251
|
Barrière A, Yang SP, Pekarek E, Thomas CG, Haag ES, Ruvinsky I. Detecting heterozygosity in shotgun genome assemblies: Lessons from obligately outcrossing nematodes. Genome Res 2009; 19:470-80. [PMID: 19204328 DOI: 10.1101/gr.081851.108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The majority of nematodes are gonochoristic (dioecious) with distinct male and female sexes, but the best-studied species, Caenorhabditis elegans, is a self-fertile hermaphrodite. The sequencing of the genomes of C. elegans and a second hermaphrodite, C. briggsae, was facilitated in part by the low amount of natural heterozygosity, which typifies selfing species. Ongoing genome projects for gonochoristic Caenorhabditis species seek to approximate this condition by intense inbreeding prior to sequencing. Here we show that despite this inbreeding, the heterozygous fraction of the whole genome shotgun assemblies of three gonochoristic Caenorhabditis species, C. brenneri, C. remanei, and C. japonica, is considerable. We first demonstrate experimentally that independently assembled sequence variants in C. remanei and C. brenneri are allelic. We then present gene-based approaches for recognizing heterozygous regions of WGS assemblies. We also develop a simple method for quantifying heterozygosity that can be applied to assemblies lacking gene annotations. Consistently we find that approximately 10% and 30% of the C. remanei and C. brenneri genomes, respectively, are represented by two alleles in the assemblies. Heterozygosity is restricted to autosomes and its retention is accompanied by substantial inbreeding depression, suggesting that it is caused by multiple recessive deleterious alleles and not merely by chance. Both the overall amount and chromosomal distribution of heterozygous DNA is highly variable between assemblies of close relatives produced by identical methodologies, and allele frequencies have continued to change after strains were sequenced. Our results highlight the impact of mating systems on genome sequencing projects.
Collapse
Affiliation(s)
- Antoine Barrière
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
252
|
Long TAF, Miller PM, Stewart AD, Rice WR. Estimating the heritability of female lifetime fecundity in a locally adapted Drosophila melanogaster population. J Evol Biol 2009; 22:637-43. [PMID: 19210593 DOI: 10.1111/j.1420-9101.2008.01676.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heritability of genome-wide fitness that is expected in finite populations is poorly understood, both theoretically and empirically, despite its relevance to many fundamental concepts in evolutionary biology. In this study, we used two independent methods of estimating the heritability of lifetime female fecundity (the predominant female fitness component in this population) in a large, outbred population of Drosophila melanogaster that had adapted to the laboratory environment for over 400 generations. Despite strong directional selection on adult female fecundity, we uncovered high heritability for this trait that cannot be explained by antagonistic pleiotropy with juvenile fitness. The evolutionary significance of this high heritability of lifetime fecundity is discussed.
Collapse
Affiliation(s)
- T A F Long
- Department of Ecology, Evolution & Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9610, USA.
| | | | | | | |
Collapse
|
253
|
Teotónio H, Chelo IM, Bradić M, Rose MR, Long AD. Experimental evolution reveals natural selection on standing genetic variation. Nat Genet 2009; 41:251-7. [DOI: 10.1038/ng.289] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
|
254
|
Molecular spectrum of spontaneous de novo mutations in male and female germline cells of Drosophila melanogaster. Genetics 2008; 181:1035-43. [PMID: 19114461 DOI: 10.1534/genetics.108.093385] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We carried out mutation screen experiments to understand the rate and molecular nature of spontaneous de novo mutations in Drosophila melanogaster, which are crucial for many evolutionary issues, but still poorly understood. We screened for eye-color and body-color mutations that occurred in the germline cells of the first generation offspring of wild-caught females. The offspring were from matings that had occurred in the field and therefore had a genetic composition close to that of flies in natural populations. We employed 1554 F(1) individuals from 374 wild-caught females for the experiments to avoid biased contributions of any particular genotype. From approximately 8.6 million alleles screened, we obtained 10 independent mutants: two point mutations (one for each sex), a single deletion of approximately 6 kb in a male, a single transposable element insertion in a female, five large deletions ranging in size from 40 to 500 kb in females, and a single mutation of unknown nature in a male. The five large deletions were presumably generated by nonallelic homologous recombination (NAHR) between transposable elements at different locations, illustrating the mutagenic nature of recombination. The high occurrence of NAHR that we observed has important consequences for genome evolution through the production of segmental duplications.
