251
|
Shi Y, Chu Q, Wei DD, Qiu YJ, Shang F, Dou W, Wang JJ. The mitochondrial genome of booklouse, Liposcelis sculptilis (Psocoptera: Liposcelididae) and the evolutionary timescale of Liposcelis. Sci Rep 2016; 6:30660. [PMID: 27470659 PMCID: PMC4965752 DOI: 10.1038/srep30660] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/07/2016] [Indexed: 11/16/2022] Open
Abstract
Bilateral animals are featured by an extremely compact mitochondrial (mt) genome with 37 genes on a single circular chromosome. To date, the complete mt genome has only been determined for four species of Liposcelis, a genus with economic importance, including L. entomophila, L. decolor, L. bostrychophila, and L. paeta. They belong to A, B, or D group of Liposcelis, respectively. Unlike most bilateral animals, L. bostrychophila, L. entomophila and L. paeta have a bitipartite mt genome with genes on two chromosomes. However, the mt genome of L. decolor has the typical mt chromosome of bilateral animals. Here, we sequenced the mt genome of L. sculptilis, and identified 35 genes, which were on a single chromosome. The mt genome fragmentation is not shared by the D group of Liposcelis and the single chromosome of L. sculptilis differed from those of booklice known in gene content and gene arrangement. We inferred that different evolutionary patterns and rate existed in Liposcelis. Further, we reconstructed the evolutionary history of 21 psocodean taxa with phylogenetic analyses, which suggested that Liposcelididae and Phthiraptera have evolved 134 Ma and the sucking lice diversified in the Late Cretaceous.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Qing Chu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Yuan-Jian Qiu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| |
Collapse
|
252
|
Wang D, Zhang Y, Huang D. The complete mitochondrial genome of sponge Halichondria ( Halichondria) sp. (Demospongiae, Suberitida, Halichondriidae). MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:512-514. [PMID: 33473538 PMCID: PMC7800652 DOI: 10.1080/23802359.2016.1192516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we found out the complete mitochondrial genome of Halichondria (Halichondria) sp., a common demosponge in China. This is the first complete mitochondrial report on the genus Halichondria. The mitochondrial genome of Halichondria (Halichondria) sp. is 20 746 bp in length, with 14 protein-coding genes, two rRNA genes and 25 tRNA genes. When compared with the complete mitochondrial genome of Hymeniacidon sinapium, our phylogenetic result suggested that Halichondria (Halichondria) sp. converged well according to morphological result.
Collapse
Affiliation(s)
- Dexiang Wang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| | - Yuan Zhang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| | - Dan Huang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| |
Collapse
|
253
|
Zhang Y, Huang D, Wang D, Ding S. The complete mitochondrial genome of sponge Tethya sp. (Demospongiae, Tethyida, Tethyidae). MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:472-474. [PMID: 33473525 PMCID: PMC7799499 DOI: 10.1080/23802359.2016.1186518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The complete mitochondrial genome of Tethya sp. was studied. This is the second complete mitochondrial report on the family Tethyidae. The mitochondrial genome of Tethya sp. is 20,582 bp in length, containing 14 protein-coding genes and 25 tRNA genes, with 2 rRNA genes. Our phylogenetic result suggested that Tethya sp. converged well with Tethya actinia, which further verified the morphological result. We anticipate our study to shed light on future molecular studies of demosponges.
Collapse
Affiliation(s)
- Yuan Zhang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China.,Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen, China
| | - Dan Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China.,Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen, China
| | - Dexiang Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China.,Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen, China
| | - Shaoxiong Ding
- Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen, China
| |
Collapse
|
254
|
Fraïsse C, Gunnarsson PA, Roze D, Bierne N, Welch JJ. The genetics of speciation: Insights from Fisher's geometric model. Evolution 2016; 70:1450-64. [PMID: 27252049 DOI: 10.1111/evo.12968] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/22/2016] [Indexed: 12/13/2022]
Abstract
Research in speciation genetics has uncovered many robust patterns in intrinsic reproductive isolation, and fitness landscape models have been useful in interpreting these patterns. Here, we examine fitness landscapes based on Fisher's geometric model. Such landscapes are analogous to models of optimizing selection acting on quantitative traits, and have been widely used to study adaptation and the distribution of mutational effects. We show that, with a few modifications, Fisher's model can generate all of the major findings of introgression studies (including "speciation genes" with strong deleterious effects, complex epistasis and asymmetry), and the major patterns in overall hybrid fitnesses (including Haldane's Rule, the speciation clock, heterosis, hybrid breakdown, and male-female asymmetry in the F1). We compare our approach to alternative modeling frameworks that assign fitnesses to genotypes by identifying combinations of incompatible alleles. In some cases, the predictions are importantly different. For example, Fisher's model can explain conflicting empirical results about the rate at which incompatibilities accumulate with genetic divergence. In other cases, the predictions are identical. For example, the quality of reproductive isolation is little affected by the manner in which populations diverge.
Collapse
Affiliation(s)
- Christelle Fraïsse
- Université Montpellier, Institut des Sciences de l'Évolution, UMR 5554, Montpellier Cedex 05, France.,CNRS, Institut des Sciences de l'Évolution, UMR 5554, OREME Station Marine, Sète, France.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - P Alexander Gunnarsson
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Denis Roze
- CNRS, UMI 3614, Evolutionary Biology and Ecology of Algae, Roscoff, France.,Sorbonne Universités, UPMC University Paris VI, Roscoff, France
| | - Nicolas Bierne
- Université Montpellier, Institut des Sciences de l'Évolution, UMR 5554, Montpellier Cedex 05, France.,CNRS, Institut des Sciences de l'Évolution, UMR 5554, OREME Station Marine, Sète, France
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom.
| |
Collapse
|
255
|
Cheng XF, Zhang LP, Yu DN, Storey KB, Zhang JY. The complete mitochondrial genomes of four cockroaches (Insecta: Blattodea) and phylogenetic analyses within cockroaches. Gene 2016; 586:115-22. [DOI: 10.1016/j.gene.2016.03.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 11/17/2022]
|
256
|
Barthélémy RM, Seligmann H. Cryptic tRNAs in chaetognath mitochondrial genomes. Comput Biol Chem 2016; 62:119-32. [DOI: 10.1016/j.compbiolchem.2016.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/14/2022]
|
257
|
Kvie KS, Heggenes J, Røed KH. Merging and comparing three mitochondrial markers for phylogenetic studies of Eurasian reindeer (Rangifer tarandus). Ecol Evol 2016; 6:4347-58. [PMID: 27386080 PMCID: PMC4893353 DOI: 10.1002/ece3.2199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 01/12/2023] Open
Abstract
Phylogenetic analyses provide information that can be useful in the conservation of genetic variation by identifying intraspecific genetic structure. Reconstruction of phylogenetic relationships requires the use of markers with the appropriate amount of variation relative to the timeframe and purpose of the study. Here, genetic structure and clustering are inferred from comparative analyses of three widely used mitochondrial markers, the CR, cytb and the COI region, merged and separately, using Eurasian reindeer as a model. A Bayesian phylogeny and a MJ network, both based on the merged dataset, indicate several distinct maternal haplotype clusters within Eurasian reindeer. In addition to confirm previously described clusters, two new subclusters were found. When comparing the results from the merged dataset with the results from analyses of the three markers separately, similar clustering was found in the CR and COI phylogenies, whereas the cytb region showed poor resolution. Phylogenetic analyses of the merged dataset and the CR revealed congruent results, implying that single sequencing analysis of the CR is an applicable method for studying the haplotype structure in Eurasian reindeer.
Collapse
Affiliation(s)
- Kjersti S Kvie
- Department of Environmental Studies University College of Southeast Norway Bø in Telemark Norway; Department of Basic Sciences and Aquatic Medicine Norwegian University of Life Sciences Oslo Norway
| | - Jan Heggenes
- Department of Environmental Studies University College of Southeast Norway Bø in Telemark Norway
| | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine Norwegian University of Life Sciences Oslo Norway
| |
Collapse
|
258
|
Zhang HL, Liu BB, Wang XY, Han ZP, Zhang DX, Su CN. Comparative Mitogenomic Analysis of Species Representing Six Subfamilies in the Family Tenebrionidae. Int J Mol Sci 2016; 17:ijms17060841. [PMID: 27258256 PMCID: PMC4926375 DOI: 10.3390/ijms17060841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 11/16/2022] Open
Abstract
To better understand the architecture and evolution of the mitochondrial genome (mitogenome), mitogenomes of ten specimens representing six subfamilies in Tenebrionidae were selected, and comparative analysis of these mitogenomes was carried out in this study. Ten mitogenomes in this family share a similar gene composition, gene order, nucleotide composition, and codon usage. In addition, our results show that nucleotide bias was strongly influenced by the preference of codon usage for A/T rich codons which significantly correlated with the G + C content of protein coding genes (PCGs). Evolutionary rate analyses reveal that all PCGs have been subjected to a purifying selection, whereas 13 PCGs displayed different evolution rates, among which ATPase subunit 8 (ATP8) showed the highest evolutionary rate. We inferred the secondary structure for all RNA genes of Tenebrio molitor (Te2) and used this as the basis for comparison with the same genes from other Tenebrionidae mitogenomes. Some conserved helices (stems) and loops of RNA structures were found in different domains of ribosomal RNAs (rRNAs) and the cloverleaf structure of transfer RNAs (tRNAs). With regard to the AT-rich region, we analyzed tandem repeat sequences located in this region and identified some essential elements including T stretches, the consensus motif at the flanking regions of T stretch, and the secondary structure formed by the motif at the 3′ end of T stretch in major strand, which are highly conserved in these species. Furthermore, phylogenetic analyses using mitogenomic data strongly support the relationships among six subfamilies: ((Tenebrionidae incertae sedis + (Diaperinae + Tenebrioninae)) + (Pimeliinae + Lagriinae)), which is consistent with phylogenetic results based on morphological traits.
