University , Utrecht , The Netherlands
| |
Collapse
|
274
|
Chen G, Peijnenburg W, Xiao Y, Vijver MG. Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials. Int J Mol Sci 2017; 18:ijms18071504. [PMID: 28704975 PMCID: PMC5535994 DOI: 10.3390/ijms18071504] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 11/16/2022] Open
Abstract
As listed by the European Chemicals Agency, the three elements in evaluating the hazards of engineered nanomaterials (ENMs) include the integration and evaluation of toxicity data, categorization and labeling of ENMs, and derivation of hazard threshold levels for human health and the environment. Assessing the hazards of ENMs solely based on laboratory tests is time-consuming, resource intensive, and constrained by ethical considerations. The adoption of computational toxicology into this task has recently become a priority. Alternative approaches such as (quantitative) structure-activity relationships ((Q)SAR) and read-across are of significant help in predicting nanotoxicity and filling data gaps, and in classifying the hazards of ENMs to individual species. Thereupon, the species sensitivity distribution (SSD) approach is able to serve the establishment of ENM hazard thresholds sufficiently protecting the ecosystem. This article critically reviews the current knowledge on the development of in silico models in predicting and classifying the hazard of metallic ENMs, and the development of SSDs for metallic ENMs. Further discussion includes the significance of well-curated experimental datasets and the interpretation of toxicity mechanisms of metallic ENMs based on reported models. An outlook is also given on future directions of research in this frontier.
Collapse
Affiliation(s)
- Guangchao Chen
- Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Willie Peijnenburg
- Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, The Netherlands.
- Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, 3720 BA Bilthoven, The Netherlands.
| | - Yinlong Xiao
- Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
275
|
Lin S, Mortimer M, Chen R, Kakinen A, Riviere JE, Davis TP, Ding F, Ke PC. NanoEHS beyond Toxicity - Focusing on Biocorona. ENVIRONMENTAL SCIENCE. NANO 2017; 7:1433-1454. [PMID: 29123668 PMCID: PMC5673284 DOI: 10.1039/c6en00579a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The first phase of environmental health and safety of nanomaterials (nanoEHS) studies has been mainly focused on evidence-based investigations that probe the impact of nanoparticles, nanomaterials and nano-enabled products on biological and ecological systems. The integration of multiple disciplines, including colloidal science, nanomaterial science, chemistry, toxicology/immunology and environmental science, is necessary to understand the implications of nanotechnology for both human health and the environment. While strides have been made in connecting the physicochemical properties of nanomaterials with their hazard potential in tiered models, fundamental understanding of nano-biomolecular interactions and their implications for nanoEHS is largely absent from the literature. Research on nano-biomolecular interactions within the context of natural systems not only provides important clues for deciphering nanotoxicity and nanoparticle-induced pathology, but also presents vast new opportunities for screening beneficial material properties and designing greener products from bottom up. This review highlights new opportunities concerning nano-biomolecular interactions beyond the scope of toxicity.
Collapse
Affiliation(s)
- Sijie Lin
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Ran Chen
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jim E. Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
276
|
Burello E. A Mechanistic Model for Predicting Lung Inflammogenicity of Oxide Nanoparticles. Toxicol Sci 2017; 159:339-353. [DOI: 10.1093/toxsci/kfx136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
277
|
Gajewicz A. What if the number of nanotoxicity data is too small for developing predictive Nano-QSAR models? An alternative read-across based approach for filling data gaps. NANOSCALE 2017; 9:8435-8448. [PMID: 28604902 DOI: 10.1039/c7nr02211e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Over the past decade, computational nanotoxicology, in particular Quantitative Structure-Activity Relationship models (Nano-QSAR) that help in assessing the biological effects of nanomaterials, have received much attention. In effect, a solid basis for uncovering the relationships between the structure and property/activity of nanoparticles has been created. Nonetheless, six years after the first pioneering computational studies focusing on the investigation of nanotoxicity were commenced, these computational methods still suffer from many limitations. These are mainly related to the paucity of widely available, systematically varied, libraries of experimental data necessary for the development and validation of such models. This results in the still-low acceptance of these methods as valuable research tools for nanosafety and raises the query as to whether these methods could gain wide acceptance of regulatory bodies as alternatives for traditional in vitro methods. This study aimed to give an answer to the following question: How to remedy the paucity of experimental nanotoxicity data and thereby, overcome key roadblock that hinders the development of approaches for data-driven modeling of nanoparticle properties and toxicities? Here, a simple and transparent read-across algorithm for a pre-screening hazard assessment of nanomaterials that provides reasonably accurate results by making the best use of existing limited set of observations will be introduced.
