251
|
3,6-dihydroxyflavone suppresses the epithelial-mesenchymal transition in breast cancer cells by inhibiting the Notch signaling pathway. Sci Rep 2016; 6:28858. [PMID: 27345219 PMCID: PMC4921838 DOI: 10.1038/srep28858] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/10/2016] [Indexed: 02/07/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a critical developmental program in cancer stem cell (CSC) maintenance and in cancer metastasis. Here, our study found that 3,6-DHF could effectively inhibit EMT in BC cells in vitro and in vivo. 3,6-DHF effectively inhibits the formation and proliferation of BCSCs, and consequently reduces the tumor-initiating capacity of tumor cells in NOD/SCID mice. Optical in vivo imaging of cancer metastasis showed that 3,6-DHF administration suppresses the lung metastasis of BC cells in vivo. Further studies indicated that 3,6-DHF down-regulates Notch1, NICD, Hes-1 and c-Myc, consequently decreasing the formation of the functional transcriptional unit of NICD-CSL-MAML, causing Notch signaling inactivation in BC cells. Over-expression of Notch1 or inhibition of miR-34a significantly reduced the inhibitory effects of 3,6-DHF on EMT, CSCs, as well as cells migration and invasion in BC cells. These data indicated that 3,6-DHF effectively inhibits EMT and CSCs, as well as cells migration and invasion in BC cells, in which miR-34a-mediated Notch1 down-regulation plays a crucial role.
Collapse
|
252
|
Zou G, Liu T, Guo L, Huang Y, Feng Y, Huang Q, Duan T. miR-145 modulates lncRNA-ROR and Sox2 expression to maintain human amniotic epithelial stem cell pluripotency and β islet-like cell differentiation efficiency. Gene 2016; 591:48-57. [PMID: 27346547 DOI: 10.1016/j.gene.2016.06.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/09/2016] [Accepted: 06/22/2016] [Indexed: 12/25/2022]
Abstract
In this study, we observed a great reduction in the expression of the endogenous long noncoding RNA ROR (lncRNA-ROR) and the stem cell transcription factor Sox2, in contrast to a marked increase in miR-145 expression, during the course of in vitro induced differentiation of human amniotic epithelial stem cells (HuAECs). Bioinformatics analysis and the luciferase reporter assay revealed binding of miR-145 to specific sites in lncRNA-ROR and Sox2, silencing their expression. Overexpression of a lncRNA-ROR-specific siRNA effectively downregulated the expression levels of Sox2 and other stem cell markers in HuAECs while weakening the efficiency of HuAEC differentiation into β islet-like cells. Moreover, the in vitro response of HuAEC-derived β islet-like cells to extracellular stimuli and C-peptide release by these cells were markedly weakened in the siRNA-ROR transfection group. Furthermore, the in vivo expression of β islet-like cell biomarkers was substantially reduced in HuAECs in the siRNA-ROR transfection group, and their in vivo β islet-like cell differentiation and insulin release capacities were reduced in a streptozocin-induced diabetic rat model. The experimental results indicate that lncRNA-ROR effectively maintains Sox2 gene expression through competitive binding to miR-145, achieving pluripotency maintenance in HuAECs and regulation of their directed β islet-like cell differentiation efficiency.
Collapse
Affiliation(s)
- Gang Zou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Te Liu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Lihe Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yongyi Huang
- Laboratoire PROTEE, Bâtiment R, Université du Sud Toulon-Var, 83957, La Garde Cedex, France
| | - Ya Feng
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Qin Huang
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Duan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China.
| |
Collapse
|
253
|
Long non-coding RNA regulation of epithelial-mesenchymal transition in cancer metastasis. Cell Death Dis 2016; 7:e2254. [PMID: 27277676 PMCID: PMC5143379 DOI: 10.1038/cddis.2016.149] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/10/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023]
Abstract
Metastasis is a multistep process starting with the dissemination of tumor cells from a primary site and ending with secondary tumor development in an anatomically distant location. The epithelial–mesenchymal transition (EMT), a process that endows epithelial tumor cells with mesenchymal properties including reduced adhesion and increased motility, is considered a critical step driving the early phase of cancer metastasis. Although significant progress has been made in understanding the molecular characteristics of EMT, the intracellular mechanisms driving transition through the various stages of EMT remain unclear. In recent years, an increasing number of studies have demonstrated the involvement of long non-coding RNAs (lncRNAs) in tumor metastasis through modulating EMT. LncRNAs and their associated signaling networks have now emerged as new players in the induction and regulation of EMT during metastasis. Here we summarize the recent findings and characterizations of several known lncRNAs involved in the regulation of EMT. We will also discuss the potential use of these lncRNAs as diagnostic and prognostic biomarkers as well as therapeutic targets to slow down or prevent metastatic spread of malignant tumors.
Collapse
|
254
|
Cai X, Liu Y, Yang W, Xia Y, Yang C, Yang S, Liu X. Long noncoding RNA MALAT1 as a potential therapeutic target in osteosarcoma. J Orthop Res 2016; 34:932-41. [PMID: 26575981 DOI: 10.1002/jor.23105] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/16/2015] [Indexed: 02/04/2023]
Abstract
Recent studies have revealed that long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays an important role in the development of several solid tumors. However, the function of MALAT1 in the tumorigenesis of osteosarcoma remains unknown. In the present study, levels of MALAT1 in human osteosarcoma cell lines and tissues were detected by quantitative real-time polymerase chain reaction (RT-PCR). The roles of MALAT1 in osteosarcoma were investigated by using in vitro and in vivo assays. We observed that MALAT1 expression was up-regulated in human osteosarcoma cell lines and tissues. In vitro knockdown of MALAT1 by siRNA significantly inhibited cell proliferation and migration, and induced cell cycle arrest and apoptosis in osteosarcoma cells. In addition, MALAT1 knockdown markedly suppressed the formation of tubular network structures and caused breakage of stress fibers in osteosarcoma cell lines U2OS and MNNG/HOS. Furthermore, MALAT1 knockdown delayed tumor growth in an osteosarcoma xenograft model. Specifically, we found that administration of MALAT1 siRNA decreased the protein levels of RhoA and its downstream effectors Rho-associated coiled-coil containing protein kinases (ROCKs). Taken together, these findings suggest that MALAT1 plays an oncogenic role in osteosarcoma and may be a promising therapeutic target for the treatment of osteosarcoma patients. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:932-941, 2016.
Collapse
Affiliation(s)
- Xianyi Cai
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlu Liu
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuhua Yang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianzhe Liu
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
255
|
Insight Into the Role of Long Noncoding RNA in Cancer Development and Progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:33-65. [PMID: 27572126 DOI: 10.1016/bs.ircmb.2016.04.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Long noncoding RNA (LncRNA) is a large class of RNA molecules with size larger than 200 nucleotides. They exhibit cellular functions although having no protein-coding capability. Accumulating evidence suggests that long noncoding RNA play crucial roles in cancer biology. Studies showed that deregulation of lncRNA was frequently observed in various types of cancers which contributed heavily to malignant phenotypical changes. Aberration of lncRNA can be induced by a number of factors such as dysregulated signaling pathway, response to catastrophic effect, viral infection, and contact with carcinogens. Meanwhile, alterations of lncRNA expression or function drive subsequent malignant development such as cell transformation or acquisition of stemness characteristics. Here, we give perspectives on recent findings on the involvement of lncRNAs in carcinogenesis and response to adverse tumor environment. Then, we discuss the role of lncRNAs in cancer stem cell which is an important model of cancer emergence. Last, we provide insight on the potential of lncRNAs in modulating environment favorable of cancer development and progression, and evaluate the diagnostic and prognostic value of lncRNAs in cancer management.
