251
|
Ge D, Jing Q, Meng N, Su L, Zhang Y, Zhang S, Miao J, Zhao J. Regulation of apoptosis and autophagy by sphingosylphosphorylcholine in vascular endothelial cells. J Cell Physiol 2011; 226:2827-33. [PMID: 21302284 DOI: 10.1002/jcp.22632] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingosylphosphorylcholine (SPC), an important cardiovascular mediator derived from sphingomyelin that has atheroprotective effects via actions on vascular endothelial cells (VECs) at normal levels in vivo. However, the underlying mechanism is not well known. To clarify this question, we first investigated the effect of SPC on VEC apoptosis and autophagy induced by deprivation of serum and fibroblast growth factor 2 (FGF-2). SPC at 5-20 µM inhibited apoptosis and induced autophagy in vitro. To understand the underlying mechanism, we investigated the role of integrin β4 in SPC-induced autophagy in VECs. SPC significantly decreased the level of integrin β4, whereas overexpression of integrin β4 inhibited SPC-induced autophagy. Moreover, knockdown of integrin β4 promoted VEC autophagy. To understand the downstream factors of integrin β4 in this process, we observed the effects of SPC on phosphatidylcholine-specific phospholipase C (PC-PLC) activity and level of p53. PC-PLC activity and p53 level in cytoplasm was decreased during autophagy induced by SPC, and knockdown of integrin β4 inhibited the activity of PC-PLC and the cytoplasmic level of p53. SPC may promote autophagy via integrin β4. Moreover, PC-PLC and p53 may be the downstream factors of integrin β4 in autophagy of VECs deprived of serum and FGF-2.
Collapse
Affiliation(s)
- Di Ge
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
252
|
Omatsu-Kanbe M, Yamamoto T, Matsuura H. Autophagy is constitutively active in normal mouse sino-atrial nodal cells. Acta Histochem Cytochem 2011; 44:223-31. [PMID: 22096262 PMCID: PMC3210427 DOI: 10.1267/ahc.11030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 07/07/2011] [Indexed: 01/22/2023] Open
Abstract
This study was designed to examine the autophagy in sino-atrial (SA) nodal cells from the normal adult mouse heart. Autophagy is the cellular process responsible for the degradation and recycling of long-lived and/or damaged cytoplasmic components by lysosomal digestion. In the heart, autophagy is known to occur at a low level under physiological conditions, but to become upregulated when cells are exposed to certain stresses, such as ischemia. We examined whether the basal level of autophagy in SA nodal cells was different from that in ventricular or atrial myocytes. An ultrastructural analysis revealed that the SA nodal cells contained a number of autophagic vacuoles (autophagosomes) with various stages of degradation by lysosomal digestion, whereas the number of those in ventricular or atrial myocytes was either negligible or very small. The immunostaining of autophagosome marker microtubule-associated protein 1 light chain 3 (LC3) and lysosome marker lysosome-associated membrane protein 1 (LAMP1) indicated that the content of both autophagosomes and lysosomes were much greater in SA nodal cells than in ordinary cardiomyocytes. Our results provide evidence that the autophagy is active in normal SA nodal cells, which is not a stress-activated process but a constitutive event in the mouse heart.
Collapse
|
253
|
Wang X, Li J, Zheng H, Su H, Powell SR. Proteasome functional insufficiency in cardiac pathogenesis. Am J Physiol Heart Circ Physiol 2011; 301:H2207-19. [PMID: 21949118 DOI: 10.1152/ajpheart.00714.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ubiquitin-proteasome system (UPS) is responsible for the degradation of most cellular proteins. Alterations in cardiac UPS, including changes in the degradation of regulatory proteins and proteasome functional insufficiency, are observed in many forms of heart disease and have been shown to play an important role in cardiac pathogenesis. In the past several years, remarkable progress in understanding the mechanisms that regulate UPS-mediated protein degradation has been achieved. A transgenic mouse model of benign enhancement of cardiac proteasome proteolytic function has been created. This has led to the first demonstration of the necessity of proteasome functional insufficiency in the genesis of important pathological processes. Cardiomyocyte-restricted enhancement of proteasome proteolytic function by overexpression of proteasome activator 28α protects against cardiac proteinopathy and myocardial ischemia-reperfusion injury. Additionally, exciting advances have recently been achieved in the search for a pharmacological agent to activate the proteasome. These breakthroughs are expected to serve as an impetus to further investigation into the involvement of UPS dysfunction in molecular pathogenesis and to the development of new therapeutic strategies for combating heart disease. An interplay between the UPS and macroautophagy is increasingly suggested in noncardiac systems but is not well understood in the cardiac system. Further investigations into the interplay are expected to provide a more comprehensive picture of cardiac protein quality control and degradation.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, Protein Quality Control and Degradation Research Center, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | | | | | | | | |
Collapse
|
254
|
Herman EH, Knapton A, Rosen E, Thompson K, Rosenzweig B, Estis J, Agee S, Lu QA, Todd JA, Lipshultz S, Hasinoff B, Zhang J. A multifaceted evaluation of imatinib-induced cardiotoxicity in the rat. Toxicol Pathol 2011; 39:1091-106. [PMID: 21937741 DOI: 10.1177/0192623311419524] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiotoxicity was an unanticipated side effect elicited by the clinical use of imatinib (Imb). This toxicity has been examined in only a limited number of experimental studies. The present study sought, by a variety of approaches, to identify important characteristics of Imb-induced cardiac alterations. Male spontaneously hypertensive rats (SHRs) received oral doses of 10, 30, or 50 mg/kg Imb or water daily for 10 d. Cardiac lesions, detected at all doses, were characterized by cytoplasmic vacuolization and myofibrillar loss. In a second experiment, cardiac lesions were found in Sprague Dawley (SD) and SHR rats given 50 or 100 mg/kg Imb for 14 d. Mean cardiac lesion scores and serum levels of cardiac troponin I were higher in SHRs than in SD rats. Imb induced myocyte death by necrosis, autophagy, and apoptosis. Dose-related increases in cardiac expression were observed for several genes associated with endoplasmic reticulum stress response, protein folding, and vascular development and remodeling. Imb caused alterations in isolated myocytes (myofibrillar loss, highly disrupted and disorganized sarcomeric α-actinin, apoptosis, and increased lactate dehydrogenase release) at low concentrations (5 mM). The authors conclude that Imb exerts cardiotoxic effects that are manifest through a complex pattern of cellular alterations, the severity of which can be influenced by arterial blood pressure.
Collapse
Affiliation(s)
- Eugene H Herman
- Food and Drug Administration, Division of Applied Pharmacology Research, Silver Spring, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Impaired cardiac autophagy in patients developing postoperative atrial fibrillation. J Thorac Cardiovasc Surg 2011; 143:451-9. [PMID: 21885071 DOI: 10.1016/j.jtcvs.2011.07.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 07/06/2011] [Accepted: 07/26/2011] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Postoperative atrial fibrillation (POAF) is a common complication after on-pump heart surgery. Several histologic abnormalities, such as interstitial fibrosis and vacuolization, have been described in atrial samples from patients developing POAF. This ultrastructural remodeling has been associated with the establishment of a proarrhythmic substrate. We studied whether atrial autophagy is activated in patients who develop POAF. METHODS A total of 170 patients in sinus rhythm who had undergone elective coronary artery bypass grafting were included. Systemic inflammatory markers were measured at baseline and 72 hours after surgery. During the procedure, samples of the right atrial appendages were obtained for evaluation of remodeling by light and electron microscopy. Protein ubiquitination and autophagy-related LC3B processing were assessed by Western blot. RESULTS Of these patients, 22% developed POAF. The level of high-sensitivity C-reactive protein, fibrosis, inflammation, myxoid degeneration, and ubiquitin-aggregates in the atria did not differ between patients with and without POAF. Electron microphotographs of those with POAF showed a significant accumulation of autophagic vesicles and lipofuscin deposits. Total protein ubiquitination was similar in the patients with and without POAF, but LC3B processing was markedly reduced in those with POAF, suggesting a selective impairment in autophagic flow. CONCLUSIONS This study provides novel evidence that ultrastructural atrial remodeling characterized by an impaired cardiac autophagy is present in patients developing POAF after coronary artery bypass surgery.
