251
|
Abstract
During the past two years, major advances have been made in our understanding of the role of motor proteins in chromosome-microtubule interactions in the spindle. The discovery of kinesin-like proteins (KLPs) associated with chromosome arms has shed some light on the mechanism of chromosome congression and the establishment of spindle bipolarity. Recent results also indicate that kinetochore KLPs may tether the ends of growing and shrinking microtubules to kinetochores during chromosome movements. Finally, new data indicate that phosphorylation of KLPs may be one of the mechanisms by which they are targeted to specific spindle domains.
Collapse
Affiliation(s)
- I Vernos
- Cell Biology Programme, Heidelberg, Germany.
| | | |
Collapse
|
252
|
Abstract
The centromere, recognized cytologically as the primary constriction, is essential for chromosomal attachment to the spindle and for proper segregation of mitotic and meiotic chromosomes. Considerable progress has been made in identifying both DNA and protein components of the centromere and kinetochore complex in mammalian chromosomes, including definition of specific motor proteins with demonstrable functions in chromosome movement. Searches for possible environmental influences on chromosome disjunction might logically be based on known components of the segregation apparatus, both intrinsic and extrinsic to the chromosomes themselves. This article reviews available information on both DNA and protein components of the centromere of mammalian, particularly human, chromosomes and summarizes our current understanding of their role(s) in facilitating normal chromosome behavior in mitosis and meiosis.
Collapse
Affiliation(s)
- B A Sullivan
- Department of Genetics, Case Western Reserve, University School of Medicine, Cleveland, Ohio 44106-4955, USA
| | | | | |
Collapse
|
253
|
He D, Zeng C, Brinkley BR. Nuclear matrix proteins as structural and functional components of the mitotic apparatus. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162B:1-74. [PMID: 8557485 DOI: 10.1016/s0074-7696(08)62614-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The eukaryotic nucleus is a membrane-enclosed compartment containing the genome and associated organelles supported by a complex matrix of nonhistone proteins. Identified as the nuclear matrix, this component maintains spatial order and provides the structural framework needed for DNA replication, RNA synthesis and processing, nuclear transport, and steroid hormone action. During mitosis, the nucleoskeleton and associated chromatin is efficiently dismantled, packaged, partitioned, and subsequently reassembled into daughter nuclei. The dramatic dissolution of the nucleus is accompanied by the assembly of a mitotic apparatus required to facilitate the complex events associated with nuclear division. Until recently, little was known about the fate or disposition of nuclear matrix proteins during mitosis. The availability of specific molecular probes and imaging techniques, including confocal microscopy and improved immunoelectron microscopy using resinless sections and related procedures, has enabled investigators to identify and map the distribution of nuclear matrix proteins throughout the cell cycle. This chapter will review the structure, function, and distribution of the protein NuMA (nuclear matrix mitotic apparatus) and other nuclear matrix proteins that depart the nucleus during the interphase/mitosis transition to become structural and functional components within specific domains of the mitotic apparatus.
Collapse
Affiliation(s)
- D He
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
254
|
|
255
|
Thrower DA, Jordan MA, Wilson L. Modulation of CENP-E organization at kinetochores by spindle microtubule attachment. CELL MOTILITY AND THE CYTOSKELETON 1996; 35:121-33. [PMID: 8894282 DOI: 10.1002/(sici)1097-0169(1996)35:2<121::aid-cm5>3.0.co;2-d] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CENP-E is a protein of the kinesin superfamily that appears as small paired globules at kinetochores of chromosomes in mammalian cells during prometaphase and metaphase of mitosis [Yen et al., 1992: Nature 359:536-539]. In the present study we found that a significant number of chromosomes during early prometaphase in HeLa cells (approximately 30%) were stained with a CENP-E antibody in the form of large C-shaped "collars" that partially encircled the chromosomes. The C-shaped CENP-E collars were present only transiently and were completely replaced by small paired globular forms prior to metaphase. Most chromosomes had persistent CENP-E collars in cells blocked at mitosis with a vinblastine concentration sufficient to prevent all microtubule formation. Attachment of newly formed microtubules to the kinetochores after removal of vinblastine resulted in loss of the collars and replacement with small paired globules. Similarly, a higher proportion of chromosomes isolated from vinblastine-treated cells contained CENP-E collars (73%), and the "capture" (i.e., attachment) of microtubules by the chromosomes resulted in conversion of the collars into small paired globules in vitro. Thus, the CENP-E collars form prior to microtubule attachment and disappear after attachment of the chromosomes to the spindle. The CENP-E collars may facilitate capture of microtubules by chromosomes during prometaphase.
Collapse
Affiliation(s)
- D A Thrower
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara 93106, USA
| | | | | |
Collapse
|
256
|
Thaler CD, Haimo LT. Microtubules and microtubule motors: mechanisms of regulation. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 164:269-327. [PMID: 8575892 DOI: 10.1016/s0074-7696(08)62388-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microtubule-based motility is precisely regulated, and the targets of regulation may be the motor proteins, the microtubules, or both components of this intricately controlled system. Regulation of microtubule behavior can be mediated by cell cycle-dependent changes in centrosomal microtubule nucleating ability and by cell-specific, microtubule-associated proteins (MAPs). Changes in microtubule organization and dynamics have been correlated with changes in phosphorylation. Regulation of motor proteins may be required both to initiate movement and to dictate its direction. Axonemal and cytoplasmic dyneins as well as kinesin can be phosphorylated and this modification may affect the motor activities of these enzymes or their ability to interact with organelles. A more complete understanding of how motors can be modulated by phosphorylation, either of the motor proteins or of other associated substrates, will be necessary in order to understand how bidirectional transport is regulated.
Collapse
Affiliation(s)
- C D Thaler
- Department of Biology, University of California, Riverside, USA
| | | |
Collapse
|
257
|
Blangy A, Lane HA, d'Hérin P, Harper M, Kress M, Nigg EA. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 1995; 83:1159-69. [PMID: 8548803 DOI: 10.1016/0092-8674(95)90142-6] [Citation(s) in RCA: 743] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have isolated a human homolog of Xenopus Eg5, a kinesin-related motor protein implicated in the assembly and dynamics of the mitotic spindle. We report that microinjection of antibodies against human Eg5 (HsEg5) blocks centrosome migration and causes HeLa cells to arrest in mitosis with monoastral microtubule arrays. Furthermore, an evolutionarily conserved cdc2 phosphorylation site (Thr-927) in HsEg5 is phosphorylated specifically during mitosis in HeLa cells and by p34cdc2/cyclin B in vitro. Mutation of Thr-927 to nonphosphorylatable residues prevents HsEg5 from binding to centrosomes, indicating that phosphorylation controls the association of this motor with the spindle apparatus. These results indicate that HsEg5 is required for establishing a bipolar spindle and that p34cdc2 protein kinase directly regulates its localization.
Collapse
Affiliation(s)
- A Blangy
- Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
258
|
Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G. Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 1995; 131:1715-26. [PMID: 8557739 PMCID: PMC2120691 DOI: 10.1083/jcb.131.6.1715] [Citation(s) in RCA: 698] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Antisera raised to a detergent- and salt-resistant matrix fraction from rat liver Golgi stacks were used to screen an expression library from rat liver cDNA. A full-length clone was obtained encoding a protein of 130 kD (termed GM130), the COOH-terminal domain of which was highly homologous to a Golgi human auto-antigen, golgin-95 (Fritzler et al., 1993). Biochemical data showed that GM130 is a peripheral cytoplasmic protein that is tightly bound to Golgi membranes and part of a larger oligomeric complex. Predictions from the protein sequence suggest that GM130 is an extended rod-like protein with coiled-coil domains. Immunofluorescence microscopy showed partial overlap with medial- and trans-Golgi markers but almost complete overlap with the cis-Golgi network (CGN) marker, syntaxin5. Immunoelectron microscopy confirmed this location showing that most of the GM130 was located in the CGN and in one or two cisternae on the cis-side of the Golgi stack. GM130 was not re-distributed to the ER in the presence of brefeldin A but maintained its overlap with syntaxin5 and a partial overlap with the ER-Golgi intermediate compartment marker, p53. Together these results suggest that GM130 is part of a cis-Golgi matrix and has a role in maintaining cis-Golgi structure.