Collapse
|
255
|
Bachtrog D. Similar rates of protein adaptation in Drosophila miranda and D. melanogaster, two species with different current effective population sizes. BMC Evol Biol 2008; 8:334. [PMID: 19091130 PMCID: PMC2633301 DOI: 10.1186/1471-2148-8-334] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 12/18/2008] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Adaptive protein evolution is common in several Drosophila species investigated. Some studies point to very weak selection operating on amino-acid mutations, with average selection intensities on the order of Nes approximately in D. melanogaster and D. simulans. Species with lower effective population sizes should undergo less adaptation since they generate fewer mutations and selection is ineffective on a greater proportion of beneficial mutations. RESULTS Here I study patterns of polymorphism and divergence at 91 X-linked loci in D. miranda, a species with a roughly 5-fold smaller effective population size than D. melanogaster. Surprisingly, I find a similar fraction of amino-acid mutations being driven to fixation by positive selection in D. miranda and D. melanogaster. Genes with higher rates of amino-acid evolution show lower levels of neutral diversity, a pattern predicted by recurrent adaptive protein evolution. I fit a hitchhiking model to patterns of polymorphism in D. miranda and D. melanogaster and estimate an order of magnitude higher selection coefficients for beneficial mutations in D. miranda. CONCLUSION This analysis suggests that effective population size may not be a major determinant in rates of protein adaptation. Instead, adaptation may not be mutation-limited, or the distribution of fitness effects for beneficial mutations might differ vastly between different species or populations. Alternative explanation such as biases in estimating the fraction of beneficial mutations or slightly deleterious mutation models are also discussed.
Collapse
Affiliation(s)
- Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
256
|
Durrett R, Schmidt D. Waiting for two mutations: with applications to regulatory sequence evolution and the limits of Darwinian evolution. Genetics 2008; 180:1501-9. [PMID: 18791261 PMCID: PMC2581952 DOI: 10.1534/genetics.107.082610] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 08/19/2008] [Indexed: 11/18/2022] Open
Abstract
Results of Nowak and collaborators concerning the onset of cancer due to the inactivation of tumor suppressor genes give the distribution of the time until some individual in a population has experienced two prespecified mutations and the time until this mutant phenotype becomes fixed in the population. In this article we apply these results to obtain insights into regulatory sequence evolution in Drosophila and humans. In particular, we examine the waiting time for a pair of mutations, the first of which inactivates an existing transcription factor binding site and the second of which creates a new one. Consistent with recent experimental observations for Drosophila, we find that a few million years is sufficient, but for humans with a much smaller effective population size, this type of change would take > 100 million years. In addition, we use these results to expose flaws in some of Michael Behe's arguments concerning mathematical limits to Darwinian evolution.