Collapse
|
256
|
Zhan HX, Wang Y, Li C, Xu JW, Zhou B, Zhu JK, Han HF, Wang L, Wang YS, Hu SY. LincRNA-ROR promotes invasion, metastasis and tumor growth in pancreatic cancer through activating ZEB1 pathway. Cancer Lett 2016; 374:261-71. [PMID: 26898939 DOI: 10.1016/j.canlet.2016.02.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignant tumors; early distant metastasis commonly results in poor prognosis. Recent studies confirmed the pivotal role of the long non-coding RNAs (lncRNAs) in tumorigenesis and metastasis of malignant tumors, including PC. However, little is known about the role of LincRNA-ROR (linc-ROR) in PC. In the present study, we found that linc-ROR was upregulated in PC tissues. Overexpression of linc-ROR promoted cells proliferation, migration, invasion and metastasis both in vitro and in a mouse model. Contrarily, knockdown of linc-ROR attenuated proliferation, invasion and distant metastasis. Mechanistically, we confirmed that linc-ROR up-regulates ZEB1 and then induces epithelial-mesenchymal transition (EMT), which promotes the aggressive biological behaviors of PC. Together, these results indicate that linc-ROR acts as an important regulator of ZEB1, can promote invasion and metastasis in PC, and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Han-Xiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province 250012, China
| | - Yao Wang
- International Biotechnology R&D Center, Shandong University School of Ocean, Weihai, Shandong Province 264209, China; School of Pharmaceutical Sciences, Shandong University, Shandong Province 250012, China
| | - Ce Li
- International Biotechnology R&D Center, Shandong University School of Ocean, Weihai, Shandong Province 264209, China; School of Pharmaceutical Sciences, Shandong University, Shandong Province 250012, China
| | - Jian-Wei Xu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province 250012, China
| | - Bin Zhou
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Jian-Kang Zhu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province 250012, China
| | - Hai-Feng Han
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province 250012, China
| | - Lei Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province 250012, China
| | - Yun-Shan Wang
- International Biotechnology R&D Center, Shandong University School of Ocean, Weihai, Shandong Province 264209, China.
| | - San-Yuan Hu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province 250012, China.
| |
Collapse
|
257
|
Chang S, Liu J, Guo S, He S, Qiu G, Lu J, Wang J, Fan L, Zhao W, Che X. HOTTIP and HOXA13 are oncogenes associated with gastric cancer progression. Oncol Rep 2016; 35:3577-85. [PMID: 27108607 DOI: 10.3892/or.2016.4743] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023] Open
Abstract
A long non-coding RNA named HOTTIP (HOXA transcript at the distal tip) coordinates the activation of various 5' HOXA genes which encode master regulators of development through targeting the WDR5/MLL complex. HOTTIP acts as an oncogene in several types of cancers, whereas its biological function in gastric cancer has never been studied. In the present study, we investigated the role of HOTTIP in gastric cancer. We found that HOTTIP was upregulated in gastric cancer cell lines. Knockdown of HOTTIP in gastric cancer cells inhibited cell proliferation, migration and invasion. Moreover, downregulation of HOTTIP led to decreased expression of homeobox protein Hox-A13 (HOXA13) in gastric cancer cell lines. HOXA13 was involved in HOTTIP‑induced malignant phenotypes of gastric cancer cells. Our data showed that the levels of HOTTIP and HOXA13 were both markedly upregulated in gastric cancer tissues compared with their counterparts in non-tumorous tissues. Furthermore, the expression levels of HOTTIP and HOXA13 were both higher in gastric cancer which was poorly differentiated, at advanced TNM stages and exhibited lymph node-metastasis. Spearman analyses indicated that HOTTIP and HOXA13 had a highly positive correlation both in non-tumor mucosae and cancer lesions. Collectively, these findings suggest that HOTTIP and HOXA13 play important roles in gastric cancer progression and provide a new insight into therapeutic treatment for the disease.
Collapse
Affiliation(s)
- Shuai Chang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Junsong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shaochun Guo
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shicai He
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guanglin Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Lu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lin Fan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiangming Che
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
258
|
Zhou P, Sun L, Liu D, Liu C, Sun L. Long Non-Coding RNA lincRNA-ROR Promotes the Progression of Colon Cancer and Holds Prognostic Value by Associating with miR-145. Pathol Oncol Res 2016; 22:733-40. [PMID: 27071407 DOI: 10.1007/s12253-016-0061-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/06/2016] [Indexed: 12/24/2022]
Abstract
Large intergenic non-coding RNA ribonucleic acids-ROR (lincRNA-ROR) has been reported to exert impacts on the maintenance of induced pluripotent stem cells and embryonic stem cells, and play important roles in human hepatocellular cancer. It contributes to tumorigenesis and metastasis and functions as a competing endogenous RNA (ceRNA) by sponging miR-145 in breast cancer. However, its clinical significance and prognostic value in colon cancer remain unknown. The aim of the present study was to clarify the clinicopathological role and prognostic value of lincRNA-ROR and miR-145 in colon cancer. In the present study, qRT-PCR was performed to measure the expression levels of lincRNA-ROR in colon cancer tissues and cell lines. Then, the clinicopathological significance and prognostic value of lincRNA-ROR were analyzed. LincRNA-ROR expression correlated with pT stage, pN stage, AJCC stage and vascular invasion. Knockdown of lincRNA-ROR restored the expression of miR-145, and had a significant influence on colon cancer cell proliferation, migration and invasion. Patients of the high lincRNA-ROR/low miR-145 group had significantly poorer outcomes than those of the low lincRNA-ROR/high miR-145 group. Taken together, Overexpression of lincRNA-ROR combined with depletion of miR-145 may exert crucial impact on colon cancer prognosis evaluation and treatment.
Collapse
Affiliation(s)
- Peng Zhou
- Department of General Surgery, The Second People's Hospital of Wuhu, 259 Jiuhua Middle Road, Wuhu, 241000, China.
| | - Lixia Sun
- Department of General Surgery, The Second People's Hospital of Wuhu, 259 Jiuhua Middle Road, Wuhu, 241000, China
| | - Danfeng Liu
- Department of General Surgery, The Second People's Hospital of Wuhu, 259 Jiuhua Middle Road, Wuhu, 241000, China
| | - Changkuo Liu
- Department of General Surgery, The Second People's Hospital of Wuhu, 259 Jiuhua Middle Road, Wuhu, 241000, China
| | - Lei Sun
- Department of General Surgery, The Second People's Hospital of Wuhu, 259 Jiuhua Middle Road, Wuhu, 241000, China
| |
Collapse
|
259
|
Activation of endogenous human stem cell-associated retroviruses (SCARs) and therapy-resistant phenotypes of malignant tumors. Cancer Lett 2016; 376:347-59. [PMID: 27084523 DOI: 10.1016/j.canlet.2016.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 02/04/2023]
Abstract
Recent reports revealed consistent activation of specific endogenous retroviral elements in human preimplantation embryos and embryonic stem cells. Activity of stem cell associated retroviruses (SCARs) has been implicated in seeding thousands of human-specific regulatory sequences in the hESC genome. Activation of specific SCARs has been demonstrated in patients diagnosed with multiple types of cancer, autoimmune diseases, and neurodegenerative disorders, and appears associated with clinically lethal therapy resistant death-from-cancer phenotypes in a sub-set of cancer patients diagnosed with different types of malignant tumors. A hallmark feature of human-specific SCAR integration sites is deletions of ancestral DNA. Analysis of human-specific genetic loci of SCARs' stemness networks in tumor samples of TCGA cohorts representing 29 cancer types suggests that this approach may facilitate identification of pan-cancer genomic signatures of clinically-lethal disease defined by the presence of somatic non-silent mutations, gene-level copy number changes, and transcripts and proteins' expression of SCAR-regulated host genes. Present analyses indicate that multiple lines of strong circumstantial evidence support the hypothesis that activation of SCARs' networks may play an important role in cancer progression and metastasis, perhaps contributing to the emergence of clinically-lethal therapy-resistant death-from-cancer phenotypes.
Collapse
|
260
|
Salvador MA, Birnbaum D, Charafe-Jauffret E, Ginestier C. Breast cancer stem cells programs: enter the (non)-code. Brief Funct Genomics 2016; 15:186-99. [PMID: 26955842 DOI: 10.1093/bfgp/elw003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast tumors exhibit a hierarchical cellular organization driven by several subpopulations of cancer stem cells (CSCs). These breast CSC subpopulations are able to infinitely self-renew and to differentiate, giving rise to tumor heterogeneity. Accumulating evidence show that breast CSCs resist conventional therapies and i`nitiate tumor relapse. The development of anti-CSCs therapies may therefore greatly improve patient survival. A better elucidation of molecular circuitries involved in stemness would offer new relevant targets. Noncoding RNAs, especially microRNAs and long noncoding RNAs, are regulators of cell identity and are notably found deregulated in breast CSCs. This review will focus on noncoding RNAs involved in CSCs biology during breast cancer initiation, maintenance, therapeutic resistance and metastatic progression. Potential clinical applications using noncoding RNAs as biomarkers or therapies will be discussed.