Collapse
Affiliation(s)
- Agnieszka Gajewicz
- University of Gdansk, Faculty of Chemistry, Laboratory of Environmental Chemometrics, Gdansk, Poland.
| |
Collapse
|
278
|
Gandon A, Werle K, Neubauer N, Wohlleben W. Surface reactivity measurements as required for grouping and read-across: An advanced FRAS protocol. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/838/1/012033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
279
|
Bello D, Warheit DB. Biokinetics of engineered nano-TiO2 in rats administered by different exposure routes: implications for human health. Nanotoxicology 2017; 11:431-433. [DOI: 10.1080/17435390.2017.1330436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Dhimiter Bello
- Department of Public Health, College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - David B. Warheit
- Toxicology and Risk Assessment, The Chemours Company, Wilmington, DE, USA
| |
Collapse
|
280
|
Sun X, Chen B, Han Q, Zhu L, Qu K. Are CuO nanoparticles effects on hemocytes of the marine scallop (Chlamys farreri) caused by particles and/or corresponding released ions? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:65-72. [PMID: 28110047 DOI: 10.1016/j.ecoenv.2017.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/07/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Manufactured nanoparticles (NPs) have become emerging pollutants and attracted extensive concern about their potential effects on the marine environment. However, the contribution of particles and their corresponding released ions to the overall toxicity of CuO NPs is poorly understood. In this study, we investigated the toxicological effects of CuO NPs and their corresponding released ions on the hemocytes of Chlamys farreri. Both copper species induced membrane damage, and increased lysosome contents in hemocytes. Based on the integrated biomarker responses method, the relative contributions of particles (NPparticle) and dissolved ions (NPion) to the toxicity of CuO NPs after 2h of exposure were 62.07% and 37.93%, respectively, indicating that the particles rather than the dissolved ions were the dominant source of NP toxicity. Transmission/scanning electron microscopy analysis confirmed the greater histopathological effects exerted by particles than Cu ions. Higher reactive oxygen species (ROS) generation induced by NPparticle than by NPion suggested that the intracellular ROS production might be responsible for the NP toxicity. Our findings suggest that particles effects play a key role in risk assessment of CuO NPs on the marine ecosystem.
Collapse
Affiliation(s)
- Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Qian Han
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lin Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
281
|
Givens BE, Xu Z, Fiegel J, Grassian VH. Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions. J Colloid Interface Sci 2017; 493:334-341. [DOI: 10.1016/j.jcis.2017.01.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/29/2022]
|
282
|
Zhang Y, Xu Y, Xi X, Shrestha S, Jiang P, Zhang W, Gao C. Amino acid-modified chitosan nanoparticles for Cu 2+ chelation to suppress CuO nanoparticle cytotoxicity. J Mater Chem B 2017; 5:3521-3530. [PMID: 32264288 DOI: 10.1039/c7tb00344g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extensive development and application of engineered nanoparticles (NPs) in various fields worldwide have been subjected to increasing concern due to their potential hazards to human health and the environment. Therefore, a simple, economical, and effective method for suppressing the toxicity of metal-based nanomaterials is needed. In this study, glutaraldehyde-crosslinked chitosan nanoparticles (CS NPs) were prepared and further modified with lysine (Ly-CS), glutamic acid (Glu-CS), or sodium borohydride reduction (R-CS), and used to suppress cytotoxicity induced by copper oxide NPs (CuO NPs) through chelation with intracellularly released copper ions. All three kinds of CS NPs had similar sizes of ∼100 nm in a dry state and ∼200 nm in cell culture medium, as determined by scanning electron microscopy, transmission electron microscopy, and dynamic light scattering. The chelating efficiency of different CS NPs followed the order Ly-CS > Glu-CS > R-CS. The CS NPs showed minimal or no toxicity to three different cell lines (HepG2, A549, and RAW264.7 cells) at 100 μg mL-1 with similar cell internalization and exocytosis processes. Comparatively, RAW264.7 cells exhibited higher endocytosis and exocytosis rates, as revealed by flow cytometry and confocal laser scanning microscopy. CS NPs were found as agglomerates inside A549 cells and RAW264.7 cells, with the amount of agglomerates inside RAW264.7 cells decreasing significantly with prolonged incubation. All three CS NPs, especially Ly-CS and Glu-CS NPs, efficiently suppressed the cytotoxicity induced by CuO NPs, and reduced the intracellular level of reactive oxygen species.