Collapse
Affiliation(s)
- Hong-Li Zhang
- School of Life Sciences, Datong University, Datong 037009, China.
| | - Bing-Bing Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Xiao-Yang Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Zhi-Ping Han
- School of Life Sciences, Datong University, Datong 037009, China.
| | - Dong-Xu Zhang
- School of Life Sciences, Datong University, Datong 037009, China.
| | - Cai-Na Su
- School of Life Sciences, Datong University, Datong 037009, China.
| |
Collapse
|
259
|
Abstract
Recent advances in the field of mitochondrial DNA (mtDNA) replication highlight the diversity of both the mechanisms utilized and the structural and functional organization of the proteins at mtDNA replication fork, despite the relative simplicity of the animal mtDNA genome. DNA polymerase γ, mtDNA helicase and mitochondrial single-stranded DNA-binding protein-the key replisome proteins, have evolved distinct structural features and biochemical properties. These appear to be correlated with mtDNA genomic features in different metazoan taxa and with their modes of DNA replication, although substantial integrative research is warranted to establish firmly these links. To date, several modes of mtDNA replication have been described for animals: rolling circle, theta, strand-displacement, and RITOLS/bootlace. Resolution of a continuing controversy relevant to mtDNA replication in mammals/vertebrates will have a direct impact on the mechanistic interpretation of mtDNA-related human diseases. Here we review these subjects, integrating earlier and recent data to provide a perspective on the major challenges for future research.
Collapse
Affiliation(s)
- G L Ciesielski
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Michigan State University, East Lansing, MI, United States
| | - M T Oliveira
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - L S Kaguni
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
260
|
Comparative and Transcriptome Analyses Uncover Key Aspects of Coding- and Long Noncoding RNAs in Flatworm Mitochondrial Genomes. G3-GENES GENOMES GENETICS 2016; 6:1191-200. [PMID: 26921295 PMCID: PMC4856072 DOI: 10.1534/g3.116.028175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exploiting the conservation of various features of mitochondrial genomes has been instrumental in resolving phylogenetic relationships. Despite extensive sequence evidence, it has not previously been possible to conclusively resolve some key aspects of flatworm mitochondrial genomes, including generally conserved traits, such as start codons, noncoding regions, the full complement of tRNAs, and whether ATP8 is, or is not, encoded by this extranuclear genome. In an effort to address these difficulties, we sought to determine the mitochondrial transcriptomes and genomes of sexual and asexual taxa of freshwater triclads, a group previously poorly represented in flatworm mitogenomic studies. We have discovered evidence for an alternative start codon, an extended cox1 gene, a previously undescribed conserved open reading frame, long noncoding RNAs, and a highly conserved gene order across the large evolutionary distances represented within the triclads. Our findings contribute to the expansion and refinement of mitogenomics to address evolutionary issues in this diverse group of animals.
Collapse
|
261
|
Sen A, Karasik A, Shanmuganathan A, Mirkovic E, Koutmos M, Cox RT. Loss of the mitochondrial protein-only ribonuclease P complex causes aberrant tRNA processing and lethality in Drosophila. Nucleic Acids Res 2016; 44:6409-22. [PMID: 27131785 PMCID: PMC5291253 DOI: 10.1093/nar/gkw338] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/14/2016] [Indexed: 12/26/2022] Open
Abstract
Proteins encoded by mitochondrial DNA are translated using mitochondrially encoded tRNAs and rRNAs. As with nuclear encoded tRNAs, mitochondrial tRNAs must be processed to become fully functional. The mitochondrial form of ribonuclease P (mt:RNase P) is responsible for 5′-end maturation and is comprised of three proteins; mitochondrial RNase P protein (MRPP) 1 and 2 together with proteinaceous RNase P (PRORP). However, its mechanism and impact on development is not yet known. Using homology searches, we have identified the three proteins composing Drosophila mt:RNase P: Mulder (PRORP), Scully (MRPP2) and Roswell (MRPP1). Here, we show that each protein is essential and localizes with mitochondria. Furthermore, reducing levels of each causes mitochondrial deficits, which appear to be due at least in part to defective mitochondrial tRNA processing. Overexpressing two members of the complex, Mulder and Roswell, is also lethal, and in the case of Mulder, causes abnormal mitochondrial morphology. These data are the first evidence that defective mt:RNase P causes mitochondrial dysfunction, lethality and aberrant mitochondrial tRNA processing in vivo, underscoring its physiological importance. This in vivo mt:RNase P model will advance our understanding of how loss of mitochondrial tRNA processing causes tissue failure, an important aspect of human mitochondrial disease.
Collapse
Affiliation(s)
- Aditya Sen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Agnes Karasik
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA
| | | | | | - Markos Koutmos
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Rachel T Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA
| |
Collapse
|
262
|
Wang K, Li X, Ding S, Wang N, Mao M, Wang M, Yang D. The complete mitochondrial genome of the Atylotus miser (Diptera: Tabanomorpha: Tabanidae), with mitochondrial genome phylogeny of lower Brachycera (Orthorrhapha). Gene 2016; 586:184-96. [PMID: 27063560 DOI: 10.1016/j.gene.2016.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 11/25/2022]
Abstract
Brachycera is a clade with over 80,000 described species and originated from the Mesozoic, and its larvae employ comprehensive feeding strategies. The phylogeny of the lower Brachycera has been studied intensively over the past decades. In order to supplement the lack of genetic data in this important group, we sequenced the complete mitochondrial (mt) genome of Atylotus miser as well as the nearly complete mt genomes of another 11 orthorrhaphous flies. The mt genome of A. miser is 15,858bp, which is typical of Diptera, with 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a 993bp control region. The rest of the orthorrhaphous mt genomes in our study have the similar structure with A. miser. Additionally, we conducted a phylogenetic analysis of 20 mt genomes using Maximum-likelihood and Bayesian methods in order to reconstruct the evolutionary relationship of Orthorrhapha. The results show that all infraorders of Brachycera are monophyletic, and a relationship of Tabanomorpha+((Xylophagomorpha+Stratiomyomorpha)+Muscomorpha) has been proposed. Within Xylophagomorpha, Nemestrinoidae forms the sister group of Xylophagidae.
Collapse
Affiliation(s)
- Kai Wang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xuankun Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Shuangmei Ding
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ning Wang
- Department of Entomology, China Agricultural University, Beijing, China; Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Meng Mao
- School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Mengqing Wang
- Department of Entomology, China Agricultural University, Beijing, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Ding Yang
- Department of Entomology, China Agricultural University, Beijing, China.
| |
Collapse
|
263
|
Milani L, Ghiselli F, Passamonti M. Mitochondrial selfish elements and the evolution of biological novelties. Curr Zool 2016; 62:687-697. [PMID: 29491956 PMCID: PMC5804245 DOI: 10.1093/cz/zow044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/18/2016] [Indexed: 12/25/2022] Open
Abstract
We report the present knowledge about RPHM21, a novel male-specific mitochondrial protein with a putative role in the paternal inheritance of sperm mitochondria in the Manila clam Ruditapes philippinarum, a species with doubly uniparental inheritance of mitochondria (DUI). We review all the available data on rphm21 transcription and translation, analyze in detail its female counterpart, RPHF22, discuss the homology with RPHM21, the putative function and origin, and analyze their polymorphism. The available evidence is compatible with a viral origin of RPHM21 and supports its activity during spermatogenesis. RPHM21 is progressively accumulated in mitochondria and nuclei of spermatogenic cells, and we hypothesize it can influence mitochondrial inheritance and sexual differentiation. We propose a testable model that describes how the acquisition of selfish features by a mitochondrial lineage might have been responsible for the emergence of DUI, and for the evolution of separate sexes (gonochorism) from hermaphroditism. The appearance of DUI most likely entailed the invasion of at least 1 selfish element, and the extant DUI systems can be seen as resolved conflicts. It was proposed that hermaphroditism was the ancestral condition of bivalves, and a correlation between DUI and gonochorism was documented. We hypothesize that DUI might have driven the shift from hermaphroditism to gonochorism, with androdioecy as transition state. The invasion of sex-ratio distorters and the evolution of suppressors can prompt rapid changes among sex-determination mechanisms, and DUI might have been responsible for one of such changes in some bivalve species. If true, DUI would represent the first animal sex-determination system involving mtDNA-encoded proteins.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
264
|
Janssen T, Karssen G, Verhaeven M, Coyne D, Bert W. Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. Sci Rep 2016; 6:22591. [PMID: 26940543 PMCID: PMC4778069 DOI: 10.1038/srep22591] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/17/2016] [Indexed: 11/17/2022] Open
Abstract
The polyphagous parthenogenetic root-knot nematodes of the genus Meloidogyne are considered to be the most significant nematode pest in sub-tropical and tropical agriculture. Despite the crucial need for correct diagnosis, identification of these pathogens remains problematic. The traditionally used diagnostic strategies, including morphometrics, host-range tests, biochemical and molecular techniques, now appear to be unreliable due to the recently-suggested hybrid origin of root-knot nematodes. In order to determine a suitable barcode region for these pathogens nine quickly-evolving mitochondrial coding genes were screened. Resulting haplotype networks revealed closely related lineages indicating a recent speciation, an anthropogenic-aided distribution through agricultural practices, and evidence for reticulate evolution within M. arenaria. Nonetheless, nucleotide polymorphisms harbor enough variation to distinguish these closely-related lineages. Furthermore, completeness of lineage sorting was verified by screening 80 populations from widespread geographical origins and variable hosts. Importantly, our results indicate that mitochondrial haplotypes are strongly linked and consistent with traditional esterase isozyme patterns, suggesting that different parthenogenetic lineages can be reliably identified using mitochondrial haplotypes. The study indicates that the barcode region Nad5 can reliably identify the major lineages of tropical root-knot nematodes.