Collapse
Affiliation(s)
- N Nakamura
- Cell Biology Laboratory, Imperial Cancer Research Fund, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Inoué S, Salmon ED. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell 1995; 6:1619-40. [PMID: 8590794 PMCID: PMC301321 DOI: 10.1091/mbc.6.12.1619] [Citation(s) in RCA: 397] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this article, we review the dynamic nature of the filaments (microtubules) that make up the labile fibers of the mitotic spindle and asters, we discuss the roles that assembly and disassembly of microtubules play in mitosis, and we consider how such assembling and disassembling polymer filaments can generate forces that are utilized by the living cell in mitosis and related movements.
Collapse
Affiliation(s)
- S Inoué
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | | |
Collapse
|
260
|
Afshar K, Scholey J, Hawley RS. Identification of the chromosome localization domain of the Drosophila nod kinesin-like protein. J Biophys Biochem Cytol 1995; 131:833-43. [PMID: 7490288 PMCID: PMC2200005 DOI: 10.1083/jcb.131.4.833] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The nod kinesin-like protein is localized along the arms of meiotic chromosomes and is required to maintain the position of achiasmate chromosomes on the developing meiotic spindle. Here we show that the localization of ectopically expressed nod protein on mitotic chromosomes precisely parallels that observed for wild-type nod protein on meiotic chromosomes. Moreover, the carboxyl-terminal half of the nod protein also binds to chromosomes when overexpressed in mitotic cells, whereas the overexpressed amino-terminal motor domain binds only to microtubules. Chromosome localization of the carboxyl-terminal domain of nod depends upon an 82-amino acid region comprised of three copies of a sequence homologous to the DNA-binding domain of HMG 14/17 proteins. These data map the two primary functional domains of the nod protein in vivo and provide a molecular explanation for the directing of the nod protein to a specific subcellular component, the chromosome.
Collapse
Affiliation(s)
- K Afshar
- Section of Molecular and Cellular Biology, University of California at Davis 95616, USA
| | | | | |
Collapse
|
261
|
Masson D, Kreis TE. Binding of E-MAP-115 to microtubules is regulated by cell cycle-dependent phosphorylation. J Biophys Biochem Cytol 1995; 131:1015-24. [PMID: 7490279 PMCID: PMC2200015 DOI: 10.1083/jcb.131.4.1015] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Expression levels of E-MAP-115, a microtubule-associated protein that stabilizes microtubules, increase with epithelial cell polarization and differentiation (Masson and Kreis, 1993). Although polarizing cells contain significant amounts of this protein, they can still divide and thus all stabilized microtubules must disassemble at the onset of mitosis to allow formation of the dynamic mitotic spindle. We show here that binding of E-MAP-115 to microtubules is regulated by phosphorylation during the cell cycle. Immunolabeling of HeLa cells for E-MAP-115 indicates that the protein is absent from microtubules during early prophase and progressively reassociates with microtubules after late prophase. A fraction of E-MAP-115 from HeLa cells released from a block at the G1/S boundary runs with higher apparent molecular weight on SDS-PAGE, with a peak correlating with the maximal number of cells in early stages of mitosis. E-MAP-115 from nocodazole-arrested mitotic cells, which can be obtained in larger amounts, displays identical modifications and was used for further biochemical characterization. The level of incorporation of 32P into mitotic E-MAP-115 is about 15-fold higher than into the interphase protein. Specific threonine phosphorylation occurs in mitosis, and the amount of phosphate associated with serine also increases. Hyperphosphorylated E-MAP-115 from mitotic cells cannot bind stably to microtubules in vitro. These results suggest that phosphorylation of E-MAP-115 is a prerequisite for increasing the dynamic properties of the interphase microtubules which leads to the assembly of the mitotic spindle at the onset of mitosis. Microtubule-associated proteins are thus most likely key targets for kinases which control changes in microtubule dynamic properties at the G2- to M-phase transition.
Collapse
Affiliation(s)
- D Masson
- Département de Biologie Cellulaire, Université de Genève, Switzerland
| | | |
Collapse
|
262
|
Hardwick KG, Murray AW. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J Cell Biol 1995; 131:709-20. [PMID: 7593191 PMCID: PMC2120625 DOI: 10.1083/jcb.131.3.709] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The spindle assembly checkpoint prevents cells from initiating anaphase until the spindle has been fully assembled. We previously isolated mitotic arrest deficient (mad) mutants that inactivate this checkpoint and thus increase the sensitivity of cells to benomyl, a drug that interferes with mitotic spindle assembly by depolymerizing microtubules. We have cloned the MAD1 gene and show that when it is disrupted yeast cells have the same phenotype as the previously isolated mad1 mutants: they fail to delay the metaphase to anaphase transition in response to microtubule depolymerization. MAD1 is predicted to encode a 90-kD coiled-coil protein. Anti-Mad1p antibodies give a novel punctate nuclear staining pattern and cell fractionation reveals that the bulk of Mad1p is soluble. Mad1p becomes hyperphosphorylated when wild-type cells are arrested in mitosis by benomyl treatment, or by placing a cold sensitive tubulin mutant at the restrictive temperature. This modification does not occur in G1-arrested cells treated with benomyl or in cells arrested in mitosis by defects in the mitotic cyclin proteolysis machinery, suggesting that Mad1p hyperphosphorylation is a step in the activation of the spindle assembly checkpoint. Analysis of Mad1p phosphorylation in other spindle assembly checkpoint mutants reveals that this response to microtubule-disrupting agents is defective in some (mad2, bub1, and bub3) but not all (mad3, bub2) mutant strains. We discuss the possible functions of Mad1p at this cell cycle checkpoint.
Collapse
Affiliation(s)
- K G Hardwick
- Department of Physiology, University of California, San Francisco 94143-0444, USA
| | | |
Collapse
|
263
|
Martineau SN, Andreassen PR, Margolis RL. Delay of HeLa cell cleavage into interphase using dihydrocytochalasin B: retention of a postmitotic spindle and telophase disc correlates with synchronous cleavage recovery. J Cell Biol 1995; 131:191-205. [PMID: 7559776 PMCID: PMC2120587 DOI: 10.1083/jcb.131.1.191] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The molecular signals that determine the position and timing of the cleavage furrow during mammalian cell cytokinesis are presently unknown. We have studied in detail the effect of dihydrocytochalasin B (DCB), a drug that interferes with actin assembly, on specific late mitotic events in synchronous HeLa cells. When cleavage furrow formation is blocked at 10 microM DCB, cells return to interphase by the criteria of reformation of nuclei with lamin borders, degradation of the cyclin B component of p34cdc2 kinase, and loss of mitosis specific MPM-2 antigens. However, the machinery for cell cleavage is retained for up to one hour into G1 when cleavage cannot proceed. The components retained consist prominently of a "postmitotic" spindle and a telophase disc, a structure templated by the mitotic spindle in anaphase that may determine the position and timing of the cleavage furrow. Upon release from DCB block, G1 cells proceed through a rapid and synchronous cleavage. We conclude that the mitotic spindle is not inevitably destroyed at the end of mitosis, but persists as an integral structure with the telophase disc in the absence of cleavage. We also conclude that cell cleavage can occur in G1, and is therefore an event metabolically independent of mitosis. The retained telophase disc may indeed signal the position of furrow formation, as G1 cleavage occurs only in the position where the retained disc underlies the cell cortex. The protocol we describe should now enable development of a model system for the study of mammalian cell cleavage as a synchronous event independent of mitosis.
Collapse
Affiliation(s)
- S N Martineau
- Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble, France
| | | | | |
Collapse
|
264
|
Elion EA, Trueheart J, Fink GR. Fus2 localizes near the site of cell fusion and is required for both cell fusion and nuclear alignment during zygote formation. J Biophys Biochem Cytol 1995; 130:1283-96. [PMID: 7559752 PMCID: PMC2120577 DOI: 10.1083/jcb.130.6.1283] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Zygote formation occurs through tightly coordinated cell and nuclear fusion events. Genetic evidence suggests that the FUS2 gene product promotes cell fusion during zygote formation in Saccharomyces cerevisiae, functioning with the Fus1 plasma membrane protein at or before cell wall and plasma membrane fusion. Here we report the sequence of the FUS2 gene, localization of Fus2 protein, and show that fus1 and fus2 mutants have distinct defects in cell fusion. FUS2 encodes a unique open reading frame of 617 residues that only is expressed in haploid cells in response to mating pheromone. Consistent with a role in cell fusion, Fus2 protein localizes with discrete structures that could be of cytoskeletal or vesicular origin that accumulate at the tip of pheromone-induced shmoos and at the junction of paired cells in zygotes. Fus2 is predicted to be a coiled-coil protein and fractionates with a 100,000 g pellet, suggesting that it is associated with cytoskeleton, membranes, or other macromolecular structures. Fus2 may interact with structures involved in the alignment of the nuclei during cell fusion, because fus2 mutants have strong defects in karyogamy and fail to orient microtubules between parental nuclei in zygotes. In contrast, fus1 mutants show no karyogamy defects. These, and other results suggest that Fus2 defines a novel cell fusion function and subcellular structure that is also required for the alignment of parental nuclei before nuclear fusion.