Collapse
Affiliation(s)
- Yixian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | |
Collapse
|
283
|
Cai X, Lee A, Ji Z, Huang C, Chang CH, Wang X, Liao YP, Xia T, Li R. Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Part Fibre Toxicol 2017; 14:13. [PMID: 28431555 PMCID: PMC5399805 DOI: 10.1186/s12989-017-0193-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/10/2017] [Indexed: 01/15/2023] Open
Abstract
Background The wide application of engineered nanoparticles has induced increasing exposure to humans and environment, which led to substantial concerns on their biosafety. Some metal oxides (MOx) have shown severe toxicity in cells and animals, thus safe designs of MOx with reduced hazard potential are desired. Currently, there is a lack of a simple yet effective safe design approach for the toxic MOx. In this study, we determined the key physicochemical properties of MOx that lead to cytotoxicity and explored a safe design approach for toxic MOx by modifying their hazard properties. Results THP-1 and BEAS-2B cells were exposed to 0–200 μg/mL MOx for 24 h, we found some toxic MOx including CoO, CuO, Ni2O3 and Co3O4, could induce reactive oxygen species (ROS) generation and cell death due to the toxic ion shedding and/or oxidative stress generation from the active surface of MOx internalized into lysosomes. We thus hypothesized that surface passivation could reduce or eliminate the toxicity of MOx. We experimented with a series of surface coating molecules and discovered that ethylenediamine tetra (methylene phosphonic acid) (EDTMP) could form stable hexadentate coordination with MOx. The coating layer can effectively reduce the surface activity of MOx with 85-99% decrease of oxidative potential, and 65-98% decrease of ion shedding. The EDTMP coated MOx show negligible ROS generation and cell death in THP-1 and BEAS-2B cells. The protective effect of EDTMP coating was further validated in mouse lungs exposed to 2 mg/kg MOx by oropharyngeal aspiration. After 40 h exposure, EDTMP coated MOx show significant decreases of neutrophil counts, lactate dehydrogenase (LDH) release, MCP-1, LIX and IL-6 in bronchoalveolar lavage fluid (BALF), compared to uncoated particles. The haematoxylin and eosin (H&E) staining results of lung tissue also show EDTMP coating could significantly reduce the pulmonary inflammation of MOx. Conclusions The surface reactivity of MOx including ion shedding and oxidative potential is the dominated physicochemical property that is responsible for the cytotoxicity induced by MOx. EDTMP coating could passivate the surface of MOx, reduce their cytotoxicity and pulmonary hazard effects. This coating would be an effective safe design approach for a broad spectrum of toxic MOx, which will facilitate the safe use of MOx in commercial nanoproducts. Electronic supplementary material The online version of this article (doi:10.1186/s12989-017-0193-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoming Cai
- Center for Genetic Epidemiology and Genomics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, China
| | - Anson Lee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, 90095, USA
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, Los Angeles, California, 90095, USA
| | - Cynthia Huang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, 90095, USA
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, California, 90095, USA
| | - Xiang Wang
- California NanoSystems Institute, University of California, Los Angeles, California, 90095, USA
| | - Yu-Pei Liao
- Department of Medicine, University of California, Los Angeles, California, 90095, USA
| | - Tian Xia
- Department of Medicine, University of California, Los Angeles, California, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, California, 90095, USA.
| | - Ruibin Li
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
284
|
Wang J, Zhou H, Guo G, Cheng T, Peng X, Mao X, Li J, Zhang X. A functionalized surface modification with vanadium nanoparticles of various valences against implant-associated bloodstream infection. Int J Nanomedicine 2017; 12:3121-3136. [PMID: 28458535 PMCID: PMC5402895 DOI: 10.2147/ijn.s129459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bloodstream infection, especially with implants involved, is an often life-threatening condition with high mortality rates, imposing a heavy burden on patients and medical systems. Herein, we firstly deposited homogeneous vanadium metal, V2O3, VO2, and V2O5 nanofilms on quartz glass by magnetron sputtering. Using these platforms, we further investigated the potential antimicrobial efficiency of these nano-VOx films and the interactions of human erythrocytes and bacteria (methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa) with our samples in a novel cell–bacteria coculture model. It was demonstrated that these nano-VOx precipitated favorable antibacterial activity on both bacteria, especially on S. aureus, and this effect increased with higher vanadium valence. A possible mechanism accountable for these results might be elevated levels of vanadium-induced intracellular reactive oxygen species. More importantly, based on hemolysis assays, our nano-VOx films were found to be able to kill prokaryotic cells but were not toxic to mammalian cells, holding the potential for the prevention of implant-related hematogenous infections. As far as we know, this is the first report wherein such nano-VOx films have assisted human erythrocytes to combat bacteria in a valence-dependent manner. Additionally, vanadium ions were released from these nano-VOx films in a sustained manner, and low-valence films possessed better biocompatibility with human fibroblasts. This work may provide new insights for biomedical applications of inorganic vanadium compounds and attract growing attention in this field. From the perspective of surface modification and functionalization, this study holds promise to avail the prophylaxis of bloodstream infections involving implantable biomedical devices.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University
| | - Huaijuan Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University
| | - Tao Cheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University