Collapse
Affiliation(s)
- Toon Janssen
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Gerrit Karssen
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
- National Plant Protection Organization, Wageningen Nematode Collection, P.O. Box 9102, 6700 HC Wageningen, The Netherlands
| | - Myrtle Verhaeven
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Danny Coyne
- International Institute of Tropical Agriculture (IITA), c/o icipe, Kasarani, P.O. Box 30772-00100, Nairobi, Kenya
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
265
|
Rahman MM, Yoon KB, Kim JY, Hussin MZ, Park YC. Complete mitochondrial genome sequence of the Indian pipistrellePipistrellus coromandra(Vespertilioninae). Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1150877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
266
|
Grosemans T, Morris K, Thomas WK, Rigaux A, Moens T, Derycke S. Mitogenomics reveals high synteny and long evolutionary histories of sympatric cryptic nematode species. Ecol Evol 2016; 6:1854-70. [PMID: 26933490 PMCID: PMC4760989 DOI: 10.1002/ece3.1975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/18/2015] [Accepted: 01/03/2016] [Indexed: 11/09/2022] Open
Abstract
Species with seemingly identical morphology but with distinct genetic differences are abundant in the marine environment and frequently co-occur in the same habitat. Such cryptic species are typically delineated using a limited number of mitochondrial and/or nuclear marker genes, which do not yield information on gene order and gene content of the genomes under consideration. We used next-generation sequencing to study the composition of the mitochondrial genomes of four sympatrically distributed cryptic species of the Litoditis marina species complex (PmI, PmII, PmIII, and PmIV). The ecology, biology, and natural occurrence of these four species are well known, but the evolutionary processes behind this cryptic speciation remain largely unknown. The gene order of the mitochondrial genomes of the four species was conserved, but differences in genome length, gene length, and codon usage were observed. The atp8 gene was lacking in all four species. Phylogenetic analyses confirm that PmI and PmIV are sister species and that PmIII diverged earliest. The most recent common ancestor of the four cryptic species was estimated to have diverged 16 MYA. Synonymous mutations outnumbered nonsynonymous changes in all protein-encoding genes, with the Complex IV genes (coxI-III) experiencing the strongest purifying selection. Our mitogenomic results show that morphologically similar species can have long evolutionary histories and that PmIII has several differences in genetic makeup compared to the three other species, which may explain why it is better adapted to higher temperatures than the other species.
Collapse
Affiliation(s)
- Tara Grosemans
- Marine Biology Section Biology Department Faculty of Science University of Ghent Krijgslaan 281 (S8) 9000 Gent Belgium
| | - Krystalynne Morris
- Department of Biochemistry and Molecular Biology Hubbard Center for Genome Studies University of New Hampshire 35 Colovos Road Durham New Hampshire 03824
| | - William Kelley Thomas
- Department of Biochemistry and Molecular Biology Hubbard Center for Genome Studies University of New Hampshire 35 Colovos Road Durham New Hampshire 03824
| | - Annelien Rigaux
- Marine Biology Section Biology Department Faculty of Science University of Ghent Krijgslaan 281 (S8) 9000 Gent Belgium; CeMoFe University of Ghent Karel Lodewijk Ledeganckstraat 359000 Gent Belgium
| | - Tom Moens
- Marine Biology Section Biology Department Faculty of Science University of Ghent Krijgslaan 281 (S8) 9000 Gent Belgium
| | - Sofie Derycke
- Marine Biology Section Biology Department Faculty of Science University of Ghent Krijgslaan 281 (S8) 9000 Gent Belgium; Royal Belgian Institute of Natural Sciences (RBINS) OD Taxonomy and Phylogeny Vautierstraat 291000 Brussels Belgium
| |
Collapse
|
267
|
Briscoe AG, Hopkins KP, Waeschenbach A. High-Throughput Sequencing of Complete Mitochondrial Genomes. Methods Mol Biol 2016; 1452:45-64. [PMID: 27460369 DOI: 10.1007/978-1-4939-3774-5_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing has revolutionized mitogenomics, turning a cottage industry into a high throughput process. This chapter outlines methodologies used to sequence, assemble, and annotate mitogenomes of non-model organisms using Illumina sequencing technology, utilizing either long-range PCR amplicons or gDNA as starting template. Instructions are given on how to extract DNA, conduct long-range PCR amplifications, generate short Sanger barcode tag sequences, prepare equimolar sample pools, construct and assess quality library preparations, assemble Illumina reads using either seeded reference mapping or de novo assembly, and annotate mitogenomes in the absence of an automated pipeline. Notes and recommendations, derived from our own experience, are given throughout this chapter.
Collapse
Affiliation(s)
- Andrew George Briscoe
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Kevin Peter Hopkins
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Andrea Waeschenbach
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
268
|
|
269
|
Machado DJ, Lyra ML, Grant T. Mitogenome assembly from genomic multiplex libraries: comparison of strategies and novel mitogenomes for five species of frogs. Mol Ecol Resour 2015; 16:686-93. [PMID: 26607054 DOI: 10.1111/1755-0998.12492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 11/27/2022]
Abstract
Next-generation sequencing continues to revolutionize biodiversity studies by generating unprecedented amounts of DNA sequence data for comparative genomic analysis. However, these data are produced as millions or billions of short reads of variable quality that cannot be directly applied in comparative analyses, creating a demand for methods to facilitate assembly. We optimized an in silico strategy to efficiently reconstruct high-quality mitochondrial genomes directly from genomic reads. We tested this strategy using sequences from five species of frogs: Hylodes meridionalis (Hylodidae), Hyloxalus yasuni (Dendrobatidae), Pristimantis fenestratus (Craugastoridae), and Melanophryniscus simplex and Rhinella sp. (Bufonidae). These are the first mitogenomes published for these species, the genera Hylodes, Hyloxalus, Pristimantis, Melanophryniscus and Rhinella, and the families Craugastoridae and Hylodidae. Sequences were generated using only half of one lane of a standard Illumina HiqSeq 2000 flow cell, resulting in fewer than eight million reads. We analysed the reads of Hylodes meridionalis using three different assembly strategies: (1) reference-based (using bowtie2); (2) de novo (using abyss, soapdenovo2 and velvet); and (3) baiting and iterative mapping (using mira and mitobim). Mitogenomes were assembled exclusively with strategy 3, which we employed to assemble the remaining mitogenomes. Annotations were performed with mitos and confirmed by comparison with published amphibian mitochondria. In most cases, we recovered all 13 coding genes, 22 tRNAs, and two ribosomal subunit genes, with minor gene rearrangements. Our results show that few raw reads can be sufficient to generate high-quality scaffolds, making any Illumina machine run using genomic multiplex libraries a potential source of data for organelle assemblies as by-catch.
Collapse
Affiliation(s)
- D J Machado
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. do Matão 101, São Paulo, SP, CEP 05508-090, Brazil
| | - M L Lyra
- Department of Zoology, Institute of Biosciences, São Paulo State University, Campus Rio Claro, Av. 24-A 1515, Rio Claro, SP, CEP 13506-900, Brazil
| | - T Grant
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. do Matão 101, São Paulo, SP, CEP 05508-090, Brazil
| |
Collapse
|
270
|
Complete mitochondrial genome of Anadara vellicata (Bivalvia: Arcidae): A unique gene order and large atypical non-coding region. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 16:73-82. [DOI: 10.1016/j.cbd.2015.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022]
|
271
|
The complete mitochondrial genome of the golden mussel Limnoperna fortunei and comparative mitogenomics of Mytilidae. Gene 2015; 577:202-8. [PMID: 26639990 DOI: 10.1016/j.gene.2015.11.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023]
Abstract
Here we describe the mitochondrial genome of the golden mussel Limnoperna fortunei, an Asian bivalve which has become one of the most aggressive invasive species in Japan and South America. The mitochondrial genome of L. fortunei does not present conserved gene arrangement when compared to the other Mytilidae species suggesting a high degree of gene recombination in the mitochondria of this clade. In addition, the golden mussel mitogenome encodes two copies of tRNA(Lys) and presents a putative pseudogene for the atp8 gene sequence that encodes a 27 amino acid peptide containing an in-frame stop codon. The presence of this pseudogene raises the question as to whether atp8 is encoded in some bivalve mitochondrial genomes or not. The phylogenetic analysis of all complete mitochondrial genomes available from Mytilidae mussels confirmed the close evolutionary relationships among bivalves from the genus Mytilys and placed L. fortunei coming from a more ancestral branch on the family. The supermatrix phylogeny described used the concatenation of all 12 genes from the mitochondria and disputed the monophyly of the genus Perna, as Perna perna was shown to be more closely related to Brachidontes exustus than to Perna viridis. The comparative analysis of mitogenome synteny also confirmed the polyphyly of the genus Perna. The complete and annotated mitogenome has been published in GenBank under the accession number KP756905.
