251
|
Robinson LA, Collins ACZ, Murphy RA, Davies JC, Allsopp LP. Diversity and prevalence of type VI secretion system effectors in clinical Pseudomonas aeruginosa isolates. Front Microbiol 2023; 13:1042505. [PMID: 36687572 PMCID: PMC9846239 DOI: 10.3389/fmicb.2022.1042505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and a major driver of morbidity and mortality in people with Cystic Fibrosis (CF). The Type VI secretion system (T6SS) is a molecular nanomachine that translocates effectors across the bacterial membrane into target cells or the extracellular environment enabling intermicrobial interaction. P. aeruginosa encodes three T6SS clusters, the H1-, H2- and H3-T6SS, and numerous orphan islands. Genetic diversity of T6SS-associated effectors in P. aeruginosa has been noted in reference strains but has yet to be explored in clinical isolates. Here, we perform a comprehensive bioinformatic analysis of the pangenome and T6SS effector genes in 52 high-quality clinical P. aeruginosa genomes isolated from CF patients and housed in the Personalised Approach to P. aeruginosa strain repository. We confirm that the clinical CF isolate pangenome is open and principally made up of accessory and unique genes that may provide strain-specific advantages. We observed genetic variability in some effector/immunity encoding genes and show that several well-characterised vgrG and PAAR islands are absent from numerous isolates. Our analysis shows clear evidence of disruption to T6SS genomic loci through transposon, prophage, and mobile genetic element insertions. We identified an orphan vgrG island in P. aeruginosa strain PAK and five clinical isolates using in silico analysis which we denote vgrG7, predicting a gene within this cluster to encode a Tle2 lipase family effector. Close comparison of T6SS loci in clinical isolates compared to reference P. aeruginosa strain PAO1 revealed the presence of genes encoding eight new T6SS effectors with the following putative functions: cytidine deaminase, lipase, metallopeptidase, NADase, and pyocin. Finally, the prevalence of characterised and putative T6SS effectors were assessed in 532 publicly available P. aeruginosa genomes, which suggests the existence of accessory effectors. Our in silico study of the P. aeruginosa T6SS exposes a level of genetic diversity at T6SS genomic loci not seen to date within P. aeruginosa, particularly in CF isolates. As understanding the effector repertoire is key to identifying the targets of T6SSs and its efficacy, this comprehensive analysis provides a path for future experimental characterisation of these mediators of intermicrobial competition and host manipulation.
Collapse
Affiliation(s)
- Luca A. Robinson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alice C. Z. Collins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ronan A. Murphy
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jane C. Davies
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
252
|
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023; 12:199. [PMID: 36611992 PMCID: PMC9818774 DOI: 10.3390/cells12010199] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen which causes many severe acute and chronic infections with high morbidity, and mortality rates as high as 40%. What makes P. aeruginosa a particularly challenging pathogen is its high intrinsic and acquired resistance to many of the available antibiotics. In this review, we review the important acute and chronic infections caused by this pathogen. We next discuss various animal models which have been developed to evaluate P. aeruginosa pathogenesis and assess therapeutics against this pathogen. Next, we review current treatments (antibiotics and vaccines) and provide an overview of their efficacies and their limitations. Finally, we highlight exciting literature on novel antibiotic-free strategies to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M. Kuzel
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
253
|
Mansor MR, AL-Khalidi ZS, Almuhanna EH, Hussein HR, Almulla AF, Alnaji HA, Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq, Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq, Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq, Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq. Detection and Study nan1 and tox A genes of Pseudomonas aeruginosa in Isolates from Otitis Media Patients Considered as Virulence Factors. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2023. [DOI: 10.30699/ijmm.17.1.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
254
|
Anbo M, Jelsbak L. A bittersweet fate: detection of serotype switching in Pseudomonas aeruginosa. Microb Genom 2023; 9:mgen000919. [PMID: 36748704 PMCID: PMC9973846 DOI: 10.1099/mgen.0.000919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High-risk clone types in Pseudomonas aeruginosa are problematic global multidrug-resistant clones. However, apart from their ability to resist antimicrobial treatment, not much is known about what sets these clones apart from the multitude of other clones. In high-risk clone ST111, it has previously been shown that replacement of the native serotype biosynthetic gene cluster (O4) by a different gene cluster (O12) by horizontal gene transfer and recombination may have contributed to the global success of this clone. However, the extent to which isolates undergo this type of serotype switching has not been adequately explored in P. aeruginosa. In the present study, a bioinformatics tool has been developed and utilized to provide a first estimate of serotype switching in groups of multidrug resistant (MDR) clinical isolates. The tool detects serotype switching by analysis of core-genome phylogeny and in silico serotype. Analysis of a national survey of MDR isolates found a prevalence of 3.9 % of serotype-switched isolates in high-risk clone types ST111, ST244 and ST253. A global survey of MDR isolates was additionally analysed, and it was found that 2.3 % of isolates had undergone a serotype switch. To further understand this process, we determined the exact boundaries of the horizontally transferred serotype O12 island. We found that the size of the serotype island correlates with the clone type of the receiving isolate and additionally we found intra-clone type variations in size and boundaries. This suggests multiple serotype switch events. Moreover, we found that the housekeeping gene gyrA is co-transferred with the O12 serotype island, which prompted us to analyse this allele for all serotype O12 isolates. We found that 95 % of ST111 O12 isolates had a resistant gyrA allele and 86 % of all O12 isolates had a resistant gyrA allele. The rates of resistant gyrA alleles in isolates with other prevalent serotypes are all lower. Together, these results show that the transfer and acquisition of serotype O12 in high-risk clone ST111 has happened multiple times and may be facilitated by multiple donors, which clearly suggests a strong selection pressure for this process. However, gyrA-mediated antibiotic resistance may not be the only evolutionary driver.
Collapse
Affiliation(s)
- Mikkel Anbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
- *Correspondence: Lars Jelsbak,
| |
Collapse
|
255
|
Sandoz A, Ducret V, Gottwald GA, Vilmart G, Perron K. SINDy for delay-differential equations: application to model bacterial zinc response. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We extend the data-driven method of sparse identification of nonlinear dynamics (SINDy) developed by Brunton
et al.
,
Proc. Natl Acad. Sci. USA
113
(2016) to the case of delay differential equations (DDEs). This is achieved in a bilevel optimization procedure by first applying SINDy for fixed delay and then subsequently optimizing the error of the reconstructed SINDy model over delay times. We test the SINDy-delay method on a noisy short dataset from a toy DDE and show excellent agreement. We then apply the method to experimental data of gene expressions in the bacterium
Pseudomonas aeruginosa
subject to the influence of zinc. The derived SINDy model suggests that the increase in zinc concentration mainly affects the time delay and not the strengths of the interactions between the different agents controlling the zinc export mechanism.
Collapse
Affiliation(s)
- Antoine Sandoz
- Department of Plant Sciences, Microbiology Unit, and Section of Mathematics, Microbiology Unit, and Section of Pharmaceutical Sciences, University of Geneva, CP64, 1211 Geneva 4, Switzerland
| | - Verena Ducret
- Department of Plant Sciences, Microbiology Unit, Microbiology Unit, and Section of Pharmaceutical Sciences, University of Geneva, CP64, 1211 Geneva 4, Switzerland
| | - Georg A. Gottwald
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
| | - Gilles Vilmart
- Section of Mathematics, Microbiology Unit, and Section of Pharmaceutical Sciences, University of Geneva, CP64, 1211 Geneva 4, Switzerland
| | - Karl Perron
- Department of Plant Sciences, Microbiology Unit, and Section of Pharmaceutical Sciences, University of Geneva, CP64, 1211 Geneva 4, Switzerland
| |
Collapse
|
256
|
Proteomic characterization of Shiitake (Lentinula edodes) post-harvest fruit bodies grown on hardwood logs and isolation of an antibacterial serine protease inhibitor. Fungal Biol 2023; 127:881-890. [PMID: 36746560 DOI: 10.1016/j.funbio.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Lentinula edodes (Shiitake) is one of the most heavily cultivated mushrooms in the world with proven antioxidant and antibacterial properties, among others. Evidence indicates that the choice of mushroom cultivation technique strongly influences the production of bioactive compounds, but to date the nature of many of these compounds has not been fully established. This work focuses on the proteomic characterization of L. edodes to highlight the main active processes two days after harvest and elucidates the proteins involved in the known antioxidant and antibacterial proprieties of Shiitake fruit bodies cultivated on oak logs. A label-free approach allowed us to identify a total of 2702 proteins which were mainly involved in carbohydrate and protein metabolism, cell growth and replication, indicating that several developmental processes remain active in fruit bodies post-harvest. Proteins with antioxidant activities were identified, indicating the contribution of proteins to the antioxidant properties of L. edodes extracts. Antibacterial assays also reveal the activity of a serine protease inhibitor that strongly accumulates in the post-harvest fruit body grown on oak logs. Overall, this study contributes to the understanding of the impact of the log cultivation method on the production of Shiitake mushrooms richest in high-value bioactive compounds.
Collapse
|
257
|
Vidal JM, Fonseca A, Ruiz P, Sepúlveda D, Carrasco C, Scilipoti S, Barros J, Valenzuela A, Saavedra R, Ruiz-Tagle N, Urrutia H. Genomic features of Pseudomonas sp. RGM2144 correlates with increased survival of rainbow trout infected by Flavobacterium psychrophilum. JOURNAL OF FISH DISEASES 2023; 46:1-15. [PMID: 36130050 DOI: 10.1111/jfd.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the probiotic potential of the biofilm formed by the strain Pseudomonas sp. RGM2144 on rainbow trout survival. When challenged with the fish pathogen Flavobacterium psychrophilum, Pseudomonas sp. RGM2144 increased rainbow trout survival to 92.7 ± 1.2% (control: 35.3 ± 9.5%, p < .0001). The draft genome of Pseudomonas sp. RGM2144 is 6.8 Mbp long, with a completeness 100% and a contamination of 0.4%. The genome contains 6122 protein-coding genes of which 3564 (~60%) have known functions. The genome and phylogeny indicate that Pseudomonas sp. RGM2144 is a new species in the Pseudomonas genus, with few virulence factors, plasmids, and genes associated with antimicrobial resistance, suggesting a non-pathogenic bacterium with protective potential. In addition, the genome encodes for 11 secondary metabolite biosynthetic gene clusters that could be involved in the inhibition of F. psychrophilum. We suggest that Pseudomonas sp. RGM2144 may be applied as a probiotic in salmonid fish farming.
Collapse
Affiliation(s)
- José M Vidal
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Investigación y Desarrollo, Ecombio limitada, Concepción, Chile
| | - Alexis Fonseca
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Laboratorio de Bentos, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile
- Center for Electromicrobiology, Department of Biology, Aarhus University, Denmark
| | - Pamela Ruiz
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Talcahuano, Chile
| | - Daniela Sepúlveda
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Carlos Carrasco
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | | | - Javier Barros
- Departamento de Investigación y Desarrollo, Concepción, Chile
| | - Ariel Valenzuela
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Saavedra
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Nathaly Ruiz-Tagle
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Homero Urrutia
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
258
|
Pottier M, Castagnet S, Gravey F, Leduc G, Sévin C, Petry S, Giard JC, Le Hello S, Léon A. Antimicrobial Resistance and Genetic Diversity of Pseudomonas aeruginosa Strains Isolated from Equine and Other Veterinary Samples. Pathogens 2022; 12:64. [PMID: 36678412 PMCID: PMC9867525 DOI: 10.3390/pathogens12010064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Pseudomonas aeruginosa is one of the leading causes of healthcare-associated infections in humans. This bacterium is less represented in veterinary medicine, despite causing difficult-to-treat infections due to its capacity to acquire antimicrobial resistance, produce biofilms, and persist in the environment, along with its limited number of veterinary antibiotic therapies. Here, we explored susceptibility profiles to antibiotics and to didecyldimethylammonium chloride (DDAC), a quaternary ammonium widely used as a disinfectant, in 168 P. aeruginosa strains isolated from animals, mainly Equidae. A genomic study was performed on 41 of these strains to determine their serotype, sequence type (ST), relatedness, and resistome. Overall, 7.7% of animal strains were resistant to carbapenems, 10.1% presented a multidrug-resistant (MDR) profile, and 11.3% showed decreased susceptibility (DS) to DDAC. Genomic analyses revealed that the study population was diverse, and 4.9% were ST235, which is considered the most relevant human high-risk clone worldwide. This study found P. aeruginosa populations with carbapenem resistance, multidrug resistance, and DS to DDAC in equine and canine isolates. These strains, which are not susceptible to antibiotics used in veterinary and human medicine, warrant close the setting up of a clone monitoring, based on that already in place in human medicine, in a one-health approach.