Collapse
|
261
|
Dhamija S, Diederichs S. From junk to master regulators of invasion: lncRNA functions in migration, EMT and metastasis. Int J Cancer 2016; 139:269-80. [PMID: 26875870 DOI: 10.1002/ijc.30039] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/04/2016] [Indexed: 01/17/2023]
Abstract
Metastasis is a multistep process that involves the dissemination of cells from the primary tumor and colonization of distant secondary organs. Epithelial cells at the invasive front of a carcinoma acquire an enhanced migratory phenotype in a process called epithelial-to-mesenchymal transition (EMT). This cellular plasticity seems to drive the initiation of metastasis. Identifying important molecules and understanding their molecular mechanisms is a key to cancer prognosis and the development of therapeutics for late stage malignancies. Recent advances in sequencing technology uncovered that the mammalian genome is pervasively transcribed into many nonprotein-coding RNAs including the class of long noncoding RNA, a.k.a. lncRNA. Several lncRNAs are differentially expressed in carcinomas and they are emerging as potent regulators of tumor progression and metastasis. Here, we review the diverse molecular mechanisms, cellular roles and regulatory patterns that are becoming apparent for the noncoding transcriptome. Chromatin modification, epigenetic regulation, alternative splicing and translational control by MALAT1, HOTAIR and TRE lncRNAs represent important examples of lncRNA-mediated control of cell migration and invasion, EMT and metastasis. Beyond these better characterized examples, numerous additional transcripts have been associated with cancer metastasis, but their functional roles await their discovery.
Collapse
Affiliation(s)
- Sonam Dhamija
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,CellNetworks Excellence Cluster, University of Heidelberg, Heidelberg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,CellNetworks Excellence Cluster, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
262
|
Zhu CM, Yan F. Functions of large intergenic non-coding RNA-regulator of reprogramming. Shijie Huaren Xiaohua Zazhi 2016; 24:331-337. [DOI: 10.11569/wcjd.v24.i3.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the human genome, there are a large number of non-coding RNAs (ncRNAs). These ncRNAs have attracted considerable attention in recent years. Large intergenic ncRNA-regulator of reprogramming (lincRNA-ROR), a newly identified lincRNA, was initially found to regulate the process of reprogramming. Studies have indicated that lincRNA-ROR has an important role in induced pluripotent stem cells (iPSCs), DNA damage, and oxidative stress. Besides, it has been shown to be dysregulated in many types of cancer, including breast cancer and hepatocellular carcinoma. ROR functions as a regulatory molecule in a wide variety of biological processes. However, its mechanism of action remains unclear. In this review, we will focus on the research background, functions, and characteristics of ROR, as well as its regulatory mechanisms and its association with cancers.
Collapse
|
263
|
The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep 2016; 6:19874. [PMID: 26813495 PMCID: PMC4728496 DOI: 10.1038/srep19874] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022] Open
Abstract
Although the involvement of protein arginine methyltransferase 1 (PRMT1) in tumorigenesis has been reported, its roles in breast cancer progression and metastasis has not been elucidated. Here we identified PRMT1 as a key regulator of the epithelial-mesenchymal transition (EMT) in breast cancer. We showed that the EMT program induced by PRMT1 endowed the human mammary epithelial cells with cancer stem cell properties. Moreover, PRMT1 promoted the migratory and invasive behaviors in breast cancer cells. We also demonstrated that abrogation of PRMT1 expression in breast cancer cells abated metastasis in vivo in mouse model. In addition, knockdown of PRMT1 arrested cell growth in G1 tetraploidy and induced cellular senescence. Mechanistically, PRMT1 impacted EMT process and cellular senescence by mediating the asymmetric dimethylation of arginine 3 of histone H4 (H4R3me2as) at the ZEB1 promoter to activate its transcription, indicating the essential roles of this epigenetic control both in EMT and in senescence. Thus, we unraveled a dual function of PRMT1 in modulation of both EMT and senescence via regulating ZEB1. This finding points to the potent value of PRMT1 as a dual therapeutic target for preventing metastasis and for inhibiting cancer cell growth in malignant breast cancer patients.
Collapse
|
264
|
Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, Fucile C, Richheimer S, Beckham CJ. Expression of the Long Non-Coding RNA HOTAIR Correlates with Disease Progression in Bladder Cancer and Is Contained in Bladder Cancer Patient Urinary Exosomes. PLoS One 2016; 11:e0147236. [PMID: 26800519 PMCID: PMC4723257 DOI: 10.1371/journal.pone.0147236] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
Exosomes are 30-150nM membrane-bound secreted vesicles that are readily isolated from biological fluids such as urine (UEs). Exosomes contain proteins, micro RNA (miRNA), messenger RNA (mRNA), and long non-coding RNA (lncRNA) from their cells of origin. Although miRNA, protein and lncRNA have been isolated from serum as potential biomarkers for benign and malignant disease, it is unknown if lncRNAs in UEs from urothelial bladder cancer (UBC) patients can serve as biomarkers. lncRNAs are > 200 nucleotide long transcripts that do not encode protein and play critical roles in tumor biology. As the number of recognized tumor-associated lncRNAs continues to increase, there is a parallel need to include lncRNAs into biomarker discovery and therapeutic target algorithms. The lncRNA HOX transcript antisense RNA (HOTAIR) has been shown to facilitate tumor initiation and progression and is associated with poor prognosis in several cancers. The importance of HOTAIR in cancer biology has sparked interest in using HOTAIR as a biomarker and potential therapeutic target. Here we show HOTAIR and several tumor-associated lncRNAs are enriched in UEs from UBC patients with high-grade muscle-invasive disease (HGMI pT2-pT4). Knockdown of HOTAIR in UBC cell lines reduces in vitro migration and invasion. Importantly, loss of HOTAIR expression in UBC cell lines alters expression of epithelial-to-mesenchyme transition (EMT) genes including SNAI1, TWIST1, ZEB1, ZO1, MMP1 LAMB3, and LAMC2. Finally, we used RNA-sequencing to identify four additional lncRNAs enriched in UBC patient UEs. These data, suggest that UE-derived lncRNA may potentially serve as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Claudia Berrondo
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Jonathan Flax
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Victor Kucherov
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Aisha Siebert
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Thomas Osinski
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Alex Rosenberg
- Division of Immunology and Rheumatology, University of Rochester, Strong Memorial Hospital Rochester, New York, United States of America
| | - Christopher Fucile
- Division of Immunology and Rheumatology, University of Rochester, Strong Memorial Hospital Rochester, New York, United States of America
| | - Samuel Richheimer
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Carla J. Beckham
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
265
|
Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, Fucile C, Richheimer S, Beckham CJ. Expression of the Long Non-Coding RNA HOTAIR Correlates with Disease Progression in Bladder Cancer and Is Contained in Bladder Cancer Patient Urinary Exosomes. PLoS One 2016. [PMID: 26800519 DOI: 10.1371/journal.pone.0147236.ecollection2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exosomes are 30-150nM membrane-bound secreted vesicles that are readily isolated from biological fluids such as urine (UEs). Exosomes contain proteins, micro RNA (miRNA), messenger RNA (mRNA), and long non-coding RNA (lncRNA) from their cells of origin. Although miRNA, protein and lncRNA have been isolated from serum as potential biomarkers for benign and malignant disease, it is unknown if lncRNAs in UEs from urothelial bladder cancer (UBC) patients can serve as biomarkers. lncRNAs are > 200 nucleotide long transcripts that do not encode protein and play critical roles in tumor biology. As the number of recognized tumor-associated lncRNAs continues to increase, there is a parallel need to include lncRNAs into biomarker discovery and therapeutic target algorithms. The lncRNA HOX transcript antisense RNA (HOTAIR) has been shown to facilitate tumor initiation and progression and is associated with poor prognosis in several cancers. The importance of HOTAIR in cancer biology has sparked interest in using HOTAIR as a biomarker and potential therapeutic target. Here we show HOTAIR and several tumor-associated lncRNAs are enriched in UEs from UBC patients with high-grade muscle-invasive disease (HGMI pT2-pT4). Knockdown of HOTAIR in UBC cell lines reduces in vitro migration and invasion. Importantly, loss of HOTAIR expression in UBC cell lines alters expression of epithelial-to-mesenchyme transition (EMT) genes including SNAI1, TWIST1, ZEB1, ZO1, MMP1 LAMB3, and LAMC2. Finally, we used RNA-sequencing to identify four additional lncRNAs enriched in UBC patient UEs. These data, suggest that UE-derived lncRNA may potentially serve as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Claudia Berrondo
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Jonathan Flax
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Victor Kucherov
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Aisha Siebert
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Thomas Osinski
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Alex Rosenberg
- Division of Immunology and Rheumatology, University of Rochester, Strong Memorial Hospital Rochester, New York, United States of America
| | - Christopher Fucile
- Division of Immunology and Rheumatology, University of Rochester, Strong Memorial Hospital Rochester, New York, United States of America
| | - Samuel Richheimer
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Carla J Beckham
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| |
Collapse
|
266
|
Abstract
Metastasis is the primary cause of cancer-related death all over the world. Metastasis is a process by which cancer spreads from the place at which it first arose to distant locations in the body. It is well known that several steps are necessary for this process, including cancer cell epithelial-mesenchymal transition (EMT), cell migration, resistance to anoikis, and angiogenesis. Therefore, investigating the molecular mechanism of regulating cancer metastasis progress may provide helpful insights in the development of efficient diagnosis and therapeutic strategy. Recent studies have indicated that long noncoding RNAs (lncRNAs) play important roles in cancer metastasis. lncRNAs are the nonprotein coding RNAs that have a size longer than 200 nucleotides. More and more studies have indicated that lncRNAs are involved in a broad range of biological processes and are associated with many diseases, such as cancer. The role of lncRNAs in cancer metastasis has been widely studied; however, lncRNAs are mainly involved in the EMT process on the current literature. This review focuses on the mechanisms underlying the role of lncRNAs in cancer metastasis.