Collapse
|
272
|
Ye F, Liu T, King SD, You P. Mitochondrial genomes of two phlebotomine sand flies, Phlebotomus chinensis and Phlebotomus papatasi (Diptera: Nematocera), the first representatives from the family Psychodidae. Parasit Vectors 2015; 8:472. [PMID: 26381614 PMCID: PMC4573934 DOI: 10.1186/s13071-015-1081-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Leishmaniasis is a worldwide but neglected disease of humans and animal transmitted by sand flies, vectors that also transmit other important diseases. Mitochondrial genomes contain abundant information for population genetic and phylogenetic studies, important in disease management. However, the available mitochondrial sequences of these crucial vectors are limited, emphasizing the need for developing more mitochondrial genetic markers. METHODS The complete mitochondrial genome of Phlebotomus chinensis was amplified in eight fragments and sequenced using primer walking. The mitochondrial genome of Phlebotomus papatasi was reconstructed from whole-genome sequencing data available on Genbank. The phylogenetic relationship of 24 selected representatives of Diptera was deduced from codon positions 1 and 2 for 13 protein coding genes, using Bayesian inference (BI) and maximum likelihood (ML) methods. RESULTS We provide the first Phlebotomus (P. chinensis and P. papatasi) mitochondrial genomes. Both genomes contain 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and an A + T-rich region. The gene order of Phlebotomus mitochondrial genomes is identical with the ancestral gene order of insect. Phylogenetic analyses demonstrated that Psychodidae and Tanyderidae are sister taxa. Potential markers for population genetic study of Phlebotomus species were also revealed. CONCLUSION The generated mitochondrial genomes of P. chinensis and P. papatasi represent a useful resource for comparative genomic studies and provide valuable future markers for the population genetic study of these important Leishmania vectors. Our results also preliminary demonstrate the phylogenetic placement of Psychodidae based on their mitochondrial genomes.
Collapse
Affiliation(s)
- Fei Ye
- Co-Innovation Center for Qinba regions' sustainable development, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China.
| | - Ting Liu
- Co-Innovation Center for Qinba regions' sustainable development, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China.
| | - Stanley D King
- Department of Biology, Dalhousie University, Halifax, NS, Canada, B3H 4J1.
| | - Ping You
- Co-Innovation Center for Qinba regions' sustainable development, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
273
|
Doublet V, Ubrig E, Alioua A, Bouchon D, Marcadé I, Maréchal-Drouard L. Large gene overlaps and tRNA processing in the compact mitochondrial genome of the crustacean Armadillidium vulgare. RNA Biol 2015; 12:1159-68. [PMID: 26361137 DOI: 10.1080/15476286.2015.1090078] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
A faithful expression of the mitochondrial DNA is crucial for cell survival. Animal mitochondrial DNA (mtDNA) presents a highly compact gene organization. The typical 16.5 kbp animal mtDNA encodes 13 proteins, 2 rRNAs and 22 tRNAs. In the backyard pillbug Armadillidium vulgare, the rather small 13.9 kbp mtDNA encodes the same set of proteins and rRNAs as compared to animal kingdom mtDNA, but seems to harbor an incomplete set of tRNA genes. Here, we first confirm the expression of 13 tRNA genes in this mtDNA. Then we show the extensive repair of a truncated tRNA, the expression of tRNA involved in large gene overlaps and of tRNA genes partially or fully integrated within protein-coding genes in either direct or opposite orientation. Under selective pressure, overlaps between genes have been likely favored for strong genome size reduction. Our study underlines the existence of unknown biochemical mechanisms for the complete gene expression of A. vulgare mtDNA, and of co-evolutionary processes to keep overlapping genes functional in a compacted mitochondrial genome.
Collapse
Affiliation(s)
- Vincent Doublet
- a Equipe Ecologie Evolution Symbiose; Laboratoire Ecologie et Biologie des Interactions , UMR CNRS 7267, Poitiers , France
| | - Elodie Ubrig
- b Institut de biologie moléculaire des plantes; associated with the University of Strasbourg , Strasbourg , France
| | - Abdelmalek Alioua
- b Institut de biologie moléculaire des plantes; associated with the University of Strasbourg , Strasbourg , France
| | - Didier Bouchon
- a Equipe Ecologie Evolution Symbiose; Laboratoire Ecologie et Biologie des Interactions , UMR CNRS 7267, Poitiers , France
| | - Isabelle Marcadé
- a Equipe Ecologie Evolution Symbiose; Laboratoire Ecologie et Biologie des Interactions , UMR CNRS 7267, Poitiers , France
| | - Laurence Maréchal-Drouard
- b Institut de biologie moléculaire des plantes; associated with the University of Strasbourg , Strasbourg , France
| |
Collapse
|
274
|
Luo YJ, Satoh N, Endo K. Mitochondrial gene order variation in the brachiopod Lingula anatina and its implications for mitochondrial evolution in lophotrochozoans. Mar Genomics 2015; 24 Pt 1:31-40. [PMID: 26342990 DOI: 10.1016/j.margen.2015.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 11/18/2022]
Abstract
Vertebrate mitochondrial (mt) genomes display highly conserved gene order and relatively low evolutionary rates. However, these features are variable in marine invertebrates. Here we present the mt genome of the lingulid brachiopod, Lingula anatina, from Amami Island, Japan, as part of the nuclear genome project. We obtain ~2000-fold coverage of the 17.9-kb mt genome using Illumina sequencing, and we identify hypervariable regions within the same individual. Transcriptome analyses show that mt transcripts are polycistronic and expressed differentially. Unexpectedly, we find that the mt gene order of Amami Lingula is completely shuffled compared to that of a specimen from Yanagawa, suggesting that there may be cryptic species. Using breakpoint distance analyses with 101 metazoan mt genomes, we show that the evolutionary history of mt gene order among lophotrochozoans is unique. Analyses of non-synonymous substitution rates reveal that mt protein-coding genes of Lingula have experienced rapid evolution comparable to that expected for interspecific comparisons. Whole genome phylogenetic analyses suggest that mt genomes have limited value for inferring the phylogenetic positions of lophotrochozoans because of their high evolutionary rates in brachiopods and bivalves.
Collapse
Affiliation(s)
- Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
275
|
Characterization of the Complete Mitochondrial Genome of Cerura menciana and Comparison with Other Lepidopteran Insects. PLoS One 2015; 10:e0132951. [PMID: 26309239 PMCID: PMC4550444 DOI: 10.1371/journal.pone.0132951] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/20/2015] [Indexed: 11/19/2022] Open
Abstract
The complete mitochondrial genome (mitogenome) of Cerura menciana (Lepidoptera: Notodontidae) was sequenced and analyzed in this study. The mitogenome is a circular molecule of 15,369 bp, containing 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and a A+T-rich region. The positive AT skew (0.031) indicated that more As than Ts were present. All PCGs were initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which was initiated by CAG. Two of the 13 PCGs contained the incomplete termination codon T or TA, while the others were terminated with the stop codon TAA. The A+T-rich region was 372 bp in length and consisted of an ‘ATAGA’ motif followed by an 18 bp poly-T stretch, a microsatellite-like (AT)8 and a poly-A element upstream of the trnM gene. Results examining codon usage indicated that Asn, Ile, Leu2, Lys, Tyr and Phe were the six most frequently occurring amino acids, while Cys was the rarest. Phylogenetic relationships, analyzed based on the nucleotide sequences of the 13 PCGs from other insect mitogenomes, confirmed that C. menciana belongs to the Notodontidae family.
Collapse
|
276
|
Eberhard JR, Wright TF. Rearrangement and evolution of mitochondrial genomes in parrots. Mol Phylogenet Evol 2015; 94:34-46. [PMID: 26291569 DOI: 10.1016/j.ympev.2015.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 07/15/2015] [Accepted: 08/11/2015] [Indexed: 12/27/2022]
Abstract
Mitochondrial genome rearrangements that result in control region duplication have been described for a variety of birds, but the mechanisms leading to their appearance and maintenance remain unclear, and their effect on sequence evolution has not been explored. A recent survey of mitochondrial genomes in the Psittaciformes (parrots) found that control region duplications have arisen independently at least six times across the order. We analyzed complete mitochondrial genome sequences from 20 parrot species, including representatives of each lineage with control region duplications, to document the gene order changes and to examine effects of genome rearrangements on patterns of sequence evolution. The gene order previously reported for Amazona parrots was found for four of the six independently derived genome rearrangements, and a previously undescribed gene order was found in Prioniturus luconensis, representing a fifth clade with rearranged genomes; the gene order resulting from the remaining rearrangement event could not be confirmed. In all rearranged genomes, two copies of the control region are present and are very similar at the sequence level, while duplicates of the other genes involved in the rearrangement show signs of degeneration or have been lost altogether. We compared rates of sequence evolution in genomes with and without control region duplications and did not find a consistent acceleration or deceleration associated with the duplications. This could be due to the fact that most of the genome rearrangement events in parrots are ancient, and additionally, to an effect of body size on evolutionary rate that we found for mitochondrial but not nuclear sequences. Base composition analyses found that relative to other birds, parrots have unusually strong compositional asymmetry (AT- and GC-skew) in their coding sequences, especially at fourfold degenerate sites. Furthermore, we found higher AT skew in species with control region duplications. One potential cause for this compositional asymmetry is that parrots have unusually slow mtDNA replication. If this is the case, then any replicative advantage provided by having a second control region could result in selection for maintenance of both control regions once duplicated.