| | - Xiaochun Peng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University
| | - Xin Mao
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University
| | - Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai.,Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,University of Chinese Academy of Sciences, Beijing, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University
| |
Collapse
|
285
|
Abstract
After administration of nanoparticle (NP) into biological fluids, an NP-protein complex is formed, which represents the "true identity" of NP in our body. Hence, protein-NP interaction should be carefully investigated to predict and control the fate of NPs or drug-loaded NPs, including systemic circulation, biodistribution, and bioavailability. In this review, we mainly focus on the formation of protein corona and its potential applications in pharmaceutical sciences such as prediction modeling based on NP-adsorbed proteins, usage of active proteins for modifying NP to achieve toxicity reduction, circulation time enhancement, and targeting effect. Validated correlative models for NP biological responses mainly based on protein corona fingerprints of NPs are more highly accurate than the models solely set up from NP properties. Based on these models, effectiveness as well as the toxicity of NPs can be predicted without in vivo tests, while novel cell receptors could be identified from prominent proteins which play important key roles in the models. The ungoverned protein adsorption onto NPs may have generally negative effects such as rapid clearance from the bloodstream, hindrance of targeting capacity, and induction of toxicity. In contrast, controlling protein adsorption by modifying NPs with diverse functional proteins or tailoring appropriate NPs which favor selective endogenous peptides and proteins will bring promising therapeutic benefits in drug delivery and targeted cancer treatment.
Collapse
Affiliation(s)
- Van Hong Nguyen
- Department of Pharmacy, Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Beom-Jin Lee
- Department of Pharmacy, Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
286
|
Wang X, Sun B, Liu S, Xia T. Structure Activity Relationships of Engineered Nanomaterials in inducing NLRP3 Inflammasome Activation and Chronic Lung Fibrosis. NANOIMPACT 2017; 6:99-108. [PMID: 28480337 PMCID: PMC5415341 DOI: 10.1016/j.impact.2016.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
It has been demonstrated that certain engineered nanomaterials (ENMs) could induce chronic lung inflammation and fibrosis, however, the key structure activity relationships (SARs) that the link the physicochemical properties and the fibrogenic effects have not been thoroughly reviewed. Recently, significant progress has been made in our understanding of the SAR, and it has been demonstrated that ENMs including rare earth oxides (REOs), graphene and graphene oxides (GO), fumed silica, as well as high aspect ratio materials (such as CNTs and CeO2 nanowires etc.) could trigger the NLRP3 inflammasome activation and IL-1β production in macrophages and subsequent series of profibrogenic cytokines, i.e. TGF-β1 and PDGF-AA in vitro and in vivo, resulting in synergistically cell-cell communication among macrophages, epithelial cells, and fibroblasts in a process named epithelial-mesenchymal transition (EMT) and collagen deposition in the lung as the adverse outcomes. Interestingly, different ENMs engage a range of distinct pathways leading to the NLRP3 inflammasome activation and IL-1β production in macrophages, which include frustrated phagocytosis, physical piercing, plasma membrane perturbation or damage to lysosomes due to high aspect ratio, particle structure, surface reactivity, transformation, etc. Furthermore, ENM's properties determine the biopersistence in vivo, which also play a major role in chronic lung fibrosis. Based on these progresses, we reviewed recent findings in the literature on the major SARs leading to chronic lung effects.
Collapse
Affiliation(s)
- Xiang Wang
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, California, 90095, United States
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California, Los Angeles, California, 90095, United States
| | - Bingbing Sun
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, California, 90095, United States
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California, Los Angeles, California, 90095, United States
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, California, 90095, United States
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California, Los Angeles, California, 90095, United States
- Corresponding authors:
| |
Collapse
|
287
|
Tay CY, Setyawati MI, Leong DT. Nanoparticle Density: A Critical Biophysical Regulator of Endothelial Permeability. ACS NANO 2017; 11:2764-2772. [PMID: 28287706 DOI: 10.1021/acsnano.6b07806] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The integrity of the vasculature system is intrinsically sensitive to a short list of biophysical cues spanning from nano to micro scales. We have earlier found that certain nanomaterials could induce endothelial leakiness (nanoparticle induced endothelial leakiness, nanoEL). In this study, we report that the density of the nanomaterial, a basic intrinsic material property not implicated in many nanoparticle-mediated biological effects, predominantly dictates the nanoEL effect. We demonstrated that the impinging force exerted by a library of increasing effective densities but consistently sized silica nanoparticles (SiNPs) could directly increase endothelial permeability. The crossover effective particle density that induced nanoEL was determined to be between 1.57 g/cm3 to 1.72 g/cm3. It was also found that a cumulative gravitational-mediated force of around 1.8 nN/μm along the boundaries of the vascular endothelial cadherin (VE-cad) adherens junctions appeared to be a critical threshold force required to perturb endothelial cell-cell adhesion. The net result is the "snapping" of the mechanically pretensed VE-cad (Nanosnap), leading to the formation of micron-sized gaps that would dramatically increase endothelial leakiness.