Collapse
Affiliation(s)
- E A Elion
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
265
|
Zhu X, Mancini MA, Chang KH, Liu CY, Chen CF, Shan B, Jones D, Yang-Feng TL, Lee WH. Characterization of a novel 350-kilodalton nuclear phosphoprotein that is specifically involved in mitotic-phase progression. Mol Cell Biol 1995; 15:5017-29. [PMID: 7651420 PMCID: PMC230749 DOI: 10.1128/mcb.15.9.5017] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A gene assigned to human chromosome 1q32-41 encodes a novel protein of 3,113 amino acids containing an internal tandem repeat of 177 amino acids. The protein, which we have named "mitosin," was identified by direct binding to purified retinoblastoma protein in vitro with a region distantly related to the retinoblastoma protein-binding site of E2F-1. Mitosin is expressed throughout S, G2, and M phases of the cell cycle but is absent in G1. Its localization is dramatically reorganized from a rather homogeneous nuclear distribution in S phase to paired dots at the kinetochore/centromere region, to the spindle apparatus, and then to the midbody during M-phase progression. This spatial reorganization coincides closely with the temporal phosphorylation patterns of mitosin. Overexpression of N-terminally truncated mutants blocks cell cycle progression mainly at G2/M. These results suggest that mitosin may play an important role in mitotic-phase progression.
Collapse
Affiliation(s)
- X Zhu
- Center for Molecular Medicine, University of Texas Health Science Center at San Antonio 78245, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Abstract
The DNA elements responsible for centromere activity in a metazoan have been localized using the Drosophila minichromosome Dp1187. Deleted minichromosomes were generated by irradiation mutagenesis, and their molecular structures were determined by pulsed-field Southern blot analysis. Analyses of the transmission behavior of Dp1187 derivatives localized sequences necessary for chromosome inheritance within the centric heterochromatin. The essential core of the centromere is contained within a 220 kb region that includes significant amounts of complex DNA. Completely normal inheritance also requires approximately 200 kb on either side of the essential core. This flanking DNA predominantly contains highly repeated sequences, and the amount required for normal transmission differs among division types and between the sexes. We propose that the essential core is the site of kinetochore formation and that flanking DNA provides two functions: sister chromatid cohesion and indirect assistance in kinetochore formation or function.
Collapse
Affiliation(s)
- T D Murphy
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
267
|
Zhu X, Chang KH, He D, Mancini MA, Brinkley WR, Lee WH. The C terminus of mitosin is essential for its nuclear localization, centromere/kinetochore targeting, and dimerization. J Biol Chem 1995; 270:19545-50. [PMID: 7642639 DOI: 10.1074/jbc.270.33.19545] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mitosin is a novel 350-kDa nuclear phosphoprotein that dramatically relocates from the evenly nuclear distribution in S phase to the centromere/kinetochore and mitotic apparatus in M phase. The dynamic relocalization of mitosin is accompanied by the phosphorylation of itself, suggesting that mitosin plays a role in mitotic progression. The molecular basis of nuclear localization and targeting of mitosin to the centromere/kinetochore were characterized using a set of epitope-tagged deletion mutants. The data indicate that the extreme C terminus (amino acids 2,487-3,113) of mitosin has both an independent centromere/kinetochore targeting domain and an unusually spaced bipartite nuclear localization signal. Moreover, the same centromere/kinetochore targeting domain was shown to be essential for the ability of mitosin to bind to itself or other putative mitosin-associated proteins through use of the yeast two-hybrid system. These results suggest that the C terminus of the mitosin is essential for its role in influencing cell cycle progression.
Collapse
Affiliation(s)
- X Zhu
- Center for Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio 78245, USA
| | | | | | | | | | | |
Collapse
|
268
|
Liao H, Winkfein RJ, Mack G, Rattner JB, Yen TJ. CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J Biophys Biochem Cytol 1995; 130:507-18. [PMID: 7542657 PMCID: PMC2120529 DOI: 10.1083/jcb.130.3.507] [Citation(s) in RCA: 294] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Centromere protein-F (CENP-F) is mammalian kinetochore protein that was recently identified by an autoimmune serum (Rattner, J. B., A. Rao, M. J. Fritzler, D. W. Valencia, and T. J. Yen. Cell Motil. Cytoskeleton. 26:214-226). We report here the human cDNA sequence of CENP-F, along with its expression and localization patterns at different stages of the HeLa cell cycle. CENP-F is protein of the nuclear matrix that gradually accumulates during the cell cycle until it reaches peak levels in G2 and M phase cells and is rapidly degraded upon completion of mitosis. CENP-F is first detected at the prekinetochore complex during late G2, and is clearly detectable as paired foci that correspond to all the centromeres by prophase. During mitosis, CENP-F is associated with kinetochores from prometaphase until early anaphase and is then detected at the spindle midzone throughout the remainder of anaphase. By telophase, CENP-F is concentrated within the intracellular bridge at either side of the mid-body. The predicted structure of the 367-kD CENP-F protein consists of two 1,600-amino acid-long coil domains that flank a central flexible core. A putative P-loop nucleotide binding site (ADIPTGKT) is located within the globular carboxy terminus. The structural features deduced from our sequence studies and the spatial and temperal distribution of CENP-F revealed in our cytological and biochemical studies suggest that it may play a role in several mitotic events.
Collapse
Affiliation(s)
- H Liao
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
269
|
Abstract
Chromosomes segregate at mitosis along microtubules attached to the kinetochore, an organelle that assembles at the centromere. Despite major advances in defining molecular components of the yeast segregation apparatus, including discrete centromere sequences and proteins of the kinetochore, relatively little is known of corresponding elements in more complex eukaryotes. We show here that human CENP-C, a human autoantigen previously localized to the kinetochore, assembles at centromeres of divergent species, and that the specificity of this targeting is maintained by an inherent destruction mechanism that prevents the accumulation of CENP-C and toxicity of mistargeted CENP-C. The N-terminus of CENP-C is not only required for CENP-C destruction but renders unstable proteins that otherwise possess long half-lives. The conserved targeting of CENP-C is underscored by the discovery of significant homology between regions of CENP-C and Mif2, a protein of Saccharomyces cerevisiae required for the correct segregation of chromosomes. Mutations in the Mif2 homology domain of CENP-C impair the ability of CENP-C to assemble at the kinetochore. Together, these data indicate that essential elements of the chromosome segregation apparatus are conserved in eukaryotes.
Collapse
Affiliation(s)
- L Lanini
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
270
|
Brown MT. Sequence similarities between the yeast chromosome segregation protein Mif2 and the mammalian centromere protein CENP-C. Gene 1995; 160:111-6. [PMID: 7628703 DOI: 10.1016/0378-1119(95)00163-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A short stretch of strong homology between the Saccharomyces cerevisiae chromosome segregation protein Mif2 and the DNA-binding motifs of the Drosophila D1 and mammalian HMGI(Y) chromosomal proteins suggested that Mif2 may act directly on chromosomes. Because this conserved motif is involved in binding A.T DNA, it was proposed that Mif2 may interact with chromosomes at the highly A + T-rich DNA element found in yeast centromeres. Comparison of the Mif2 amino-acid sequence with sequence databases showed that Mif2 shares at least two regions of similarity with the mammalian centromere protein CENP-C, suggesting an evolutionary conservation of centromere protein function from yeast to mammals. The order, spacing and location of these regions are also similar in the two proteins. Sequence analysis of several conditional lethal alleles of MIF2 generated by random mutagenesis revealed mutations in regions homologous to CENP-C, as well as in the highly conserved A.T DNA-binding motif. A potential phosphorylation site for p34cdc2 kinase located adjacent to the A.T DNA-binding motif was also found to be mutated in one of the mutants, suggesting that phosphorylation at this site may be important for Mif2 function and possibly for DNA binding.