Collapse
Affiliation(s)
- Jessica R Eberhard
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Timothy F Wright
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
277
|
Marín A, Fujimoto T, Arai K. The mitochondrial genomes of Pecten albicans and Pecten maximus (Bivalvia: Pectinidae) reveal a novel gene arrangement with low genetic differentiation. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
278
|
Qin J, Zhang Y, Zhou X, Kong X, Wei S, Ward RD, Zhang AB. Mitochondrial phylogenomics and genetic relationships of closely related pine moth (Lasiocampidae: Dendrolimus) species in China, using whole mitochondrial genomes. BMC Genomics 2015; 16:428. [PMID: 26040695 PMCID: PMC4455531 DOI: 10.1186/s12864-015-1566-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 04/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pine moths (Lepidoptera; Bombycoidea; Lasiocampidae: Dendrolimus spp.) are among the most serious insect pests of forests, especially in southern China. Although COI barcodes (a standardized portion of the mitochondrial cytochrome c oxidase subunit I gene) can distinguish some members of this genus, the evolutionary relationships of the three morphospecies Dendrolimus punctatus, D. tabulaeformis and D. spectabilis have remained largely unresolved. We sequenced whole mitochondrial genomes of eight specimens, including D. punctatus wenshanensis. This is an unambiguous subspecies of D. punctatus, and was used as a reference for inferring the relationships of the other two morphospecies of the D. punctatus complex. We constructed phylogenetic trees from this data, including twelve published mitochondrial genomes of other Bombycoidea species, and examined the relationships of the Dendrolimus taxa using these trees and the genomic features of the mitochondrial genome. RESULTS The eight fully sequenced mitochondrial genomes from the three morphospecies displayed similar genome structures as other Bombycoidea species in terms of gene content, base composition, level of overall AT-bias and codon usage. However, the Dendrolimus genomes possess a unique feature in the large ribosomal 16S RNA subunits (rrnL), which are more than 60 bp longer than other members of the superfamily and have a higher AC proportion. The eight mitochondrial genomes of Dendrolimus were highly conservative in many aspects, for example with identical stop codons and overlapping regions. But there were many differences in start codons, intergenic spacers, and numbers of mismatched base pairs of tRNA (transfer RNA genes). Our results, based on phylogenetic trees, genetic distances, species delimitation and genomic features (such as intergenic spacers) of the mitochondrial genome, indicated that D. tabulaeformis is as close to D. punctatus as is D. punctatus wenshanensis, whereas D. spectabilis evolved independently from D. tabulaeformis and D. punctatus. Whole mitochondrial DNA phylogenies showed that D. spectabilis formed a well-supported monophyletic clade, with a clear species boundary separating it from the other congeners examined here. However, D. tabulaeformis often clustered with D. punctatus and with the subspecies D. punctatus wenshanensis. Genetic distance analyses showed that the distance between D. tabulaeformis and D. punctatus is generally less than the intraspecific distance of D. punctatus and its subspecies D. punctatus wenshanensis. In the species delimitation analysis of Poisson Tree Processes (PTP), D. tabulaeformis, D. punctatus and D. punctatus wenshanensis clustered into a putative species separated from D. spectabilis. In comparison with D. spectabilis, D. tabulaeformis and D. punctatus also exhibit a similar structure in intergenic spacer characterization. These different types of evidence suggest that D. tabulaeformis is very close to D. punctatus and its subspecies D. punctatus wenshanensis, and is likely to be another subspecies of D. punctatus. CONCLUSIONS Whole mitochondrial genomes possess relatively rich genetic information compared with the traditional use of single or multiple genes for phylogenetic purposes. They can be used to better infer phylogenetic relationships and degrees of relatedness of taxonomic groups, at least from the aspect of maternal lineage: caution should be taken due to the maternal-only inheritance of this genome. Our results indicate that D. spectabilis is an independent lineage, while D. tabulaeformis shows an extremely close relationship to D. punctatus.
Collapse
MESH Headings
- Animals
- Base Pair Mismatch
- China
- Codon, Initiator/genetics
- DNA, Mitochondrial/analysis
- DNA, Mitochondrial/isolation & purification
- Evolution, Molecular
- Genome, Mitochondrial
- Mitochondria/genetics
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Moths/classification
- Moths/genetics
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Jie Qin
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Yanzhou Zhang
- Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, P.R. China.
| | - Xin Zhou
- China National GeneBank, BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong Province, 518083, China.
| | - Xiangbo Kong
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, No.1 Dongxiaofu, Haidian, Beijing, China.
| | - Shujun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Robert D Ward
- CSIRO Oceans and Atmosphere Flagship, GPO Box 1538, Hobart, Tasmania, 7001, Australia.
| | - Ai-bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- College of Life Sciences,Capital Normal University, Beijing, 100048, P. R. China.
| |
Collapse
|
279
|
Liu CZ, Wei GH, Hu JH, Liu XY. Complete mitochondrial genome of Paracobitis variegates and its phylogenetic analysis. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2421-2. [PMID: 25922960 DOI: 10.3109/19401736.2015.1030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, the complete mitochondrial genome sequence of the Paracobitis variegates was first reported. The total length of the mitogenome is 16,571 bp long with the A + T content of 55.6%. It contains the typical structure, including 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one D-loop region. The protein-coding genes start with the typical ATG codon, while COI gene uses GTG as the initiation codon. Most tRNA genes could form typical secondary structures except tRNA(ser), which had an absence of the DHU arm. There are 43 helices structures in 12S rRNA, and six domains, 53 helices structures in 16S rRNA. According to the phylogenetic analysis, Paracobitis variegates has a closer relationship with Barbatula toni.
Collapse
Affiliation(s)
- Chang Zhong Liu
- a College of Animal Science, Henan Institute of Science and Technology , Xinxiang , Henan Province , China
| | - Guang Hui Wei
- a College of Animal Science, Henan Institute of Science and Technology , Xinxiang , Henan Province , China
| | - Jian He Hu
- a College of Animal Science, Henan Institute of Science and Technology , Xinxiang , Henan Province , China
| | - Xing You Liu
- a College of Animal Science, Henan Institute of Science and Technology , Xinxiang , Henan Province , China
| |
Collapse
|
280
|
Multiple Conserved Heteroplasmic Sites in tRNA Genes in the Mitochondrial Genomes of Terrestrial Isopods (Oniscidea). G3-GENES GENOMES GENETICS 2015; 5:1317-22. [PMID: 25911226 PMCID: PMC4502366 DOI: 10.1534/g3.115.018283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondrial genome structure and organization are relatively conserved among metazoans. However, in many isopods, especially the terrestrial isopods (Oniscidea), the mitochondrial genome consists of both ∼14-kb linear monomers and ∼28-kb circular dimers. This unusual organization is associated with an ancient and conserved constitutive heteroplasmic site. This heteroplasmy affects the anticodon of a tRNA gene, allowing this single locus to function as a “dual” tRNA gene for two different amino acids. Here, we further explore the evolution of these unusual mitochondrial genomes by assembling complete mitochondrial sequences for two additional Oniscidean species, Trachelipus rathkei and Cylisticus convexus. Strikingly, we find evidence of two additional heteroplasmic sites that also alter tRNA anticodons, creating additional dual tRNA genes, and that are conserved across both species. These results suggest that the unique linear/circular organization of isopods’ mitochondrial genomes may facilitate the evolution of stable mitochondrial heteroplasmies, and, conversely, once such heteroplasmies have evolved, they constrain the multimeric structure of the mitochondrial genome in these species. Finally, we outline some possible future research directions to identify the factors influencing mitochondrial genome evolution in this group.
Collapse
|
281
|
Lee J, Ding S, Walpole TB, Holding AN, Montgomery MG, Fearnley IM, Walker JE. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking. J Biol Chem 2015; 290:13308-20. [PMID: 25851905 PMCID: PMC4505582 DOI: 10.1074/jbc.m115.645283] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 12/21/2022] Open
Abstract
The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase.
Collapse
Affiliation(s)
- Jennifer Lee
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - ShuJing Ding
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Thomas B Walpole
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Andrew N Holding
- The Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Martin G Montgomery
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Ian M Fearnley
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - John E Walker
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| |
Collapse
|
282
|
García LE, Sánchez-Puerta MV. Comparative and evolutionary analyses of Meloidogyne spp. Based on mitochondrial genome sequences. PLoS One 2015; 10:e0121142. [PMID: 25799071 PMCID: PMC4370701 DOI: 10.1371/journal.pone.0121142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/12/2015] [Indexed: 01/11/2023] Open
Abstract
Molecular taxonomy and evolution of nematodes have been recently the focus of several studies. Mitochondrial sequences were proposed as an alternative for precise identification of Meloidogyne species, to study intraspecific variability and to follow maternal lineages. We characterized the mitochondrial genomes (mtDNAs) of the root knot nematodes M. floridensis, M. hapla and M. incognita. These were AT rich (81–83%) and highly compact, encoding 12 proteins, 2 rRNAs, and 22 tRNAs. Comparisons with published mtDNAs of M. chitwoodi, M. incognita (another strain) and M. graminicola revealed that they share protein and rRNA gene order but differ in the order of tRNAs. The mtDNAs of M. floridensis and M. incognita were strikingly similar (97–100% identity for all coding regions). In contrast, M. floridensis, M. chitwoodi, M. hapla and M. graminicola showed 65–84% nucleotide identity for coding regions. Variable mitochondrial sequences are potentially useful for evolutionary and taxonomic studies. We developed a molecular taxonomic marker by sequencing a highly-variable ~2 kb mitochondrial region, nad5-cox1, from 36 populations of root-knot nematodes to elucidate relationships within the genus Meloidogyne. Isolates of five species formed monophyletic groups and showed little intraspecific variability. We also present a thorough analysis of the mitochondrial region cox2-rrnS. Phylogenies based on either mitochondrial region had good discrimination power but could not discriminate between M. arenaria, M. incognita and M. floridensis.