Collapse
Affiliation(s)
- Marine Pottier
- Research Department, LABÉO, 14053 Caen, France
- Inserm UMR 1311, Dynamicure, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France
| | - Sophie Castagnet
- Research Department, LABÉO, 14053 Caen, France
- Inserm UMR 1311, Dynamicure, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France
| | - François Gravey
- Inserm UMR 1311, Dynamicure, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France
- CHU de Caen, Service de Microbiologie, Avenue de la Côte de Nacre, 14033 Caen, France
| | - Guillaume Leduc
- CHU de Caen, Service de Microbiologie, Avenue de la Côte de Nacre, 14033 Caen, France
| | - Corinne Sévin
- Anses, Normandy Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, 14430 Goustranville, France
| | - Sandrine Petry
- Anses, Normandy Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, 14430 Goustranville, France
| | - Jean-Christophe Giard
- Inserm UMR 1311, Dynamicure, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France
| | - Simon Le Hello
- Inserm UMR 1311, Dynamicure, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France
- CHU de Caen, Service de Microbiologie, Avenue de la Côte de Nacre, 14033 Caen, France
- CHU de Caen, Service d’Hygiène Hospitalière, Avenue de la Côte de Nacre, 14033 Caen, France
| | - Albertine Léon
- Research Department, LABÉO, 14053 Caen, France
- Inserm UMR 1311, Dynamicure, Normandie University, UNICAEN, UNIROUEN, 14000 Caen, France
| |
Collapse
|
259
|
An Important Role of the Type VI Secretion System of Pseudomonas aeruginosa Regulated by Dnr in Response to Anaerobic Environments. Microbiol Spectr 2022; 10:e0153322. [PMID: 36301114 PMCID: PMC9769707 DOI: 10.1128/spectrum.01533-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The type VI secretion system (T6SS) is capable of secreting a variety of metal-binding proteins involved in metal ion uptake, and it mediates an active metal ion transport system that contributes to competition between bacteria. Pseudomonas aeruginosa H2-T6SS can increase molybdenum ion acquisition and enhance bacterial survival advantage by promoting the secretion of the molybdate-binding protein ModA, in which the expression of H2-T6SS core genes hcp2, hsiA2, and clpV2 is activated by anaerobic conditions and are all regulated by the global regulator Anr. Here, we report the regulation of T6SS by Dnr, a dedicated dissimilatory nitrate respiration regulator in P. aeruginosa. Of the three distinct T6SS loci carried by P. aeruginosa, only the anaerobic expression of H2-T6SS was activated by Dnr; H1-T6SS or H3-T6SS did not respond to anaerobically induced activation. We also demonstrated that Dnr promotes the anaerobic secretion of ModA, which acts as a potential substrate for H2-T6SS, providing an advantage not only for the anaerobic growth of bacteria but also for functional competition. Overall, this study elucidates the important role played by Dnr in mediating the anaerobic expression of T6SS in P. aeruginosa, indicating that the functional advantage of H2-T6SS in response to anaerobic induction may be a conditional environmental adaptation. It also extends our understanding of the function of Dnr as a specific regulator of dissimilatory nitrate respiration. IMPORTANCE The type VI secretion system (T6SS) plays an important role in bacterial competition by mediating the transport of active metal ions. Pseudomonas aeruginosa carries three distinct T6SS loci (H1-, H2-, and H3-T6SS). The H2-T6SS promotes the secretion of the molybdate-binding protein ModA for the acquisition of molybdenum ions to adapt to anaerobic survival. Here, we report that the specialized dissimilatory nitrate respiration regulator Dnr in P. aeruginosa controls the anaerobic expression of H2-T6SS and that this regulation is essential for ModA protein secretion, anaerobic growth, and bacterial competition. This study elucidates the regulatory mechanism of Dnr on H2-T6SS in P. aeruginosa, revealing an important role played by H2-T6SS in adapting to an anaerobic environment.
Collapse
|
260
|
Liu Z, Xu Z, Chen S, Huang J, Li T, Duan C, Zhang LH, Xu Z. CzcR Is Essential for Swimming Motility in Pseudomonas aeruginosa during Zinc Stress. Microbiol Spectr 2022; 10:e0284622. [PMID: 36416561 PMCID: PMC9769499 DOI: 10.1128/spectrum.02846-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Two-component system (TCS) plays a vital role in modulating target gene expression in response to the changing environments. Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that can survive under diverse stress conditions. The great adaptability of P. aeruginosa relies heavily on the abundant TCSs encoded by its genome. However, most TCSs in P. aeruginosa have not been well-characterized. CzcS/CzcR is a metal responsive TCS which displays multiple regulatory functions associated with metal hemostasis, quorum sensing activity and antibiotic resistance. In this study, we found that swimming motility of P. aeruginosa was completely abolished during zinc (Zn2+) stress when the czcR gene from the TCS CzcS/CzcR was deleted. Noticeably, CzcR was dispensable for swimming without the stress of Zn2+ excess. CzcR was shown to be activated by Zn2+ stress possibly through inducing its expression level and triggering its phosphorylation to positively regulate swimming which was abolished by Zn2+ stress in a CzcR-independent manner. Further TEM analyses and promoter activity examinations revealed that CzcR was required for the expression of genes involved in flagellar biosynthesis during Zn2+ stress. In vitro protein-DNA interaction assay showed that CzcR was capable of specifically recognizing and binding to the promoters of operons flgBCDE, flgFGHIJK, and PA1442/FliMNOPQR/flhB. Together, this study demonstrated a novel function of CzcR in regulating flagellar gene expression and motility in P. aeruginosa when the pathogen encounters Zn2+ stress conditions. IMPORTANCE The fitness of bacterial cells depends largely on their ability to sense and respond quickly to the changing environments. P. aeruginosa expresses a great number of signal sensing and transduction systems that enable the pathogen to grow and survive under diverse stress conditions and cause serious infections at different sites in many hosts. In addition to the previously characterized functions to regulate metal homeostasis, quorum sensing activity, and antibiotic resistance, here we report that CzcR is a novel regulator essential for flagellar gene expression and swimming motility in P. aeruginosa during Zn2+ stress. Since swimming motility is important for the virulence of P. aeruginosa, findings in this study might provide a new target for the treatment of P. aeruginosa infections with Zn2+-based antimicrobial agents in the future.
Collapse
Affiliation(s)
- Zhiqing Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Zirui Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Shuzhen Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Ting Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Cheng Duan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
261
|
Metabolic Mechanism and Physiological Role of Glycerol 3-Phosphate in Pseudomonas aeruginosa PAO1. mBio 2022; 13:e0262422. [PMID: 36218368 PMCID: PMC9765544 DOI: 10.1128/mbio.02624-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen that is lethal to cystic fibrosis (CF) patients. Glycerol generated during the degradation of phosphatidylcholine, the major lung surfactant in CF patients, could be utilized by P. aeruginosa. Previous studies have indicated that metabolism of glycerol by this bacterium contributes to its adaptation to and persistence in the CF lung environment. Here, we investigated the metabolic mechanisms of glycerol and its important metabolic intermediate glycerol 3-phosphate (G3P) in P. aeruginosa PAO1. We found that G3P homeostasis plays an important role in the growth and virulence factor production of P. aeruginosa PAO1. The G3P accumulation caused by the mutation of G3P dehydrogenase (GlpD) and exogenous glycerol led to impaired growth and reductions in pyocyanin synthesis, motilities, tolerance to oxidative stress, and resistance to kanamycin. Transcriptomic analysis indicates that the growth retardation caused by G3P stress is associated with reduced glycolysis and adenosine triphosphate (ATP) generation. Furthermore, two haloacid dehalogenase-like phosphatases (PA0562 and PA3172) that play roles in the dephosphorylation of G3P in strain PAO1 were identified, and their enzymatic properties were characterized. Our findings reveal the importance of G3P homeostasis and indicate that GlpD, the key enzyme for G3P catabolism, is a potential therapeutic target for the prevention and treatment of infections by this pathogen. IMPORTANCE In view of the intrinsic resistance of Pseudomonas aeruginosa to antibiotics and its potential to acquire resistance to current antibiotics, there is an urgent need to develop novel therapeutic options for the treatment of infections caused by this bacterium. Bacterial metabolic pathways have recently become a focus of interest as potential targets for the development of new antibiotics. In this study, we describe the mechanism of glycerol utilization in P. aeruginosa PAO1, which is an available carbon source in the lung environment. Our results reveal that the homeostasis of glycerol 3-phosphate (G3P), a pivotal intermediate in glycerol catabolism, is important for the growth and virulence factor production of P. aeruginosa PAO1. The mutation of G3P dehydrogenase (GlpD) and the addition of glycerol were found to reduce the tolerance of P. aeruginosa PAO1 to oxidative stress and to kanamycin. The findings highlight the importance of G3P homeostasis and suggest that GlpD is a potential drug target for the treatment of P. aeruginosa infections.
Collapse
|
262
|
Systems-Wide Dissection of Organic Acid Assimilation in Pseudomonas aeruginosa Reveals a Novel Path To Underground Metabolism. mBio 2022; 13:e0254122. [PMID: 36377867 PMCID: PMC9765439 DOI: 10.1128/mbio.02541-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The human pathogen Pseudomonas aeruginosa (Pa) is one of the most frequent and severe causes of nosocomial infection. This organism is also a major cause of airway infections in people with cystic fibrosis (CF). Pa is known to have a remarkable metabolic plasticity, allowing it to thrive under diverse environmental conditions and ecological niches; yet, little is known about the central metabolic pathways that sustain its growth during infection or precisely how these pathways operate. In this work, we used a combination of 'omics approaches (transcriptomics, proteomics, metabolomics, and 13C-fluxomics) and reverse genetics to provide systems-level insight into how the infection-relevant organic acids succinate and propionate are metabolized by Pa. Moreover, through structural and kinetic analysis of the 2-methylcitrate synthase (2-MCS; PrpC) and its paralogue citrate (CIT) synthase (GltA), we show how these two crucial enzymatic steps are interconnected in Pa organic acid assimilation. We found that Pa can rapidly adapt to the loss of GltA function by acquiring mutations in a transcriptional repressor, which then derepresses prpC expression. Our findings provide a clear example of how "underground metabolism," facilitated by enzyme substrate promiscuity, "rewires" Pa metabolism, allowing it to overcome the loss of a crucial enzyme. This pathogen-specific knowledge is critical for the advancement of a model-driven framework to target bacterial central metabolism. IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen that, due to its unrivalled resistance to antibiotics, ubiquity in the built environment, and aggressiveness in infection scenarios, has acquired the somewhat dubious accolade of being designated a "critical priority pathogen" by the WHO. In this work, we uncover the pathways and mechanisms used by P. aeruginosa to grow on a substrate that is abundant at many infection sites: propionate. We found that if the organism is prevented from metabolizing propionate, the substrate turns from being a convenient nutrient source into a potent poison, preventing bacterial growth. We further show that one of the enzymes involved in these reactions, 2-methylcitrate synthase (PrpC), is promiscuous and can moonlight for another essential enzyme in the cell (citrate synthase). Indeed, mutations that abolish citrate synthase activity (which would normally prevent the cell from growing) can be readily overcome if the cell acquires additional mutations that increase the expression of PrpC. This is a nice example of the evolutionary utility of so-called "underground metabolism."