Collapse
|
256
|
Abstract
Chronic heart failure continues to impose a substantial health-care burden, despite recent treatment advances. The key pathophysiological process that ultimately leads to chronic heart failure is cardiac remodelling in response to chronic disease stresses. Here, we review recent advances in our understanding of molecular and cellular mechanisms that play a part in the complex remodelling process, with a focus on key molecules and pathways that might be suitable targets for therapeutic manipulation. Such pathways include those that regulate cardiac myocyte hypertrophy, calcium homoeostasis, energetics, and cell survival, and processes that take place outside the cardiac myocyte--eg, in the myocardial vasculature and extracellular matrix. We also discuss major gaps in our current understanding, take a critical look at conventional approaches to target discovery that have been used to date, and consider new investigational avenues that might accelerate clinically relevant discovery.
Collapse
Affiliation(s)
- Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, UK.
| | | |
Collapse
|
257
|
Huang Y, Zhou M, Sun H, Wang Y. Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovasc Res 2011; 90:220-3. [PMID: 21502372 DOI: 10.1093/cvr/cvr070] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metabolic remodelling is an integral part of the pathogenesis of heart failure. Although much progress has been made in our current understanding of the metabolic impairment involving carbohydrates and fatty acids in failing hearts, relatively little is known about the changes and potential impact of amino acid metabolism in the onset of heart diseases. Although most amino acid catabolic activities are found in the liver, branched-chain amino acid (BCAA) catabolism requires activity in several non-hepatic tissues, including cardiac muscle, diaphragm, brain and kidney. In this review, the new insights into the regulation of cardiac BCAA catabolism and functional impact on cardiac development and physiology will be discussed along with the potential contribution of impairment in BCAA catabolism to heart diseases. A particular focus will be the new information obtained from recently developed genetic models with BCAA catabolic defects and metabolomic studies in human and animal models. These studies have revealed the potential role of BCAA catabolism in cardiac pathophysiology and have helped to distinguish BCAA metabolic defects as an under-appreciated culprit in cardiac diseases rather than an epiphenomenon associated with metabolic remodelling in the failing heart.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
258
|
Smuder AJ, Kavazis AN, Min K, Powers SK. Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. J Appl Physiol (1985) 2011; 111:1190-8. [PMID: 21778418 DOI: 10.1152/japplphysiol.00429.2011] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Doxorubicin (DOX) is an effective antitumor agent used in cancer treatment. Unfortunately, DOX is also toxic to skeletal muscle and can result in significant muscle wasting. The cellular mechanism(s) by which DOX induces toxicity in skeletal muscle fibers remains unclear. Nonetheless, DOX-induced toxicity is associated with increased generation of reactive oxygen species, oxidative damage, and activation of the calpain and caspase-3 proteolytic systems within muscle fibers. It is currently unknown if autophagy, a proteolytic system that can be triggered by oxidative stress, is activated in skeletal muscles following DOX treatment. Therefore, we tested the hypothesis that systemic administration of DOX leads to increased expression of autophagy markers in the rat soleus muscle. Our results reveal that DOX administration results in increased muscle mRNA levels and/or protein abundance of several important autophagy proteins, including: Beclin-1, Atg12, Atg7, LC3, LC3II-to-LCI ratio, and cathepsin L. Furthermore, given that endurance exercise increases skeletal muscle antioxidant capacity and protects muscle against DOX-induced oxidative stress, we performed additional experiments to determine whether exercise training before DOX administration would attenuate DOX-induced increases in expression of autophagy genes. Our results clearly show that exercise can protect skeletal muscle from DOX-induced expression of autophagy genes. Collectively, our findings indicate that DOX administration increases the expression of autophagy genes in skeletal muscle, and that exercise can protect skeletal muscle against DOX-induced activation of autophagy.
Collapse
Affiliation(s)
- Ashley J Smuder
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida, USA
| | | | | | | |
Collapse
|
259
|
Cardiomyocyte hypertrophy, oncosis, and autophagic vacuolization predict mortality in idiopathic dilated cardiomyopathy with advanced heart failure. J Am Coll Cardiol 2011; 57:1523-31. [PMID: 21453830 DOI: 10.1016/j.jacc.2010.09.080] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The aim of this study was to identify the remodeling parameters cardiomyocyte (CM) damage or death, hypertrophy, and fibrosis that may be linked to outcomes in patients with advanced heart failure (HF) in an effort to understand the pathogenic mechanisms of HF that may support newer therapeutic modalities. BACKGROUND There are controversial results on the influence of fibrosis, CM hypertrophy, and apoptosis on outcomes in patients with HF; other modalities of cell damage have been poorly investigated. METHODS In endomyocardial biopsy specimens from 100 patients with idiopathic dilated cardiomyopathy and advanced HF, CM diameter and the extent of fibrosis were determined by morphometry. The proportion of CMs with evidence of apoptosis, autophagic vacuolization (AuV), and oncosis was investigated by immunohistochemical methods and by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling. Those parameters were correlated with mortality in 3 years of follow-up by univariate analysis and with multivariate models incorporating the clinical variables more relevant to the prediction of outcomes. RESULTS CM AuV occurred in 28 patients (0.013 ± 0.012%) and oncosis in 41 (0.109 ± 0.139%). Nineteen patients showed both markers. Apoptotic CM nuclei were observed in 3 patients. In univariate analysis, CM diameter and AuV, either alone or associated with oncosis, were predictors of mortality. In multivariate analysis, CM diameter (hazard ratio: 1.37; 95% confidence interval: 1.12 to 1.68; p = 0.002) and simultaneous presence in the same endomyocardial biopsy specimen of AuV and oncosis (hazard ratio: 2.82; 95% confidence interval: 1.12 to 7.13; p = 0.028) were independent predictors of mortality. CONCLUSIONS CM hypertrophy and AuV, especially in association with oncosis, are predictors of outcome in patients with idiopathic dilated cardiomyopathy and severe HF.
Collapse
|
260
|
Abstract
Heart failure is a progressive disease, leading to reduced quality of life and premature death. Adverse ventricular remodeling involves changes in the balance between cardiomyocyte protein synthesis and degradation, forcing these myocytes in equilibrium between life and death. In this context, autophagy has been recognized to play a role in the pathophysiology of heart failure. At basal levels, autophagy performs housekeeping functions, maintaining cardiomyocyte function and ventricular mass. Autophagy also occurs in the failing human heart, and upregulation has been reported in animal models of pressure overload-induced heart failure. Although the factors that determine whether autophagy will be protective or detrimental are not well known, the level and duration of autophagy seem important. Autophagy may antagonize ventricular hypertrophy by increasing protein degradation, which decreases tissue mass. However, the rate of protective autophagy declines with age. The inability to remove damaged structures results in the progressive accumulation of 'garbage', including abnormal intracellular proteins aggregates and undigested materials such as lipofuscin. Eventually, the progress of these changes results in enhanced oxidative stress, decreased ATP production, collapse of the cellular catabolic machinery, and cell death. By contrast, in load-induced heart failure, the extent of autophagic flux can rise to maladaptive levels. Excessive autophagy induction leads to autophagic cell death and loss of cardiomyocytes and may contribute to the worsening of heart failure. Accordingly, the development of therapies that up-regulate the repair qualities of the autophagic process and down-regulate the cell death aspects would be of great value in the treatment of heart failure.