Collapse
Affiliation(s)
- Laura Evangelina García
- IBAM-CONICET and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
| | - M. Virginia Sánchez-Puerta
- IBAM-CONICET and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Mendoza, Argentina
- * E-mail:
| |
Collapse
|
283
|
Solà E, Álvarez-Presas M, Frías-López C, Littlewood DTJ, Rozas J, Riutort M. Evolutionary analysis of mitogenomes from parasitic and free-living flatworms. PLoS One 2015; 10:e0120081. [PMID: 25793530 PMCID: PMC4368550 DOI: 10.1371/journal.pone.0120081] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/19/2015] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial genomes (mitogenomes) are useful and relatively accessible sources of molecular data to explore and understand the evolutionary history and relationships of eukaryotic organisms across diverse taxonomic levels. The availability of complete mitogenomes from Platyhelminthes is limited; of the 40 or so published most are from parasitic flatworms (Neodermata). Here, we present the mitogenomes of two free-living flatworms (Tricladida): the complete genome of the freshwater species Crenobia alpina (Planariidae) and a nearly complete genome of the land planarian Obama sp. (Geoplanidae). Moreover, we have reanotated the published mitogenome of the species Dugesia japonica (Dugesiidae). This contribution almost doubles the total number of mtDNAs published for Tricladida, a species-rich group including model organisms and economically important invasive species. We took the opportunity to conduct comparative mitogenomic analyses between available free-living and selected parasitic flatworms in order to gain insights into the putative effect of life cycle on nucleotide composition through mutation and natural selection. Unexpectedly, we did not find any molecular hallmark of a selective relaxation in mitogenomes of parasitic flatworms; on the contrary, three out of the four studied free-living triclad mitogenomes exhibit higher A+T content and selective relaxation levels. Additionally, we provide new and valuable molecular data to develop markers for future phylogenetic studies on planariids and geoplanids.
Collapse
Affiliation(s)
- Eduard Solà
- Institut de Recerca de la Biodiversitat and Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain
| | - Marta Álvarez-Presas
- Institut de Recerca de la Biodiversitat and Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain
| | - Cristina Frías-López
- Institut de Recerca de la Biodiversitat and Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain
| | | | - Julio Rozas
- Institut de Recerca de la Biodiversitat and Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain
| | - Marta Riutort
- Institut de Recerca de la Biodiversitat and Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain
- * E-mail: (MR)
| |
Collapse
|
284
|
Oliveira MT, Haukka J, Kaguni LS. Evolution of the metazoan mitochondrial replicase. Genome Biol Evol 2015; 7:943-59. [PMID: 25740821 PMCID: PMC4419789 DOI: 10.1093/gbe/evv042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 01/10/2023] Open
Abstract
The large number of complete mitochondrial DNA (mtDNA) sequences available for metazoan species makes it a good system for studying genome diversity, although little is known about the mechanisms that promote and/or are correlated with the evolution of this organellar genome. By investigating the molecular evolutionary history of the catalytic and accessory subunits of the mtDNA polymerase, pol γ, we sought to develop mechanistic insight into its function that might impact genome structure by exploring the relationships between DNA replication and animal mitochondrial genome diversity. We identified three evolutionary patterns among metazoan pol γs. First, a trend toward stabilization of both sequence and structure occurred in vertebrates, with both subunits evolving distinctly from those of other animal groups, and acquiring at least four novel structural elements, the most important of which is the HLH-3β (helix-loop-helix, 3 β-sheets) domain that allows the accessory subunit to homodimerize. Second, both subunits of arthropods and tunicates have become shorter and evolved approximately twice as rapidly as their vertebrate homologs. And third, nematodes have lost the gene for the accessory subunit, which was accompanied by the loss of its interacting domain in the catalytic subunit of pol γ, and they show the highest rate of molecular evolution among all animal taxa. These findings correlate well with the mtDNA genomic features of each group described above, and with their modes of DNA replication, although a substantive amount of biochemical work is needed to draw conclusive links regarding the latter. Describing the parallels between evolution of pol γ and metazoan mtDNA architecture may also help in understanding the processes that lead to mitochondrial dysfunction and to human disease-related phenotypes.
Collapse
Affiliation(s)
- Marcos T Oliveira
- Institute of Biosciences and Medical Technology, University of Tampere, Finland Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho," Jaboticabal, SP, Brazil
| | - Jani Haukka
- Institute of Biosciences and Medical Technology, University of Tampere, Finland
| | - Laurie S Kaguni
- Institute of Biosciences and Medical Technology, University of Tampere, Finland Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University
| |
Collapse
|
285
|
Pagan C, Coyne D, Carneiro R, Kariuki G, Luambano N, Affokpon A, Williamson VM. Mitochondrial haplotype-based identification of ethanol-preserved root-knot nematodes from Africa. PHYTOPATHOLOGY 2015; 105:350-357. [PMID: 25271352 DOI: 10.1094/phyto-08-14-0225-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The asexual root-knot nematodes (RKNs) (Meloidogyne spp.) exemplified by Meloidogyne incognita are widespread and damaging pests in tropical and subtropical regions worldwide. Comparison of amplification products of two adjacent polymorphic regions of the mitochondrial genome using DNA extracts of characterized RKN strains, including 15 different species, indicate that several species are derived from the same or closely related female lineages. Nevertheless, M. javanica, M. enterolobii, M. incognita, and other key species could each be assigned unique mitochondrial haplotypes based on polymerase chain reaction fragment size and restriction cleavage patterns. M. arenaria isolates did not group as a single haplotype, consistent with other reports of diversity within this species. To test the utility of this assay, we characterized ethanol-preserved samples from 103 single-species isolates from four countries in sub-Saharan Africa (Benin, Nigeria, Kenya, and Tanzania). Mitochondrial haplotypes corresponding to M. javanica and M. incognita were the most prevalent. Samples from western Africa included several instances of M. enterolobii but this species was not detected in samples from East Africa. This protocol provides progress toward a standardized strategy for identification of RKN species from small, preserved samples and a rational starting point for classifying species present in regions where previous knowledge has been limited.
Collapse
|
286
|
Humphreys-Pereira DA, Elling AA. Mitochondrial genome plasticity among species of the nematode genus Meloidogyne (Nematoda: Tylenchina). Gene 2015; 560:173-83. [PMID: 25655462 DOI: 10.1016/j.gene.2015.01.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 11/30/2022]
Abstract
The mitochondrial (mt) genomes of the plant-parasitic root-knot nematodes Meloidogyne arenaria, Meloidogyne enterolobii and Meloidogyne javanica were sequenced and compared with those of three other root-knot nematode species in order to explore the mt genome plasticity within Meloidogyne. The mt genomes of M. arenaria, M. enterolobii and M. javanica are circular, with an estimated size of 18.8, 18.9 and 19.6 kb, respectively. Compared to other nematodes these mt genomes are larger, due to the presence of large non-coding regions. The mt genome architecture within the genus Meloidogyne varied in the position of trn genes and in the position, length and nucleotide composition of non-coding regions. These variations were observed independent of the species' natural environments or reproductive modes. M. enterolobii showed three main non-coding regions whereas Meloidogyne chitwoodi, Meloidogyne incognita, M. javanica and M. arenaria had two non-coding regions, and Meloidogyne graminicola had a unique large non-coding region interrupted by two trn genes. trn genes were positioned in different regions of the mt genomes in M. chitwoodi, M. enterolobii and M. graminicola, whereas the trn gene order was identical between M. arenaria, M. incognita and M. javanica. Importantly, M. graminicola had extra copies of trnV and trnS2. High divergence levels between the two copies of each trn might indicate duplication events followed by random loss and mutations in the anticodon. Tree-based methods based on amino acid sequences of 12 mt protein-coding genes support the monophyly for the tropical and mitotic parthenogenetic species, M. arenaria, M. enterolobii, M. incognita and M. javanica and for a clade that includes the meiotic parthenogenetic species, M. chitwoodi and M. graminicola. A comparison of the mt genome architecture in plant-parasitic nematodes and phylogenetic analyses support that Pratylenchus is the most recent ancestor of root-knot nematodes.
Collapse
Affiliation(s)
| | - Axel A Elling
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
287
|
Lewis SC, Joers P, Willcox S, Griffith JD, Jacobs HT, Hyman BC. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans. PLoS Genet 2015; 11:e1004985. [PMID: 25693201 PMCID: PMC4334201 DOI: 10.1371/journal.pgen.1004985] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s) of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s) of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.
Collapse
Affiliation(s)
- Samantha C. Lewis
- Department of Biology and Interdepartmental Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Priit Joers
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
- Estonian Biocentre, Tartu, Estonia
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Howard T. Jacobs
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
- Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | - Bradley C. Hyman
- Department of Biology and Interdepartmental Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
288
|
Ma Y, He K, Yu P, Yu D, Cheng X, Zhang J. The complete mitochondrial genomes of three bristletails (Insecta: Archaeognatha): the paraphyly of Machilidae and insights into archaeognathan phylogeny. PLoS One 2015; 10:e0117669. [PMID: 25635855 PMCID: PMC4323385 DOI: 10.1371/journal.pone.0117669] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022] Open
Abstract
The order Archaeognatha was an ancient group of Hexapoda and was considered as the most primitive of living insects. Two extant families (Meinertellidae and Machilidae) consisted of approximately 500 species. This study determined 3 complete mitochondrial genomes and 2 nearly complete mitochondrial genome sequences of the bristletail. The size of the 5 mitochondrial genome sequences of bristletail were relatively modest, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one control region. The gene orders were identical to that of Drosophila yakuba and most bristletail species suggesting a conserved genome evolution within the Archaeognatha. In order to estimate archaeognathan evolutionary relationships, phylogenetic analyses were conducted using concatenated nucleotide sequences of 13 protein-coding genes, with four different computational algorithms (NJ, MP, ML and BI). Based on the results, the monophyly of the family Machilidae was challenged by both datasets (W12 and G12 datasets). The relationships among archaeognathan subfamilies seemed to be tangled and the subfamily Machilinae was also believed to be a paraphyletic group in our study.