Collapse
|
263
|
Kiel A, Creutz I, Rückert C, Kaltschmidt BP, Hütten A, Niehaus K, Busche T, Kaltschmidt B, Kaltschmidt C. Genome-Based Analysis of Virulence Factors and Biofilm Formation in Novel P. aeruginosa Strains Isolated from Household Appliances. Microorganisms 2022; 10:microorganisms10122508. [PMID: 36557761 PMCID: PMC9781345 DOI: 10.3390/microorganisms10122508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
In household washing machines, opportunistic pathogens such as Pseudomonas aeruginosa are present, which represent the household as a possible reservoir for clinical pathogens. Here, four novel P. aeruginosa strains, isolated from different sites of household appliances, were investigated regarding their biofilm formation. Only two isolates showed strong surface-adhered biofilm formation. In consequence of these phenotypic differences, we performed whole genome sequencing using Oxford Nanopore Technology together with Illumina MiSeq. Whole genome data were screened for the prevalence of 285 virulence- and biofilm-associated genes as well as for prophages. Linking biofilm phenotypes and parallelly appearing gene compositions, we assume a relevancy of the las quorum sensing system and the phage-encoded bacteriophage control infection gene bci, which was found on integrated phi297 DNA in all biofilm-forming isolates. Additionally, only the isolates revealing strong biofilm formation harbored the ϕCTX-like prophage Dobby, implicating a role of this prophage on biofilm formation. Investigations on clinically relevant pathogens within household appliances emphasize their adaptability to harsh environments, with high concentrations of detergents, providing greater insights into pathogenicity and underlying mechanisms. This in turn opens the possibility to map and characterize potentially relevant strains even before they appear as pathogens in society.
Collapse
Affiliation(s)
- Annika Kiel
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| | - Ines Creutz
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Bernhard Peter Kaltschmidt
- Department of Thin Films and Physics of Nanostructures, Center of Spinelectronic Materials and Devices, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Andreas Hütten
- Department of Thin Films and Physics of Nanostructures, Center of Spinelectronic Materials and Devices, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Karsten Niehaus
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
264
|
Peppoloni S, Colombari B, Tagliazucchi D, Odorici A, Ventrucci C, Meto A, Blasi E. Attenuation of Pseudomonas aeruginosa Virulence by Pomegranate Peel Extract. Microorganisms 2022; 10:microorganisms10122500. [PMID: 36557753 PMCID: PMC9784079 DOI: 10.3390/microorganisms10122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen often responsible for biofilm-associated infections. The high adhesion of bacterial cells onto biotic/abiotic surfaces is followed by production of an extracellular polysaccharidic matrix and formation of a sessile community (the biofilm) by the release of specific quorum-sensing molecules, named autoinducers (AI). When the concentrations of AI reach a threshold level, they induce the expression of many virulence genes, including those involved in biofilm formation, motility, pyoverdine and pyocyanin release. P. aeruginosa embedded into biofilm becomes resistant to both conventional drugs and the host's immune response. Accordingly, biofilm-associated infections are a major clinical problem underlining the need for new antimicrobial therapies. In this study, we evaluated the effects of pomegranate peel extract (PomeGr) in vitro on P. aeruginosa growth and biofilm formation; moreover, the release of four AI was assessed. The phenolic profile of PomeGr, exposed or not to bacteria, was determined by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis. We found that bacterial growth, biofilm production and AI release were impaired upon PomeGr treatment. In addition, the PomeGr phenolic content was also markedly hampered following incubation with bacterial cells. In particular, punicalagin, punicalin, pedunculagin, granatin, di-(HHDP-galloyl-hexoside) pentoside and their isomers were highly consumed. Overall, these results provide novel insights on the ability of PomeGr to attenuate P. aeruginosa virulence; moreover, the AI impairment and the observed consumption of specific phenolic compounds may offer new tools in designing innovative therapeutic approaches against bacterial infections.
Collapse
Affiliation(s)
- Samuele Peppoloni
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Bruna Colombari
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2—Pad. Besta, 42100 Reggio Emilia, Italy
| | - Alessandra Odorici
- Laboratory of Microbiology and Virology, School of Doctorate in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | | | - Aida Meto
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania
| | - Elisabetta Blasi
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence:
| |
Collapse
|
265
|
Hu Y, Kang Y, Huang F, Su Y, Zhou X, Wang AJ, Gao SH. Distinct responses of Pseudomonas aeruginosa PAO1 exposed to different levels of polystyrene nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158214. [PMID: 36028032 DOI: 10.1016/j.scitotenv.2022.158214] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Large amounts of discarded plastics in the environment can be aged into microplastics and nanoplastics, which are not easily removed, posing potential nonnegligible risks to the ecosystem and human health. Although previous studies have revealed that nanoplastics have detrimental impacts on microorganisms, the potential molecular mechanisms of nanoplastic particles' effect on microbial growth and metabolism are still lacking. Here, multiple responses of Pseudomonas aeruginosa PAO1 (PAO1) to different levels of polystyrene nanoplastics (PS NPs) exposure were investigated by physiological experiments, live/dead staining, redox status, and genome-wide RNA sequencing. The results showed that PS NPs had dual effects on PAO1, and different concentrations of PS NPs demonstrated different effects on the growth and metabolism of PAO1. All levels of PS NPs had no obvious biocidal effect on PAO1. The production and consumption of ROS were in dynamic equilibrium and could be regulated genetically to ensure that the ROS level was in the biotolerable range. 20 and 50 mg/L of PS NPs severely inhibited the nitrate reduction, while 0.1 mg/L of PS NPs promoted the denitrification and TCA cycle. Meanwhile, 20 and 50 mg/L of PS NPs resulted in intense down-regulation of genes involved in denitrification. In contrast, the expression of genes involved in respiration is promoted with generated energy to withstand stress from high-level PS NPs, coinciding with the physiological results. In addition, our results showed that PS NPs concentrations of 20 and 50 mg/L exposure substantially up-regulated the expression of genes encoding for flagellar biosynthesis and biofilm formation to tackle the stress. Our findings would provide new insights into the interactions between environmental bacteria and PS NPs at the transcriptional level, thereby enhancing our understanding of the potential risks of PS NPs to microbial ecosystems and public health.
Collapse
Affiliation(s)
- Yuxin Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Fang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiyi Su
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
266
|
Lorusso AB, Carrara JA, Barroso CDN, Tuon FF, Faoro H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:15779. [PMID: 36555423 PMCID: PMC9779380 DOI: 10.3390/ijms232415779] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance is an old and silent pandemic. Resistant organisms emerge in parallel with new antibiotics, leading to a major global public health crisis over time. Antibiotic resistance may be due to different mechanisms and against different classes of drugs. These mechanisms are usually found in the same organism, giving rise to multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria. One resistance mechanism that is closely associated with the emergence of MDR and XDR bacteria is the efflux of drugs since the same pump can transport different classes of drugs. In Gram-negative bacteria, efflux pumps are present in two configurations: a transmembrane protein anchored in the inner membrane and a complex formed by three proteins. The tripartite complex has a transmembrane protein present in the inner membrane, a periplasmic protein, and a porin associated with the outer membrane. In Pseudomonas aeruginosa, one of the main pathogens associated with respiratory tract infections, four main sets of efflux pumps have been associated with antibiotic resistance: MexAB-OprM, MexXY, MexCD-OprJ, and MexEF-OprN. In this review, the function, structure, and regulation of these efflux pumps in P. aeruginosa and their actions as resistance mechanisms are discussed. Finally, a brief discussion on the potential of efflux pumps in P. aeruginosa as a target for new drugs is presented.
Collapse
Affiliation(s)
- Andre Bittencourt Lorusso
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - João Antônio Carrara
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
| | | | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- CHU de Quebec Research Center, Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
267
|
Gheorghita AA, Li YE, Kitova EN, Bui DT, Pfoh R, Low KE, Whitfield GB, Walvoort MTC, Zhang Q, Codée JDC, Klassen JS, Howell PL. Structure of the AlgKX modification and secretion complex required for alginate production and biofilm attachment in Pseudomonas aeruginosa. Nat Commun 2022; 13:7631. [PMID: 36494359 PMCID: PMC9734138 DOI: 10.1038/s41467-022-35131-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Synthase-dependent secretion systems are a conserved mechanism for producing exopolysaccharides in Gram-negative bacteria. Although widely studied, it is not well understood how these systems are organized to coordinate polymer biosynthesis, modification, and export across both membranes and the peptidoglycan. To investigate how synthase-dependent secretion systems produce polymer at a molecular level, we determined the crystal structure of the AlgK-AlgX (AlgKX) complex involved in Pseudomonas aeruginosa alginate exopolysaccharide acetylation and export. We demonstrate that AlgKX directly binds alginate oligosaccharides and that formation of the complex is vital for polymer production and biofilm attachment. Finally, we propose a structural model for the AlgEKX outer membrane modification and secretion complex. Together, our study provides insight into how alginate biosynthesis proteins coordinate production of a key exopolysaccharide involved in establishing persistent Pseudomonas lung infections.
Collapse
Affiliation(s)
- Andreea A. Gheorghita
- grid.42327.300000 0004 0473 9646Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Biochemistry, University of Toronto, Toronto, ON Canada
| | - Yancheng E. Li
- grid.42327.300000 0004 0473 9646Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Biochemistry, University of Toronto, Toronto, ON Canada ,grid.20861.3d0000000107068890Present Address: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA USA
| | - Elena N. Kitova
- grid.17089.370000 0001 2190 316XDepartment of Chemistry, University of Alberta, Edmonton, AB Canada
| | - Duong T. Bui
- grid.17089.370000 0001 2190 316XDepartment of Chemistry, University of Alberta, Edmonton, AB Canada
| | - Roland Pfoh
- grid.42327.300000 0004 0473 9646Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON Canada
| | - Kristin E. Low
- grid.42327.300000 0004 0473 9646Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON Canada ,grid.55614.330000 0001 1302 4958Present Address: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| | - Gregory B. Whitfield
- grid.42327.300000 0004 0473 9646Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Biochemistry, University of Toronto, Toronto, ON Canada ,grid.14848.310000 0001 2292 3357Present Address: Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC Canada
| | - Marthe T. C. Walvoort
- grid.5132.50000 0001 2312 1970Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands ,grid.4830.f0000 0004 0407 1981Present Address: Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Qingju Zhang
- grid.5132.50000 0001 2312 1970Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands ,grid.411862.80000 0000 8732 9757Present Address: National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Jeroen D. C. Codée
- grid.5132.50000 0001 2312 1970Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John S. Klassen
- grid.17089.370000 0001 2190 316XDepartment of Chemistry, University of Alberta, Edmonton, AB Canada
| | - P. Lynne Howell
- grid.42327.300000 0004 0473 9646Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Biochemistry, University of Toronto, Toronto, ON Canada
| |
Collapse
|
268
|
Salar S, Schubot FD. Biochemical analysis of protein-protein interfaces underlying the regulation of bacterial secretion systems. Methods Enzymol 2022; 679:1-32. [PMID: 36682859 DOI: 10.1016/bs.mie.2022.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial pathogens such as Pseudomonas aeruginosa use complex regulatory networks to tailor gene expression patterns to meet complex environmental challenges. P. aeruginosa is capable of causing both acute and chronic persistent infections, each type being characterized by distinct symptoms brought about by distinct sets of virulence mechanisms. The GacS/GacA phosphorelay system sits at the heart of a complex regulatory network that reciprocally governs the expression of virulence factors associated with either acute or chronic infections. A second non-enzymatic signaling cascade involving four proteins, ExsA, ExsC, ExsD, and ExsE is a key player in regulating the expression of the type three secretion system, an essential facilitator of acute infections. Both signaling pathways involve a remarkable array of non-canonical interactions that we sought to characterize. In the following section, we will outline several strategies, we adapted to map protein-protein interfaces and quantify the strength of biomolecular interactions by pairing complex mutational analyses with FRET binding assays and Bacterial-Two-Hybrid assays with appropriate functional assays. In the process, protocols were developed for disrupting large hydrophobic interfaces, deleting entire domains within a protein, and for mapping protein-protein interfaces formed primarily through backbone interactions.