Collapse
Affiliation(s)
- Juan Li
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hui Meng
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Kai Wang
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
267
|
Nair S. Current insights into the molecular systems pharmacology of lncRNA-miRNA regulatory interactions and implications in cancer translational medicine. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.2.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
268
|
Shimono Y, Mukohyama J, Nakamura SI, Minami H. MicroRNA Regulation of Human Breast Cancer Stem Cells. J Clin Med 2015; 5:jcm5010002. [PMID: 26712794 PMCID: PMC4730127 DOI: 10.3390/jcm5010002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/01/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in virtually all biological processes, including stem cell maintenance, differentiation, and development. The dysregulation of miRNAs is associated with many human diseases including cancer. We have identified a set of miRNAs differentially expressed between human breast cancer stem cells (CSCs) and non-tumorigenic cancer cells. In addition, these miRNAs are similarly upregulated or downregulated in normal mammary stem/progenitor cells. In this review, we mainly describe the miRNAs that are dysregulated in human breast CSCs directly isolated from clinical specimens. The miRNAs and their clusters, such as the miR-200 clusters, miR-183 cluster, miR-221-222 cluster, let-7, miR-142 and miR-214, target the genes and pathways important for stem cell maintenance, such as the self-renewal gene BMI1, apoptosis, Wnt signaling, Notch signaling, and epithelial-to-mesenchymal transition. In addition, the current evidence shows that metastatic breast CSCs acquire a phenotype that is different from the CSCs in a primary site. Thus, clarifying the miRNA regulation of the metastatic breast CSCs will further advance our understanding of the roles of human breast CSCs in tumor progression.
Collapse
Affiliation(s)
- Yohei Shimono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Junko Mukohyama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Shun-Ichi Nakamura
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
- Division of Biochemistry, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| |
Collapse
|
269
|
Wang SH, Wu XC, Zhang MD, Weng MZ, Zhou D, Quan ZW. Upregulation of H19 indicates a poor prognosis in gallbladder carcinoma and promotes epithelial-mesenchymal transition. Am J Cancer Res 2015; 6:15-26. [PMID: 27073719 PMCID: PMC4759393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023] Open
Abstract
The imprinted oncofetal long non-coding RNA H19 has been reported to be involved in many kinds of human cancers. However, whether lncRNA H19 implicate in oncogenesis and cancer progression in gallbladder cancer remain largely unknown. In the present study, compared with adjacent normal tissues, the level of H19 was significantly upregulated in gallbladder cancer tissues and was positively associated with lymphatic metastasis and tumor size. The overall survival is shorter in those who had higher H19 expression among GBC patients. In vitro, both TGF-β1 and IL-6 treatment induced upregulation of H19, downregulated the protein level of E-cadherin while increased Vimentin, indicating an epithelial-mesenchymal transition (EMT) phenotype in GBC. The overexpression of H19 in GBC cells enhanced tumor invasion and promoted EMT by upregulated transcription factor Twist1. On the contrary, Loss of function studies indicated that H19 interference in GBC suppressed tumor cell invasion and promoted mesenchymal-epithelial transition (MET) via suppressing Twist expression. In vivo, the volume of the tumors in H19-inteference group was significantly decreased compared to those in the control group of nude mice. Both western-blot and immunohistochemistry confirmed that a MET phenotype existed in the H19 interference group when compared to control group. These results defined H19 as a novel prognostic factor for GBC, and indicated that it might play important regulatory roles in the EMT process.
Collapse
Affiliation(s)
- Shou-Hua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200000, China
| | - Xiao-Cai Wu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200000, China
| | - Ming-Di Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200000, China
| | - Ming-Zhe Weng
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200000, China
| | - Di Zhou
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200000, China
| | - Zhi-Wei Quan
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200000, China
| |
Collapse
|
270
|
Xue M, Pang H, Li X, Li H, Pan J, Chen W. Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the hsa-miR-145-ZEB1/2-FSCN1 pathway. Cancer Sci 2015; 107:18-27. [PMID: 26544536 PMCID: PMC4724815 DOI: 10.1111/cas.12844] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 10/08/2015] [Accepted: 11/01/2015] [Indexed: 12/14/2022] Open
Abstract
Numerous studies suggest that several long non‐coding RNAs (lncRNAs) play critical roles in bladder cancer development and progression. Long non‐coding RNA urothelial cancer‐associated 1 (lncRNA‐UCA1) is highly expressed in bladder cancer tissues and cells, and it has been shown to play an important role in regulating aggressive phenotypes of bladder cancer cells. However, little is known about the molecular mechanism of lncRNA‐UCA1‐mediated bladder cancer cell migration and invasion. Here, we show that overexpression of lncRNA‐UCA1 could induce EMT and increase the migratory and invasive abilities of bladder cancer cells. Mechanistically, lncRNA‐UCA1 induced EMT of bladder cancer cells by upregulating the expression levels of zinc finger E‐box binding homeobox 1 and 2 (ZEB1 and ZEB2), and regulated bladder cancer cell migration and invasion by tumor suppressive hsa‐miR‐145 and its target gene the actin‐binding protein fascin homologue 1 (FSCN1). Furthermore, we also observed a positive correlation between lncRNA‐UCA1 and ZEB1/2 expression, and a negative correlation between lncRNA‐UCA1 and hsa‐miR‐145 expression in bladder cancer specimens. Importantly, we found that lncRNA‐UCA1 repressed hsa‐miR‐145 expression to upregulate ZEB1/2, whereas the suppression of hsa‐miR‐145 could upregulate lncRNA‐UCA1 expression in bladder cancer cells. Moreover, the binding site for hsa‐miR‐145 within exons 2 and 3 of lncRNA‐UCA1 contributed to the reciprocal negative regulation of lncRNA‐UCA1 and hsa‐miR‐145. Taken together, our results identified that lncRNA‐UCA1 enhances bladder cancer cell migration and invasion in part through the hsa‐miR‐145/ZEB1/2/FSCN1 pathway. Therefore, lncRNA‐UCA1 might act as a promising therapeutic target for the invasion and metastasis of bladder cancer.