Collapse
Affiliation(s)
- Yue Ma
- Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang Province, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, China
| | - Kun He
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, China
| | - Panpan Yu
- Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang Province, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, China
| | - Danna Yu
- Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang Province, China
| | - Xuefang Cheng
- Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang Province, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, China
| | - Jiayong Zhang
- Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang Province, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, China
| |
Collapse
|
289
|
Capt C, Passamonti M, Breton S. The human mitochondrial genome may code for more than 13 proteins. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3098-101. [PMID: 25630734 DOI: 10.3109/19401736.2014.1003924] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human mitochondrial (mt) DNA is commonly described as a small, maternally inherited molecule that encodes 13 protein components of the oxidative phosphorylation system and 24 structural RNAs required for their translation. However, recent studies indicate that the human mtDNA has a larger functional repertoire than previously believed. This paper briefly summarizes these studies, which suggest to reconsider our way to describe the human mitochondrial DNA as it may code for more than 13 proteins.
Collapse
Affiliation(s)
- Charlotte Capt
- a Département de Sciences Biologiques , Université de Montréal , Montréal , Québec , Canada and
| | - Marco Passamonti
- b Dipartimento di Scienze Biologiche , Geologiche ed Ambientali, University of Bologna , Bologna , Italy
| | - Sophie Breton
- a Département de Sciences Biologiques , Université de Montréal , Montréal , Québec , Canada and
| |
Collapse
|
290
|
Sequencing of the mitochondrial genome of the avocado lace bug Pseudacysta perseae (Heteroptera, Tingidae) using a genome skimming approach. C R Biol 2015; 338:149-60. [PMID: 25636225 DOI: 10.1016/j.crvi.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 11/23/2022]
Abstract
Lace bugs (Tingidae) are a family of phytophagous heteropterans, some of which are important agricultural and forestry pests. They currently comprise around 2500 species distributed worldwide, for which only one mitochondrial genome has been described so far. We sequenced the complete mitochondrial genome and the nuclear ribosomal gene segment of the avocado lace bug Pseudacysta perseae using a genome skimming approach on an Illumina Hiseq 2000 platform. Fifty-four additional heteropteran mitogenomes, including the one of the sycamore lace bug Corythucha ciliata, were retrieved to allow for comparisons and phylogenetic analyses. P. perseae mitochondrial genome was determined to be 15,850 bp long, and presented the typical organisation of insect mitogenomes. The phylogenetic analysis placed P. perseae as a sister to C. ciliata but did not confirm the monophyly of Miroidae including Tingidae. Our results contradicted widely accepted phylogenetic hypothesis, which highlights the limits of analyses based on mitochondrial data only. Shotgun sequencing approaches should provide substantial improvements in harmonizing mitochondrial and nuclear databases.
Collapse
|
291
|
Two nearly complete mitogenomes of wheat stem borers, Cephus pygmeus (L.) and Cephus sareptanus Dovnar-Zapolskij (Hymenoptera: Cephidae): an unusual elongation of rrnS gene. Gene 2015; 558:254-64. [PMID: 25576223 DOI: 10.1016/j.gene.2014.12.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/24/2014] [Accepted: 12/31/2014] [Indexed: 11/23/2022]
Abstract
Two nearly complete mitochondrial genomes (mitogenomes) of wheat stem borers, Cephus pygmeus and Cephus sareptanus (Hymenoptera: Cephidae), were sequenced, characterised and compared with the previously known mitogenome of Cephus cinctus. The gene orders are mostly conserved, except for translocation of trnM and swapped position of trnI and trnQ. An A+T bias was found, but a deviation from strand asymmetry was also detected on the J strand. All protein coding genes (PCGs) are initiated by ATN codons, except for nad1, nad2 and atp8, and all are terminated with TAA, TA- or T- as a stop codon. The predicted secondary structures of rrnS and rrnL genes are mostly consistent with reported hymenopteran species. However, an unusual elongation in rrnS, not know elsewhere in the order, was discovered in Cephus species. Three autonomous sequences detected in domains I and II are mainly responsible for the length expansions.
Collapse
|
292
|
MacDonald AJ, Knopp T, Pepper M, Keogh JS, Sarre SD. The first complete mitochondrial genome of Pygopodidae (Aprasia parapulchella Kluge). AUST J ZOOL 2015. [DOI: 10.1071/zo14092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Pygopodidae comprise an enigmatic group of legless lizards endemic to the Australo-Papuan region. Here we present the first complete mitochondrial genome for a member of this family, Aprasia parapulchella, from Australia. The mitochondrial genome of A. parapulchella is 16 528 base pairs long and contains 13 protein-coding genes, 22 tRNA genes, two rRNA genes and the control region, conforming to the typical vertebrate gene order. The overall mitochondrial nucleotide composition is 31.7% A, 24.5% T, 30.5% C and 13.2% G. This corresponds to a total A+T content of 56.3%, which is similar to that of other squamate lizard genomes.
Collapse
|
293
|
Chen ZT, Du YZ. Comparison of the complete mitochondrial genome of the stonefly Sweltsa longistyla (Plecoptera: Chloroperlidae) with mitogenomes of three other stoneflies. Gene 2014; 558:82-7. [PMID: 25542808 DOI: 10.1016/j.gene.2014.12.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/10/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
Abstract
The complete mitochondrial genome of the stonefly, Sweltsa longistyla Wu (Plecoptera: Chloroperlidae), was sequenced in this study. The mitogenome of S. longistyla is 16,151bp and contains 37 genes including 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a large non-coding region. S. longistyla, Pteronarcys princeps Banks, Kamimuria wangi Du and Cryptoperla stilifera Sivec belong to the Plecoptera, and the gene order and orientation of their mitogenomes were similar. The overall AT content for the four stoneflies was below 72%, and the AT content of tRNA genes was above 69%. The four genomes were compact and contained only 65-127bp of non-coding intergenic DNAs. Overlapping nucleotides existed in all four genomes and ranged from 24 (P. princeps) to 178bp (K. wangi). There was a 7-bp motif ('ATGATAA') of overlapping DNA and an 8-bp motif (AAGCCTTA) conserved in three stonefly species (P. princeps, K. wangi and C. stilifera). The control regions of four stoneflies contained a stem-loop structure. Four conserved sequence blocks (CSBs) were present in the A+T-rich regions of all four stoneflies.
Collapse
Affiliation(s)
- Zhi-Teng Chen
- School of Horticulture Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, 48 Wenhui Road (East), Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
294
|
Saunier A, Garcia P, Becquet V, Marsaud N, Escudié F, Pante E. Mitochondrial genomes of the Baltic clam Macoma balthica (Bivalvia: Tellinidae): setting the stage for studying mito-nuclear incompatibilities. BMC Evol Biol 2014; 14:259. [PMID: 25527898 PMCID: PMC4302422 DOI: 10.1186/s12862-014-0259-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Allopatric divergence across lineages can lead to post-zygotic reproductive isolation upon secondary contact and disrupt coevolution between mitochondrial and nuclear genomes, promoting emergence of genetic incompatibilities. A previous F ST scan on the transcriptome of the Baltic clam Macoma balthica highlighted several genes potentially involved in mito-nuclear incompatibilities (MNIs). As proteins involved in the mitochondrial oxidative phosphorylation (OXPHO) chain are prone to MNIs and can contribute to the maintenance of genetic barriers, the mitochondrial genomes of six Ma. balthica individuals spanning two secondary contact zones were sequenced using the Illumina MiSeq plateform. RESULTS The mitogenome has an approximate length of 16,806 bp and encodes 13 protein-coding genes, 2 rRNAs and 22 tRNAs, all located on the same strand. atp8, a gene long reported as rare in bivalves, was detected. It encodes 42 amino acids and is putatively expressed and functional. A large unassigned region was identified between rrnS and tRNA (Met) and could likely correspond to the Control Region. Replacement and synonymous mutations were mapped on the inferred secondary structure of all protein-coding genes of the OXPHO chain. The atp6 and atp8 genes were characterized by background levels of replacement mutations, relative to synonymous mutations. However, most nad genes (notably nad2 and nad5) were characterized by an elevated proportion of replacement mutations. CONCLUSIONS Six nearly complete mitochondrial genomes were successfully assembled and annotated, providing the necessary roadmap to study MNIs at OXPHO loci. Few replacement mutations were mapped on mitochondrial-encoded ATP synthase subunits, which is in contrast with previous data on nuclear-encoded subunits. Conversely, the high population divergence and the prevalence of non-synonymous mutations at nad genes are congruent with previous observations from the nuclear transcriptome. This further suggest that MNIs between subunits of Complex I of the OXPHO chain, coding for NADH dehydrogenase, may play a role in maintaining barriers to gene flow in Ma. balthica.
Collapse
Affiliation(s)
- Alice Saunier
- Littoral, Environnement et Sociétés, UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, 17000, France.
| | - Pascale Garcia
- Littoral, Environnement et Sociétés, UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, 17000, France.
| | - Vanessa Becquet
- Littoral, Environnement et Sociétés, UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, 17000, France.
| | - Nathalie Marsaud
- GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, 31326, France.
| | - Frédéric Escudié
- GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, 31326, France.
| | - Eric Pante
- Littoral, Environnement et Sociétés, UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, 17000, France.
| |
Collapse
|
295
|
Wei L, He J, Jia X, Qi Q, Liang Z, Zheng H, Ping Y, Liu S, Sun J. Analysis of codon usage bias of mitochondrial genome in Bombyx mori and its relation to evolution. BMC Evol Biol 2014; 14:262. [PMID: 25515024 PMCID: PMC4276022 DOI: 10.1186/s12862-014-0262-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synonymous codon usage bias (SCUB) is an inevitable phenomenon in organismic taxa, generally referring to differences in the occurrence frequency of codons across different species or within the genome of the same species. SCUB happens in various degrees under pressure from nature selection, mutation bias and other factors in different ways. It also attaches great significance to gene expression and species evolution, however, a systematic investigation towards the codon usage in Bombyx mori (B. mori) has not been reported yet. Moreover, it is still indistinct about the reasons contributing to the bias or the relationship between the bias and the evolution of B. mori. RESULTS The comparison of the codon usage pattern between the genomic DNA (gDNA) and the mitochondrial DNA (mtDNA) from B. mori suggests that mtDNA has a higher level of codon bias. Furthermore, the correspondence analysis suggests that natural selection, such as gene length, gene function and translational selection, dominates the codon preference of mtDNA, while the composition constraints for mutation bias only plays a minor role. Additionally, the clustering results of the silkworm superfamily suggest a lack of explicitness in the relationship between the codon usage of mitogenome and species evolution. CONCLUSIONS Among the complicated influence factors leading to codon bias, natural selection is found to play a major role in shaping the high bias in the mtDNA of B. mori from our current data. Although the cluster analysis reveals that codon bias correlates little with the species evolution, furthermore, a detailed analysis of codon usage of mitogenome provides better insight into the evolutionary relationships in Lepidoptera. However, more new methods and data are needed to investigate the relationship between the mtDNA bias and evolution.