Collapse
Affiliation(s)
- Rick Durrett
- Department of Mathematics, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
257
|
Haag-Liautard C, Coffey N, Houle D, Lynch M, Charlesworth B, Keightley PD. Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol 2008; 6:e204. [PMID: 18715119 PMCID: PMC2517619 DOI: 10.1371/journal.pbio.0060204] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/15/2008] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial DNA (mtDNA) variants are widely used in evolutionary genetics as markers for population history and to estimate divergence times among taxa. Inferences of species history are generally based on phylogenetic comparisons, which assume that molecular evolution is clock-like. Between-species comparisons have also been used to estimate the mutation rate, using sites that are thought to evolve neutrally. We directly estimated the mtDNA mutation rate by scanning the mitochondrial genome of Drosophila melanogaster lines that had undergone approximately 200 generations of spontaneous mutation accumulation (MA). We detected a total of 28 point mutations and eight insertion-deletion (indel) mutations, yielding an estimate for the single-nucleotide mutation rate of 6.2 × 10−8 per site per fly generation. Most mutations were heteroplasmic within a line, and their frequency distribution suggests that the effective number of mitochondrial genomes transmitted per female per generation is about 30. We observed repeated occurrences of some indel mutations, suggesting that indel mutational hotspots are common. Among the point mutations, there is a large excess of G→A mutations on the major strand (the sense strand for the majority of mitochondrial genes). These mutations tend to occur at nonsynonymous sites of protein-coding genes, and they are expected to be deleterious, so do not become fixed between species. The overall mtDNA mutation rate per base pair per fly generation in Drosophila is estimated to be about 10× higher than the nuclear mutation rate, but the mitochondrial major strand G→A mutation rate is about 70× higher than the nuclear rate. Silent sites are substantially more strongly biased towards A and T than nonsynonymous sites, consistent with the extreme mutation bias towards A+T. Strand-asymmetric mutation bias, coupled with selection to maintain specific nonsynonymous bases, therefore provides an explanation for the extreme base composition of the mitochondrial genome of Drosophila. Mitochondria are the energy-producing organelles of the cell, and they contain genetic information encoded on their own genome. Because rates of mutation for mitochondrial genomes are believed to be much higher than those in nuclear DNA, mitochondrial genetic differences between and within species are particularly useful in population genetics, for example, as markers of population movements. We have directly estimated the mutation rate in the mitochondrial genome of the fruit fly Drosophila melanogaster in lines that had been allowed to randomly accumulate mutations in the virtual absence of effective natural selection. We scanned for new mutations by comparing the DNA of different lines by a sensitive mutation detection technique. We show that the mitochondrial mutation rate is about ten times higher than the nuclear DNA mutation rate. Strikingly, however, almost all of the single–base pair mutations that we detected change G to A at an amino acid site of a protein-coding gene. The explanation for this effect seems to be that natural selection maintains the nucleotide G at amino acid sites, whereas most silent sites are under weaker selection and have previously mutated to A or T. The mutation rate for G to A changes is 70 times higher than the nuclear DNA mutation rate. This extreme mutation bias maintains the high A+T content of the Drosophila mitochondrial genome. We show that the mitochondrial DNA mutation rate in D. melanogaster is 10X higher than the nuclear mutation rate, and that major-strand G-->A hypermutablity explains the extremely biased base composition of the mitochondrial genome.
Collapse
Affiliation(s)
- Cathy Haag-Liautard
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicole Coffey
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - David Houle
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter D Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
258
|
Abstract
Targeting induced local lesions in genomes (TILLING) is a reverse-genetic method for identifying point mutations in chemically mutagenized populations. For functional genomics, it is ideal to have a stable collection of heavily mutagenized lines that can be screened over an extended period of time. However, long-term storage is impractical for Drosophila, so mutant strains must be maintained by continual propagation of live cultures. Here we evaluate a strategy in which ethylmethane sulfonate (EMS) mutagenized chromosomes were maintained as heterozygotes with balancer chromosomes for >100 generations before screening. The strategy yielded a spectrum of point mutations similar to those found in previous studies of EMS-induced mutations, as well as 2.4% indels (insertions and deletions). Our analysis of 1887 point mutations in 148 targets showed evidence for selection against deleterious lesions and differential retention of lesions among targets on the basis of their position relative to balancer breakpoints, leading to a broad distribution of mutational densities. Despite selection and differential retention, the success of a user-funded service based on screening a large collection several years after mutagenesis indicates sufficient stability for use as a long-term reverse-genetic resource. Our study has implications for the use of balancer chromosomes to maintain mutant lines and provides the first large-scale quantitative assessment of the limitations of using breeding populations for repositories of genetic variability.