Collapse
Affiliation(s)
- Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University , N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Magdiel Inggrid Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
288
|
Basant N, Gupta S. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides. Nanotoxicology 2017; 11:339-350. [PMID: 28277981 DOI: 10.1080/17435390.2017.1302612] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metal oxide nanoparticles (MeONPs) due to their unique physico-chemical properties have widely been used in different products. Current studies have established toxicity of some NPs to human and environment, hence, imply for their comprehensive safety assessment. Here, the potential of using a multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of various MeONPs has been investigated. A multi-target QSTR model has been established using four different experimental toxicity data sets of MeONPs. Diversity of the considered experimental toxicity data sets was tested using the Kruskal-Wallis (K-W) statistics. The optimal validated model yielded high correlations (R2 between 0.828 and 0.956) between the experimental and simultaneously predicted endpoint toxicity values in test arrays for all the four systems. The structural features (oxygen percent, LogS, and Mulliken's electronegativity) identified by the QSTR model were mechanistically interpretable in view of the accepted toxicity mechanisms for NPs. Single target QSTR models were also established (R2Test >0.882) for individual toxicity endpoint prediction of MeONPs. The performance of the multi-target QSTR model was closely comparable with individual models and with those reported earlier in the literature for toxicity prediction of NPs. The model reliably predicts the toxicity of all considered MeONPs, and the methodology is expected to provide guidance for the future design of safe NP-based products. The proposed multi-target QSTR can be successfully used for screening new, untested metal oxide NPs for their safety assessment within the defined applicability domain of the model.
Collapse
Affiliation(s)
- Nikita Basant
- a Environmental and Technical Research Centre , Lucknow , India
| | - Shikha Gupta
- b Plant Ecology and Environmental Science Division, CSIR-Natioanl Botanical Research Institute , Lucknow , India
| |
Collapse
|
289
|
Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms. J Nanobiotechnology 2017; 15:19. [PMID: 28270155 PMCID: PMC5341439 DOI: 10.1186/s12951-017-0253-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/22/2017] [Indexed: 11/20/2022] Open
Abstract
Engineered nanomaterials (ENMs) are key drivers for the development of highly sophisticated new technologies. As all new attainments, the rapidly increasing used of ENMs raise concerns about their safety for the environment and humans. There is growing evidence showing that if engineered nanomaterials are released into the environment, there is a possibility that they could cause harm to aquatic microorganisms. Among the divers effects triggering their toxicity the ability of ENMs to generate reactive oxygen species (ROS) capable of oxidizing biomolecules is currently considered a central mechanism of toxicity. Therefore, development of sensitive tools for quantification of the ROS generation and oxidative stress are highly sought. After briefly introducing ENMs-induced ROS generation and oxidative stress in the aquatic microorganisms (AMOs), this overview paper focuses on a new optical biosensor allowing sensitive and dynamic measurements of H2O2 in real-time using multiscattering enhanced absorption spectroscopy. Its principle is based on sensitive absorption measurements of the heme protein cytochrome c whose absorption spectrum alters with the oxidation state of constituent ferrous FeII and ferric FeIII. For biological applications cytochrome c was embedded in porous random media resulting in an extended optical path length through multiple scattering of light, which lowers the limit of detection to a few nM of H2O2. The sensor was also integrated in a microfluidic system containing micro-valves and sieves enabling more complex experimental conditions. To demonstrate its performance, abiotic absorption measurements of low concentrations of dye molecules and 10 nm gold particles were carried out achieving limits of detection in the low nM range. Other biologically relevant reactive oxygen species can be measured at sub-μM concentrations, which was shown for glucose and lactate through enzymatic reactions producing H2O2. In ecotoxicological investigations H2O2 excreted by aquatic microorganisms exposed to various stressors were measured. Pro-oxidant effects of nano-TiO2 and nano-CuO towards green alga Chlamydomonas reinhardtii were explored in various exposure media and under different light illuminations. Dynamics of Cd2+ induced effects on photosynthetic activity, sensitisation and recovery of cells of C. reinhardtii was also studied.