Collapse
Affiliation(s)
- Guido R Y De Meyer
- Division of Pharmacology, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | | | | |
Collapse
|
261
|
Hariharan N, Zhai P, Sadoshima J. Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal 2011; 14:2179-90. [PMID: 20812860 PMCID: PMC3085947 DOI: 10.1089/ars.2010.3488] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Autophagy is a bulk degradation process in which cytosolic proteins and organelles are degraded through lysosomes. To evaluate autophagic flux in cardiac myocytes, we generated adenovirus and cardiac-specific transgenic mice harboring tandem fluorescent mRFP-GFP-LC3. Starvation significantly increased the number of mRFP-GFP-LC3 dots representing both autophagosomes and autolysosomes per cell, suggesting that autophagic flux is increased in cardiac myocytes. H(2)O(2) significantly increased autophagic flux, which was attenuated in the presence of N-2-mercaptopropionyl glycine (MPG), an antioxidant, suggesting that oxidative stress stimulates autophagy in cardiac myocytes. Myocardial ischemia/reperfusion (I/R) increased both autophagosomes and autolysosomes, thereby increasing autophagic flux. Treatment with MPG attenuated I/R-induced increases in oxidative stress, autophagic flux, and Beclin-1 expression, accompanied by a decrease in the size of myocardial infarction (MI)/area at risk (AAR), suggesting that oxidative stress plays an important role in mediating autophagy and myocardial injury during I/R. MI/AAR after I/R was significantly reduced in beclin1(+/-) mice, whereas beclin1(+/-) mice treated with MPG exhibited no additional reduction in the size of MI/AAR after I/R. These results suggest that oxidative stress plays an important role in mediating autophagy during I/R, and that activation of autophagy through oxidative stress mediates myocardial injury in response to I/R in the mouse heart.
Collapse
Affiliation(s)
- Nirmala Hariharan
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, UMDNJ, New Jersey Medical School, New Jersey, USA
| | | | | |
Collapse
|
262
|
Xiao J, Zhu X, He B, Zhang Y, Kang B, Wang Z, Ni X. MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J Biomed Sci 2011; 18:35. [PMID: 21631941 PMCID: PMC3127824 DOI: 10.1186/1423-0127-18-35] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 06/01/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Autophagy plays a significant role in myocardial ischemia-reperfusion (IR) injury. So it is important to inhibit autophagy to protect cardiomyocytes besides anti-apoptosis. MiRNA has been demonstrated to protect cardiomyocytes against apoptosis during IR, while whether it has anti-autophagy effect has not been known. The aim of this study was to investigate whether miR-204 regulated autophagy by regulating LC3-II protein, which is the marker of autophagosome during myocardial IR injury. METHODS Adult SD rats were randomized to Control and IR groups. IR group was treated with 30 min ischemia by ligating the left anterior descending coronary artery, followed by 2 h reperfusion by loosing the ligation. The expression of miR-204 was measured by RT-PCR, and LC3 protein was measured by western-blot. RESULTS We found that IR induced cardiomyocytes autophagy, together with down-regulation of miR-204 and up-regulation of LC3-II protein. And, we have found that LC3-II protein was regulated by miR-204, using the method of transferring miR-204 mimic or AMO-204 into the cardiomyocytes, before. CONCLUSIONS These studies provided evidence that miR-204 played an important role in regulating autophagy through LC3-IIprotein during IR.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, the second military medical university, Fengyang road 415#, shanghai, China, 200003
| | - Xiaoyan Zhu
- Department of Physiology, the second military medical university, Xiangyin road 800#, Shanghai, China, 200433
| | - Bin He
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Kongjiang road 1665#, Shanghai, China, 200092
| | - Yufeng Zhang
- Department of Cardiothoracic Surgery, Changzheng Hospital, the second military medical university, Fengyang road 415#, shanghai, China, 200003
| | - Bo Kang
- Department of Cardiothoracic Surgery, Changzheng Hospital, the second military medical university, Fengyang road 415#, shanghai, China, 200003
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, the second military medical university, Fengyang road 415#, shanghai, China, 200003
| | - Xin Ni
- Department of Physiology, the second military medical university, Xiangyin road 800#, Shanghai, China, 200433
| |
Collapse
|
263
|
Yang YF, Wu CC, Chen WP, Chen YL, Su MJ. Prazosin induces p53-mediated autophagic cell death in H9C2 cells. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:209-16. [PMID: 21614555 DOI: 10.1007/s00210-011-0657-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/11/2011] [Indexed: 12/22/2022]
Abstract
Prazosin, a quinazoline-based α(1)-adrenoceptor antagonist, is known to induce cell death, and this effect is independent of its α-blockade activity. However, the detailed molecular mechanisms involved are still not fully understood. In this study, we found that prazosin, but not doxazosin, could induce patterns of autophagy in H9C2 cells, including intracellular vacuole formation, microtubule-associated protein 1 light chain 3 (LC3) conversion, and acidic vesicular organelle (AVO) augmentation. Western blot analysis of phosphorylated proteins showed that exposure to prazosin increased the levels of phospho-p53 and phospho-adenosine monophosphate-activated protein kinase (AMPK) but dramatically decreased the levels of phospho-mammalian target of rapamycin (mTOR), phospho-protein kinase B (Akt), and phospho-ribosomal protein S6 kinase (p70S6K). Furthermore, although pretreatments with the pharmacological autophagy inhibitor 3-methyladenine and the p53 inhibitor pifithrin-α suppressed prazosin-induced AVO formation, they did not reverse prazosin-induced decline in cell viability but enhanced prazosin-induced caspase-3 activation. From these results we suggest that prazosin induces autophagic cell death via a p53-mediated mechanism. When the autophagy pathway was inhibited, prazosin still induced programmed cell death, at least in part through apoptotic caspase-3 cascade enhancement. Thus, our results indicate a potential new target in prazosin-induced cell death.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1 Sec. 1 Jen-Ai Road, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
264
|
Pattison JS, Osinska H, Robbins J. Atg7 induces basal autophagy and rescues autophagic deficiency in CryABR120G cardiomyocytes. Circ Res 2011; 109:151-60. [PMID: 21617129 DOI: 10.1161/circresaha.110.237339] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE Increasing evidence suggests that misfolded proteins and intracellular aggregates contribute to cardiac disease and heart failure. Several cardiomyopathies, including the αB-crystallin R120G mutation (CryAB(R120G)) model of desmin-related cardiomyopathy, accumulate cytotoxic misfolded proteins in the form of preamyloid oligomers and aggresomes. Impaired autophagic function is a potential cause of misfolded protein accumulations, cytoplasmic aggregate loads, and cardiac disease. Atg7, a mediator of autophagosomal biogenesis, is a putative regulator of autophagic function. OBJECTIVE To determine whether autophagic induction by Atg7 is sufficient to reduce misfolded protein and aggregate content in protein misfolding-stressed cardiomyocytes. METHODS AND RESULTS To define the gain and loss of function effects of Atg7 expression on CryAB(R120G) protein misfolding and aggregates, neonatal rat cardiomyocytes were infected with adenoviruses expressing either wild-type CryAB or CryAB(R120G) and coinfected with Atg7 adenovirus or with Atg7 silencing siRNAs to produce gain-of or loss-of Atg7 function. Atg7 overexpression effectively induced basal autophagy with no detrimental effects on cell survival, suggesting that Atg7 can activate autophagy with no apparent cytotoxic effects. Autophagic flux assays on CryAB(R120G)-expressing cardiomyocytes revealed reduced autophagic function, which probably contributed to the failure of misfolded proteins and aggregates to be cleared. Coexpression of Atg7 and CryAB(R120G) significantly reduced preamyloid oligomer staining, aggregate content, and cardiomyocyte cytotoxicity. Conversely, Atg7 silencing in the CryAB(R120G) background significantly inhibited the already reduced rate of autophagy and increased CryAB(R120G) aggregate content and cytotoxicity. CONCLUSIONS Atg7 induces basal autophagy, rescues the CryAB(R120G) autophagic deficiency, and attenuates the accumulation of misfolded proteins and aggregates in cardiomyocytes.