Collapse
Affiliation(s)
- Mei Xue
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huan Pang
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huijin Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingjing Pan
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Chen
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
271
|
Wang G, Liu C, Deng S, Zhao Q, Li T, Qiao S, Shen L, Zhang Y, Lü J, Meng L, Liang C, Yu Z. Long noncoding RNAs in regulation of human breast cancer. Brief Funct Genomics 2015; 15:222-6. [PMID: 26582840 DOI: 10.1093/bfgp/elv049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Less than 2% of the human genome DNA is composed of protein-coding genes, although the majority of the human genome is transcribed, indicating the transcripts mostly are noncoding RNAs. Those noncoding RNAs with length between 200 nt and 200 kb are categorized as long noncoding RNA (lncRNA). Around 30 000 lncRNAs have been predicted or identified, although little is known regarding the regulatory function for a vast majority of these sequences. Emerging evidence demonstrated that lncRNAs play crucial roles in regulation of many cancer types, including breast cancer, serving as oncogenes or tumor suppressors. Aberrant and differential expression of lncRNA in breast cancer has been frequently reported. Their regulation of breast cancer is still the beginning to be elucidated. This review collected those experimentally validated lncRNAs in human breast cancer, summarizing their biological function as well as the regulatory mechanism. In addition, the potential of lncRNAs as biomarkers for better diagnosis or therapeutic targets for cancer treatment was discussed.
Collapse
|
272
|
Liu ZJ, Semenza GL, Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B 2015; 16:32-43. [PMID: 25559953 DOI: 10.1631/jzus.b1400221] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulating evidence has shown that the hypoxic microenvironment, which is critical during cancer development, plays a key role in regulating breast cancer progression and metastasis. The effects of hypoxia-inducible factor 1 (HIF-1), a master regulator of the hypoxic response, have been extensively studied during these processes. In this review, we focus on the roles of HIF-1 in regulating breast cancer cell metastasis, specifically its effects on multiple key steps of metastasis, such as epithelial-mesenchymal transition (EMT), invasion, extravasation, and metastatic niche formation. We also discuss the roles of HIF-1-regulated non-coding RNAs in breast cancer metastasis, and therapeutic opportunities for breast cancer through targeting the HIF-1 pathway.
Collapse
Affiliation(s)
- Zhao-Ji Liu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
273
|
Glinsky GV. Viruses, stemness, embryogenesis, and cancer: a miracle leap toward molecular definition of novel oncotargets for therapy-resistant malignant tumors? Oncoscience 2015; 2:751-4. [PMID: 26501080 PMCID: PMC4606008 DOI: 10.18632/oncoscience.237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/10/2015] [Indexed: 12/22/2022] Open
Abstract
Recent breakthrough studies documented consistent activation of specific endogenous retroviruses in human embryonic stem cells and preimplantation human embryos and demonstrated the essential role of the sustained retroviral activities for maintenance of pluripotency and embryonic stem cell identity. Present analysis has led to the hypothesis that activation of the human stem cell-associated retroviruses (SCARs), namely LTR7/HERVH and LTR5_Hs/HERVK, is likely associated with the emergence of clinically lethal therapy resistant death-from-cancer phenotypes in a sub-set of cancer patients diagnosed with different types of malignant tumors.
Collapse
Affiliation(s)
- Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
274
|
Zhao Z, Li S, Song E, Liu S. The roles of ncRNAs and histone-modifiers in regulating breast cancer stem cells. Protein Cell 2015; 7:89-99. [PMID: 26349457 PMCID: PMC4742390 DOI: 10.1007/s13238-015-0199-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/16/2015] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs), a subpopulation of cancer cells with ability of initiating tumorigenesis, exist in many kinds of tumors including breast cancer. Cancer stem cells contribute to treatment resistance and relapse. Conventional treatments only kill differentiated cancer cells, but spare CSCs. Combining conventional treatments with therapeutic drugs targeting to CSCs will eradicate cancer cells more efficiently. Studying the molecular mechanisms of CSCs regulation is essential for developing new therapeutic strategies. Growing evidences showed CSCs are regulated by non-coding RNA (ncRNA) including microRNAs and long non-coding RNAs (lncRNAs), and histone-modifiers, such as let-7, miR-93, miR-100, HOTAIR, Bmi-1 and EZH2. Herein we review the roles of microRNAs, lncRNAs and histone-modifiers especially Polycomb family proteins in regulating breast cancer stem cells (BCSCs).
Collapse
Affiliation(s)
- Zhiju Zhao
- Innovation Center for Cell Signalling and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, 230027, China
| | - Shu Li
- Department of Pathophysiology, Wannan Medical College, Wuhu, 241002, China
| | - Erwei Song
- Department of Breast Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Suling Liu
- Innovation Center for Cell Signalling and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, 230027, China.
| |
Collapse
|
275
|
Altered expression of LINC-ROR in cancer cell lines and tissues. Tumour Biol 2015; 37:1763-9. [PMID: 26314857 DOI: 10.1007/s13277-015-3933-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022] Open
Abstract
According to GLOBOCAN 2012, the worldwide burden of cancer increased and is expected to worsen within the next decades. Therefore, universal combat against cancer will not succeed with treatment solely; effective prevention and early detection are urgently needed to tackle the cancer crisis. Emerging data demonstrate that long non-coding RNAs are involved in numerous biological and pathological processes like development and differentiation and in a variety of human diseases including cancer. Located at 18q21, LINC-ROR (regulator of reprogramming) is a modulator of ESCs maintenance and hypoxia-signaling pathways in hepatocellular cancer cells. The aim of this study was to examine the expression of LINC-ROR in various cell lines and representative samples of human cancers by quantitative real-time RT-PCR to provide a snapshot on how LINC-ROR expression may be deregulated in cancer. More than 30 cell lines and 112 patient specimens from various tissues were assessed for relative expression of LINC-ROR. Our results revealed that the expression of LINC-ROR was lower in all somatic cancer cell lines compared to stem cells or cells with stem cell-like capabilities, like the embryonic carcinoma cell line, NTERA-2. In tissues, expression patterns vary, but some cancerous tissues displayed increased LINC-ROR expression compared to corresponding normal tissues. Thus, we hypothesize that LINC-ROR may have a key function in a subpopulation of cells from the tumor bulk, i.e., the cancer stem cells associated with specific properties including resistance to adverse environmental conditions.
Collapse
|
276
|
Xia T, Chen S, Jiang Z, Shao Y, Jiang X, Li P, Xiao B, Guo J. Long noncoding RNA FER1L4 suppresses cancer cell growth by acting as a competing endogenous RNA and regulating PTEN expression. Sci Rep 2015; 5:13445. [PMID: 26306906 PMCID: PMC4549704 DOI: 10.1038/srep13445] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 07/31/2015] [Indexed: 01/17/2023] Open
Abstract
Aberrantly expressed long noncoding RNAs (lncRNAs) are associated with various cancers. However, the roles of lncRNAs in the pathogenesis of most cancers are unclear. Here, we report that the lncRNA FER1L4 (fer-1-like family member 4, pseudogene) acts as a competing endogenous RNA (ceRNA) to regulate the expression of PTEN (a well-known tumor suppressor gene) by taking up miR-106a-5p in gastric cancer. We observed that FER1L4 was downregulated in gastric cancer and that its level corresponded with that of PTEN mRNA. Both FER1L4 and PTEN mRNA were targets of miR-106a-5p. Further experiments demonstrated that FER1L4 downregulation liberates miR-106a-5p and decreases the abundances of PTEN mRNA and protein. More importantly, FER1L4 downregulation accelerated cell proliferation by promoting the G0/G1 to S phase transition. We conclude that one mechanism by which lncRNAs function in in tumorigenesis is as ceRNAs for tumor suppressor mRNAs.