Collapse
Affiliation(s)
- M T Brown
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| |
Collapse
|
271
|
Mu FT, Callaghan JM, Steele-Mortimer O, Stenmark H, Parton RG, Campbell PL, McCluskey J, Yeo JP, Tock EP, Toh BH. EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine "fingers" and contains a calmodulin-binding IQ motif. J Biol Chem 1995; 270:13503-11. [PMID: 7768953 DOI: 10.1074/jbc.270.22.13503] [Citation(s) in RCA: 591] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Early endosomes are cellular compartments receiving endocytosed material and sorting them for vesicular transport to late endosomes and lysosomes or for recycling to the plasma membrane. We have cloned a human cDNA encoding an evolutionarily conserved 180-kDa protein on early endosomes named EEA1 (Early Endosome Antigen1). EEA1 is associated with early endosomes since it co-localizes by immunofluorescence with the transferrin receptor and with Rab5 but not with Rab7. Immunoelectron microscopy shows that it is associated with tubulovesicular early endosomes containing internalized bovine serum albumin-gold. EEA1 is a hydrophilic peripheral membrane protein present in cytosol and membrane fractions. It partitions in the aqueous phase after Triton X-114 solubilization and is extracted from membranes by 0.3 M NaCl. It is a predominantly alpha-helical protein sharing 17-20% sequence identity with the myosins and contains a calmodulin-binding IQ motif. It is flanked by metal-binding, cysteine "finger" motifs. The COOH-terminal fingers, Cys-X2-Cys-X12-Cys-X2-Cys and Cys-X2-Cys-X16-Cys-X2-Cys, are present within a region that is strikingly homologous with Saccharomyces cerevisiae FAB1 protein required for endocytosis and with Caenorhabditis elegans ZK632. These fingers also show limited conservation with S. cerevisiae VAC1, Vps11, and Vps18p proteins implicated in vacuolar transport. We propose that EEA1 is required for vesicular transport of proteins through early endosomes and that its finger motifs are required for this activity.
Collapse
Affiliation(s)
- F T Mu
- Department of Pathology, National University of Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Kuriyama R, Kofron M, Essner R, Kato T, Dragas-Granoic S, Omoto CK, Khodjakov A. Characterization of a minus end-directed kinesin-like motor protein from cultured mammalian cells. J Cell Biol 1995; 129:1049-59. [PMID: 7744954 PMCID: PMC2120493 DOI: 10.1083/jcb.129.4.1049] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using the CHO2 monoclonal antibody raised against CHO spindles (Sellitto, C., M. Kimble, and R. Kuriyama. 1992. Cell Motil. Cytoskeleton. 22:7-24) we identified a 66-kD protein located at the interphase centrosome and mitotic spindle. Isolated cDNAs for the antigen encode a 622-amino acid polypeptide. Sequence analysis revealed the presence of 340-amino acid residues in the COOH terminus, which is homologous to the motor domain conserved among other members of the kinesin superfamily. The protein is composed of a central alpha-helical portion with globular domains at both NH2 and COOH termini, and the epitope to the monoclonal antibody resides in the central alpha-helical stalk. A series of deletion constructs were created for in vitro analysis of microtubule interactions. While the microtubule binding and bundling activities require both the presence of the COOH terminus and the alpha-helical domain, the NH2-terminal half of the antigen lacked the ability to interact with microtubules. The full-length as well as deleted proteins consisting of the COOH-terminal motor and the central alpha-helical stalk supported microtubule gliding, with velocity ranging from 1.0 to 8.4 microns/minute. The speed of microtubule movement decreased with decreasing lengths of the central stalk attached to the COOH-terminal motor. The microtubules moved with their plus end leading, indicating that the antigen is a minus end-directed motor. The CHO2 sequence shows 86% identify to HSET, a gene located at the centromeric end of the human MHC region in chromosome 6 (Ando, A., Y. Y. Kikuti, H. Kawata, N. Okamoto, T. Imai, T. Eki, K. Yokoyama, E. Soeda, T. Ikemura, K. Abe, and H. Inoko. 1994. Immunogenetics. 39:194-200), indicating that HSET might represent a human homologue of the CHO2 antigen.
Collapse
Affiliation(s)
- R Kuriyama
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | |
Collapse
|
273
|
Williams BC, Riedy MF, Williams EV, Gatti M, Goldberg ML. The Drosophila kinesin-like protein KLP3A is a midbody component required for central spindle assembly and initiation of cytokinesis. J Biophys Biochem Cytol 1995; 129:709-23. [PMID: 7730406 PMCID: PMC2120429 DOI: 10.1083/jcb.129.3.709] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We describe here a new member of the kinesin superfamily in Drosophila, KLP3A (Kinesin-Like-Protein-at-3A). The KLP3A protein localizes to the equator of the central spindle during late anaphase and telophase of male meiosis. Mutations in the KLP3A gene disrupt the interdigitation of microtubules in spermatocyte central spindles. Despite this defect, anaphase B spindle elongation is not obviously aberrant. However, cytokinesis frequently fails after both meiotic divisions in mutant testes. Together, these findings strongly suggest that the KLP3A presumptive motor protein is a critical component in the establishment or stabilization of the central spindle. Furthermore, these results imply that the central spindle is the source of signals that initiate the cleavage furrow in higher cells.
Collapse
Affiliation(s)
- B C Williams
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | | | |
Collapse
|
274
|
Kitagawa K, Masumoto H, Ikeda M, Okazaki T. Analysis of protein-DNA and protein-protein interactions of centromere protein B (CENP-B) and properties of the DNA-CENP-B complex in the cell cycle. Mol Cell Biol 1995; 15:1602-12. [PMID: 7862152 PMCID: PMC230384 DOI: 10.1128/mcb.15.3.1602] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We previously reported that centromere protein B (CENP-B) forms a stable complex (designated complex A) containing two alphoid DNAs in vitro. Domains in the CENP-B polypeptide involved in the formation of complex A were determined in the present study with truncated derivatives expressed in Escherichia coli and in rabbit reticulocyte lysates. It was revealed by gel mobility shift analyses that polypeptides containing the NH2-terminal DNA-binding domain bind a DNA molecule as a monomer, while dimerizing at a novel hydrophobic domain in the COOH-terminal region of 59 amino acid residues. This polypeptide dimerization activity at the COOH-terminal region was also confirmed with the two-hybrid system in Saccharomyces cerevisiae cells. The results thus proved that CENP-B polypeptides form a homodimer at the COOH-terminal hydrophobic domain, each binding a DNA strand at their NH2-terminal domains. The dimerization and DNA-binding domains fall into two of the three completely conserved sequences found in human and mouse CENP-B, and complex A-forming activity was also detected in nuclear extracts of mouse cells. Metaphase-specific phosphorylation of CENP-B was also detected, but this had no effect on its complex A-forming activity. On the basis of the present results, we propose that CENP-B plays an important role in the assembly of specific centromere structures by forming unique DNA-protein complexes at the sites of CENP-B boxes on the centromeric repetitive DNA both in interphase nuclei and on mitotic chromosomes.
Collapse
Affiliation(s)
- K Kitagawa
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| | | | | | | |
Collapse
|
275
|
Strunnikov AV, Kingsbury J, Koshland D. CEP3 encodes a centromere protein of Saccharomyces cerevisiae. J Biophys Biochem Cytol 1995; 128:749-60. [PMID: 7876302 PMCID: PMC2120391 DOI: 10.1083/jcb.128.5.749] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have designed a screen to identify mutants specifically affecting kinetochore function in the yeast Saccharomyces cerevisiae. The selection procedure was based on the generation of "synthetic acentric" minichromosomes. "Synthetic acentric" minichromosomes contain a centromere locus, but lack centromere activity due to combination of mutations in centromere DNA and in a chromosomal gene (CEP) encoding a putative centromere protein. Ten conditional lethal cep mutants were isolated, seven were found to be alleles of NDC10 (CEP2) encoding the 110-kD protein of yeast kinetochore. Three mutants defined a novel essential gene CEP3. The CEP3 product (Cep3p) is a 71-kD protein with a potential DNA-binding domain (binuclear Zn-cluster). At nonpermissive temperature the cep3 cells arrest with an undivided nucleus and a short mitotic spindle. At permissive temperature the cep3 cells are unable to support segregation of minichromosomes with mutations in the central part of element III of yeast centromere DNA. These minichromosomes, when isolated from cep3 cultures, fail to bind bovine microtubules in vitro. The sum of genetic, cytological and biochemical data lead us to suggest that the Cep3 protein is a DNA-binding component of yeast centromere. Molecular mass and sequence comparison confirm that Cep3p is the p64 component of centromere DNA binding complex Cbf3 (Lechner, 1994).