Collapse
Affiliation(s)
- J Scott Pattison
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
265
|
Dziedzic SA, Caplan AB. Identification of autophagy genes participating in zinc-induced necrotic cell death in Saccharomyces cerevisiae. Autophagy 2011; 7:490-500. [PMID: 21317551 DOI: 10.4161/auto.7.5.14872] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Eukaryotes use a common set of genes to perform two mechanistically similar autophagic processes. Bulk autophagy harvests proteins nonselectively and reuses their constitutents when nutrients are scarce. In contrast, different forms of selective autophagy target protein aggregates or damaged organelles that threaten to interfere with growth. Yeast uses one form of selective autophagy, called cytoplasm-to-vacuole targeting (Cvt), to engulf two vacuolar enzymes in Cvt vesicles ("CVT-somes") within which they are transported to vacuoles for maturation. While both are dispensable normally, bulk and selective autophagy help sustain life under stressful conditions. Consistent with this view, knocking out several genes participating in Cvt and specialized autophagic pathways heightened the sensitivity of Saccharomyces cerevisiae to inhibitory levels of Zn(2+). The loss of other autophagic genes, and genes responsible for apoptotic cell death, had no such effect. Unexpectedly, the loss of members of a third set of autophagy genes heightened cellular resistance to zinc as if they encoded proteins that actively contributed to zinc-induced cell death. Further studies showed that both sensitive and resistant strains accumulated similar amounts of H2O2 during zinc treatments, but that more sensitive strains showed signs of necrosis sooner. Although zinc lethality depended on autophagic proteins, studies with several reporter genes failed to reveal increased autophagic activity. In fact, microscopy analysis indicated that Zn(2+) partially inhibited fusion of Cvt vesicles with vacuoles. Further studies into how the loss of autophagic processes suppressed necrosis in yeast might reveal whether a similar process could occur in plants and animals.
Collapse
Affiliation(s)
- Slawomir A Dziedzic
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID, USA
| | | |
Collapse
|
266
|
Iglewski M, Hill JA, Lavandero S, Rothermel BA. Mitochondrial fission and autophagy in the normal and diseased heart. Curr Hypertens Rep 2011; 12:418-25. [PMID: 20865352 DOI: 10.1007/s11906-010-0147-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sustained hypertension promotes structural, functional and metabolic remodeling of cardiomyocyte mitochondria. As long-lived, postmitotic cells, cardiomyocytes turn over mitochondria continuously to compensate for changes in energy demands and to remove damaged organelles. This process involves fusion and fission of existing mitochondria to generate new organelles and separate old ones for degradation via autophagy. Autophagy is a lysosome-dependent proteolytic pathway capable of processing cellular components, including organelles and protein aggregates. Autophagy can be either nonselective or selective and contributes to remodeling of the myocardium under stress. Fission of mitochondria, loss of membrane potential, and ubiquitination are emerging as critical steps that direct selective autophagic degradation of mitochondria. This review discusses the molecular mechanisms controlling mitochondrial dynamics, including fission, fusion, transport, and degradation. Furthermore, it examines recent studies revealing the importance of these processes in normal and diseased heart.
Collapse
Affiliation(s)
- Myriam Iglewski
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA
| | | | | | | |
Collapse
|
267
|
Loos B, Lochner A, Engelbrecht AM. Autophagy in heart disease: a strong hypothesis for an untouched metabolic reserve. Med Hypotheses 2011; 77:52-7. [PMID: 21482032 DOI: 10.1016/j.mehy.2011.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 03/05/2011] [Accepted: 03/09/2011] [Indexed: 12/20/2022]
Abstract
Autophagy is a conserved catabolic process for long-lived proteins and organelles and is primarily responsible for nonspecific degradation of redundant or faulty cell components. Although autophagy has been described as the cell's major adaptive strategy in response to metabolic challenges, its influence on the cell's energy profile is poorly understood. In the myocardium, autophagy is active at basal levels and is crucial for maintaining its contractile function. Defects in the autophagic machinery cause cardiac dysfunction and heart failure. In this paper we propose that (1) autophagy contributes significantly to the metabolic balance sheet of the heart. (2) Increased autophagy contributes to an improved myocardial energy profile through changing the cardiac substrate preference. (3) Substrates generated through autophagy give rise to an alternative for ATP production with an oxygen-sparing effect. These elements identify autophagy in a new context of myocardial metabolic interregulation, which we discuss in the settings of myocardial infarction, heart failure and the diabetic heart. It is hoped that the hypothesis presented can lead to new insights aimed at exploiting autophagy to improve existing metabolic-based therapy in heart disease.
Collapse
Affiliation(s)
- B Loos
- Department of Physiological Sciences, Faculty of Natural Sciences, University of Stellenbosch, Stellenbosch 7600, South Africa.
| | | | | |
Collapse
|
268
|
Eschenhagen T, Force T, Ewer MS, de Keulenaer GW, Suter TM, Anker SD, Avkiran M, de Azambuja E, Balligand JL, Brutsaert DL, Condorelli G, Hansen A, Heymans S, Hill JA, Hirsch E, Hilfiker-Kleiner D, Janssens S, de Jong S, Neubauer G, Pieske B, Ponikowski P, Pirmohamed M, Rauchhaus M, Sawyer D, Sugden PH, Wojta J, Zannad F, Shah AM. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2011; 13:1-10. [PMID: 21169385 DOI: 10.1093/eurjhf/hfq213] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reductions in mortality and morbidity being achieved among cancer patients with current therapies represent a major achievement. However, given their mechanisms of action, many anti-cancer agents may have significant potential for cardiovascular side effects, including the induction of heart failure. The magnitude of this problem remains unclear and is not readily apparent from current clinical trials of emerging targeted agents, which generally under-represent older patients and those with significant co-morbidities. The risk of adverse events may also increase when novel agents, which frequently modulate survival pathways, are used in combination with each other or with other conventional cytotoxic chemotherapeutics. The extent to which survival and growth pathways in the tumour cell (which we seek to inhibit) coincide with those in cardiovascular cells (which we seek to preserve) is an open question but one that will become ever more important with the development of new cancer therapies that target intracellular signalling pathways. It remains unclear whether potential cardiovascular problems can be predicted from analyses of such basic signalling mechanisms and what pre-clinical evaluation should be undertaken. The screening of patients, optimization of therapeutic schemes, monitoring of cardiovascular function during treatment, and the management of cardiovascular side effects are likely to become increasingly important in cancer patients. This paper summarizes the deliberations of a cross-disciplinary workshop organized by the Heart Failure Association of the European Society of Cardiology (held in Brussels in May 2009), which brought together clinicians working in cardiology and oncology and those involved in basic, translational, and pharmaceutical science.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Department of Experimental and Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Loos B, Genade S, Ellis B, Lochner A, Engelbrecht AM. At the core of survival: autophagy delays the onset of both apoptotic and necrotic cell death in a model of ischemic cell injury. Exp Cell Res 2011; 317:1437-53. [PMID: 21420401 DOI: 10.1016/j.yexcr.2011.03.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 12/19/2022]
Abstract
Ischemic cell injury leads to cell death. Three main morphologies have been described: apoptosis, cell death with autophagy and necrosis. Their inherent dynamic nature, a point of no return (PONR) and molecular overlap have been stressed. The relationship between a defined cell death type and the severity of injury remains unclear. The functional role of autophagy and its effects on cell death onset is largely unknown. In this study we report a differential induction of cell death, which is dependent on the severity and duration of an ischemic insult. We show that mild ischemia leads to the induction of autophagy and apoptosis, while moderate or severe ischemia induces both apoptotic and necrotic cell death without increased autophagy. The autophagic response during mild injury was associated with an ATP surge. Real-time imaging and Fluorescence Resonance Energy Transfer (FRET) revealed that increased autophagy delays the PONR of both apoptosis and necrosis significantly. Blocking autophagy shifted PONR to an earlier point in time. Our results suggest that autophagic activity directly alters intracellular metabolic parameters, responsible for maintaining mitochondrial membrane potential and cellular membrane integrity. A similar treatment also improved functional recovery in the perfused rat heart. Taken together, we demonstrate a novel finding: autophagy is implicated only in mild injury and positions the PONR in cell death.