Collapse
|
290
|
Das S, Reed McDonagh P, Selvan Sakthivel T, Barkam S, Killion K, Ortiz J, Saraf S, Kumar A, Gupta A, Zweit J, Seal S. Tissue deposition and toxicological effects of commercially significant rare earth oxide nanomaterials: Material and physical properties. ENVIRONMENTAL TOXICOLOGY 2017; 32:904-917. [PMID: 27255187 DOI: 10.1002/tox.22290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 04/26/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
Rare earth oxide (REO) materials are found naturally in earth's crust and at the nanoscale these REO nanoparticles exhibit unique thermal, electrical, and physicochemical properties. REO nanoparticles are widely used in different industrial sectors for ceramics, glass polishing, metallurgy, lasers, and magnets. Recently, some of these REO nanoparticles have been identified for their potential application in medicine, including therapy, imaging, and diagnostics. Concurrent research into the REO nanomaterials' toxicities has also raised concern for their environmental impacts. The correlation of REO nanoparticles mediated toxicity with their physiochemical properties can help to design nanoparticles with minimal effect on the environment and living organisms. In vitro assay revealed toxicity toward Human squamous epithelial cell line (CCL30) and Human umbilical vascular endothelial cells (HUVEC) at a concentration of 100 µM and higher. In vivo results showed, with the exception of CeO2 and Gd2 O3 , most of the naoparticles did not clear or had minimum clearance (10-20%) from the system. Elevated levels of alanine transferase were seen for animals given each different nanoparticle, however the increases were not significant for CeO2 and Dy2 O3 . Nephrotoxicity was only seen in case of Dy2 O3 and Gd2 O3 . Lastly, histological examination revealed presence of swollen hepatocytes which further confirms toxicity of the commercial REO nanomaterials. The in vivo toxicity is mainly due to excessive tissue deposition (70-90%) due to the commercial REO nanoparticles' poor physical properties (shape, stability, and extent of agglomeration). Therefore, optimization of nanoparticles physical properties is very important. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 904-917, 2017.
Collapse
Affiliation(s)
- Soumen Das
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816
| | - Philip Reed McDonagh
- Department of Radiology, Center for Molecular Imaging, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Tamil Selvan Sakthivel
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816
| | - Swetha Barkam
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816
| | - Kelsey Killion
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816
| | - Julian Ortiz
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816
| | - Shashank Saraf
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816
| | - Amit Kumar
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816
| | - Ankur Gupta
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816
| | - Jamal Zweit
- Department of Radiology, Center for Molecular Imaging, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816
- College of Medicine, University of Central Florida, Orlando, Florida, 32816
| |
Collapse
|
291
|
Jiang W, Wang X, Osborne OJ, Du Y, Chang CH, Liao YP, Sun B, Jiang J, Ji Z, Li R, liu X, Lu J, Lin S, Meng H, Xia T, Nel AE. Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung. ACS NANO 2017; 11:1869-1883. [PMID: 28177603 PMCID: PMC5543990 DOI: 10.1021/acsnano.6b07895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have recently shown that the toxicological potential of GaAs and InAs particulates in cells is size- and dissolution-dependent, tending to be more pronounced for nano- vs micron-sized particles. Whether the size-dependent dissolution and shedding of ionic III-V materials also apply to pulmonary exposure is unclear. While it has been demonstrated that micron-sized III-V particles, such as GaAs and InAs, are capable of inducing hazardous pulmonary effects in an occupational setting as well as in animal studies, the effect of submicron particles (e.g., the removal of asperities during processing of semiconductor wafers) is unclear. We used cytokine profiling to compare the pro-inflammatory effects of micron- and nanoscale GaAs and InAs particulates in cells as well as the murine lung 40 h and 21 days after oropharyngeal aspiration. Use of cytokine array technology in macrophage and epithelial cell cultures demonstrated a proportionally higher increase in the levels of matrix metalloproteinase inducer (EMMPRIN), macrophage migration inhibitory factor (MIF), and interleukin 1β (IL-1β) by nanosized (n) GaAs and n-InAs as well as As(III). n-GaAs and n-InAs also triggered higher neutrophil counts in the bronchoalveolar lavage fluid (BALF) of mice than micronscale particles 40 h post-aspiration, along with increased production of EMMPRIN and MIF. In contrast, in animals sacrificed 21 days after exposure, only n-InAs induced fibrotic lung changes as determined by increased lung collagen as well as increased levels of TGF-β1 and PDGF-AA in the BALF. A similar trend was seen for EMMPRIN and matrix metallopeptidase (MMP-9) levels in the BALF. Nano- and micron-GaAs had negligible subacute effects. Importantly, the difference between the 40 h and 21 days data appears to be biopersistence of n-InAs, as demonstrated by ICP-OES analysis of lung tissue. Interestingly, an ionic form of In, InCl3, also showed pro-fibrogenic effects due to the formation of insoluble In(OH)3 nanostructures. All considered, these data indicate that while nanoscale particles exhibit increased pro-inflammatory effects in the lung, most effects are transient, except for n-InAs and insoluble InCl3 species that are biopersistent and trigger pro-fibrotic effects. These results are of potential importance for the understanding the occupational health effects of III-V particulates.