Collapse
Affiliation(s)
- A V Strunnikov
- Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210
| | | | | |
Collapse
|
276
|
Holland KA, Keresõ J, Zákány J, Pravnovskzy T, Monostori E, Belyaer N, Hadlaczky G. A tightly bound chromosome antigen is detected by monoclonal antibodies in a ring-like structure on human centromeres. Chromosoma 1995; 103:559-66. [PMID: 7621706 DOI: 10.1007/bf00355321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monoclonal antibodies (Mabs) were raised against isolated Chinese hamster protein-depleted chromosomes Chromosome scaffolds) in order to probe for components involved in the higher-order structure of mammalian chromosomes. One of the Mabs detected a ring-like structure in metaphase at the centromere, which is conserved between Chinese hamster and human cells. Additionally, the Mab stained the centrioles in interphase cells in these two species. The antigen was enriched in chromosomal protein preparations by comparison with nuclear protein samples, and has an apparent Mr = 170,000. The centromere antigen remained present in chromosome scaffold preparations, indicating that it was tightly associated with DNA. The antigen was distinct in its centromeric localisation from any of the centromere antigens reported to date. A possible role of the antigen in stabilising the centromere, by holding the sister chromatids together until their separation at the metaphase-anaphase transition is presented.
Collapse
Affiliation(s)
- K A Holland
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged
| | | | | | | | | | | | | |
Collapse
|
277
|
Desai A, Mitchison TJ. A new role for motor proteins as couplers to depolymerizing microtubules. J Cell Biol 1995; 128:1-4. [PMID: 7822407 PMCID: PMC2120340 DOI: 10.1083/jcb.128.1.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- A Desai
- Department of Biochemistry and Biophysics, University of California at San Francisco 94143
| | | |
Collapse
|
278
|
Wordeman L, Mitchison TJ. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol 1995; 128:95-104. [PMID: 7822426 PMCID: PMC2120339 DOI: 10.1083/jcb.128.1.95] [Citation(s) in RCA: 303] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Using antipeptide antibodies to conserved regions of the kinesin motor domain, we cloned a kinesin-related protein that associates with the centromere region of mitotic chromosomes. We call the protein MCAK, for mitotic centromere-associated kinesin. MCAK appears concentrated on centromeres at prophase and persists until telophase, after which time the localization disperses. It is found throughout the centromere region and between the kinetochore plates of isolated mitotic CHO chromosomes, in contrast to two other kinetochore-associated microtubule motors: cytoplasmic dynein and CENP-E (Yen et al., 1992), which are closer to the outer surface of the kinetochore plates. Sequence analysis shows MCAK to be a kinesin-related protein with the motor domain located in the center of the protein. It is 60-70% similar to kif2, a kinesin-related protein originally cloned from mouse brain with a centrally located motor domain (Aizawa et al., 1992). MCAK protein is present in interphase and mitotic CHO cells and is transcribed as a single 3.4-kb message.
Collapse
Affiliation(s)
- L Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle 98195
| | | |
Collapse
|
279
|
Lombillo VA, Nislow C, Yen TJ, Gelfand VI, McIntosh JR. Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J Cell Biol 1995; 128:107-15. [PMID: 7822408 PMCID: PMC2120341 DOI: 10.1083/jcb.128.1.107] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chromosomes can move with the ends of depolymerizing microtubules (MTs) in vitro, even in the absence of nucleotide triphosphates (Coue, M., V. A. Lombillo, and J. R. McIntosh. 1991. J. Cell Biol. 112:1165-1175.) Here, we describe an immunological investigation of the proteins important for this form of motility. Affinity-purified polyclonal antibodies to kinesin exert a severe inhibitory effect on depolymerization-dependent chromosome motion. These antibodies predominantly recognize a polypeptide of M(r) approximately 250 kD on immunoblots of CHO chromosomes and stain kinetochores as well as some vesicles that are in the chromosome preparation. Antibodies to CENP-E, a kinetochore-associated kinesin-like protein, also recognize a 250-kD electrophoretic component, but they stain only the kinetochroe region of isolated chromosomes. Polyclonal antibodies that recognize specific domains of the CENP-E polypeptide affect MT disassembly-dependent chromosome motion in different ways; antibodies to the head or tail portions slow motility threefold, while those raised against the neck region stop motion completely. Analogous antibodies that block conventional, ATP-dependent motility of cytoplasmic dynein (Vaisberg, G., M. P. Koonce, and J. R. McIntosh. 1993. J. Cell Biol. 123:849-858) have no effect on disassembly-dependent chromosome motion, even though they bind to kinetochores. These observations suggest that CENP-E helps couple chromosomes to depolymerizing MTs. A similar coupling activity may allow spindle MTs to remain kinetochore-bound while their lengths change during both prometaphase and anaphase A.
Collapse
Affiliation(s)
- V A Lombillo
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309
| | | | | | | | | |
Collapse
|
280
|
Kuriyama R, Dragas-Granoic S, Maekawa T, Vassilev A, Khodjakov A, Kobayashi H. Heterogeneity and microtubule interaction of the CHO1 antigen, a mitosis-specific kinesin-like protein. Analysis of subdomains expressed in insect sf9 cells. J Cell Sci 1994; 107 ( Pt 12):3485-99. [PMID: 7706400 DOI: 10.1242/jcs.107.12.3485] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CHO1 antigen is a mitosis-specific kinesin-like motor located at the interzonal region of the spindle. The human cDNA coding for the antigen contains a domain with sequence similarity to the motor domain of kinesin-like protein (Nislow et al., Nature 359, 543, 1992). Here we cloned cDNAs encoding the CHO1 antigen by immunoscreening of a CHO Uni-Zap expression library, the same species in which the original monoclonal antibody was raised. cDNAs of CHO cells encode a 953 amino acid polypeptide with a calculated molecular mass of 109 kDa. The N-terminal 73% of the antigen was 87% identical to the human clone, whereas the remaining 27% of the coding region showed only 48% homology. Insect Sf9 cells infected with baculovirus containing the full-length insert produced 105 and 95 kDa polypeptides, the same doublet identified as the original antigen in CHO cells. Truncated polypeptides corresponding to the N-terminal motor and C-terminal tail produced a 56 and 54 kDa polypeptide in Sf9 cells, respectively. Full and N-terminal proteins co-sedimented with, and caused bundling of, brain microtubules in vitro, whereas the C-terminal polypeptide did not. Cells expressing the N terminus formed one or more cytoplasmic processes. Immunofluorescence as well as electron microscopic observations revealed the presence of thick bundles of microtubules, which were closely packed, forming a marginal ring just beneath the cell membrane and a core in the processes. The diffusion coefficient and sedimentation coefficient were determined for the native CHO1 antigen by gel filtration and sucrose density gradient centrifugation, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Kuriyama
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455
| | | | | | | | | | | |
Collapse
|
281
|
Avides MC, Sunkel CE. Isolation of chromosome-associated proteins from Drosophila melanogaster that bind a human centromeric DNA sequence. J Biophys Biochem Cytol 1994; 127:1159-71. [PMID: 7962082 PMCID: PMC2120246 DOI: 10.1083/jcb.127.5.1159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The molecular mechanism involved in packaging centromeric heterochromatin is still poorly understood. CENP-B, a centromeric protein present in human cells, is though to be involved in this process. This is a DNA-binding protein that localizes to the central domain of the centromere of human and mouse chromosomes due to its association with the 17-bp CENP-B box sequence. We have designed a biochemical approach to search for functional homologues of CENP-B in Drosophila melanogaster. This strategy relies upon the use of DNA fragments containing the CENP-B box to identify proteins that specifically bind this sequence. Three polypeptides were isolated by nuclear protein extraction, followed by sequential ion exchange columns and DNA affinity chromatography. All three proteins are present in the complex formed after gel retardation with the human alphoid satellite DNA that contains the CENP-B box. Footprinting analysis reveals that the complex occupies both strands of the CENP-B box, although it is still unclear which of the polypeptides actually makes contact with the DNA. Localization of fluorescein-labeled proteins after microinjection into early Drosophila embryos shows that they associate with condensed chromosomes. Immunostaining of embryos with a polyclonal serum made against all three polypeptides also shows chromosomal localization throughout mitosis. During metaphase and anaphase the antigens appear to localize preferentially to centromeric heterochromatin. Immunostaining of neuroblasts chromosome spreads confirmed these results, though some staining of chromosomal arms is also observed. The data strongly suggests that the polypeptides we have identified are chromosomal binding proteins that accumulate mainly at the centromeric heterochromatin. Furthermore, DNA binding assays clearly indicate that they have a high specific affinity for the human CENP-B box. This would suggest that at least one of the three proteins isolated might be a functional homologue of the human CENP-B.