Collapse
Affiliation(s)
- Safoura Salar
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, United States
| | - Florian D Schubot
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, United States.
| |
Collapse
|
269
|
Zeng Q, Yang X, Li H, Zhang J, Zhang Y, Zhou H, Zhao K. Identification of a Multidrug Resistant Pseudomonas aeruginosa Isolate Harboring Infrequent Red Fluorescence Plasmid from COPD Patient. Infect Drug Resist 2022; 15:7301-7305. [DOI: 10.2147/idr.s383820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
|
270
|
Goltermann L, Andersen KL, Johansen HK, Molin S, La Rosa R. Macrolide therapy in Pseudomonas aeruginosa infections causes uL4 ribosomal protein mutations leading to high-level resistance. Clin Microbiol Infect 2022; 28:1594-1601. [PMID: 35988850 DOI: 10.1016/j.cmi.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/05/2022] [Accepted: 08/06/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Pseudomonas aeruginosa colonizes the cystic fibrosis (CF) airways causing chronic bacterial lung infections. CF patients are routinely treated with macrolides, however, P. aeruginosa is considered insusceptible as consequence of inadequate susceptibility testing leaving resistance mechanism completely overlooked. Here, we investigated a new mechanism of macrolide resistance caused by ribosomal protein mutations. METHODS Investigating a longitudinal collection of 529 isolates from CF patients and analysing 5758 protein sequences from different sources, mutations in P. aeruginosa's ribosomal proteins connected to macrolide resistance were identified. Using a modified susceptibility testing protocol, isolates harbouring a mutated uL4 ribosomal protein were tested for resistance against macrolide antibiotics and macrolide-induced quorum sensing modulation. Proteome and ribosome profiling were applied to assess the impact of the mutations on the bacterial physiology. RESULTS Five uL4 mutations were identified in isolates from different CF patients. Most mapped to the conserved loop region of uL4 and resulted in increased macrolide tolerance (>10-fold relative to wt strains). Greater concentrations (>10-fold) of macrolide antibiotic were needed to inhibit the growth, reduce swimming motility, and induce redox sensitivity of the uL4 mutants. 16 proteins involved in ribosome adaptation displayed altered expression possibly to compensate for the uL4 mutations, which changed the ribosome stoichiometry without negatively affecting bacterial physiology. CONCLUSIONS Macrolide antibiotics should, therefore, be considered as active antimicrobial agents against P. aeruginosa and resistance development should be contemplated when patients are treated with prolonged courses of macrolides. Importantly, improved macrolide susceptibility testing is necessary for the detection of resistant bacteria.
Collapse
Affiliation(s)
- Lise Goltermann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | | - Helle Krogh Johansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ruggero La Rosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
271
|
Hoque MN, Jahan MI, Hossain MA, Sultana M. Genomic diversity and molecular epidemiology of a multidrug-resistant Pseudomonas aeruginosa DMC30b isolated from a hospitalized burn patient in Bangladesh. J Glob Antimicrob Resist 2022; 31:110-118. [PMID: 36058512 DOI: 10.1016/j.jgar.2022.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa is a key opportunistic pathogen causing a wide range of community- and hospital-acquired infections in immunocompromised or catheterized patients. Here, we report the complete genome sequence of a multidrug-resistant (MDR) P. aeruginosa DMC30b to elucidate the genetic diversity, molecular epidemiology, and underlying mechanisms for antimicrobial resistance and virulence. METHODS P. aeruginosa DMC30b was isolated from septic wound swab of a severe burn patient. Whole-genome sequencing was performed under Ion Torrent platform. The genome was assembled using the SPAdes v. 3.12.01 in an integrated Genome Analysis Platform for Ion Torrent sequence data. The genome was annotated using the National Center for Biotechnology Information (NCBI) Prokaryotic Genome Annotation Pipeline. In-silico predictions of antimicrobial resistance genes, virulence factor genes, and metabolic functional potentials were performed using different curated bioinformatics tools. RESULTS P. aeruginosa DMC30b was found as a MDR strain and belonged to sequence type 244 (ST244). The complete genome size is 6 994 756 bp with a coverage of 76.76x, guanine-cytosine content of 65.7% and a Benchmarking Universal Single-Copy Orthologs score of 100. The genome of P. aeruginosa DMC30b harboured two predicted plasmid replicons (e,g. IncP-6; 78 007 bp and ColRNAI; 9359 bp), 35 resistomes (antimicrobial resistance genes) conferring resistance to 18 different antibiotics (including four beta-lactam classes), and 214 virulence factor genes. It was identified as the 167th ST244 strain among ∼ 5800 whole-genome sequences of P. aeruginosa available in the NCBI database. CONCLUSION The MDR P. aeruginosa DMC30b was identified as the 167th ST244 complete genome to be submitted to the NCBI, and the first ST244 isolate sequenced from Bangladesh. The complete genome data with high genetic diversity and underlying mechanisms for antimicrobial resistance and virulence of P. aeruginosa DMC30b will aid in understanding the evolution and phylogeny of such high-risk clones and provide a solid basis for further research on MDR or extensively drug resistant strains.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M Ishrat Jahan
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
272
|
Kasthuri T, Barath S, Nandhakumar M, Karutha Pandian S. Proteomic profiling spotlights the molecular targets and the impact of the natural antivirulent umbelliferone on stress response, virulence factors, and the quorum sensing network of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2022; 12:998540. [PMID: 36530435 PMCID: PMC9748083 DOI: 10.3389/fcimb.2022.998540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Pseudomonas aeruginosa easily adapts to newer environments and acquires several genome flexibilities to overcome the effect of antibiotics during therapeutics, especially in cystic fibrosis patients. During adaptation to the host system, the bacteria employ various tactics including virulence factor production and biofilm formation to escape from the host immune system and resist antibiotics. Hence, identifying alternative strategies to combat recalcitrant pathogens is imperative for the successful elimination of drug-resistant microbes. In this context, this study portrays the anti-virulence efficacy of umbelliferone (UMB) against P. aeruginosa. UMB (7-hydroxy coumarin) is pervasively found among the plant family of Umbelliferae and Asteraceae. The UMB impeded biofilm formation in the P. aeruginosa reference strain and clinical isolates on polystyrene and glass surfaces at the concentration of 125 µg/ml. Global proteomic analysis of UMB-treated cells revealed the downregulation of major virulence-associated proteins such as RhlR, LasA, AlgL, FliD, Tpx, HtpG, KatA, FusA1, Tsf, PhzM, PhzB2, CarB, DctP, MtnA, and MscL. A functional interaction study, gene ontology, and KEGG pathway analysis revealed that UMB could modulate the global regulators, enzymes, co-factors, and transcription factors related to quorum sensing (QS), stress tolerance, siderophore production, motility, and microcolony formation. In vitro biochemical assays further affirmed the anti-virulence efficacy of UMB by reducing pyocyanin, protease, elastase, and catalase production in various strains of P. aeruginosa. Besides the antibiofilm activity, UMB-treated cells exhibited enhanced antibiotic susceptibility to various antibiotics including amikacin, kanamycin, tobramycin, ciprofloxacin, and cefotaxime. Furthermore, in vitro cytotoxicity analysis revealed the biocompatibility of UMB, and the IC50 value was determined to be 249.85 µg/ml on the HepG2 cell line. Altogether, the study substantiates the anti-virulence efficacy of UMB against P. aeruginosa, and the proteomic analysis reveals the differential expression of the regulators related to QS, stress response, and motility factors.
Collapse
|
273
|
Kotecka K, Kawalek A, Modrzejewska-Balcerek M, Gawor J, Zuchniewicz K, Gromadka R, Bartosik AA. Functional Characterization of TetR-like Transcriptional Regulator PA3973 from Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:ijms232314584. [PMID: 36498910 PMCID: PMC9736018 DOI: 10.3390/ijms232314584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa, a human opportunistic pathogen, is a common cause of nosocomial infections. Its ability to survive under different conditions relies on a complex regulatory network engaging transcriptional regulators controlling metabolic pathways and capabilities to efficiently use the available resources. P. aeruginosa PA3973 encodes an uncharacterized TetR family transcriptional regulator. In this study, we applied a transcriptome profiling (RNA-seq), genome-wide identification of binding sites using ChIP-seq, as well as the phenotype analyses to unravel the biological role of PA3973. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3973 showed changes in the mRNA level of 648 genes. Concomitantly, ChIP-seq analysis identified more than 300 PA3973 binding sites in the P. aeruginosa genome. A 13 bp sequence motif was indicated as the binding site of PA3973. The PA3973 regulon encompasses the PA3972-PA3971 genes encoding a probable acyl-CoA dehydrogenase and a thioesterase. In vitro analysis showed PA3973 binding to PA3973p. Accordingly, the lack of PA3973 triggered increased expression of PA3972 and PA3971. The ∆PA3972-71 PAO1161 strain demonstrated impaired growth in the presence of stress-inducing agents hydroxylamine or hydroxyurea, thus suggesting the role of PA3972-71 in pathogen survival upon stress. Overall our results showed that TetR-type transcriptional regulator PA3973 has multiple binding sites in the P. aeruginosa genome and influences the expression of diverse genes, including PA3972-PA3971, encoding proteins with a proposed role in stress response.
Collapse
|
274
|
Alhusaini Q, Scheld WS, Jia Z, Das D, Afzal F, Müller M, Schönherr H. Bare Eye Detection of Bacterial Enzymes of Pseudomonas aeruginosa with Polymer Modified Nanoporous Silicon Rugate Filters. BIOSENSORS 2022; 12:1064. [PMID: 36551031 PMCID: PMC9776340 DOI: 10.3390/bios12121064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The fabrication, characterization and application of a nanoporous Silicon Rugate Filter (pSiRF) loaded with an enzymatically degradable polymer is reported as a bare eye detection optical sensor for enzymes of pathogenic bacteria, which is devoid of any dyes. The nanopores of pSiRF were filled with poly(lactic acid) (PLA), which, upon enzymatic degradation, resulted in a change in the effective refractive index of the pSiRF film, leading to a readily discernible color change of the sensor. The shifts in the characteristic fringe patterns before and after the enzymatic reaction were analyzed quantitatively by Reflectometric Interference Spectroscopy (RIfS) to estimate the apparent kinetics and its dependence on enzyme concentration. A clear color change from green to blue was observed by the bare eye after PLA degradation by proteinase K. Moreover, the color change was further confirmed in measurements in bacterial suspensions of the pathogen Pseudomonas aeruginosa (PAO1) as well as in situ in the corresponding bacterial supernatants. This study highlights the potential of the approach in point of care bacteria detection.