Collapse
Affiliation(s)
- Wen Jiang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Xiang Wang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Olivia J. Osborne
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Yingjie Du
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Chong Hyun Chang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Bingbing Sun
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Jinhong Jiang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Zhaoxia Ji
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Ruibin Li
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiangsheng liu
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Jianqin Lu
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Sijie Lin
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
- College of Environmental Science and Engineering State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China, 200092
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Tian Xia
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - André E. Nel
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
- Address correspondence to: André E. Nel, M.D./Ph.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680, USA, Tel: (310) 825-6620, Fax: (310) 206-8107,
| |
Collapse
|
292
|
Vasanth SB, Kurian GA. Toxicity evaluation of silver nanoparticles synthesized by chemical and green route in different experimental models. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1721-1727. [PMID: 28278585 DOI: 10.1080/21691401.2017.1282500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
With the increased exposure of silver nanoparticles (AgNPs) to human beings, the risk and safety should be considered. In this study, nephro-toxicity of AgNPs prepared by chemical and green route (aqueous extract of Desmodium gangeticum root) in rat, proximal epithelial cell lines and renal mitochondria was evaluated. AgNPs (100 mg/kg) were administered orally to the wistar rats. After 15 d, we observed significant changes in the renal architecture of both AgNPs, supported by the urine and blood chemistry data. Further, exposure towards renal epithelial cells and renal mitochondria also confirm the toxic similarities between the AgNPs synthesized from two routes.
Collapse
Affiliation(s)
- Shakila Banu Vasanth
- a Vascular Biology Lab, School of Chemical and Biotechnology , SASTRA University , Thanjavur , Tamilnadu , India
| | - Gino A Kurian
- a Vascular Biology Lab, School of Chemical and Biotechnology , SASTRA University , Thanjavur , Tamilnadu , India
| |
Collapse
|
293
|
Gerloff K, Landesmann B, Worth A, Munn S, Palosaari T, Whelan M. The Adverse Outcome Pathway approach in nanotoxicology. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.comtox.2016.07.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
294
|
Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells. Neurochem Int 2017; 108:7-14. [PMID: 28159626 DOI: 10.1016/j.neuint.2017.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 12/16/2022]
Abstract
Nickel oxide nanoparticles (NiO-NPs) are used in many industrial sectors including printing inks, ceramics and catalysts, and electrical and electronics industry because of their magnetic and optical properties. However, there has been still a serious lack of information about their toxicity at the cellular and molecular levels on nervous system. For that, we aimed to investigate the in vitro toxic potentials of NiO-NPs in neuronal (SH-SY5Y) cells. The particle characterisation, cellular uptake and morphological changes were determined using Transmission Electron Microscopy, dynamic light scattering and Inductively Coupled Plasma-Mass Spectrometry. Then, the cytotoxicity was evaluated by MTT and neutral red uptake assays, the genotoxicity by comet assay, the oxidative potentials by the determination of malondialdehyde, 8-hydroxy deoxyguanosine, protein carbonyl, and glutathione levels with Enzyme-Linked Immune Sorbent Assays, and the apoptotic potentials by Annexin V-FITC apoptosis detection assay with propidium iodide. According to the results, it was observed that NiO-NPs (15.0 nm ± 4.2-38.1 nm); (i) were taken up by the cells in concentration dependent manner, (ii) caused 50% inhibition in cell viability at ≥229.34 μg/mL, (iii) induced some morphological changes, (iv) induced dose-dependent DNA damage (3.2-11.0 fold) and apoptosis (80-99%), (v) significantly induced oxidative damage. In conclusion, our results support the hypothesis that NiO-NPs affect human health especially neuronal system negatively and should raise the concern about the safety associated with their applications in consumer products.