Collapse
Affiliation(s)
- B Loos
- Department of Physiological Sciences, Stellenbosch University, Mike de Vries Building, Merriman Street, Stellenbosch, 7600, South Africa.
| | | | | | | | | |
Collapse
|
270
|
|
271
|
Abstract
The heart is a highly plastic organ. In response to the physiological stress of normal life, as well as the pathological stress of disease, the myocardium manifests robust and rapid changes in mass. In the context of disease-associated stress, this myocardial remodeling response can culminate in ventricular thinning, mechanical dysfunction, and a clinical syndrome of heart failure. Recently, autophagy, a process of cellular cannibalization, has been implicated in many of these remodeling reactions. In some settings, the autophagic response is beneficial and pro-survival; in other contexts, it is maladaptive and promotes disease progression. Together, these observations raise the intriguing prospect of targeting maladaptive autophagy and advancing cell survival-promoting, adaptive autophagy to benefit patients with heart disease.
Collapse
Affiliation(s)
- Joseph A Hill
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, NB11.200, 6000 Harry Hines Blvd, Dallas, TX 75390-8573, USA.
| |
Collapse
|
272
|
Sciarretta S, Hariharan N, Monden Y, Zablocki D, Sadoshima J. Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol 2011; 32:275-81. [PMID: 21170742 PMCID: PMC3261079 DOI: 10.1007/s00246-010-9855-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 12/03/2010] [Indexed: 12/23/2022]
Abstract
Autophagy is a catabolic process that degrades long-lived proteins and damaged organelles by sequestering them into double membrane structures termed "autophagosomes" and fusing them with lysosomes. Autophagy is active in the heart at baseline and further stimulated under stress conditions including starvation, ischemia/reperfusion, and heart failure. It plays an adaptive role in the heart at baseline, thereby maintaining cardiac structure and function and inhibiting age-related cardiac abnormalities. Autophagy is activated by ischemia and nutrient starvation in the heart through Sirt1-FoxO- and adenosine monophosphate (AMP)-activated protein kinase (AMPK)-dependent mechanisms, respectively. Activation of autophagy during ischemia is essential for cell survival and maintenance of cardiac function. Autophagy is strongly activated in the heart during reperfusion after ischemia. Activation of autophagy during reperfusion could be either protective or detrimental, depending on the experimental model. However, strong induction of autophagy accompanied by robust upregulation of Beclin1 could cause autophagic cell death, thereby proving to be detrimental. This review provides an overview regarding both protective and detrimental functions of autophagy in the heart and discusses possible applications of current knowledge to the treatment of heart disease.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Nirmala Hariharan
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Yoshiya Monden
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Daniela Zablocki
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Junichi Sadoshima
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA,Address correspondence to: Junichi Sadoshima, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Medical Science Building G-609, Newark, New Jersey 07103, USA. Phone: (973) 972-8619; Fax: (973) 972-8919;
| |
Collapse
|
273
|
Wang Q, Liang B, Shirwany NA, Zou MH. 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLoS One 2011; 6:e17234. [PMID: 21386904 PMCID: PMC3046135 DOI: 10.1371/journal.pone.0017234] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/26/2011] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK) by mitochondria-derived reactive oxygen species (ROS) is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC) treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG). Treatment of BAEC with 2-DG (5 mM) for 24 hours or with low concentrations of H(2)O(2) (100 µM) induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine) or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress.
Collapse
Affiliation(s)
- Qilong Wang
- Section of Molecular Medicine, Department of Medicine, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Bin Liang
- Section of Molecular Medicine, Department of Medicine, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Najeeb A. Shirwany
- Section of Molecular Medicine, Department of Medicine, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Ming-Hui Zou
- Section of Molecular Medicine, Department of Medicine, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
274
|
Sciarretta S, Zablocki D, Sadoshima J. New Insights into the Role and Regulation of Autophagy during Myocardial Ischaemia. High Blood Press Cardiovasc Prev 2010. [DOI: 10.2165/11587970-000000000-00000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
275
|
Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Anti-apoptosis and cell survival: a review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:238-59. [PMID: 20969895 DOI: 10.1016/j.bbamcr.2010.10.010] [Citation(s) in RCA: 436] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 02/08/2023]
Abstract
Type I programmed cell death (PCD) or apoptosis is critical for cellular self-destruction for a variety of processes such as development or the prevention of oncogenic transformation. Alternative forms, including type II (autophagy) and type III (necrotic) represent the other major types of PCD that also serve to trigger cell death. PCD must be tightly controlled since disregulated cell death is involved in the development of a large number of different pathologies. To counter the multitude of processes that are capable of triggering death, cells have devised a large number of cellular processes that serve to prevent inappropriate or premature PCD. These cell survival strategies involve a myriad of coordinated and systematic physiological and genetic changes that serve to ward off death. Here we will discuss the different strategies that are used to prevent cell death and focus on illustrating that although anti-apoptosis and cellular survival serve to counteract PCD, they are nevertheless mechanistically distinct from the processes that regulate cell death.
Collapse
Affiliation(s)
- Liam Portt
- Department of Chemistry and Chemical Engineering, Royal Military College, Ontario, Canada
| | | | | | | | | |
Collapse
|
276
|
Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes. Circ Res 2010; 107:1470-82. [PMID: 20947830 DOI: 10.1161/circresaha.110.227371] [Citation(s) in RCA: 550] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE autophagy, a bulk degradation process of cytosolic proteins and organelles, is protective during nutrient starvation in cardiomyocytes (CMs). However, the underlying signaling mechanism mediating autophagy is not well understood. OBJECTIVE we investigated the role of FoxOs and its posttranslational modification in mediating starvation-induced autophagy. METHODS AND RESULTS glucose deprivation (GD) increased autophagic flux in cultured CMs, as evidenced by increased mRFP-GFP-LC3 puncta and decreases in p62, which was accompanied by upregulation of Sirt1 and FoxO1. Overexpression of either Sirt1 or FoxO1 was sufficient for inducing autophagic flux, whereas both Sirt1 and FoxO1 were required for GD-induced autophagy. GD increased deacetylation of FoxO1, and Sirt1 was required for GD-induced deacetylation of FoxO1. Overexpression of FoxO1(3A/LXXAA), which cannot interact with Sirt1, or p300, a histone acetylase, increased acetylation of FoxO1 and inhibited GD-induced autophagy. FoxO1 increased expression of Rab7, a small GTP-binding protein that mediates late autophagosome-lysosome fusion, which was both necessary and sufficient for mediating FoxO1-induced increases in autophagic flux. Although cardiac function was maintained in control mice after 48 hours of food starvation, it was significantly deteriorated in mice with cardiac-specific overexpression of FoxO1(3A/LXXAA), those with cardiac-specific homozygous deletion of FoxO1 (c-FoxO1(-/-)), and beclin1(+/-) mice, in which autophagy is significantly inhibited. CONCLUSIONS these results suggest that Sirt1-mediated deacetylation of FoxO1 and upregulation of Rab7 play an important role in mediating starvation-induced increases in autophagic flux, which in turn plays an essential role in maintaining left ventricular function during starvation.
Collapse
Affiliation(s)
- Nirmala Hariharan
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Cell Biology and Molecular Medicine, Newark, USA
| | | | | | | | | | | |
Collapse
|
277
|
Sala-Mercado JA, Wider J, Undyala VVR, Jahania S, Yoo W, Mentzer RM, Gottlieb RA, Przyklenk K. Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation 2010; 122:S179-84. [PMID: 20837911 DOI: 10.1161/circulationaha.109.928242] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Emerging evidence suggests that "adaptive" induction of autophagy (the cellular process responsible for the degradation and recycling of proteins and organelles) may confer a cardioprotective phenotype and represent a novel strategy to limit ischemia-reperfusion injury. Our aim was to test this paradigm in a clinically relevant, large animal model of acute myocardial infarction. METHODS AND RESULTS Anesthetized pigs underwent 45 minutes of coronary artery occlusion and 3 hours of reperfusion. In the first component of the study, pigs received chloramphenicol succinate (CAPS) (an agent that purportedly upregulates autophagy; 20 mg/kg) or saline at 10 minutes before ischemia. Infarct size was delineated by tetrazolium staining and expressed as a % of the at-risk myocardium. In separate animals, myocardial samples were harvested at baseline and 10 minutes following CAPS treatment and assayed (by immunoblotting) for 2 proteins involved in autophagosome formation: Beclin-1 and microtubule-associated protein light chain 3-II. To investigate whether the efficacy of CAPS was maintained with "delayed" treatment, additional pigs received CAPS (20 mg/kg) at 30 minutes after occlusion. Expression of Beclin-1 and microtubule-associated protein light chain 3-II, as well as infarct size, were assessed at end-reperfusion. CAPS was cardioprotective: infarct size was 25±5 and 41±4%, respectively, in the CAPS-pretreated and CAPS-delayed treatment groups versus 56±5% in saline controls (P<0.01 and P<0.05 versus control). Moreover, administration of CAPS was associated with increased expression of both proteins. CONCLUSIONS Our results demonstrate attenuation of ischemia-reperfusion injury with CAPS and are consistent with the concept that induction of autophagy may provide a novel strategy to confer cardioprotection.