Collapse
Affiliation(s)
- Qasim Alhusaini
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Walter Sebastian Scheld
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Zhiyuan Jia
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Dipankar Das
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, India
| | - Faria Afzal
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Mareike Müller
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
275
|
Han X, Nan M, Cai X, Qiao B, Chen L, Shen L. Sennoside A inhibits quorum sensing system to attenuate its regulated virulence and pathogenicity via targeting LasR in Pseudomonas aeruginosa. Front Microbiol 2022; 13:1042214. [PMID: 36406453 PMCID: PMC9668863 DOI: 10.3389/fmicb.2022.1042214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 02/21/2025] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen, and the emergence of drug resistance greatly increased the difficulty of treating its infection. Cell density-dependent quorum sensing (QS) system not only regulates the virulence but also associates with the drug resistance of P. aeruginosa. Screening for agents targeting QS to inhibit bacterial virulence and pathogenicity is considered a promising strategy to combat P. aeruginosa infection. In the present study, sennoside A was found to be able to inhibit the QS expression of P. aeruginosa at subinhibitory concentrations. The QS-regulated virulence factors, including protease, elastase, rhamnolipid, and pyocyanin, were also inhibited by sennoside A at both transcriptional and translational levels. Moreover, sennoside A could suppress the motility of twitching, swimming, and swarming as well as the biofilm formation, which is associated with the acute and chronic infections of P. aeruginosa in a dose-dependent manner. The attenuated pathogenicity of P. aeruginosa by sennoside A was further verified by Chinese cabbage, Drosophila melanogaster, and Caenorhabditis elegans infection analysis. Further study found that sennoside A might target the las system, mainly LasR, to interfere with QS. All the results indicate that sennoside A could inhibit the QS system to attenuate its regulated virulence and pathogenicity via mainly targeting LasR in P. aeruginosa and further research to identify its anti-QS activity for other Gram-negative bacteria is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, China
| |
Collapse
|
276
|
Slizovskiy IB, Oliva M, Settle JK, Zyskina LV, Prosperi M, Boucher C, Noyes NR. Target-enriched long-read sequencing (TELSeq) contextualizes antimicrobial resistance genes in metagenomes. MICROBIOME 2022; 10:185. [PMID: 36324140 PMCID: PMC9628182 DOI: 10.1186/s40168-022-01368-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Metagenomic data can be used to profile high-importance genes within microbiomes. However, current metagenomic workflows produce data that suffer from low sensitivity and an inability to accurately reconstruct partial or full genomes, particularly those in low abundance. These limitations preclude colocalization analysis, i.e., characterizing the genomic context of genes and functions within a metagenomic sample. Genomic context is especially crucial for functions associated with horizontal gene transfer (HGT) via mobile genetic elements (MGEs), for example antimicrobial resistance (AMR). To overcome this current limitation of metagenomics, we present a method for comprehensive and accurate reconstruction of antimicrobial resistance genes (ARGs) and MGEs from metagenomic DNA, termed target-enriched long-read sequencing (TELSeq). RESULTS Using technical replicates of diverse sample types, we compared TELSeq performance to that of non-enriched PacBio and short-read Illumina sequencing. TELSeq achieved much higher ARG recovery (>1,000-fold) and sensitivity than the other methods across diverse metagenomes, revealing an extensive resistome profile comprising many low-abundance ARGs, including some with public health importance. Using the long reads generated by TELSeq, we identified numerous MGEs and cargo genes flanking the low-abundance ARGs, indicating that these ARGs could be transferred across bacterial taxa via HGT. CONCLUSIONS TELSeq can provide a nuanced view of the genomic context of microbial resistomes and thus has wide-ranging applications in public, animal, and human health, as well as environmental surveillance and monitoring of AMR. Thus, this technique represents a fundamental advancement for microbiome research and application. Video abstract.
Collapse
Affiliation(s)
- Ilya B Slizovskiy
- Food-Centric Corridor, Infectious Disease Laboratory, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Marco Oliva
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Jonathen K Settle
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Lidiya V Zyskina
- Program in Human-Computer Interaction, College of Information Studies, University of Maryland, College Park, MD, USA
| | - Mattia Prosperi
- Data Intelligence Systems Lab, Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Noelle R Noyes
- Food-Centric Corridor, Infectious Disease Laboratory, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
277
|
Rudra B, Duncan L, Shah AJ, Shah HN, Gupta RS. Phylogenomic and comparative genomic studies robustly demarcate two distinct clades of Pseudomonas aeruginosa strains: proposal to transfer the strains from an outlier clade to a novel species Pseudomonas paraeruginosa sp. nov. Int J Syst Evol Microbiol 2022; 72. [PMID: 36355412 DOI: 10.1099/ijsem.0.005542] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The strains of
Pseudomonas aeruginosa
exhibit considerable differences in their genotypic and pathogenic properties. To clarify their evolutionary/taxonomic relationships, comprehensive phylogenomic and comparative genomic studies were conducted on the genome sequences of 212
P
.
aeruginosa
strains covering their genetic diversity. In a phylogenomic tree based on 118 conserved proteins, the analysed strains formed two distinct clades. One of these clades, Clade-1, encompassing >70 % of the strains including the type strain DSM 50071T, represents the species P. aeruginosa sensu stricto. Clade-2, referred to in earlier work as the outlier group, with NCTC 13628T as its type strain, constitutes a novel species level lineage. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between the strains from Clade-1 and Clade-2 are in the range of 93.4–93.7, 95.1–95.3 and 52–53 %, respectively. The 16S rRNA gene of
P. aeruginosa
DSM 50071T also shows 98.3 % similarity to that of NCTC 13628T. These values are lower than the suggested cut-off values for species distinction, indicating that the Clade-2 strains (NCTC 13628T) constitute a new species. We also report the identification of 12 conserved signature indels in different proteins and 24 conserved signature proteins that are exclusively found in either Clade-1 or Clade-2, providing a reliable means for distinguishing these clades. Additionally, in contrast to swimming motility, twitching motility is only present in Clade-1 strains. Based on earlier work, the strains from these two clades also differ in their pathogenic mechanisms (presence/absence of Type III secretion system), production of biosurfactants, phenazines and siderophores, and several other genomic characteristics. Based on the evidence from different studies, we propose that the Clade-2 strains constitute a novel species for which the name Pseudomonas paraeruginosa is proposed. The type strain is NCTC 13628T (=PA7T=ATCC 9027T). The description of
Pseudomonas aeruginosa
is also emended to include information for different molecular markers specific for this species.
Collapse
Affiliation(s)
- Bashudev Rudra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Canada
| | - Louise Duncan
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NH, UK
| | - Ajit J Shah
- Department of Natural Sciences, Middlesex University, London NW4 4BT, UK
| | - Haroun N Shah
- Department of Natural Sciences, Middlesex University, London NW4 4BT, UK
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Canada
| |
Collapse
|
278
|
de Oliveira HL, Dias GM, Neves BC. Genome sequence of Pseudomonas aeruginosa PA1-Petro—A role model of environmental adaptation and a potential biotechnological tool. Heliyon 2022; 8:e11566. [DOI: 10.1016/j.heliyon.2022.e11566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/12/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
|
279
|
Mahamad Maifiah MH, Zhu Y, Tsuji BT, Creek DJ, Velkov T, Li J. Integrated metabolomic and transcriptomic analyses of the synergistic effect of polymyxin-rifampicin combination against Pseudomonas aeruginosa. J Biomed Sci 2022; 29:89. [PMID: 36310165 PMCID: PMC9618192 DOI: 10.1186/s12929-022-00874-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the mechanism of antimicrobial action is critical for improving antibiotic therapy. For the first time, we integrated correlative metabolomics and transcriptomics of Pseudomonas aeruginosa to elucidate the mechanism of synergistic killing of polymyxin-rifampicin combination. METHODS Liquid chromatography-mass spectrometry and RNA-seq analyses were conducted to identify the significant changes in the metabolome and transcriptome of P. aeruginosa PAO1 after exposure to polymyxin B (1 mg/L) and rifampicin (2 mg/L) alone, or in combination over 24 h. A genome-scale metabolic network was employed for integrative analysis. RESULTS In the first 4-h treatment, polymyxin B monotherapy induced significant lipid perturbations, predominantly to fatty acids and glycerophospholipids, indicating a substantial disorganization of the bacterial outer membrane. Expression of ParRS, a two-component regulatory system involved in polymyxin resistance, was increased by polymyxin B alone. Rifampicin alone caused marginal metabolic perturbations but significantly affected gene expression at 24 h. The combination decreased the gene expression of quorum sensing regulated virulence factors at 1 h (e.g. key genes involved in phenazine biosynthesis, secretion system and biofilm formation); and increased the expression of peptidoglycan biosynthesis genes at 4 h. Notably, the combination caused substantial accumulation of nucleotides and amino acids that last at least 4 h, indicating that bacterial cells were in a state of metabolic arrest. CONCLUSION This study underscores the substantial potential of integrative systems pharmacology to determine mechanisms of synergistic bacterial killing by antibiotic combinations, which will help optimize their use in patients.
Collapse
Affiliation(s)
- Mohd Hafidz Mahamad Maifiah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- International Institute for Halal Research and Training, International Islamic University Malaysia, 50728, Kuala Lumpur, Malaysia
| | - Yan Zhu
- Infection Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Brian T Tsuji
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jian Li
- Infection Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
280
|
Gerasimchuk N, Pinks K, Salpadoru T, Cotton K, Michka O, Patrauchan MA, Wozniak KL. Non-Antibiotic Antimony-Based Antimicrobials. Molecules 2022; 27:7171. [PMID: 36363997 PMCID: PMC9654735 DOI: 10.3390/molecules27217171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 07/21/2023] Open
Abstract
A series of the eight novel organoantimony(V) cyanoximates of Sb(C6H5)4L composition was synthesized using the high-yield heterogeneous metathesis reaction between solid AgL (or TlL) and Sb(C6H5)4Br in CH3CN at room temperature. Cyanoximes L were specially selected from a large group of 48 known compounds of this subclass of oximes on the basis of their water solubility and history of prior biological activity. The synthesized compounds are well soluble in organic solvents and were studied using a variety of conventional spectroscopic and physical methods. The crystal structures of all reported organometallic compounds were determined and revealed the formation of the distorted trigonal bipyramidal environment of the Sb atom and monodentate axial binding of acido-ligands via the O atom of the oxime group. The compounds are thermally stable in the solid state and in solution molecular compounds. For the first time, this specially designed series of organoantimony(V) compounds is investigated as potential non-antibiotic antimicrobial agents against three bacterial and two fungal human pathogens known for their increasing antimicrobial resistance. Bacterial pathogens included Gram-negative Escherichia coli and Pseudomonas aeruginosa, and Gram-positive Staphylococcus aureus. Fungal pathogens included Cryptococcus neoformans and Candida albicans. The cyanoximates alone showed no antimicrobial impact, and the incorporation of the SbPh4 group enabled the antimicrobial effect. Overall, the new antimony compounds showed a strong potential as both broad- and narrow-spectrum antimicrobials against selected bacterial and fundal pathogens and provide insights for further synthetic modifications of the compounds to increase their activities.
Collapse
Affiliation(s)
- Nikolay Gerasimchuk
- Department of Chemistry and Biochemistry, Temple Hall 456, Missouri State University, Springfield, MO 65897, USA
| | - Kevin Pinks
- Department of Chemistry and Biochemistry, Temple Hall 456, Missouri State University, Springfield, MO 65897, USA
| | - Tarosha Salpadoru
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Olga Michka
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
281
|
Grace A, Sahu R, Owen DR, Dennis VA. Pseudomonas aeruginosa reference strains PAO1 and PA14: A genomic, phenotypic, and therapeutic review. Front Microbiol 2022; 13:1023523. [PMID: 36312971 PMCID: PMC9607943 DOI: 10.3389/fmicb.2022.1023523] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous, motile, gram-negative bacterium that has been recently identified as a multi-drug resistant pathogen in critical need of novel therapeutics. Of the approximately 5,000 strains, PAO1 and PA14 are common laboratory reference strains, modeling moderately and hyper-virulent phenotypes, respectively. PAO1 and PA14 have been instrumental in facilitating the discovery of novel drug targets, testing novel therapeutics, and supplying critical genomic information on the bacterium. While the two strains have contributed to a wide breadth of knowledge on the natural behaviors and therapeutic susceptibilities of P. aeruginosa, they have demonstrated significant deviations from observations in human infections. Many of these deviations are related to experimental inconsistencies in laboratory strain environment that complicate and, at times, terminate translation from laboratory results to clinical applications. This review aims to provide a comparative analysis of the two strains and potential methods to improve their clinical relevance.