Collapse
Affiliation(s)
- Tian Xia
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Shengcan Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Zhen Jiang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Yongfu Shao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Xiaoming Jiang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Peifei Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Bingxiu Xiao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
277
|
Merry CR, Forrest ME, Sabers JN, Beard L, Gao XH, Hatzoglou M, Jackson MW, Wang Z, Markowitz SD, Khalil AM. DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum Mol Genet 2015; 24:6240-53. [PMID: 26307088 DOI: 10.1093/hmg/ddv343] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/17/2015] [Indexed: 12/14/2022] Open
Abstract
The cancer epigenome exhibits global loss of DNA methylation, which contributes to genomic instability and aberrant gene expression by mechanisms that are yet to be fully elucidated. We previously discovered over 3300 long non-coding (lnc)RNAs in human cells and demonstrated that specific lncRNAs regulate gene expression via interactions with chromatin-modifying complexes. Here, we tested whether lncRNAs could also associate with DNA methyltransferases to regulate DNA methylation and gene expression. Using RIP-seq, we identified a subset of lncRNAs that interact with the DNA methyltransferase DNMT1 in a colon cancer cell line, HCT116. One lncRNA, TCONS_00023265, which we named DACOR1 (DNMT1-associated Colon Cancer Repressed lncRNA 1), shows high, tissue-specific expression in the normal colon (including colon crypts) but was repressed in a panel of colon tumors and patient-derived colon cancer cell lines. We identified the genomic occupancy sites of DACOR1, which we found to significantly overlap with known differentially methylated regions (DMRs) in colon tumors. Induction of DACOR1 in colon cancer cell lines significantly reduced their ability to form colonies in vitro, suggesting a growth suppressor function. Consistent with the observed phenotype, induction of DACOR1 led to the activation of tumor-suppressor pathways and attenuation of cancer-associated metabolic pathways. Notably, DACOR1 induction resulted in down-regulation of Cystathionine β-synthase, which is known to lead to increased levels of S-adenosyl methionine-the key methyl donor for DNA methylation. Collectively, our results demonstrate that deregulation of DNMT1-associated lncRNAs contributes to aberrant DNA methylation and gene expression during colon tumorigenesis.
Collapse
Affiliation(s)
- Callie R Merry
- Department of Genetics and Genome Sciences, Department of Biochemistry
| | | | | | | | | | | | - Mark W Jackson
- Case Comprehensive Cancer Center and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center and
| | - Sanford D Markowitz
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center and
| | - Ahmad M Khalil
- Department of Genetics and Genome Sciences, Department of Biochemistry, Case Comprehensive Cancer Center and
| |
Collapse
|
278
|
Li H, Zhu L, Xu L, Qin K, Liu C, Yu Y, Su D, Wu K, Sheng Y. Long noncoding RNA linc00617 exhibits oncogenic activity in breast cancer. Mol Carcinog 2015. [PMID: 26207516 DOI: 10.1002/mc.22338] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Protein-coding genes account for only 2% of the human genome, whereas the vast majority of transcripts are noncoding RNAs including long noncoding RNAs. LncRNAs are involved in the regulation of a diverse array of biological processes, including cancer progression. An evolutionarily conserved lncRNA TUNA, was found to be required for pluripotency of mouse embryonic stem cells. In this study, we found the human ortholog of TUNA, linc00617, was upregulated in breast cancer samples. Linc00617 promoted motility and invasion of breast cancer cells and induced epithelial-mesenchymal-transition (EMT), which was accompanied by generation of stem cell properties. Moreover, knockdown of linc00617 repressed lung metastasis in vivo. We demonstrated that linc00617 upregulated the expression of stemness factor Sox2 in breast cancer cells, which was shown to promote the oncogenic activity of breast cancer cells by stimulating epithelial-to-mesenchymal transition and enhancing the tumor-initiating capacity. Thus, our data indicate that linc00617 functions as an important regulator of EMT and promotes breast cancer progression and metastasis via activating the transcription of Sox2. Together, it suggests that linc00617 may be a potential therapeutic target for aggressive breast cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hengyu Li
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Zhu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lu Xu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Keyu Qin
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chaoqian Liu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yue Yu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dongwei Su
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kainan Wu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Sheng
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
279
|
Expanding the p53 regulatory network: LncRNAs take up the challenge. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015. [PMID: 26196323 DOI: 10.1016/j.bbagrm.2015.07.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are rapidly emerging as important regulators of gene expression in a wide variety of physiological and pathological cellular processes. In particular, a number of studies revealed that some lncRNAs participate in the p53 pathway, the unquestioned protagonist of tumor suppressor response. Indeed, several lncRNAs are not only part of the large pool of genes coordinated by p53 transcription factor, but are also required by p53 to fine-tune its response and to fully accomplish its tumor suppressor program. In this review we will discuss the current and fast growing knowledge about the contribution of lncRNAs to the complexity of the p53 network, the different mechanisms by which they affect gene regulation in this context, and their involvement in cancer. The incipient impact of lncRNAs in the p53 biological response may encourage the development of therapies and diagnostic methods focused on these noncoding molecules. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
|
280
|
Liz J, Esteller M. lncRNAs and microRNAs with a role in cancer development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:169-76. [PMID: 26149773 DOI: 10.1016/j.bbagrm.2015.06.015] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022]
Abstract
Most diseases, including human cancer, are frequently associated with an altered transcription pattern. The alteration of the transcriptome is not restricted to the production of aberrant levels of protein-coding RNAs, but also refers to the dysregulation of the expression of the multiple noncoding members that comprise the human genome. Unexpectedly, recent RNA-seq data of the human transcriptome have revealed that less than 2% of the genome encodes protein-coding transcripts, even though the vast majority of the genome is actively transcribed into non-coding RNAs (ncRNAs) under different conditions. In this review, we present an updated version of the mechanistic aspects of some long non-coding RNAs (lncRNAs) that play critical roles in human cancer. Most importantly, we focus on the interplay between lncRNAs and microRNAs, and the importance of such interactions during the tumorigenic process, providing new insight into the regulatory mechanisms underlying several ncRNA classes of importance in cancer, particularly transcribed ultraconserved regions (T-UCRs). This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Julia Liz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
281
|
Prasad VV, Gopalan RO. Continued use of MDA-MB-435, a melanoma cell line, as a model for human breast cancer, even in year, 2014. NPJ Breast Cancer 2015; 1:15002. [PMID: 28721362 PMCID: PMC5515196 DOI: 10.1038/npjbcancer.2015.2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Vidudala Vts Prasad
- Research and Development, Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad, India
| | - Ramprasad Og Gopalan
- Research and Development, Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad, India
| |
Collapse
|
282
|
Yang ZG, Gao L, Guo XB, Shi YL. Roles of long non-coding RNAs in gastric cancer metastasis. World J Gastroenterol 2015; 21:5220-5230. [PMID: 25954095 PMCID: PMC4419062 DOI: 10.3748/wjg.v21.i17.5220] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/18/2015] [Accepted: 03/27/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the second leading cause of cancer-related deaths. Metastasis, which is an important element of gastric cancer, leads to a high mortality rate and to a poor prognosis. Gastric cancer metastasis has a complex progression that involves multiple biological processes. The comprehensive mechanisms of metastasis remain unclear, though traditional regulation modulates the molecular functions associated with metastasis. Long non-coding RNAs (lncRNAs) have a role in different gene regulatory pathways by epigenetic modification and by transcriptional and post-transcription regulation. lncRNAs participate in various diseases, including Alzheimer’s disease, cardiovascular disease, and cancer. The altered expressions of certain lncRNAs are linked to gastric cancer metastasis and invasion, as with tumor suppressor genes or oncogenes. Studies have partly elucidated the roles of lncRNAs as biomarkers and in therapies, as well as their gene regulatory mechanisms. However, comprehensive knowledge regarding the functional mechanisms of gene regulation in metastatic gastric cancer remains scarce. To provide a theoretical basis for therapeutic intervention in metastatic gastric cancer, we reviewed the functions of lncRNAs and their regulatory roles in gastric cancer metastasis.