Collapse
Affiliation(s)
- Javier A Sala-Mercado
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
278
|
Zhang D, Contu R, Latronico MVG, Zhang J, Zhang JL, Rizzi R, Catalucci D, Miyamoto S, Huang K, Ceci M, Gu Y, Dalton ND, Peterson KL, Guan KL, Brown JH, Chen J, Sonenberg N, Condorelli G. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J Clin Invest 2010; 120:2805-16. [PMID: 20644257 DOI: 10.1172/jci43008] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/09/2010] [Indexed: 02/06/2023] Open
Abstract
Mechanistic target of rapamycin (MTOR) plays a critical role in the regulation of cell growth and in the response to energy state changes. Drugs inhibiting MTOR are increasingly used in antineoplastic therapies. Myocardial MTOR activity changes during hypertrophy and heart failure (HF). However, whether MTOR exerts a positive or a negative effect on myocardial function remains to be fully elucidated. Here, we show that ablation of Mtor in the adult mouse myocardium results in a fatal, dilated cardiomyopathy that is characterized by apoptosis, autophagy, altered mitochondrial structure, and accumulation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). 4E-BP1 is an MTOR-containing multiprotein complex-1 (MTORC1) substrate that inhibits translation initiation. When subjected to pressure overload, Mtor-ablated mice demonstrated an impaired hypertrophic response and accelerated HF progression. When the gene encoding 4E-BP1 was ablated together with Mtor, marked improvements were observed in apoptosis, heart function, and survival. Our results demonstrate a role for the MTORC1 signaling network in the myocardial response to stress. In particular, they highlight the role of 4E-BP1 in regulating cardiomyocyte viability and in HF. Because the effects of reduced MTOR activity were mediated through increased 4E-BP1 inhibitory activity, blunting this mechanism may represent a novel therapeutic strategy for improving cardiac function in clinical HF.
Collapse
Affiliation(s)
- Denghong Zhang
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0613, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Aránguiz-Urroz P, Canales J, Copaja M, Troncoso R, Vicencio JM, Carrillo C, Lara H, Lavandero S, Díaz-Araya G. Beta(2)-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. Biochim Biophys Acta Mol Basis Dis 2010; 1812:23-31. [PMID: 20637865 DOI: 10.1016/j.bbadis.2010.07.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 06/12/2010] [Accepted: 07/06/2010] [Indexed: 12/19/2022]
Abstract
Autophagy is a physiological degradative process key to cell survival during nutrient deprivation, cell differentiation and development. It plays a major role in the turnover of damaged macromolecules and organelles, and it has been involved in the pathogenesis of different cardiovascular diseases. Activation of the adrenergic system is commonly associated with cardiac fibrosis and remodeling, and cardiac fibroblasts are key players in these processes. Whether adrenergic stimulation modulates cardiac fibroblast autophagy remains unexplored. In the present study, we aimed at this question and evaluated the effects of b(2)-adrenergic stimulation upon autophagy. Cultured adult rat cardiac fibroblasts were treated with agonists or antagonists of beta-adrenergic receptors (b-AR), and autophagy was assessed by electron microscopy, GFP-LC3 subcellular distribution, and immunowesternblot of endogenous LC3. The predominant expression of b(2)-ARs was determined and characterized by radioligand binding assays using [(3)H]dihydroalprenolol. Both, isoproterenol and norepinephrine (non-selective b-AR agonists), as well as salbutamol (selective b(2)-AR agonist) increased autophagic flux, and these effects were blocked by propanolol (b-AR antagonist), ICI-118,551 (selective b(2)-AR antagonist), 3-methyladenine but not by atenolol (selective b(1)-AR antagonist). The increase in autophagy was correlated with an enhanced degradation of collagen, and this effect was abrogated by the inhibition of autophagic flux. Overall, our data suggest that b(2)-adrenergic stimulation triggers autophagy in cardiac fibroblasts, and that this response could contribute to reduce the deleterious effects of high adrenergic stimulation upon cardiac fibrosis.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Autophagy/drug effects
- Autophagy/physiology
- Blotting, Western
- Cells, Cultured
- Collagen/metabolism
- Dihydroalprenolol/metabolism
- Dose-Response Relationship, Drug
- Fibroblasts/metabolism
- Fibroblasts/physiology
- Fibroblasts/ultrastructure
- Isoproterenol/pharmacology
- Male
- Microscopy, Electron, Transmission
- Myocardium/cytology
- Norepinephrine/pharmacology
- Propanolamines/pharmacology
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/physiology
- Tritium
Collapse
Affiliation(s)
- Pablo Aránguiz-Urroz
- Centro FONDAP CEMC, Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Dong Y, Undyala VV, Gottlieb RA, Mentzer RM, Przyklenk K. Autophagy: definition, molecular machinery, and potential role in myocardial ischemia-reperfusion injury. J Cardiovasc Pharmacol Ther 2010; 15:220-30. [PMID: 20595626 DOI: 10.1177/1074248410370327] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is the endogenous, tightly regulated cellular "housekeeping" process responsible for the degradation of damaged and dysfunctional cellular organelles and protein aggregates. There is a growing consensus that autophagy is upregulated in the setting of myocardial ischemia-reperfusion. Moreover, emerging data suggest that autophagy may serve as an adaptive process and confer increased resistance to ischemia-reperfusion injury. Our aims in this review are to (1) provide a brief synopsis of process of autophagy (including an overview of the key molecular mediators of this catabolic process and its relationship with other cardiac signaling pathways) and (2) most importantly, summarize the current evidence for versus against the intriguing concept of autophagy-mediated cardioprotection.
Collapse
Affiliation(s)
- Yi Dong
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
281
|
Abstract
Autophagy, or "self eating," refers to a regulated cellular process for the lysosomal-dependent turnover of organelles and proteins. During starvation or nutrient deficiency, autophagy promotes survival through the replenishment of metabolic precursors derived from the degradation of endogenous cellular components. Autophagy represents a general homeostatic and inducible adaptive response to environmental stress, including endoplasmic reticulum stress, hypoxia, oxidative stress, and exposure to pharmaceuticals and xenobiotics. Whereas elevated autophagy can be observed in dying cells, the functional relationships between autophagy and programmed cell death pathways remain incompletely understood. Preclinical studies have identified autophagy as a process that can be activated during vascular disorders, including ischemia-reperfusion injury of the heart and other organs, cardiomyopathy, myocardial injury, and atherosclerosis. The functional significance of autophagy in human cardiovascular disease pathogenesis remains incompletely understood, and potentially involves both adaptive and maladaptive outcomes, depending on model system. Although relatively few studies have been performed in the lung, our recent studies also implicate a role for autophagy in chronic lung disease. Manipulation of the signaling pathways that regulate autophagy could potentially provide a novel therapeutic strategy in the prevention or treatment of human disease.