Collapse
Affiliation(s)
- Amber Grace
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | | | - Vida A. Dennis
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
- *Correspondence: Vida A. Dennis,
| |
Collapse
|
282
|
Shakour N, Taheri E, Rajabian F, Tarighi S, Soheili V, Hadizadeh F. Evaluating the Antivirulence Effects of New Thiazolidinedione Compounds Against Pseudomonas aeruginosa PAO1. Microb Drug Resist 2022; 28:1003-1018. [PMID: 36219761 DOI: 10.1089/mdr.2022.0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes several serious health problems and numerous forms of virulence. During the treatment of P. aeruginosa infections, the development of multidrug-resistant isolates creates significant clinical problems. Using antivirulence compounds to disrupt pathogenicity rather than killing the bacterium may be an interesting strategy to overcome this problem, because less harsh conditions will exist for the development of resistance. To reduce pathogenicity and biofilm formation, newly synthesized analogs of imidazolyl (8n) and previously synthesized analogs (8a-8m) with a similar backbone [the 5-(imidazolyl-methyl) thiazolidinediones] were tested against pyoverdine and pyocyanin production, protease activity, and biofilm formation. Compared to the positive control group, the best compounds reduced the production of pyoverdine (8n) by 89.57% and pyocyanin (8i) by 22.68%, and protease activity (8n) by 2.80% for PAO1 strain, at a concentration of 10 μM. Moreover, the biofilm formation assay showed a reduction of 87.94% (8i) for PAO1, as well as 30.53% (8d) and 44.65% (8m) for 1074 and 1707 strains, respectively. The compounds used in this study did not show any toxicity in the human dermal fibroblasts and 4T1 cells (viability higher than 90%). The in silico study of these compounds revealed that their antivirulence activity could be due to their interaction with the PqsR, PqsE, and LasR receptors.
Collapse
Affiliation(s)
- Neda Shakour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Taheri
- Laboratory of Phytopathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Tarighi
- Laboratory of Phytopathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
283
|
The In Vivo and In Vitro Assessment of Pyocins in Treating Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2022; 11:antibiotics11101366. [PMID: 36290026 PMCID: PMC9598984 DOI: 10.3390/antibiotics11101366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa can cause several life-threatening infections among immunocompromised patients (e.g., cystic fibrosis) due to its ability to adapt and develop resistance to several antibiotics. In recent years, P. aeruginosa infections has become difficult to treat using conventional antibiotics due to the increase multidrug-resistant P. aeruginosa strains. Therefore, there is a growing interest to develop novel treatments against antibiotic-resistance P. aeruginosa strains. One novel method includes the application of antimicrobial peptides secreted by P. aeruginosa strains, known as pyocins. In this review, we will discuss the structure, function, and use of pyocins in the pathogenesis and treatment of P. aeruginosa infection.
Collapse
|
284
|
Adamer MF, Brüningk SC, Tejada-Arranz A, Estermann F, Basler M, Borgwardt K. reComBat: batch-effect removal in large-scale multi-source gene-expression data integration. BIOINFORMATICS ADVANCES 2022; 2:vbac071. [PMID: 36699372 PMCID: PMC9710604 DOI: 10.1093/bioadv/vbac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 01/28/2023]
Abstract
Motivation With the steadily increasing abundance of omics data produced all over the world under vastly different experimental conditions residing in public databases, a crucial step in many data-driven bioinformatics applications is that of data integration. The challenge of batch-effect removal for entire databases lies in the large number of batches and biological variation, which can result in design matrix singularity. This problem can currently not be solved satisfactorily by any common batch-correction algorithm. Results We present reComBat, a regularized version of the empirical Bayes method to overcome this limitation and benchmark it against popular approaches for the harmonization of public gene-expression data (both microarray and bulkRNAsq) of the human opportunistic pathogen Pseudomonas aeruginosa. Batch-effects are successfully mitigated while biologically meaningful gene-expression variation is retained. reComBat fills the gap in batch-correction approaches applicable to large-scale, public omics databases and opens up new avenues for data-driven analysis of complex biological processes beyond the scope of a single study. Availability and implementation The code is available at https://github.com/BorgwardtLab/reComBat, all data and evaluation code can be found at https://github.com/BorgwardtLab/batchCorrectionPublicData. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | | | | | | | - Marek Basler
- Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Karsten Borgwardt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland,Swiss Institute for Bioinformatics (SIB), Lausanne 1015, Switzerland
| |
Collapse
|
285
|
Grandy S, Raudonis R, Cheng Z. The identification of Pseudomonas aeruginosa persisters using flow cytometry. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36287586 DOI: 10.1099/mic.0.001252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pseudomonas aeruginosa persisters are a rare and poorly characterized subpopulation of cells that are responsible for many recurrent infections. The lack of knowledge on the mechanisms that lead to persister cell development is mainly a result of the difficulty in isolating and characterizing this rare population. Flow cytometry is an ideal method for identifying such subpopulations because it allows for high-content single-cell analysis. However, there are fewer established protocols for bacterial flow cytometry compared to mammalian cell work. Herein, we describe and propose a flow cytometry protocol to identify and isolate P. aeruginosa persister cells. Additionally, we show that the percentage of potential persister cells increases with increasing antibiotic concentrations above the MIC.
Collapse
Affiliation(s)
- Shannen Grandy
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
286
|
Triponney P, Bour M, Beyrouthy R, Bonnet R, Plésiat P, Jeannot K. Role of megaplasmids and chromosomal integration in acquisition of CTX-M-encoding genes by Pseudomonas aeruginosa. J Antimicrob Chemother 2022; 77:3194-3198. [PMID: 36177785 DOI: 10.1093/jac/dkac302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Pauline Triponney
- Centre National de Référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Maxime Bour
- Centre National de Référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Racha Beyrouthy
- Clermont Université, Université d'Auvergne, Inserm U1071, INRA USC2018, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Laboratoire de Bactériologie Clinique, Clermont-Ferrand, France.,Centre National de Référence de la Résistance aux Antibiotiques, laboratoire associé, Clermont-Ferrand, France
| | - Richard Bonnet
- Clermont Université, Université d'Auvergne, Inserm U1071, INRA USC2018, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Laboratoire de Bactériologie Clinique, Clermont-Ferrand, France.,Centre National de Référence de la Résistance aux Antibiotiques, laboratoire associé, Clermont-Ferrand, France
| | - Patrick Plésiat
- Centre National de Référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France.,UMR6249 CNRS Chrono-Environnement, Université de Franche-Comté, Besançon, France
| | - Katy Jeannot
- Centre National de Référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France.,UMR6249 CNRS Chrono-Environnement, Université de Franche-Comté, Besançon, France.,CHU Jean Minjoz, Laboratoire de Bactériologie, Besançon, France
| |
Collapse
|
287
|
Bidet P, Birgy A, Brethon B, Dalle JH, Mariani-Kurkdjian P, Courroux C, Monjault A, Gits-Museli M, Bonacorsi S. Epidemiological investigation of Pseudomonas aeruginosa isolates including Multidrug-Resistant serogroup O12 isolates, by use of a rapid and simplified Multiple-Locus Variable-Number of Tandem Repeats Analysis and Whole Genome Sequencing. J Hosp Infect 2022; 130:56-62. [PMID: 36181986 DOI: 10.1016/j.jhin.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Clustered cases of Pseudomonas aeruginosa infection in immunocompromised patients' wards require rapid characterization of a potential epidemic to guide investigations and identify the potential source of contamination. AIM To design and evaluate a rapid and simple typing method for P. aeruginosa in comparison to whole genome sequencing (WGS). METHODS We designed and used a simplified PCR based on multiple locus tandem variable number analysis (MLVA) to investigate cases of P. aeruginosa infection and colonization in a paediatric haematology department. The method was compared to WGS by using Illumina method. FINDINGS On the 17 isolates recovered from 15 children (8 from blood cultures, 3 from urinary tract infections, 1 from sputum and 5 stool isolates) MLVA distinguished 10 different profiles and 7 isolates from 6 children shared the same profile. Analysis by WGS revealed that these 7 isolates belonged to sequence type ST111 and serotype O12 and permitted to further distinguish at least 3 different genotypes among them. Five environmental strains had 3 MLVA profiles, one shared with a clinical isolate but WGS excluded any relationship. CONCLUSION The simplified and inexpensive MLVA method permitted to exclude, in less than five hours, most of unrelated isolates and to focus investigations on a small number of cases while WGS, taking several days of work, drew definitive conclusions concerning the outbreak and the genetic relationships of the ST111 isolates circulating in the department. We conclude that sequential use of both methods is the optimal strategy to investigate grouped cases of P. aeruginosa infections.
Collapse
Affiliation(s)
- P Bidet
- Université Paris Cité, IAME, INSERM, F-75018 Paris, France; Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France.
| | - A Birgy
- Université Paris Cité, IAME, INSERM, F-75018 Paris, France; Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| | - B Brethon
- Service d'Hémato-immunologie, Hôpital Robert-Debré, AP-HP, Paris, France
| | - J H Dalle
- Service d'Hémato-immunologie, Hôpital Robert-Debré, AP-HP, Paris, France
| | - P Mariani-Kurkdjian
- Université Paris Cité, IAME, INSERM, F-75018 Paris, France; Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| | - C Courroux
- Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| | - A Monjault
- Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| | - M Gits-Museli
- Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| | - S Bonacorsi
- Université Paris Cité, IAME, INSERM, F-75018 Paris, France; Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| |
Collapse
|
288
|
Whole-Genome Sequencing Reveals Diversity of Carbapenem-Resistant Pseudomonas aeruginosa Collected through CDC's Emerging Infections Program, United States, 2016-2018. Antimicrob Agents Chemother 2022; 66:e0049622. [PMID: 36066241 PMCID: PMC9487505 DOI: 10.1128/aac.00496-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The CDC's Emerging Infections Program (EIP) conducted population- and laboratory-based surveillance of US carbapenem-resistant Pseudomonas aeruginosa (CRPA) from 2016 through 2018. To characterize the pathotype, 1,019 isolates collected through this project underwent antimicrobial susceptibility testing and whole-genome sequencing. Sequenced genomes were classified using the seven-gene multilocus sequence typing (MLST) scheme and a core genome (cg)MLST scheme was used to determine phylogeny. Both chromosomal and horizontally transmitted mechanisms of carbapenem resistance were assessed. There were 336 sequence types (STs) among the 1,019 sequenced genomes, and the genomes varied by an average of 84.7% of the cgMLST alleles used. Mutations associated with dysfunction of the porin OprD were found in 888 (87.1%) of the genomes and were correlated with carbapenem resistance, and a machine learning model incorporating hundreds of genetic variations among the chromosomal mechanisms of resistance was able to classify resistant genomes. While only 7 (0.1%) isolates harbored carbapenemase genes, 66 (6.5%) had acquired non-carbapenemase β-lactamase genes, and these were more likely to have OprD dysfunction and be resistant to all carbapenems tested. The genetic diversity demonstrates that the pathotype includes a variety of strains, and clones previously identified as high-risk make up only a minority of CRPA strains in the United States. The increased carbapenem resistance in isolates with acquired non-carbapenemase β-lactamase genes suggests that horizontally transmitted mechanisms aside from carbapenemases themselves may be important drivers of the spread of carbapenem resistance in P. aeruginosa.