Collapse
Affiliation(s)
- Lei Wei
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Jian He
- Guangzhou East Campus Lab Center, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Xian Jia
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Qi Qi
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhisheng Liang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Hao Zheng
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yao Ping
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Shuyu Liu
- Guangzhou East Campus Lab Center, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
296
|
Palopoli MF, Minot S, Pei D, Satterly A, Endrizzi J. Complete mitochondrial genomes of the human follicle mites Demodex brevis and D. folliculorum: novel gene arrangement, truncated tRNA genes, and ancient divergence between species. BMC Genomics 2014; 15:1124. [PMID: 25515815 PMCID: PMC4320518 DOI: 10.1186/1471-2164-15-1124] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/26/2014] [Indexed: 01/14/2023] Open
Abstract
Background Follicle mites of the genus Demodex are found on a wide diversity of mammals, including humans; surprisingly little is known, however, about the evolution of this association. Additional sequence information promises to facilitate studies of Demodex variation within and between host species. Here we report the complete mitochondrial genome sequences of two species of Demodex known to live on humans—Demodex brevis and D. folliculorum—which are the first such genomes available for any member of the genus. We analyzed these sequences to gain insight into the evolution of mitochondrial genomes within the Acariformes. We also used relaxed molecular clock analyses, based on alignments of mitochondrial proteins, to estimate the time of divergence between these two species. Results Both Demodex genomes shared a novel gene order that differs substantially from the ancestral chelicerate pattern, with transfer RNA (tRNA) genes apparently having moved much more often than other genes. Mitochondrial tRNA genes of both species were unusually short, with most of them unable to encode tRNAs that could fold into the canonical cloverleaf structure; indeed, several examples lacked both D- and T-arms. Finally, the high level of sequence divergence observed between these species suggests that these two lineages last shared a common ancestor no more recently than about 87 mya. Conclusions Among Acariformes, rearrangements involving tRNA genes tend to occur much more often than those involving other genes. The truncated tRNA genes observed in both Demodex species would seem to require the evolution of extensive tRNA editing capabilities and/or coevolved interacting factors. The molecular machinery necessary for these unusual tRNAs to function might provide an avenue for developing treatments of skin disorders caused by Demodex. The deep divergence time estimated between these two species sets a lower bound on the time that Demodex have been coevolving with their mammalian hosts, and supports the hypothesis that there was an early split within the genus Demodex into species that dwell in different skin microhabitats. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1124) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael F Palopoli
- Department of Biology, Bowdoin College, Brunswick 6500, College Station ME 04011, USA.
| | | | | | | | | |
Collapse
|
297
|
The mitochondrial genome of Dastarcus helophoroides (Coleoptera: Bothrideridae) and related phylogenetic analyses. Gene 2014; 560:15-24. [PMID: 25523091 DOI: 10.1016/j.gene.2014.12.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/21/2014] [Accepted: 12/12/2014] [Indexed: 11/23/2022]
Abstract
The complete mitochondrial genome of Dastarcus helophoroides (Coleoptera: Bothrideridae) which consists of 13 PCGs, 22 tRNA genes, two rRNA genes and a non-coding region (D-loop), is sequenced for its nucleotide sequence of 15,878 bp (GenBank: KF811054.1). The genome has a typical gene order which is identical to other Coleoptera species. Except for COI gene generally starts with non-canonical initial codon, all protein-coding genes start with ATN codon and terminate with the stop codon TA(A) or TAG. The secondary structure of rrnL and rrnS consists of 48 helices (contains four newly proposed helices) and 35 helices (contains two newly proposed helices) respectively. All 22 tRNAs in D. helophoroides are predicted to fold into typical cloverleaf secondary structure, except trnS1 (AGN), in which the dihydrouracil arm (DHU arm) could not form stable stem-loop structure. Thirteen protein-coding genes (nucleotide dataset and nucleic acid dataset) of the available species (29 taxa) have been used to infer the phylogenetic relationships among these orders. Tenebrionoidea and Cucujoidea form a sister group, and D. helophoroides is classified into Cucujoidea (Bothrideridae). The study first research on the phylogenetic analyses involving to the D. helophoroides mitogenome, and the results strongly bolster the current morphology-based hypothesis.
Collapse
|
298
|
Wang ZL, Li C, Fang WY, Yu XP. The complete mitochondrial genome of the wolf spider Wadicosa fidelis (Araneae: Lycosidae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:3909-3910. [PMID: 25484171 DOI: 10.3109/19401736.2014.987260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genome of the wolf spider Wadicosa fidelis was determined. It is a circular molecule of 14,741 bp in length and contains a standard set of 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs and a control region. The A + T content of the overall base composition of majority strand (J-strand) is 76.1% (T: 43.0%; C: 8.2%; A:33.1%; G: 15.7%). Start codons in all 13 protein-coding genes (PCGs) follow the ATN rule, except of four genes (COII, COII, ND4 and ND6), which have TTG start codon. The usual termination codons (TAA and TAG) are found from nine PCGs. However, COI, ND1, ND4L, ND5 had an incomplete termination codon (T). The control region (D-loop) is 1071 bp long with 67.9% A + T content, and contains a long tandem repeat region, which is comprising three full 215 bp copies and a partial fourth (87 bp) copy.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- a Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang , People's Republic of China
| | - Chao Li
- a Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang , People's Republic of China
| | - Wen-Yuan Fang
- a Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang , People's Republic of China
| | - Xiao-Ping Yu
- a Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang , People's Republic of China
| |
Collapse
|
299
|
Complete mitogenome of the edible sea urchin Loxechinus albus: genetic structure and comparative genomics within Echinozoa. Mol Biol Rep 2014; 42:1081-9. [DOI: 10.1007/s11033-014-3847-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
300
|
Liu G, Zhou L, Li B, Zhang L. The complete mitochondrial genome of Aix galericulata and Tadorna ferruginea: bearings on their phylogenetic position in the Anseriformes. PLoS One 2014; 9:e109701. [PMID: 25375111 PMCID: PMC4222781 DOI: 10.1371/journal.pone.0109701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/22/2014] [Indexed: 11/21/2022] Open
Abstract
Aix galericulata and Tadorna ferruginea are two Anatidae species representing different taxonomic groups of Anseriformes. We used a PCR-based method to determine the complete mtDNAs of both species, and estimated phylogenetic trees based on the complete mtDNA alignment of these and 14 other Anseriforme species, to clarify Anseriform phylogenetics. Phylogenetic trees were also estimated using a multiple sequence alignment of three mitochondrial genes (Cyt b, ND2, and COI) from 68 typical species in GenBank, to further clarify the phylogenetic relationships of several groups among the Anseriformes. The new mtDNAs are circular molecules, 16,651 bp (Aix galericulata) and 16,639 bp (Tadorna ferruginea) in length, containing the 37 typical genes, with an identical gene order and arrangement as those of other Anseriformes. Comparing the protein-coding genes among the mtDNAs of 16 Anseriforme species, ATG is generally the start codon, TAA is the most frequent stop codon, one of three, TAA, TAG, and T-, commonly observed. All tRNAs could be folded into canonical cloverleaf secondary structures except for tRNASer (AGY) and tRNALeu (CUN), which are missing the "DHU" arm.Phylogenetic relationships demonstrate that Aix galericula and Tadorna ferruginea are in the same group, the Tadorninae lineage, based on our analyses of complete mtDNAs and combined gene data. Molecular phylogenetic analysis suggests the 68 species of Anseriform birds be divided into three families: Anhimidae, Anatidae, and Anseranatidae. The results suggest Anatidae birds be divided into five subfamilies: Anatinae, Tadorninae, Anserinae, Oxyurinae, and Dendrocygninae. Oxyurinae and Dendrocygninae should not belong to Anserinae, but rather represent independent subfamilies. The Anatinae includes species from the tribes Mergini, Somaterini, Anatini, and Aythyini. The Anserinae includes species from the tribes Anserini and Cygnini.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Biodiversity and Wetland Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, P. R. China
- Anhui Biodiversity Information Center, Hefei, Anhui, P. R. China
| | - Lizhi Zhou
- Institute of Biodiversity and Wetland Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, P. R. China
- Anhui Biodiversity Information Center, Hefei, Anhui, P. R. China
- * E-mail:
| | - Bo Li
- Institute of Biodiversity and Wetland Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, P. R. China
- Anhui Biodiversity Information Center, Hefei, Anhui, P. R. China
| | - Lili Zhang
- Institute of Biodiversity and Wetland Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, P. R. China
- Anhui Biodiversity Information Center, Hefei, Anhui, P. R. China
| |
Collapse
|