Collapse
|
282
|
Wang X, Xie W, Zhang Y, Lin P, Han L, Han P, Wang Y, Chen Z, Ji G, Zheng M, Weisleder N, Xiao RP, Takeshima H, Ma J, Cheng H. Cardioprotection of ischemia/reperfusion injury by cholesterol-dependent MG53-mediated membrane repair. Circ Res 2010; 107:76-83. [PMID: 20466981 DOI: 10.1161/circresaha.109.215822] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE Unrepaired cardiomyocyte membrane injury causes irreplaceable cell loss, leading to myocardial fibrosis and eventually heart failure. However, the cellular and molecular mechanisms of cardiac membrane repair are largely unknown. MG53, a newly identified striated muscle-specific protein, is involved in skeletal muscle membrane repair. But the role of MG53 in the heart has not been determined. OBJECTIVE We sought to investigate whether MG53 mediates membrane repair in cardiomyocytes and, if so, the cellular and molecular mechanism underlying MG53-mediated membrane repair in cardiomyocytes. Moreover, we determined possible cardioprotective effect of MG53-mediated membrane repair. METHODS AND RESULTS We demonstrated that MG53 is crucial to the emergency membrane repair response in cardiomyocytes and protects the heart from stress-induced loss of cardiomyocytes. Disruption of the sarcolemmal membrane by mechanical, electric, chemical, or metabolic insults caused rapid and robust translocation of MG53 toward the injury sites. Ablation of MG53 prevented sarcolemmal resealing after infrared laser-induced membrane damage in intact heart, and exacerbated mitochondrial dysfunction and loss of cardiomyocytes during ischemia/reperfusion injury. Unexpectedly, the MG53-mediated cardiac membrane repair was mediated by a cholesterol-dependent mechanism: depletion of membrane cholesterol abolished, and its recovery restored injury-induced membrane translocation of MG53. The redox status of MG53 did not affect initiation of MG53 translocation, whereas MG53 oxidation conferred stability to the membrane repair patch. CONCLUSIONS Thus, cholesterol-dependent MG53-mediated membrane repair is a vital, heretofore unappreciated cardioprotective mechanism against a multitude of insults and may bear important therapeutic implications.
Collapse
Affiliation(s)
- Xianhua Wang
- Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128:191-227. [PMID: 20438756 DOI: 10.1016/j.pharmthera.2010.04.005] [Citation(s) in RCA: 630] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure.
Collapse
|
284
|
Fimia GM, Piacentini M. Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci 2010; 67:1581-8. [PMID: 20165902 PMCID: PMC11115583 DOI: 10.1007/s00018-010-0284-z] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 01/15/2023]
Abstract
A growing number of publications show that apoptosis induction is often associated with increased autophagy indicating the existence of an interplay between these two important cellular events. The simultaneous activation of both phenomena has been detected not only in experimental settings but also in vivo under physiological and pathological conditions. Despite these studies, the reciprocal influence of the two pathways in vivo has still not been completely understood. It is clear that autophagy and apoptosis are strictly interconnected, as highlighted by the finding that the two pathways share key molecular regulators. Many novel aspects of the crosstalk between apoptosis and autophagy have recently emerged showing how complex is this relationship and how critical is for the overall fate of the cell. In this mini-review we will focus on some key experiments trying to decipher as to whether autophagy contributes to apoptosis modulation in vivo.
Collapse
Affiliation(s)
- Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”, 00149 Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”, 00149 Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
285
|
Gottlieb RA, Carreira RS. Autophagy in health and disease. 5. Mitophagy as a way of life. Am J Physiol Cell Physiol 2010; 299:C203-10. [PMID: 20357180 DOI: 10.1152/ajpcell.00097.2010] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our understanding of autophagy has expanded greatly in recent years, largely due to the identification of the many genes involved in the process and to the development of better methods to monitor the process, such as green fluorescent protein-LC3 to visualize autophagosomes in vivo. A number of groups have demonstrated a tight connection between autophagy and mitochondrial turnover. Mitochondrial quality control is the process whereby mitochondria undergo successive rounds of fusion and fission with a dynamic exchange of components to segregate functional and damaged elements. Removal of the mitochondrion that contains damaged components is accomplished via autophagy (mitophagy). Mitophagy also serves to eliminate the subset of mitochondria producing the most reactive oxygen species, and episodic removal of mitochondria will reduce the oxidative burden, thus linking the mitochondrial free radical theory of aging with longevity achieved through caloric restriction. Mitophagy must be balanced by biogenesis to meet tissue energy needs, but the system is tunable and highly dynamic. This process is of greatest importance in long-lived cells such as cardiomyocytes, neurons, and memory T cells. Autophagy is known to decrease with age, and the failure to maintain mitochondrial quality control through mitophagy may explain why the heart, brain, and components of the immune system are most vulnerable to dysfunction as organisms age.
Collapse
Affiliation(s)
- Roberta A Gottlieb
- BioScience Center, San Diego State University, San Diego, California 92182-4650, USA.
| | | |
Collapse
|
286
|
Glassock RJ, Pecoits-Filho R, Barberato SH. Left ventricular mass in chronic kidney disease and ESRD. Clin J Am Soc Nephrol 2010; 4 Suppl 1:S79-91. [PMID: 19996010 DOI: 10.2215/cjn.04860709] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic kidney disease (CKD) and ESRD, treated with conventional hemo- or peritoneal dialysis are both associated with a high prevalence of an increase in left ventricular mass (left ventricular hypertrophy [LVH]), intermyocardial cell fibrosis, and capillary loss. Cardiac magnetic resonance imaging is the best way to detect and quantify these abnormalities, but M-Mode and 2-D echocardiography can also be used if one recognizes their pitfalls. The mechanisms underlying these abnormalities in CKD and ESRD are diverse but involve afterload (arterial pressure and compliance), preload (intravascular volume and anemia), and a wide variety of afterload/preload independent factors. The hemodynamic, metabolic, cellular, and molecular mediators of myocardial hypertrophy, fibrosis, apoptosis, and capillary degeneration are increasingly well understood. These abnormalities predispose to sudden cardiac death, most likely by promotion of electrical instability and re-entry arrhythmias and congestive heart failure. Current treatment modalities for CKD and ESRD, including thrice weekly conventional hemodialysis and peritoneal dialysis and metabolic and anemia management regimens, do not adequately prevent or correct these abnormalities. A new paradigm of therapy for CKD and ESRD that places prevention and reversal of LVH and cardiac fibrosis as a high priority is needed. This will require novel approaches to management and controlled interventional trials to provide evidence to fuel the transition from old to new treatment strategies. In the meantime, key management principles designed to ameliorate LVH and its complications should become a routine part of the care of the patients with CKD and ESRD.
Collapse
Affiliation(s)
- Richard J Glassock
- The David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | | | | |
Collapse
|
287
|
Abstract
In response to hypertension, the heart manifests robust hypertrophic growth, which offsets load-induced elevations in wall stress. If sustained, this hypertrophic response is a major risk factor for systolic dysfunction and heart failure. Extensive research efforts have focused on the progression from hypertrophy to failure; however, precise understanding of underlying mechanisms remains elusive. Recently, autophagy, a process of cellular cannibalization, has been implicated. Autophagy is activated during ventricular hypertrophy, serving to maintain cellular homeostasis. Excessive autophagy eliminates, however, essential cellular elements and possibly provokes cell death, which together contribute to hypertension-related heart disease.
Collapse
Affiliation(s)
- Zhao V Wang
- Department of Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573, USA
| | | | | |
Collapse
|
288
|
|
289
|
Seki K, Sanada S, Kudinova AY, Steinhauser ML, Handa V, Gannon J, Lee RT. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail 2009; 2:684-91. [PMID: 19919994 DOI: 10.1161/circheartfailure.109.873240] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND ST2 is an interleukin (IL)-1 receptor family member with membrane-bound (ST2L) and soluble (sST2) isoforms, and sST2 is a biomarker for poor outcome in patients with myocardial infarction (MI). IL-33, the recently discovered ligand for ST2, activates nuclear factor kappaB and thus may regulate apoptotic cell death. We tested the hypothesis that IL-33 is cardioprotective after MI through ST2 signaling. METHODS AND RESULTS IL-33 protected cultured cardiomyocytes from hypoxia-induced apoptosis, and this cardioprotection was partially inhibited by sST2. IL-33 induced expression of the antiapoptotic factors XIAP, cIAP1, and survivin. To define the cardioprotective role of IL-33 in vivo, we performed a blinded and randomized study of ischemia/reperfusion in rats. IL-33 reduced cardiomyocyte apoptosis, suppressed caspase-3 activity, and increased expression of IAP family member proteins. IL-33 decreased both infarct and fibrosis volumes at 15 days; furthermore, both echocardiographic and hemodynamic studies revealed that IL-33 improved ventricular function. To determine whether cardioprotection by IL-33 is mediated through ST2 signaling, a randomized and blinded study of ST2(-/-) versus wild-type littermate mice was performed in 98 mice subjected to MI. At 4 weeks after MI, IL-33 reduced ventricular dilation and improved contractile function in wild-type mice but not in ST2(-/-) mice. Finally, IL-33 improved survival after MI in wild-type but not in ST2(-/-) mice. CONCLUSIONS IL-33 prevents cardiomyocyte apoptosis and improves cardiac function and survival after MI through ST2 signaling.