Collapse
|
289
|
Cafora M, Poerio N, Forti F, Loberto N, Pin D, Bassi R, Aureli M, Briani F, Pistocchi A, Fraziano M. Evaluation of phages and liposomes as combination therapy to counteract Pseudomonas aeruginosa infection in wild-type and CFTR-null models. Front Microbiol 2022; 13:979610. [PMID: 36188006 PMCID: PMC9520727 DOI: 10.3389/fmicb.2022.979610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Multi drug resistant (MDR) bacteria are insensitive to the most common antibiotics currently in use. The spread of antibiotic-resistant bacteria, if not contained, will represent the main cause of death for humanity in 2050. The situation is even more worrying when considering patients with chronic bacterial infections, such as those with Cystic Fibrosis (CF). The development of alternative approaches is essential and novel therapies that combine exogenous and host-mediated antimicrobial action are promising. In this work, we demonstrate that asymmetric phosphatidylserine/phosphatidic acid (PS/PA) liposomes administrated both in prophylactic and therapeutic treatments, induced a reduction in the bacterial burden both in wild-type and cftr-loss-of-function (cftr-LOF) zebrafish embryos infected with Pseudomonas aeruginosa (Pa) PAO1 strain (PAO1). These effects are elicited through the enhancement of phagocytic activity of macrophages. Moreover, the combined use of liposomes and a phage-cocktail (CKΦ), already validated as a PAO1 “eater”, improves the antimicrobial effects of single treatments, and it is effective also against CKΦ-resistant bacteria. We also address the translational potential of the research, by evaluating the safety of CKΦ and PS/PA liposomes administrations in in vitro model of human bronchial epithelial cells, carrying the homozygous F508del-CFTR mutation, and in THP-1 cells differentiated into a macrophage-like phenotype with pharmacologically inhibited CFTR. Our results open the way to the development of novel pharmacological formulations composed of both phages and liposomes to counteract more efficiently the infections caused by Pa or other bacteria, especially in patients with chronic infections such those with CF.
Collapse
Affiliation(s)
- Marco Cafora
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
- Dipartimento di Scienze Cliniche e Comunità, Università degli Studi di Milan, Milan, MI, Italy
| | - Noemi Poerio
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, Rome, Italy
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Davide Pin
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università degli Studi di Roma “La Sapienza”, Rome, Italy
| | - Rosaria Bassi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
- *Correspondence: Anna Pistocchi,
| | - Maurizio Fraziano
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, Rome, Italy
| |
Collapse
|
290
|
Emergence and Transfer of Plasmid-Harbored rmtB in a Clinical Multidrug-Resistant Pseudomonas aeruginosa Strain. Microorganisms 2022; 10:microorganisms10091818. [PMID: 36144421 PMCID: PMC9500886 DOI: 10.3390/microorganisms10091818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa poses a great challenge to clinical treatment. In this study, we characterized a ST768 MDR P. aeruginosa strain, Pa150, that was isolated from a diabetic foot patient. The minimum inhibitory concentration (MIC) assay showed that Pa150 was resistant to almost all kinds of antibiotics, especially aminoglycosides. Whole genome sequencing revealed multiple antibiotic resistant genes on the chromosome and a 437-Kb plasmid (named pTJPa150) that harbors conjugation-related genes. A conjugation assay verified its self-transmissibility. On the pTJPa150 plasmid, we identified a 16S rRNA methylase gene, rmtB, that is flanked by mobile genetic elements (MGEs). The transfer of the pTJPa150 plasmid or the cloning of the rmtB gene into the reference strain, PAO1, significantly increased the bacterial resistance to aminoglycoside antibiotics. To the best of our knowledge, this is the first report of an rmtB-carrying conjugative plasmid isolated from P. aeruginosa, revealing a novel possible transmission mechanism of the rmtB gene.
Collapse
|
291
|
Towards Understanding the Function of Aegerolysins. Toxins (Basel) 2022; 14:toxins14090629. [PMID: 36136567 PMCID: PMC9505663 DOI: 10.3390/toxins14090629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Aegerolysins are remarkable proteins. They are distributed over the tree of life, being relatively widespread in bacteria and fungi, but also present in some insects, plants, protozoa, and viruses. Despite their abundance in cells of certain developmental stages and their presence in secretomes, only a few aegerolysins have been studied in detail. Their function, in particular, is intriguing. Here, we summarize previously published findings on the distribution, molecular interactions, and function of these versatile aegerolysins. They have very diverse protein sequences but a common fold. The machine learning approach of the AlphaFold2 algorithm, which incorporates physical and biological knowledge of protein structures and multisequence alignments, provides us new insights into the aegerolysins and their pore-forming partners, complemented by additional genomic support. We hypothesize that aegerolysins are involved in the mechanisms of competitive exclusion in the niche.
Collapse
|
292
|
Coya JM, Fraile-Ágreda V, de Tapia L, García-Fojeda B, Sáenz A, Bengoechea JA, Kronqvist N, Johansson J, Casals C. Cooperative action of SP-A and its trimeric recombinant fragment with polymyxins against Gram-negative respiratory bacteria. Front Immunol 2022; 13:927017. [PMID: 36159837 PMCID: PMC9493720 DOI: 10.3389/fimmu.2022.927017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
The exploration of therapies combining antimicrobial lung proteins and conventional antibiotics is important due to the growing problem of multidrug-resistant bacteria. The aim of this study was to investigate whether human SP-A and a recombinant trimeric fragment (rfhSP-A) have cooperative antimicrobial activity with antibiotics against pathogenic Gram-negative bacteria. We found that SP-A bound the cationic peptide polymyxin B (PMB) with an apparent dissociation constant (K D) of 0.32 ± 0.04 µM. SP-A showed synergistic microbicidal activity with polymyxin B and E, but not with other antibiotics, against three SP-A-resistant pathogenic bacteria: Klebsiella pneumoniae, non-typable Haemophilus influenzae (NTHi), and Pseudomonas aeruginosa. SP-A was not able to bind to K. pneumoniae, NTHi, or to mutant strains thereof expressing long-chain lipopolysaccharides (or lipooligosaccharides) and/or polysaccharide capsules. In the presence of PMB, SP-A induced the formation of SP-A/PMB aggregates that enhance PMB-induced bacterial membrane permeabilization. Furthermore, SP-A bound to a molecular derivative of PMB lacking the acyl chain (PMBN) with a K D of 0.26 ± 0.02 μM, forming SP-A/PMBN aggregates. PMBN has no bactericidal activity but can bind to the outer membrane of Gram-negative bacteria. Surprisingly, SP-A and PMBN showed synergistic bactericidal activity against Gram-negative bacteria. Unlike native supratrimeric SP-A, the trimeric rfhSP-A fragment had small but significant direct bactericidal activity against K. pneumoniae, NTHi, and P. aeruginosa. rfhSP-A did not bind to PMB under physiological conditions but acted additively with PMB and other antibiotics against these pathogenic bacteria. In summary, our results significantly improve our understanding of the antimicrobial actions of SP-A and its synergistic action with PMB. A peptide based on SP-A may aid the therapeutic use of PMB, a relatively cytotoxic antibiotic that is currently being reintroduced into clinics due to the global problem of antibiotic resistance.
Collapse
Affiliation(s)
- Juan Manuel Coya
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Víctor Fraile-Ágreda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Lidia de Tapia
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Belén García-Fojeda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Alejandra Sáenz
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - José A. Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
293
|
Ruhluel D, O'Brien S, Fothergill JL, Neill DR. Development of liquid culture media mimicking the conditions of sinuses and lungs in cystic fibrosis and health. F1000Res 2022; 11:1007. [PMID: 36519007 PMCID: PMC9718992 DOI: 10.12688/f1000research.125074.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/25/2023] Open
Abstract
The respiratory tract is a compartmentalised and heterogenous environment. The nasopharynx and sinuses of the upper airways have distinct properties from the lungs and these differences may shape bacterial adaptation and evolution. Upper airway niches act as early colonisation sites for respiratory bacterial pathogens, including those, such as Pseudomonas aeruginosa, that can go on to establish chronic infection of the lungs in people with cystic fibrosis (CF). Despite the importance of upper airway environments in facilitating early adaptation to host environments, currently available in vitro models for study of respiratory infection in CF focus exclusively on the lungs. Furthermore, animal models, widely used to bridge the gap between in vitro systems and the clinical scenario, do not allow the upper and lower airways to be studied in isolation. We have developed a suite of culture media reproducing key features of the upper and lower airways, for the study of bacterial adaptation and evolution in different respiratory environments. For both upper and lower airway-mimicking media, we have developed formulations that reflect airway conditions in health and those that reflect the altered environment of the CF respiratory tract. Here, we describe the development and validation of these media and their use for study of genetic and phenotypic adaptations in P. aeruginosa during growth under upper or lower airway conditions in health and in CF.
Collapse
Affiliation(s)
- Dilem Ruhluel
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| | - Siobhan O'Brien
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, 2, Ireland
| | - Joanne L Fothergill
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| | - Daniel R Neill
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| |
Collapse
|
294
|
Ruhluel D, O'Brien S, Fothergill JL, Neill DR. Development of liquid culture media mimicking the conditions of sinuses and lungs in cystic fibrosis and health. F1000Res 2022; 11:1007. [PMID: 36519007 PMCID: PMC9718992 DOI: 10.12688/f1000research.125074.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
The respiratory tract is a compartmentalised and heterogenous environment. The nasopharynx and sinuses of the upper airways have distinct properties from the lungs and these differences may shape bacterial adaptation and evolution. Upper airway niches act as early colonisation sites for respiratory bacterial pathogens, including those, such as Pseudomonas aeruginosa, that can go on to establish chronic infection of the lungs in people with cystic fibrosis (CF). Despite the importance of upper airway environments in facilitating early adaptation to host environments, currently available in vitro models for study of respiratory infection in CF focus exclusively on the lungs. Furthermore, animal models, widely used to bridge the gap between in vitro systems and the clinical scenario, do not allow the upper and lower airways to be studied in isolation. We have developed a suite of culture media reproducing key features of the upper and lower airways, for the study of bacterial adaptation and evolution in different respiratory environments. For both upper and lower airway-mimicking media, we have developed formulations that reflect airway conditions in health and those that reflect the altered environment of the CF respiratory tract. Here, we describe the development and validation of these media and their use for study of genetic and phenotypic adaptations in P. aeruginosa during growth under upper or lower airway conditions in health and in CF.
Collapse
Affiliation(s)
- Dilem Ruhluel
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| | - Siobhan O'Brien
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, 2, Ireland
| | - Joanne L Fothergill
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| | - Daniel R Neill
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| |
Collapse
|
295
|
Jeong YS, Huh S, Kim JC, Park JY, Lee C, Kim MS, Koo J, Bae YS. 2-Undecanone derived from Pseudomonas aeruginosa modulates the neutrophil activity. BMB Rep 2022. [PMID: 35651330 PMCID: PMC9442345 DOI: 10.5483/bmbrep.2022.55.8.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a well-known Gram-negative opportunistic pathogen. Neutrophils play key roles in mediating host defense against P. aeruginosa infection. In this study, we identified a metabolite derived from P. aeruginosa that regulates neutrophil activities. Using gas chromatography-mass spectrometry, a markedly increased level of 2-undecanone was identified in the peritoneal fluid of P. aeruginosa-infected mice. 2-Undecanone elicited the activation of neutrophils in a Gai-phospholipase C pathway. However, 2-undecanone strongly inhibited responses to lipopolysaccharide and bactericidal activity of neutrophils against P. aeruginosa by inducing apoptosis. Our results demonstrate that 2-undecanone from P. aeruginosa limits the innate defense activity of neutrophils, suggesting that the production of inhibitory metabolites is a strategy of P. aeruginosa for escaping the host immune system.