Collapse
|
283
|
Huang C, Cao L, Qiu L, Dai X, Ma L, Zhou Y, Li H, Gao M, Li W, Zhang Q, Han K, Lv H. Upregulation of H19 promotes invasion and induces epithelial-to-mesenchymal transition in esophageal cancer. Oncol Lett 2015; 10:291-296. [PMID: 26171017 DOI: 10.3892/ol.2015.3165] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 03/24/2015] [Indexed: 01/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have previously been reported to be involved in cancer invasion, proliferation and apoptosis. However, the association between the lncRNA, H19, and esophageal cancer (EC) has remained elusive. In the present study, reverse transcription quantitative-polymerase chain reaction revealed that the expression of H19 was significantly increased and associated with tumor depth and metastasis in 133 EC samples. Furthermore, MTT and Transwell assays revealed that overexpression of H19 in vitro promoted the proliferation and invasion of EC cell lines, whereas knockdown of H19 inhibited the proliferation and invasion of EC cell lines. In addition, it was identified that an upregulation of H19 induced epithelial-to-mesenchymal transition, while the opposite effect was observed following the downregulation of H19. In conclusion, H19 has a significant role in the development of EC and may serve as a potential prognostic marker and therapeutic target for EC.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Clinical Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| | - Lihua Cao
- Department of Dermatology, Yancheng City No. 1 People's Hospital, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng, Jiangsu 224005, P.R. China
| | - Limin Qiu
- Department of Thoracic Surgery, Yancheng City No. 1 People's Hospital, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng, Jiangsu 224005, P.R. China
| | - Xiaoli Dai
- Department of Clinical Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| | - Linwei Ma
- Department of Clinical Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| | - Yingting Zhou
- Department of Pathology, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| | - Huifen Li
- Department of Pathology, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| | - Min Gao
- Department of Clinical Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| | - Weiyong Li
- Department of Clinical Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| | - Qing Zhang
- Department of Clinical Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| | - Koulan Han
- Department of Clinical Medicine, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| | - Hongzhen Lv
- Department of Pathology, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| |
Collapse
|
284
|
Wang F, Ying HQ, He BS, Pan YQ, Deng QW, Sun HL, Chen J, Liu X, Wang SK. Upregulated lncRNA-UCA1 contributes to progression of hepatocellular carcinoma through inhibition of miR-216b and activation of FGFR1/ERK signaling pathway. Oncotarget 2015; 6:7899-7917. [PMID: 25760077 PMCID: PMC4480724 DOI: 10.18632/oncotarget.3219] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/26/2015] [Indexed: 12/15/2022] Open
Abstract
The long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been recently shown to be dysregulated, which plays an important role in the progression of several cancers. However, the biological role and clinical significance of UCA1 in the carcinogenesis of hepatocellular carcinoma (HCC) remain unclear. Herein, we found that UCA1 was aberrantly upregulated in HCC tissues and associated with TNM stage, metastasis and postoperative survival. UCA1 depletion inhibited the growth and metastasis of HCC cell lines in vitro and in vivo. Furthermore, UCA1 could act as an endogenous sponge by directly binding to miR-216b and downregulation miR-216b expression. In addition, UCA1 could reverse the inhibitory effect of miR-216b on the growth and metastasis of HCC cells, which might be involved in the derepression of fibroblast growth factor receptor 1 (FGFR1) expression, a target gene of miR-216b, and the activation of ERK signaling pathway. Taken together, our data highlights the pivotal role of UCA1 in the tumorigenesis of HCC. Moreover, the present study elucidates a novel lncRNA-miRNA-mRNA regulatory network that is UCA1-miR-216b-FGFR1-ERK signaling pathway in HCC, which may help to lead a better understanding the pathogenesis of HCC and probe the feasibility of lncRNA-directed diagnosis and therapy for this deadly disease.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Hep G2 Cells
- Heterografts
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- MAP Kinase Signaling System
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- Middle Aged
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Signal Transduction
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Feng Wang
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hou-Qun Ying
- Medical college, Southeast University, Nanjing, Jiangsu, China
| | - Bang-Shun He
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Qin Pan
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi-Wen Deng
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui-Ling Sun
- Department of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Jie Chen
- Department of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xian Liu
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu-Kui Wang
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
285
|
Ergun S, Oztuzcu S. Oncocers: ceRNA-mediated cross-talk by sponging miRNAs in oncogenic pathways. Tumour Biol 2015; 36:3129-36. [PMID: 25809705 DOI: 10.1007/s13277-015-3346-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/15/2015] [Indexed: 12/12/2022] Open
Abstract
Competing endogenous RNAs (ceRNAs) are RNA transcripts which can communicate with each other by decreasing targeting concentration of micro-RNA (miRNA) with the derepression of other messenger RNAs (mRNAs) having the common miRNA response elements (MREs). Oncocers are ceRNAs taking crucial roles in oncogenic pathways processed in many types of cancer, and this study analyzes oncocer-mediated cross-talk by sponging microRNAs (miRNAs) in these pathways. While doing this, breast, liver, colon, prostate, gastric, lung, endometrium, thyroid and epithelial cancers and melanoma, rhabdomyosarcoma, glioblastoma, acute promyelocytic leukemia, retinoblastoma, and neuroblastoma were analyzed with respect to ceRNA-based carcinogenesis. This study defines, firstly, oncocers in the literature and contains all oncocer-related findings found up to now. Therefore, it will help to increase our comprehension about oncocer-mediated mechanisms. Via this study, a novel perspective would be produced to make clear cancer mechanisms and suggest novel approaches to regulate ceRNA networks via miRNA competition for cancer therapeutics. Graphical Abstract Multiple RNA transcripts have common MREs for the similar miRNA in their 3'-untranslated regions (3'-UTRs). Upregulation of ceRNAs rises the abundance of specific MREs and shifts the miRNA pool distribution, as a result, leading to the increased expression of target mRNA. The depot of genomic mutations and epigenetic alterations changing gene function and expression causes cancers. Herewith, genome-based somatic base-pair mutations, DNA copy number alterations, chromosomal translocation, also transcript fusions, alternative splicing are usually seen in cancer situations. Consequently, such cases causing changed UTR expression in transcripts influence the levels of MRE or present new MREs into the cells. Alterations in MREs of ceRNAs affect the capability of a specific mRNA transcript to attach or titrate miRNAs. As a result, the disturbed ceRNA network can lead to diseases and cancers. As a new term in RNA world, oncocers-the name for ceRNAs taking crucial roles in oncogenic pathways-are processed in many types of cancer, and oncocer-mediated cross-talk are analyzed by sponging miRNAs in these pathways.
Collapse
Affiliation(s)
- Sercan Ergun
- Ulubey Vocational Higher School, Ordu University, Ordu, Turkey,
| | | |
Collapse
|
286
|
Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model. Cell Death Dis 2015; 6:e1701. [PMID: 25811798 PMCID: PMC4385941 DOI: 10.1038/cddis.2015.63] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/01/2015] [Accepted: 02/09/2015] [Indexed: 02/05/2023]
Abstract
Breast carcinoma is the most common female cancer with considerable metastatic potential. Signal transducers and activators of the transcription 3 (Stat3) signaling pathway is constitutively activated in many cancers including breast cancer and has been validated as a novel potential anticancer target. Here, we reported our finding with nifuroxazide, an antidiarrheal agent identified as a potent inhibitor of Stat3. The potency of nifuroxazide on breast cancer was assessed in vitro and in vivo. In this investigation, we found that nifuroxazide decreased the viability of three breast cancer cell lines and induced apoptosis of cancer cells in a dose-dependent manner. In addition, western blot analysis demonstrated that the occurrence of its apoptosis was associated with activation of cleaved caspases-3 and Bax, downregulation of Bcl-2. Moreover, nifuroxazide markedly blocked cancer cell migration and invasion, and the reduction of phosphorylated-Stat3Tyr705, matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed. Furthermore, in our animal experiments, intraperitoneal administration of 50 mg/kg/day nifuroxazide suppressed 4T1 tumor growth and blocked formation of pulmonary metastases without detectable toxicity. Meanwhile, histological and immunohistochemical analyses revealed a decrease in Ki-67-positive cells, MMP-9-positive cells and an increase in cleaved caspase-3-positive cells upon nifuroxazide. Notably, nifuroxazide reduced the number of myeloid-derived suppressor cell in the lung. Our data indicated that nifuroxazide may potentially be a therapeutic agent for growth and metastasis of breast cancer.
Collapse
|
287
|
Tordonato C, Di Fiore PP, Nicassio F. The role of non-coding RNAs in the regulation of stem cells and progenitors in the normal mammary gland and in breast tumors. Front Genet 2015; 6:72. [PMID: 25774169 PMCID: PMC4343025 DOI: 10.3389/fgene.2015.00072] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/11/2015] [Indexed: 12/17/2022] Open
Abstract
The outlook on stem cell (SC) biology is shifting from a rigid hierarchical to a more flexible model in which the identity and the behavior of adult SCs, far from being fixed, are determined by the dynamic integration of cell autonomous and non-autonomous mechanisms. Within this framework, the recent discovery of thousands of non-coding RNAs (ncRNAs) with regulatory function is redefining the landscape of transcriptome regulation, highlighting the interplay of epigenetic, transcriptional, and post-transcriptional mechanisms in the specification of cell fate and in the regulation of developmental processes. Furthermore, the expression of ncRNAs is often tissue- or even cell type-specific, emphasizing their involvement in defining space, time and developmental stages in gene regulation. Such a role of ncRNAs has been investigated in embryonic and induced pluripotent SCs, and in numerous types of adult SCs and progenitors, including those of the breast, which will be the topic of this review. We will focus on ncRNAs with an important role in breast cancer, in particular in mammary cancer SCs and progenitors, and highlight the ncRNA-based circuitries whose subversion alters a number of the epigenetic, transcriptional, and post-transcriptional events that control “stemness” in the physiological setting.