Collapse
|
259
|
Jaenike J, Dyer KA. No resistance to male-killing Wolbachia after thousands of years of infection. J Evol Biol 2008; 21:1570-7. [PMID: 18717746 DOI: 10.1111/j.1420-9101.2008.01607.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Maternally transmitted male-killing endosymbionts can exert strong and relentless selection pressure on their hosts to evolve resistance to these infections. Surveys of current infection prevalence and mtDNA diversity indicate that Drosophila innubila is and has been infected with male-killing Wolbachia at moderate frequencies for extended evolutionary periods. Here, we use coalescent simulations to infer the minimum age of the Wolbachia infection in this species, and estimate that the infection is at least 15,000 and perhaps over 700,000 years old. We also surveyed this species for genetic variation for resistance to the male-killing effects of infection. Our surveys revealed no evidence for any resistance polymorphism, such that all flies are completely susceptible to male killing. Given the general assumption that Drosophila can be selected for anything, the lack of resistance, despite thousands of years of strong selection, is an apparent evolutionary conundrum. We hypothesize that resistance requires a mutation of major effect that acts early in development, and that the adverse pleiotropic consequences of such mutations in both infected and uninfected individuals may exceed the possible benefit to infected flies.
Collapse
Affiliation(s)
- J Jaenike
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | |
Collapse
|
260
|
Agrawal AF, Wang AD. Increased transmission of mutations by low-condition females: evidence for condition-dependent DNA repair. PLoS Biol 2008; 6:e30. [PMID: 18271627 PMCID: PMC2235904 DOI: 10.1371/journal.pbio.0060030] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 12/20/2007] [Indexed: 11/25/2022] Open
Abstract
Evidence is mounting that mutation rates are sufficiently high for deleterious alleles to be a major evolutionary force affecting the evolution of sex, the maintenance of genetic variation, and many other evolutionary phenomena. Though point estimates of mutation rates are improving, we remain largely ignorant of the biological factors affecting these rates at the individual level. Of special importance is the possibility that mutation rates are condition-dependent with low-condition individuals experiencing more mutation. Theory predicts that such condition dependence would dramatically increase the rate at which populations adapt to new environments and the extent to which populations suffer from mutation load. Despite its importance, there has been little study of this phenomenon in multicellular organisms. Here, we examine whether DNA repair processes are condition-dependent in Drosophila melanogaster. In this species, damaged DNA in sperm can be repaired by maternal repair processes after fertilization. We exposed high- and low-condition females to sperm containing damaged DNA and then assessed the frequency of lethal mutations on paternally derived X chromosomes transmitted by these females. The rate of lethal mutations transmitted by low-condition females was 30% greater than that of high-condition females, indicating reduced repair capacity of low-condition females. A separate experiment provided no support for an alternative hypothesis based on sperm selection. A variety of evolutionary phenomena are affected by the rate at which mutations enter a population and how those mutations are distributed amongst individuals. Although it is typically assumed that mutations occur randomly among individuals, this may not be the case. Individuals in poor condition may experience elevated mutation rates if they are more prone to experiencing DNA damage or are less able to repair such damage. Using the fruit fly Drosophila melanogaster, we tested whether individuals in poor condition had a reduced capacity to efficiently repair mutagen-induced DNA damage. Consistent with the prediction, we recovered approximately 30% more mutations from low-condition individuals than from high-condition individuals in two separate experiments. Such condition dependence in mutation rate may cause populations to carry considerably heavier loads of deleterious mutations than otherwise expected. When female flies were inseminated with mutagenized sperm, the resulting offspring were 30% more likely to carry a lethal mutation if the female was in low rather than high condition.