Collapse
Affiliation(s)
- Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Sunghyun Huh
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - Ji Cheol Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji Ye Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - ChaeEun Lee
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - Min-Sik Kim
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
296
|
de Tapia L, García-Fojeda B, Kronqvist N, Johansson J, Casals C. The collectin SP-A and its trimeric recombinant fragment protect alveolar epithelial cells from the cytotoxic and proinflammatory effects of human cathelicidin in vitro. Front Immunol 2022; 13:994328. [PMID: 36105805 PMCID: PMC9464622 DOI: 10.3389/fimmu.2022.994328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 01/19/2023] Open
Abstract
Human cathelicidin (LL-37) is a defense peptide with antimicrobial activity against various pathogens. However, LL-37 can also trigger tissue injury by binding to host cell membranes. The cytotoxic effects of LL-37 may be especially relevant in chronic respiratory diseases characterized by increased LL-37. The aim of this study was to investigate whether the human collectin SP-A and a trimeric recombinant fragment thereof (rfhSP-A) can regulate the activities of LL-37. To this end, we studied the interaction of LL-37 with SP-A and rfhSP-A by intrinsic fluorescence, dynamic light scattering, and circular dichroism, as well as the effects of these proteins on the antimicrobial and cytotoxic activities of LL-37. Both SP-A and rfhSP-A bound LL-37 with high affinity at physiological ionic strength (KD = 0.45 ± 0.01 nM for SP-A and 1.22 ± 0.7 nM for rfhSP-A). Such interactions result in the reduction of LL-37-induced cell permeability and IL-8 release in human pneumocytes, mediated by P2X7 channels. Binding of LL-37 to SP-A did not modify the properties of SP-A or the antibacterial activity of LL-37 against respiratory pathogens (Klebsiella pneumoniae, Pseudomonas aeruginosa, and nontypeable Haemophilus influenzae). SP-A/LL-37 complexes showed a greater ability to aggregate LPS vesicles than LL-37, which reduces endotoxin bioactivity. These results reveal the protective role of native SP-A in controlling LL-37 activities and suggest a potential therapeutic effect of rfhSP-A in reducing the cytotoxic and inflammatory actions of LL-37, without affecting its microbicidal activity against Gram-negative pathogens.
Collapse
Affiliation(s)
- Lidia de Tapia
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Belén García-Fojeda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
297
|
Wang G, Brunel JM, Preusse M, Mozaheb N, Willger SD, Larrouy-Maumus G, Baatsen P, Häussler S, Bolla JM, Van Bambeke F. The membrane-active polyaminoisoprenyl compound NV716 re-sensitizes Pseudomonas aeruginosa to antibiotics and reduces bacterial virulence. Commun Biol 2022; 5:871. [PMID: 36008485 PMCID: PMC9411590 DOI: 10.1038/s42003-022-03836-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa is intrinsically resistant to many antibiotics due to the impermeability of its outer membrane and to the constitutive expression of efflux pumps. Here, we show that the polyaminoisoprenyl compound NV716 at sub-MIC concentrations re-sensitizes P. aeruginosa to abandoned antibiotics by binding to the lipopolysaccharides (LPS) of the outer membrane, permeabilizing this membrane and increasing antibiotic accumulation inside the bacteria. It also prevents selection of resistance to antibiotics and increases their activity against biofilms. No stable resistance could be selected to NV716-itself after serial passages with subinhibitory concentrations, but the transcriptome of the resulting daughter cells shows an upregulation of genes involved in the synthesis of lipid A and LPS, and a downregulation of quorum sensing-related genes. Accordingly, NV716 also reduces motility, virulence factors production, and biofilm formation. NV716 shows a unique and highly promising profile of activity when used alone or in combination with antibiotics against P. aeruginosa, combining in a single molecule anti-virulence and potentiator effects. Additional work is required to more thoroughly understand the various functions of NV716. The polyaminoisoprenyl compound NV716 re-sensitizes Pseudomonas aeruginosa to antibiotics through permeabilizing the outer membrane and increases the activity of antibiotics on biofilms.
Collapse
Affiliation(s)
- Gang Wang
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Michel Brunel
- Aix Marseille Université, INSERM, SSA, Membranes et Cibles thérapeutiques (MCT), Marseille, France
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmoltz Centre for Infection Research, Braunschweig, Germany
| | - Negar Mozaheb
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Sven D Willger
- Department of Molecular Bacteriology, Helmoltz Centre for Infection Research, Braunschweig, Germany.,Department of Molecular Bacteriology, Twincore, Hannover, Germany.,Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gerald Larrouy-Maumus
- Department of Life Sciences, Faculty of Natural Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Pieter Baatsen
- Electron Microscopy Platform & Bio Imaging Core, VIB & KULeuven Center for Brain & Disease Research, KULeuven, Leuven, Belgium
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmoltz Centre for Infection Research, Braunschweig, Germany.,Department of Molecular Bacteriology, Twincore, Hannover, Germany.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | - Jean-Michel Bolla
- Aix Marseille Université, INSERM, SSA, Membranes et Cibles thérapeutiques (MCT), Marseille, France
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
298
|
Dubern JF, Romero M, Mai-Prochnow A, Messina M, Trampari E, Gijzel HNV, Chan KG, Carabelli AM, Barraud N, Lazenby J, Chen Y, Robertson S, Malone JG, Williams P, Heeb S, Cámara M. ToxR is a c-di-GMP binding protein that modulates surface-associated behaviour in Pseudomonas aeruginosa. NPJ Biofilms Microbiomes 2022; 8:64. [PMID: 35982053 PMCID: PMC9388670 DOI: 10.1038/s41522-022-00325-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa uses multiple protein regulators that work in tandem to control the production of a wide range of virulence factors and facilitate rapid adaptation to diverse environmental conditions. In this opportunistic pathogen, ToxR was known to positively regulate the production of the major virulence factor exotoxin A and now, through analysis of genetic changes between two sublines of P. aeruginosa PAO1 and functional complementation of swarming, we have identified a previously unknown role of ToxR in surface-associated motility in P. aeruginosa. Further analysis revealed that ToxR had an impact on swarming motility by regulating the Rhl quorum sensing system and subsequent production of rhamnolipid surfactants. Additionally, ToxR was found to tightly bind cyclic diguanylate (c-di-GMP) and negatively affect traits controlled by this second messenger including reducing biofilm formation and the expression of Psl and Pel exopolysaccharides, necessary for attachment and sessile communities matrix scaffolding, in P. aeruginosa. Moreover, a link between the post-transcriptional regulator RsmA and toxR expression via the alternative sigma factor PvdS, induced under iron-limiting conditions, is established. This study reveals the importance of ToxR in a sophisticated regulation of free-living and biofilm-associated lifestyles, appropriate for establishing acute or chronic P. aeruginosa infections.
Collapse
Affiliation(s)
- Jean-Frédéric Dubern
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Manuel Romero
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Anne Mai-Prochnow
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | - Marco Messina
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Science, University Roma Tre, Rome, Italy
| | - Eleftheria Trampari
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Hardeep Naghra-van Gijzel
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Genomic Sciences, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Kok-Gan Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Alessandro M Carabelli
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nicolas Barraud
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
- Genetics of Biofilms Unit, Institut Pasteur, Paris, France
| | - James Lazenby
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ye Chen
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
- Q Squared Solutions, Crystal Plaza, Pudong, Shanghai, China
| | - Shaun Robertson
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephan Heeb
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
299
|
Sivakumar R, Gunasekaran P, Rajendhran J. Extracytoplasmic sigma factor AlgU contributes to fitness of Pseudomonas aeruginosa PGPR2 during corn root colonization. Mol Genet Genomics 2022; 297:1537-1552. [PMID: 35980488 DOI: 10.1007/s00438-022-01938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
Abstract
In bacteria, sigma factors are crucial in determining the plasticity of core RNA polymerase (RNAP) while promoter recognition during transcription initiation. This process is modulated through an intricate regulatory network in response to environmental cues. Previously, an extracytoplasmic function (ECF) sigma factor, AlgU, was identified to positively influence the fitness of Pseudomonas aeruginosa PGPR2 during corn root colonization. In this study, we report that the inactivation of the algU gene encoded by PGPR2_23995 hampers the root colonization ability of PGPR2. An insertion mutant in the algU gene was constructed by allele exchange mutagenesis. The mutant strains displayed threefold decreased root colonization efficiency compared with the wild-type strain when inoculated individually and in the competition assay. The mutant strain was more sensitive to osmotic and antibiotic stresses and showed higher resistance to oxidative stress. On the other hand, the mutant strain showed increased biofilm formation on the abiotic surface, and the expression of the pelB and pslA genes involved in the biofilm matrix formation were up-regulated. In contrast, the expression of algD, responsible for alginate production, was significantly down-regulated in the mutant strain, which is directly regulated by the AlgU sigma factor. The mutant strain also displayed altered motility. The expression of RNA binding protein RsmA was also impeded in the mutant strain. Further, the transcript levels of genes associated with the type III secretion system (T3SS) were analyzed, which revealed a significant down-regulation in the mutant strain. These results collectively provide evidence for the regulatory role of the AlgU sigma factor in modulating gene expression during root colonization.
Collapse
Affiliation(s)
- Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
300
|
Bogiel T, Depka D, Rzepka M, Mikucka A. Decoding Genetic Features and Antimicrobial Susceptibility of Pseudomonas aeruginosa Strains Isolated from Bloodstream Infections. Int J Mol Sci 2022; 23:ijms23169208. [PMID: 36012468 PMCID: PMC9409454 DOI: 10.3390/ijms23169208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative rod and an etiological factor of opportunistic infections. The infections of this etiology appear mostly among hospitalized patients and are relatively hard to treat due to widespread antimicrobial resistance. Many virulence factors are involved in the pathogenesis of P. aeruginosa infection, the coexistence of which have a significant impact on the course of an infection with a particular localization. The aim of this study was to assess the antimicrobial susceptibility profiles and the frequency of genes encoding selected virulence factors in clinical P. aeruginosa strains isolated from bloodstream infections (BSIs). The following genes encoding virulence factors of enzymatic activity were assessed: lasB, plC H, plC N, nan1, nan2, aprA and phzM. The frequency of the genes encoding the type III secretion system effector proteins (exoU and exoS) and the genes encoding pilin structural subunits (pilA and pilB) were also investigated. The occurrence of virulence-factor genes was assessed using polymerase chain reactions, each in a separate reaction. Seventy-one P. aeruginosa strains, isolated from blood samples of patients with confirmed bacteremia hospitalized at the University Hospital No. 1 of Dr. Antoni Jurasz in Bydgoszcz, Poland, were included in the study. All the investigated strains were susceptible to colistin, while the majority of the strains presented resistance to ticarcillin/clavulanate (71.8%), piperacillin (60.6 %), imipenem (57.7%) and piperacillin/tazobactam (52.1%). The presence of the lasB and plC H genes was noted in all the tested strains, while the plC N, nan2, aprA, phzM and nan1 genes were identified in 68 (95.8%), 66 (93.0%), 63 (88.7%), 55 (77.5%) and 34 (47.9%) isolates, respectively. In 44 (62.0%) and 41 (57.7%) strains, the presence of the exoU and exoS genes was confirmed, while the pilA and pilB genes were noted only in 14 (19.7%) and 3 (4.2%) isolates, respectively. This may be due to the diverse roles of these proteins in the development and maintenance of BSIs. Statistically significant correlations were observed between particular gene pairs’ coexistence (e.g., alkaline protease and neuraminidase 2). Altogether, twenty-seven distinctive genotypes were observed among the studied strains, indicating the vast variety of genetic compositions of P. aeruginosa strains causing BSIs.
Collapse
|