Collapse
Affiliation(s)
- Chiara Tordonato
- Department of Experimental Oncology, European Institute of Oncology, Milan Italy
| | - Pier Paolo Di Fiore
- Department of Experimental Oncology, European Institute of Oncology, Milan Italy ; Fondazione Istituto FIRC di Oncologia Molecolare, Milan Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan Italy
| |
Collapse
|
288
|
Long noncoding RNA aberrant expression profiles after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy of AGC ascertained by microarray analysis. Tumour Biol 2015; 36:5021-9. [PMID: 25652469 DOI: 10.1007/s13277-015-3153-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/26/2015] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to be involved in the development and progression of advanced gastric cancer (AGC). However, the roles of lncRNAs in advanced gastric cancer during the process of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) are not well understood. A high-throughput microarray analysis was performed to compare the expression profiles of lncRNAs and messenger RNAs (mRNAs) in AGC serum samples during the process of CRS + HIPEC. Several potentially AGC-associated lncRNAs were verified by real-time quantitative reverse transcription polymerase chain reaction (PCR) analysis. Using abundant and varied probes, we were able to assess 33,045 lncRNAs and 30,215 mRNAs in our microarray. We found that 566 lncRNAs were differentially expressed (2-fold change) in AGC serum samples, indicating the significantly up- or downregulated lncRNAs play important roles in AGC during the process of CRS + HIPEC. Quantitative PCR results further verified that eight lncRNAs were aberrantly expressed in AGC serum samples after CRS + HIEC compared with matched serum sample before CRS + HIPEC. Among them, BC031243 and RP11-356I2.2 were the most aberrantly expressed lncRNAs, as estimated by quantitative PCR in six pairs of AGC serum samples. Our study demonstrated the expression patterns of lncRNAs in AGC serums before and after CRS + HIPEC by microarray. These results revealed that lncRNAs were differentially expressed during the process of CRS + HIPEC, suggesting that they might play key roles in tumor development.
Collapse
|
289
|
Abstract
Recent studies have suggested that noncoding RNAs (ncRNAs) contribute to the pathogenesis and progression of hepatocellular carcinoma (HCC). These RNA genes may be involved in various pathobiological processes such as cell proliferation, apoptosis, angiogenesis, invasion, and metastasis. Aberrant expression of ncRNA resulting from deregulated epigenetic, transcriptional, or posttranscriptional activity has been described in several studies. ncRNAs are comprised of a highly diverse group of transcripts that include microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) as well as several other types of RNA genes. Understanding the molecular mechanisms by which ncRNA contribute to hepatocarcinogenesis may enable the design of ncRNA-based therapeutics for HCC. In this review, the authors provide a perspective on therapeutic applications based on the emerging evidence of a contributory role of miRNAs and lncRNAs to the pathogenesis and progression of HCC. In addition, ncRNAs that are deregulated in expression in HCC may have utility as potential prognostic or diagnostic markers.
Collapse
Affiliation(s)
- Joseph George
- Research Associate, Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224. Tel 904-956-3257
| | - Tushar Patel
- Professor of Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, 904-953-3257
| |
Collapse
|
290
|
Zheng W, Sai W, Yao M, Gu H, Yao Y, Qian Q, Yao D. Silencing clusterin gene transcription on effects of multidrug resistance reversing of human hepatoma HepG2/ADM cells. Tumour Biol 2015. [PMID: 25600802 DOI: 10.1007/s13277-015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abnormal clusterin (CLU) expression is associated with multidrug resistance (MDR) of hepatocellular carcinoma (HCC). In the present study, the CLU expression was analyzed in human hepatoma cells and chemoresistant counterpart HepG2/ADM cells. Compared with L02 cells, the overexpression of cellular CLU was identified in HepG2, HepG2/ADM, SMMC7721, Hep3B ,and PLC cells and relatively lower expression in Bel-7404, SNU-739, and MHCC97H cells. Specific short hairpin RNAs (shRNAs) to silence CLU gene transcription were designed, and the most effective sequences were screened. After the HepG2/ADM cells transfected with shRNA-1, the inhibition of CLU expression was 73.68 % at messenger RNA (mRNA) level by real-time quantitative RT-PCR with obvious enhancement in cell chemosensitivity, increasing apoptosis induced by doxorubicin using fluorescence kit, and Rh-123 retention qualified with flow cytometry. Knockdown CLU also significantly decreased the drug efflux pump activity through the depression of MDR1/P-glycoprotein (q = 11.739, P < 0.001). Moreover, silencing CLU led to downregulation of β-catenin (q = 13.544, P = 0.001), suggesting that downregulation of CLU might be a key point to reverse multidrug resistance of HepG2/ADM cells.
Collapse
Affiliation(s)
- Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Nantong, 226001, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
291
|
Zhu Y, Luo M, Brooks M, Clouthier SG, Wicha MS. Biological and clinical significance of cancer stem cell plasticity. Clin Transl Med 2014; 3:32. [PMID: 26932376 PMCID: PMC4883980 DOI: 10.1186/s40169-014-0032-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/08/2014] [Indexed: 12/19/2022] Open
Abstract
In the past decade, the traditional view of cancers as a homogeneous collection of malignant cells is being replaced by a model of ever increasing complexity suggesting that cancers are complex tissues composed of multiple cell types. This complex model of tumorigenesis has been well supported by a growing body of evidence indicating that most cancers including those derived from blood and solid tissues display a hierarchical organization of tumor cells with phenotypic and functional heterogeneity and at the apex of this hierarchy are cells capable of self-renewal. These "tumor imitating cells" or "cancer stem cells" drive tumorigenesis and contribute to metastasis, treatment resistance and tumor relapse. Although tumor stem cells themselves may display both genetic and phenotypic heterogeneity, recent studies have demonstrated that cancer stem cells maintain plasticity to transition between mesenchymal-like (EMT) and epithelial-like (MET) states, which may be regulated by the tumor microenvironment. These stem cell state transitions may play a fundamental role in tumor progression and treatment resistance. In this review, we discuss the emerging knowledge regarding the plasticity of cancer stem cells with an emphasis on the signaling pathways and noncoding RNAs including microRNAs (miRNA) and long non-coding RNAs (lncRNAs) in regulation of this plasticity during tumor growth and metastasis. Lastly, we point out the importance of targeting both the EMT and MET states of CSCs in order to eliminate these lethal seeds of cancers.
Collapse
Affiliation(s)
- Yongyou Zhu
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| | - Ming Luo
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| | - Michael Brooks
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| | - Shawn G Clouthier
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| | - Max S Wicha
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| |
Collapse
|
292
|
Jiang HJ, Wang S, Ding Y. Emerging paradigms of long non-coding RNAs in gastrointestinal cancer. AMERICAN JOURNAL OF STEM CELLS 2014; 3:63-73. [PMID: 25232506 PMCID: PMC4163605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
A large number of long non-coding RNAs (lncRNAs) have been discovered by genome-wide transcriptional analyses. Emerging evidence has indicated that lncRNAs regulate gene expression at epigenetic, transcription, and post-transcription levels, are widely involved in various pathobiology of human diseases, and may play an important role in the biology of cancer stem cells. Alterations of specific lncRNAs have been revealed to interact with the major pathways of cell proliferation, apoptosis, differentiation, invasion and metastasis in many human malignancies, such as gastrointestinal cancer. This review summarizes the current understandings in biological functions and implications of lncRNAs in gastrointestinal cancer.
Collapse
Affiliation(s)
- Hui-Juan Jiang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University Guangzhou 510515, China
| | - Shuang Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University Guangzhou 510515, China
| | - Yanqing Ding
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University Guangzhou 510515, China
| |
Collapse
|