Collapse
Affiliation(s)
- M C Avides
- Centro de Citologia Experimental, Universidade do Porto, Portugal
| | | |
Collapse
|
282
|
Affiliation(s)
- R W King
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
283
|
Sugimoto K, Furukawa K, Himeno M. Functional cloning of centromere protein B (CENP-B) box-enriched alphoid DNA repeats utilizing the sequence-specific DNA binding activity of human CENP-B in vitro. Chromosome Res 1994; 2:453-9. [PMID: 7834222 DOI: 10.1007/bf01552868] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The centromere is a distinctive portion of the chromosome consisting of 'centromere DNA' and 'centromere proteins'. Recently, a direct molecular interaction was discovered between human centromere protein B (CENP-B) and human centromeric alphoid repeats. This enabled us to isolate the CENP-B-targeted centromeric DNA sequences by positively utilizing the biologic activity of CENP-B in vitro. In the previous model experiment, we found that oligonucleotides covering the CENP-B binding sequences were enriched by the DNA immunoprecipitation procedure. Here we apply the same technique to the direct isolation of a functional part of human centromeric DNA from a genomic DNA library. Restriction digestion of two isolated clones showed the typical repeating pattern of an alphoid family that is known to localize at the centromeric region of all human chromosomes. Sequence analysis showed that these two clones frequently contain the authentic CENP-B binding motif, CTTCGTTGGAAACGGGA, or a new one with one base replaced, CTTCGTTGGAAACGGGT. The frequent distribution of these motifs suggests that the isolated sequences are directly involved in the organization of centromeric heterochromatin at the primary constriction in conjunction with CENP-B.
Collapse
Affiliation(s)
- K Sugimoto
- Department of Applied Biochemistry, University of Osaka Prefecture, Japan
| | | | | |
Collapse
|
284
|
Sekine Y, Okada Y, Noda Y, Kondo S, Aizawa H, Takemura R, Hirokawa N. A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally. J Cell Biol 1994; 127:187-201. [PMID: 7929562 PMCID: PMC2120182 DOI: 10.1083/jcb.127.1.187] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To understand the mechanisms of transport for organelles in the axon, we isolated and sequenced the cDNA encoding KIF4 from murine brain, and characterized the molecule biochemically and immunocytochemically. Complete amino acid sequence analysis of KIF4 and ultrastructural studies of KIF4 molecules expressed in Sf9 cells revealed that the protein contains 1,231 amino acid residues (M(r) 139,550) and that the molecule (116-nm rod with globular heads and tail) consists of three domains: an NH2-terminal globular motor domain, a central alpha-helical stalk domain and a COOH-terminal tail domain. KIF4 protein has the property of nucleotide-dependent binding to microtubules, microtubule-activated ATPase activity, and microtubule plus-end-directed motility. Northern blot analysis and in situ hybridization demonstrated that KIF4 is strongly expressed in juvenile tissues including differentiated young neurons, while its expression is decreased considerably in adult mice except in spleen. Immunocytochemical studies revealed that KIF4 colocalized with membranous organelles both in growth cones of differentiated neurons and in the cytoplasm of cultured fibroblasts. During mitotic phase of cell cycle, KIF4 appears to colocalize with membranous organelles in the mitotic spindle. Hence we conclude that KIF4 is a novel microtubule-associated anterograde motor protein for membranous organelles, the expression of which is regulated developmentally.
Collapse
Affiliation(s)
- Y Sekine
- Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
285
|
Wang XM, Yew N, Peloquin JG, Vande Woude GF, Borisy GG. Mos oncogene product associates with kinetochores in mammalian somatic cells and disrupts mitotic progression. Proc Natl Acad Sci U S A 1994; 91:8329-33. [PMID: 8078882 PMCID: PMC44599 DOI: 10.1073/pnas.91.18.8329] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mos protooncogene has opposing effects on cell cycle progression. It is required for reinitiation of meiotic maturation and for meiotic progression through metaphase II, yet it is an active component of cytostatic factor. mos is a potent oncogene in fibroblasts, but high levels of expression are lethal. The lethality of mos gene expression in mammalian cells could be a consequence of a blockage induced by its cytostatic factor-related activity, which may appear at high dosage in mitotic cells. We have directly tested whether expression of the Mos protein can block mitosis in mammalian cells by microinjecting a fusion protein between Escherichia coli maltose-binding protein and Xenopus c-Mos into PtK1 epithelial cells and analyzing the cells by video time-lapse and immunofluorescence microscopy. Time-course analyses showed that Mos blocked mitosis by preventing progression to a normal metaphase. Chromosomes frequently failed to attain a bipolar orientation and were found near one pole. Injection of a kinase-deficient mutant Mos had no effect on mitosis, indicating that the blockage of mitotic progression required Mos kinase activity. Antitubulin immunostaining of cells blocked by Mos showed that microtubules were present but that spindle morphology was abnormal. Immunostaining for the Mos fusion protein showed that both wild-type and kinase mutant proteins localized at the kinetochores. Our results suggest that mitotic blockage by Mos may result from an action of the Mos kinase on the kinetochores, thus increasing chromosome instability and preventing normal congression.
Collapse
Affiliation(s)
- X M Wang
- Laboratory of Molecular Biology, University of Wisconsin, Madison 53706
| | | | | | | | | |
Collapse
|
286
|
Mitsui H, Nakatani K, Yamaguchi-Shinozaki K, Shinozaki K, Nishikawa K, Takahashi H. Sequencing and characterization of the kinesin-related genes katB and katC of Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1994; 25:865-876. [PMID: 8075402 DOI: 10.1007/bf00028881] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Complementary DNAs of two kinesin-related genes, katB and katC, were isolated from Arabidopsis thaliana and sequenced. The carboxyl-terminal regions of the polypeptides encoded by these genes, especially the presumptive ATP-binding and microtubule-binding domains, share significant sequence homology with the mechanochemical motor domain of the kinesin heavy chain. The predicted secondary structures of KatB and KatC proteins include a large globular domain in the carboxyl-terminal region and a small globular domain in the amino-terminal region that are separated by a long alpha-helical coiled-coil with heptad repeats. A truncated KatC polypeptide (KatC(207-754)), which includes the carboxyl-terminal region of KatC, was expressed in Escherichia coli and was shown to possess microtubule-stimulated ATPase activity and to bind to microtubules in an ATP-sensitive manner, both of which are characteristics of kinesin and kinesin-like proteins.
Collapse
Affiliation(s)
- H Mitsui
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
287
|
Liao H, Li G, Yen TJ. Mitotic regulation of microtubule cross-linking activity of CENP-E kinetochore protein. Science 1994; 265:394-8. [PMID: 8023161 DOI: 10.1126/science.8023161] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CENP-E is a kinesin-like protein that is transiently bound to kinetochores during early mitosis, becomes redistributed to the spindle midzone at anaphase, and is degraded after cytokinesis. At anaphase, CENP-E may cross-link the interdigitating microtubules in the spindle midzone through a motor-like binding site at the amino terminus and a 99-amino acid carboxyl-terminal domain that bound microtubules in a distinct manner. Phosphorylation of the carboxyl terminus by the mitotic kinase maturation promoting factor (MPF) inhibited microtubule-binding activity before anaphase. Thus, MPF suppresses the microtubule cross-linking activity of CENP-E until anaphase, when its activity is lost.