Collapse
|
295
|
Naatz H, Lin S, Li R, Jiang W, Ji Z, Chang CH, Köser J, Thöming J, Xia T, Nel AE, Mädler L, Pokhrel S. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu-O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos. ACS NANO 2017; 11:501-515. [PMID: 28026936 PMCID: PMC5824973 DOI: 10.1021/acsnano.6b06495] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The safe implementation of nanotechnology requires nanomaterial hazard assessment in accordance with the material physicochemical properties that trigger the injury response at the nano/bio interface. Since CuO nanoparticles (NPs) are widely used industrially and their dissolution properties play a major role in hazard potential, we hypothesized that tighter bonding of Cu to Fe by particle doping could constitute a safer-by-design approach through decreased dissolution. Accordingly, we designed a combinatorial library in which CuO was doped with 1-10% Fe in a flame spray pyrolysis reactor. The morphology and structural properties were determined by XRD, BET, Raman spectroscopy, HRTEM, EFTEM, and EELS, which demonstrated a significant reduction in the apical Cu-O bond length while simultaneously increasing the planar bond length (Jahn-Teller distortion). Hazard screening was performed in tissue culture cell lines and zebrafish embryos to discern the change in the hazardous effects of doped vs nondoped particles. This demonstrated that with increased levels of doping there was a progressive decrease in cytotoxicity in BEAS-2B and THP-1 cells, as well as an incremental decrease in the rate of hatching interference in zebrafish embryos. The dissolution profiles were determined and the surface reactions taking place in Holtfreter's solution were validated using cyclic voltammetry measurements to demonstrate that the Cu+/Cu2+ and Fe2+/Fe3+ redox species play a major role in the dissolution process of pure and Fe-doped CuO. Altogether, a safe-by-design strategy was implemented for the toxic CuO particles via Fe doping and has been demonstrated for their safe use in the environment.
Collapse
Affiliation(s)
- Hendrik Naatz
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany
| | - Sijie Lin
- California NanoSystems Institute, University of California, Los Angeles, California
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai China
| | - Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Wen Jiang
- California NanoSystems Institute, University of California, Los Angeles, California
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, Los Angeles, California
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, California
| | - Jan Köser
- Centre for Environmental Research and Sustainable Technology, University of Bremen, Germany
| | - Jorg Thöming
- Centre for Environmental Research and Sustainable Technology, University of Bremen, Germany
| | - Tian Xia
- California NanoSystems Institute, University of California, Los Angeles, California
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California
| | - Andre E. Nel
- California NanoSystems Institute, University of California, Los Angeles, California
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany
| |
Collapse
|
296
|
Janko C, Pöttler M, Matuszak J, Unterweger H, Hornung A, Friedrich RP, Alexiou C. Innovative toxikologische Untersuchungsmethoden für Eisenoxidnanopartikel in der Nanomedizin. CHEM-ING-TECH 2017. [DOI: 10.1002/cite.201600077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
297
|
Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int J Mol Sci 2017; 18:E120. [PMID: 28075405 PMCID: PMC5297754 DOI: 10.3390/ijms18010120] [Citation(s) in RCA: 520] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/27/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS). The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Mohammed Kawser Hossain
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
298
|
Aich N, Masud A, Sabo-Attwood T, Plazas-Tuttle J, Saleh NB. Dimensional Variations in Nanohybrids: Property Alterations, Applications, and Considerations for Toxicological Implications. NANOSTRUCTURE SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1007/978-3-319-59662-4_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
299
|
Riebeling C, Jungnickel H, Luch A, Haase A. Systems Biology to Support Nanomaterial Grouping. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:143-171. [PMID: 28168668 DOI: 10.1007/978-3-319-47754-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The assessment of potential health risks of engineered nanomaterials (ENMs) is a challenging task due to the high number and great variety of already existing and newly emerging ENMs. Reliable grouping or categorization of ENMs with respect to hazards could help to facilitate prioritization and decision making for regulatory purposes. The development of grouping criteria, however, requires a broad and comprehensive data basis. A promising platform addressing this challenge is the systems biology approach. The different areas of systems biology, most prominently transcriptomics, proteomics and metabolomics, each of which provide a wealth of data that can be used to reveal novel biomarkers and biological pathways involved in the mode-of-action of ENMs. Combining such data with classical toxicological data would enable a more comprehensive understanding and hence might lead to more powerful and reliable prediction models. Physico-chemical data provide crucial information on the ENMs and need to be integrated, too. Overall statistical analysis should reveal robust grouping and categorization criteria and may ultimately help to identify meaningful biomarkers and biological pathways that sufficiently characterize the corresponding ENM subgroups. This chapter aims to give an overview on the different systems biology technologies and their current applications in the field of nanotoxicology, as well as to identify the existing challenges.
Collapse
Affiliation(s)
- Christian Riebeling
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany.
| |
Collapse
|
300
|
Lynch I, Afantitis A, Leonis G, Melagraki G, Valsami-Jones E. Strategy for Identification of Nanomaterials’ Critical Properties Linked to Biological Impacts: Interlinking of Experimental and Computational Approaches. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2017. [DOI: 10.1007/978-3-319-56850-8_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|