Collapse
Affiliation(s)
- Kenjiro Seki
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | | | | | | | | | | | | |
Collapse
|
290
|
Kassiotis C, Ballal K, Wellnitz K, Vela D, Gong M, Salazar R, Frazier OH, Taegtmeyer H. Markers of autophagy are downregulated in failing human heart after mechanical unloading. Circulation 2009; 120:S191-7. [PMID: 19752367 DOI: 10.1161/circulationaha.108.842252] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Autophagy is a molecular process that breaks down damaged cellular organelles and yields amino acids for de novo protein synthesis or energy provision. Mechanical unloading with a left ventricular assist device (LVAD) decreases the energy demand of the failing human heart. We tested the hypothesis that LVAD support reverses activation of autophagy. METHODS AND RESULTS Paired biopsy samples of left ventricular myocardium were obtained from 9 patients with idiopathic dilated cardiomyopathy (mean duration of LVAD support, 214 days) at the time of implantation and explantation of the LVAD. Transcript and protein levels of markers and mediators of autophagy and apoptosis were measured by quantitative reverse-transcription polymerase chain reaction and Western blotting. TUNEL assays, C9 immunohistochemistry, and 20S proteasome activity assays were also performed. Mechanical unloading significantly decreased mRNA transcript levels of Beclin-1, autophagy-related gene 5 (Atg5), and microtubule-associated protein-1 light chain-3 (MAP1-LC3 or LC3; P<0.02). Protein levels of Beclin-1, Atg5-Atg12 conjugate, and LC3-II were also significantly reduced after LVAD support (P<0.05). A significant increase in 20S proteasome activity was observed with unloading, in parallel to the decrease in autophagic markers. Although BNIP3 and the ratio of activated caspase 3 to procaspase 3 increased after LVAD support, Bcl-2 and TUNEL-positive nuclei were not significantly different between samples. CONCLUSIONS Mechanical unloading of the failing human heart decreases markers of autophagy. These findings suggest that autophagy may be an adaptive mechanism in the failing heart, and this phenomenon is attenuated by LVAD support.
Collapse
|
291
|
Fidziańska A, Bilińska ZT, Walczak E, Witkowski A, Chojnowska L. Autophagy in transition from hypertrophic cardiomyopathy to heart failure. JOURNAL OF ELECTRON MICROSCOPY 2009; 59:181-183. [PMID: 19797323 DOI: 10.1093/jmicro/dfp048] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Endomyocardial biopsy of a patient in transition stage from hypertrophic cardiomyopathy to heart failure was investigated. The tissue showed hypertrophy, atrophy of myocytes and an increased amount of fibrosis. In addition, numerous cardiomyocytes revealed ubiquitin positive inclusions. Ultrastructural analysis indicated that cardiomyocytes contained typical autophagic vacuoles including mitochondria, glycogen granules, degraded remnants and myelin structures. The most obvious ultrastructural finding was the presence of amorphous plaques and tubulofilamentous inclusions. Such ultrastructural abnormalities allow us to conclude that degeneration of myocardial cells by autophagy mechanisms leads to cardiomyocyte death, loss and heart failure.
Collapse
|
292
|
Autophagy in the cardiovascular system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1485-95. [DOI: 10.1016/j.bbamcr.2008.12.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 12/14/2008] [Accepted: 12/16/2008] [Indexed: 12/26/2022]
|
293
|
Su H, Wang X. The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. Cardiovasc Res 2009; 85:253-62. [PMID: 19696071 DOI: 10.1093/cvr/cvp287] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein quality control (PQC) depends on elegant collaboration between molecular chaperones and targeted proteolysis in the cell. The latter is primarily carried out by the ubiquitin-proteasome system, but recent advances in this area of research suggest a supplementary role for the autophagy-lysosomal pathway in PQC-related proteolysis. The (patho)physiological significance of PQC in the heart is best illustrated in cardiac proteinopathy, which belongs to a family of cardiac diseases caused by expression of aggregation-prone proteins in cardiomyocytes. Cardiac proteasome functional insufficiency (PFI) is best studied in desmin-related cardiomyopathy, a bona fide cardiac proteinopathy. Emerging evidence suggests that many common forms of cardiomyopathy may belong to proteinopathy. This review focuses on examining current evidence, as it relates to the hypothesis that PFI impairs PQC in cardiomyocytes and contributes to the progression of cardiac proteinopathies to heart failure.
Collapse
Affiliation(s)
- Huabo Su
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Lee Medical Building, 414 E Clark Street, Vermillion, SD 57069, USA
| | | |
Collapse
|
294
|
Sengupta A, Molkentin JD, Yutzey KE. FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem 2009; 284:28319-28331. [PMID: 19696026 DOI: 10.1074/jbc.m109.024406] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the heart, autophagy is required for normal cardiac function and also has been implicated in cardiovascular disease. FoxO transcription factors promote autophagy in skeletal muscle and have additional roles in regulation of cell size, proliferation, and metabolism. Here we investigate the role of FoxO transcription factors in regulating autophagy and cell size in cardiomyocytes. In cultured rat neonatal cardiomyocytes, glucose deprivation leads to decreased cell size and induction of autophagy pathway genes LC3, Gabarapl1, and Atg12. Likewise, overexpression of either FoxO1 or FoxO3 reduces cardiomyocyte cell size and induces expression of autophagy pathway genes. Moreover, inhibition of FoxO activity by dominant negative FoxO1 (Delta256) blocks cardiomyocyte cell size reduction upon starvation, suggesting the necessity of FoxO function in cardiomyocyte cell size regulation. Under starvation conditions, endogenous FoxO1 and FoxO3 are localized to the nucleus and bind to promoter sequences of Gabarapl1 and Atg12. In vivo studies show that cellular stress, such as starvation or ischemia/reperfusion in mice, results in induction of autophagy in the heart with concomitant dephosphorylation of FoxO, consistent with increased activity of nuclear FoxO transcription factors. Together these results provide evidence for an important role for FoxO1 and FoxO3 in regulating autophagy and cell size in cardiomyocytes.
Collapse
Affiliation(s)
- Arunima Sengupta
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio 45229
| | - Jeffery D Molkentin
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio 45229
| | - Katherine E Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio 45229.
| |
Collapse
|
295
|
Kusama Y, Sato K, Kimura N, Mitamura J, Ohdaira H, Yoshida K. Comprehensive analysis of expression pattern and promoter regulation of human autophagy-related genes. Apoptosis 2009; 14:1165-75. [DOI: 10.1007/s10495-009-0390-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
296
|
|
297
|
Fimia GM, Piacentini M. Toward the understanding of autophagy regulation and its interplay with cell death pathways. Cell Death Differ 2009; 16:933-4. [DOI: 10.1038/cdd.2009.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
298
|
Role of the Fas/Fas-L pathway-mediated apoptosis in inflammatory heart diseases and vasculature diseases. J Cardiovasc Pharmacol 2009; 53:91-3. [PMID: 19188842 DOI: 10.1097/fjc.0b013e31819aa304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
299
|
|
300
|
Autophagy in aging, disease and death: the true identity of a cell death impostor. Cell Death Differ 2009; 16:1-2. [PMID: 19079285 DOI: 10.1038/cdd.2008.139] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|