Collapse
Affiliation(s)
- H Liao
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | | | | |
Collapse
|
288
|
Print CG, Leung E, Harrison JE, Watson JD, Krissansen GW. Cloning of a gene encoding a human leukocyte protein characterised by extensive heptad repeats. Gene 1994; 144:221-8. [PMID: 8039706 DOI: 10.1016/0378-1119(94)90381-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Complementary DNA (cDNA) clones, encoding a fusion protein that was recognised by an antiserum raised against a purified polypeptide fragment of a 180-kDa human leukocyte protein, were isolated from a lambda gt11 expressed library. The clones encoded a unique amino acid (aa) sequence interspersed with heptad repeats that typify coiled-coil proteins, and hybridised to a 5-kb transcript universally expressed in a panel of eight human tissues. Comparatively high levels of RNA expression were seen in testis, ovary and mitogen-activated peripheral blood leukocytes (PBLs). The deduced 1300-aa sequence reveals a protein with a typical signal peptide, a hydrophilic domain containing an N-terminal globular head with a nuclear localization signal sequence, a C-terminal region of coiled-coil structure, a candidate transmembrane domain, and a short 10-aa C-terminal domain. Rabbit polyclonal antisera raised against a truncated lambda gt11 fusion protein recognized a 150-170-kDa protein (non-reduced) in mitogen-activated PBLs. The protein designated here as CG-1 may exist as a homodimer destined for translocation to the nucleus, with a role in leukocyte differentiation and/or effector function.
Collapse
Affiliation(s)
- C G Print
- Department of Molecular Medicine, University of Auckland, New Zealand
| | | | | | | | | |
Collapse
|
289
|
Yeo JP, Forer A, Toh BH. A homologue of the human regulator of mitotic spindle assembly protein (RMSA-1) is present in crane fly and is associated with meiotic chromosomes. J Cell Sci 1994; 107 ( Pt 7):1845-51. [PMID: 7983151 DOI: 10.1242/jcs.107.7.1845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous study, we have shown that a newly identified chromosomal protein, RMSA-1 (Regulator of Mitotic Spindle Assembly-1), identified and cloned using a human autoimmune, serum, is essential for mitotic spindle assembly; we proposed that RMSA-1 was a previously unknown physiological substrate for cdc 2 kinase. In the present study, we show that this protein is present in crane fly and is associated with the chromosomes of spermatocytes. A 31 kDa molecule in extracts from crane-fly nuclei, isolated from larvae, pupae and adults, reacts with affinity-purified anti-RMSA-1 autoantibody, shown by immunoblotting. The autoantibody reacts, as shown by immunofluorescence, with crane-fly spermatocyte chromosomes in prophase through anaphase of both meiosis-1 and meiosis-II but does not react with preprophase or telophase nuclei or with spermatid nuclei. In all meiotic stages, the crane-fly sex chromosomes stain more intensely than the autosomes. We conclude that, since RMSA-1 is present in insect and mammalian cells, it is conserved across a variety of animal species. Further, since RMSA-1 binds to chromosomes in meiotic cells, it also may be essential for assembly of the meiotic spindle.
Collapse
Affiliation(s)
- J P Yeo
- Department of Pathology, Monash University Medical School, Prahran, Victoria, Australia
| | | | | |
Collapse
|
290
|
Sluder G, Miller FJ, Thompson EA, Wolf DE. Feedback control of the metaphase-anaphase transition in sea urchin zygotes: role of maloriented chromosomes. J Cell Biol 1994; 126:189-98. [PMID: 8027177 PMCID: PMC2120099 DOI: 10.1083/jcb.126.1.189] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To help ensure the fidelity of chromosome transmission during mitosis, sea urchin zygotes have feedback control mechanisms for the metaphase-anaphase transition that monitor the assembly of spindle microtubules and the complete absence of proper chromosome attachment to the spindle. The way in which these feedback controls work has not been known. In this study we directly test the proposal that these controls operate by maloriented chromosomes producing a diffusible inhibitor of the metaphase-anaphase transition. We show that zygotes having 50% of their chromosomes (approximately 20) unattached or monoriented initiate anaphase at the same time as the controls, a time that is well within the maximum period these zygotes will spend in mitosis. In vivo observations of the unattached maternal chromosomes indicate that they are functionally within the sphere of influence of the molecular events that cause chromosome disjunction in the spindle. Although the unattached chromosomes disjoin (anaphase onset without chromosome movement) several minutes after spindle anaphase onset, their disjunction is correlated with the time of spindle anaphase onset, not the time their nucleus breaks down. This suggests that the molecular events that trigger chromosome disjunction originate in the central spindle and propagate outward. Our results show that the mechanisms for the feedback control of the metaphase-anaphase transition in sea urchin zygotes do not involve a diffusible inhibitor produced by maloriented chromosomes. Even though the feedback controls for the metaphase-anaphase transition may detect the complete absence of properly attached chromosomes, they are insensitive to unattached or mono-oriented chromosomes as long as some chromosomes are properly attached to the spindle.
Collapse
Affiliation(s)
- G Sluder
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | | | | | |
Collapse
|
291
|
Goodson HV, Kang SJ, Endow SA. Molecular phylogeny of the kinesin family of microtubule motor proteins. J Cell Sci 1994; 107 ( Pt 7):1875-84. [PMID: 7983154 DOI: 10.1242/jcs.107.7.1875] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The rapidly expanding kinesin family of microtubule motor proteins includes proteins that are involved in diverse microtubule-based functions in the cell. Phylogenetic analysis of the motor regions of the kinesin proteins reveals at least five clearly defined groups that are likely to identify kinesins with different roles in basic cellular processes. Two of the groups are consistent with overall sequence similarity, while two groups contain proteins that are related in overall structure or function but show no significant sequence similarity outside the motor domain. One of these groups consists only of kinesin proteins with predicted C-terminal motor domains; another includes only kinesins required for mitotic spindle bipolarity. Drosophila Nod, presently an ungrouped protein, may represent a class of kinesins that, like the myosin I proteins, function as monomers. The analysis indicates that many types of kinesin proteins exist in eukaryotic organisms. At least two of the five groups identified in this analysis are expected to be present in most, or all, eukaryotes.
Collapse
Affiliation(s)
- H V Goodson
- Department of Biochemistry, Stanford University Medical School, CA 94305
| | | | | |
Collapse
|
292
|
Brown KD, Coulson RM, Yen TJ, Cleveland DW. Cyclin-like accumulation and loss of the putative kinetochore motor CENP-E results from coupling continuous synthesis with specific degradation at the end of mitosis. J Biophys Biochem Cytol 1994; 125:1303-12. [PMID: 8207059 PMCID: PMC2290920 DOI: 10.1083/jcb.125.6.1303] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CENP-E is a kinesin-like protein that binds to kinetochores through the early stages of mitosis, but after initiation of anaphase, it relocalizes to the overlapping microtubules in the midzone, ultimately concentration in the developing midbody. By immunoblotting of cells separated at various positions in the cell cycle using centrifugal elutriation, we show that CENP-E levels increase progressively across the cycle peaking at approximately 22,000 molecules/cell early in mitosis, followed by an abrupt (> 10 fold) loss at the end of mitosis. Pulse-labeling with [35S]methionine reveals that beyond a twofold increase in synthesis between G1 and G2, interphase accumulation results primarily from stabilization of CENP-E during S and G2. Despite localizing in the midbody during normal cell division, CENP-E loss at the end of mitosis is independent of cytokinesis, since complete blockage of division with cytochalasin has no affect on CENP-E loss at the M/G1 transition. Thus, like mitotic cyclins, CENP-E accumulation peaks before cell division, and it is specifically degraded at the end of mitosis. However, CENP-E degradation kinetically follows proteolysis of cyclin B in anaphase. Combined with cyclin A destruction before the end of metaphase, degradation of as yet unidentified components at the metaphase/anaphase transition, and cyclin B degradation at or after the anaphase transition, CENP-E destruction defines a fourth point in a mitotic cascade of timed proteolysis.
Collapse
Affiliation(s)
- K D Brown
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | |
Collapse
|
293
|
Bernstein M, Beech PL, Katz SG, Rosenbaum JL. A new kinesin-like protein (Klp1) localized to a single microtubule of the Chlamydomonas flagellum. J Biophys Biochem Cytol 1994; 125:1313-26. [PMID: 8207060 PMCID: PMC2290928 DOI: 10.1083/jcb.125.6.1313] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The kinesin superfamily of mechanochemical proteins has been implicated in a wide variety of cellular processes. We have begun studies of kinesins in the unicellular biflagellate alga, Chlamydomonas reinhardtii. A full-length cDNA, KLP1, has been cloned and sequenced, and found to encode a new member of the kinesin superfamily. An antibody was raised against the nonconserved tail region of the Klp1 protein, and it was used to probe for Klp1 in extracts of isolated flagella and in situ. Immunofluorescence of whole cells indicated that Klp1 was present in both the flagella and cell bodies. In wild-type flagella, Klp1 was found tightly to the axoneme; immunogold labeling of wild-type axonemal whole mounts showed that Klp1 was restricted to one of the two central pair microtubules at the core of the axoneme. Klp1 was absent from the flagella of mutants lacking the central pair microtubules, but was present in mutant flagella from pf16 cells, which contain an unstable C1 microtubule, indicating that Klp1 was bound to the C2 central pair microtubule. Localization of Klp1 to the C2 microtubule was confirmed by immunogold labeling of negatively stained and thin-sectioned axonemes. These findings suggest that Klp1 may play a role in rotation or twisting of the central pair microtubules.
Collapse
Affiliation(s)
- M Bernstein
- Department of Biology, Yale University, New Haven, Connecticut 06520-8103
| | | | | | | |
Collapse
|
294
|
Tomkiel J, Cooke CA, Saitoh H, Bernat RL, Earnshaw WC. CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J Cell Biol 1994; 125:531-45. [PMID: 8175879 PMCID: PMC2119987 DOI: 10.1083/jcb.125.3.531] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The human autoantigen CENP-C has been demonstrated by immunoelectron microscopy to be a component of the inner kinetochore plate. Here we have used antibodies raised against various portions of CENP-C to probe its function in mitosis. We show that nuclear microinjection of anti-CENP-C antibodies during interphase causes a transient arrest at the following metaphase. Injection of the same antibodies after the initiation of prophase, however, does not disrupt mitosis. Correspondingly, indirect immunofluorescence using affinity-purified human anti-CENP-C antibodies reveals that levels of CENP-C staining are reduced at centromeres in cells that were injected during interphase, but appear unaffected in cells which were injected during mitosis. Thus, we suggest that the injected antibodies cause metaphase arrest by reducing the amount of CENP-C at centromeres. Examination of kinetochores in metaphase-arrested cells by electron microscopy reveals that the number of trilaminar structures is reduced. More surprisingly, the few remaining kinetochores in these cells retain a normal trilaminar morphology but are significantly reduced in diameter. In cells arrested for extended periods, these small kinetochores become disrupted and apparently no longer bind microtubules. These observations are consistent with an involvement of CENP-C in kinetochore assembly, and suggest that CENP-C plays a critical role in both establishing and/or maintaining proper kinetochore size and stabilizing microtubule attachments. These findings also support the idea that proper assembly of kinetochores may be monitored by the cell cycle checkpoint preceding the transition to anaphase.
Collapse
Affiliation(s)
- J Tomkiel
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | |
Collapse
|
295
|
Abstract
The advent of video computer-enhanced microscopy has provided a new vision of cell migrations, growth cones, and fast axonal transport in the nervous system. In images obtained in studies of fast transport in isolated axoplasm from the squid giant axon, a virtual torrent of membrane traffic could be seen moving in both directions. Similarly, examination of growth cones and cell migrations in vitro and in vivo revealed properties of cell motility that were previously unsuspected. Evidence has accumulated that many of these activities are driven by a variety of microtubule and microfilament based motors.
Collapse
Affiliation(s)
- J A Mercer
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas 75235-9111
| | | | | |
Collapse
|
296
|
Wandall A. A stable dicentric chromosome: both centromeres develop kinetochores and attach to the spindle in monocentric and dicentric configuration. Chromosoma 1994; 103:56-62. [PMID: 8013256 DOI: 10.1007/bf00364726] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A stable, dicentric human chromosome, which is known from light microscopy to show a 50:50 distribution between monocentric/dicentric appearance, was examined by conventional electron microscopy and after labelling the centromere with anticentromere antibodies from CREST serum. Both centromeres of the chromosome developed kinetochores whether in monocentric or dicentric configuration. The eight monocentrics observed had all developed kinetochores at the centromere outside the constriction; at least six of them also had kinetochores at the centromere in the constriction. The dicentrics from glutaraldehyde fixed cells had spindle microtubules attached to both kinetochore sets irrespective of monocentric/dicentric configuration. The chromosome thus appeared to use both centromeres, either equally or with one serving a chromatid adhesion function while the second was used for transport along the spindle.
Collapse
Affiliation(s)
- A Wandall
- Institute of Medical Biochemistry and Genetics, Panum Institute, Copenhagen N, Denmark
| |
Collapse
|
297
|
Abstract
Kinesin is but one member of a large superfamily of microtubule-based motor proteins. This diverse group of motors drives a number of essential subcellular movements, including transport of membranous organelles and mitotic spindle functions. Recent observations have revealed examples of functional cooperativity and antagonism between different kinesin-related motors.
Collapse
Affiliation(s)
- M A Hoyt
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
298
|
Rieder CL, Salmon ED. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J Cell Biol 1994; 124:223-33. [PMID: 8294508 PMCID: PMC2119939 DOI: 10.1083/jcb.124.3.223] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We argue that hypotheses for how chromosomes achieve a metaphase alignment, that are based solely on a tug-of-war between poleward pulling forces produced along the length of opposing kinetochore fibers, are no longer tenable for vertebrates. Instead, kinetochores move themselves and their attached chromosomes, poleward and away from the pole, on the ends of relatively stationary but shortening/elongating kinetochore fiber microtubules. Kinetochores are also "smart" in that they switch between persistent constant-velocity phases of poleward and away from the pole motion, both autonomously and in response to information within the spindle. Several molecular mechanisms may contribute to this directional instability including kinetochore-associated microtubule motors and kinetochore microtubule dynamic instability. The control of kinetochore directional instability, to allow for congression and anaphase, is likely mediated by a vectorial mechanism whose magnitude and orientation depend on the density and orientation or growth of polar microtubules. Polar microtubule arrays have been shown to resist chromosome poleward motion and to push chromosomes away from the pole. These "polar ejection forces" appear to play a key role in regulating kinetochore directional instability, and hence, positions achieved by chromosomes on the spindle.
Collapse
Affiliation(s)
- C L Rieder
- Wadsworth Center for Laboratories and Research, Albany, New York 12201-0509
| | | |
Collapse
|
299
|
Fletcher HL. The radial positions of metaphase chromosomes may be a consequence of the relative strength of their interaction with the spindle and their size. Chromosome Res 1994; 2:21-4. [PMID: 8162316 DOI: 10.1007/bf01539449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microtubule oriented forces acting on chromosomes on spindles in mitosis and meiosis will produce a radial component of force in the plane of the metaphase plate. The strength of this vector will depend on the angle at which the microtubule meets the plate. Radial forces will tend to segregate chromosomes to peripheral or central positions, depending on their size, and also on the strength of the activity of individual centromeres. In prometaphase, forces pushing chromosomes from the poles will tend to force them to the periphery of the metaphase plate, as seen in radial metaphases. Tension towards the poles at late metaphase will pull smaller chromosomes and those with more powerfully active kinetochores towards the centre of the plate. If the two genomes in a hybrid cell have different centromeric activities, their chromosomes will be segregated. Microtubule assembly and disassembly, and motor proteins such as the kinesins and dynein which haul organelles along microtubules, can provide forces in both directions.
Collapse
Affiliation(s)
- H L Fletcher
- School of Biology and Biochemistry, Queens University of Belfast, Medical Biology Centre, UK
| |
Collapse
|
300
|
Ando A, Kikuti YY, Kawata H, Okamoto N, Imai T, Eki T, Yokoyama K, Soeda E, Ikemura T, Abe K. Cloning of a new kinesin-related gene located at the centromeric end of the human MHC region. Immunogenetics 1994; 39:194-200. [PMID: 8276466 DOI: 10.1007/bf00241260] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We previously reported the presence of a new gene (HSET) with an unknown function, in the centromeric side of the class II gene region of the human major histocompatibility complex (MHC). cDNA clones corresponding to the HSET gene were isolated from a human testis cDNA library. A 2.4 kilobase transcript from the HSET gene was abundantly expressed in testis, B-cell, T-cell, and ovary cell lines but was not detected in lung or stomach. Analysis of the nucleotide sequence of the HSET cDNA clones revealed significant similarity to kinesin-related proteins in yeast, Drosophila, and human. Its predicted amino acid sequence contains a domain with strong sequence similarity to the ATP-binding and motor domains of a plus end-directed microtubule motor protein, kinesin, which might be involved in mitotic chromosome segregation, suggesting that the HSET gene encodes a novel kinesin-related protein.
Collapse
Affiliation(s)
- A Ando
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|