Collapse
Affiliation(s)
- Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
261
|
Keightley PD, Halligan DL. Analysis and implications of mutational variation. Genetica 2008; 136:359-69. [PMID: 18663587 DOI: 10.1007/s10709-008-9304-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 07/16/2008] [Indexed: 11/25/2022]
Abstract
Variation from new mutations is important for several questions in quantitative genetics. Key parameters are the genomic mutation rate and the distribution of effects of mutations (DEM), which determine the amount of new quantitative variation that arises per generation from mutation (V(M)). Here, we review methods and empirical results concerning mutation accumulation (MA) experiments that have shed light on properties of mutations affecting quantitative traits. Surprisingly, most data on fitness traits from laboratory assays of MA lines indicate that the DEM is platykurtic in form (i.e., substantially less leptokurtic than an exponential distribution), and imply that most variation is produced by mutations of moderate to large effect. This finding contrasts with results from MA or mutagenesis experiments in which mutational changes to the DNA can be assayed directly, which imply that the vast majority of mutations have very small phenotypic effects, and that the distribution has a leptokurtic form. We compare these findings with recent approaches that attempt to infer the DEM for fitness based on comparing the frequency spectra of segregating nucleotide polymorphisms at putatively neutral and selected sites in population samples. When applied to data for humans and Drosophila, these analyses also indicate that the DEM is strongly leptokurtic. However, by combining the resultant estimates of parameters of the DEM with estimates of the mutation rate per nucleotide, the predicted V(M) for fitness is only a tiny fraction of V(M) observed in MA experiments. This discrepancy can be explained if we postulate that a few deleterious mutations of large effect contribute most of the mutational variation observed in MA experiments and that such mutations segregate at very low frequencies in natural populations, and effectively are never seen in population samples.
Collapse
Affiliation(s)
- Peter D Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK.
| | | |
Collapse
|
262
|
Abstract
Laboratory experiments show us that the deleterious character of accumulated novel age-specific mutations is reduced and made less variable with increased age. While theories of aging predict that the frequency of deleterious mutations at mutation-selection equilibrium will increase with the mutation's age of effect, they do not account for these age-related changes in the distribution of de novo mutational effects. Furthermore, no model predicts why this dependence of mutational effects upon age exists. Because the nature of mutational distributions plays a critical role in shaping patterns of senescence, we need to develop aging theory that explains and incorporates these effects. Here we propose a model that explains the age dependency of mutational effects by extending Fisher's geometrical model of adaptation to include a temporal dimension. Using a combination of simple analytical arguments and simulations, we show that our model predicts age-specific mutational distributions that are consistent with observations from mutation-accumulation experiments. Simulations show us that these age-specific mutational effects may generate patterns of senescence at mutation-selection equilibrium that are consistent with observed demographic patterns that are otherwise difficult to explain.
Collapse
|
263
|
|
264
|
Interactions between stressful environment and gene deletions alleviate the expected average loss of fitness in yeast. Genetics 2008; 178:2105-11. [PMID: 18430936 DOI: 10.1534/genetics.107.084533] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conjecture that the deleterious effects of mutations are amplified by stress or interaction with one another remains unsatisfactorily tested. It is now possible to reapproach this problem systematically by using genomic collections of mutants and applying stress-inducing conditions with a well-recognized impact on metabolism. We measured the maximum growth rate of single- and double-gene deletion strains of yeast in several stress-inducing treatments, including poor nutrients, elevated temperature, high salinity, and the addition of caffeine. The negative impact of deletions on the maximum growth rate was relatively smaller in stressful than in favorable conditions. In both benign and harsh environments, double-deletion strains grew on average slightly faster than expected from a multiplicative model of interaction between single growth effects, indicating positive epistasis for the rate of growth. This translates to even higher positive epistasis for fitness defined as the number of progeny. We conclude that the negative impact of metabolic disturbances, regardless of whether they are of environmental or genetic origin, is absolutely and relatively highest when growth is fastest. The effect of further damages tends to be weaker. This results in an average alleviating effect of interactions between stressful environment and gene deletions and among gene deletions.
Collapse
|
265
|
Abstract
The mutation process ultimately defines the genetic features of all populations and, hence, has a bearing on a wide range of issues involving evolutionary genetics, inheritance, and genetic disorders, including the predisposition to cancer. Nevertheless, formidable technical barriers have constrained our understanding of the rate at which mutations arise and the molecular spectrum of their effects. Here, we report on the use of complete-genome sequencing in the characterization of spontaneously arising mutations in the yeast Saccharomyces cerevisiae. Our results confirm some findings previously obtained by indirect methods but also yield numerous unexpected findings, in particular a very high rate of point mutation and skewed distribution of base-substitution types in the mitochondrion, a very high rate of segmental duplication and deletion in the nuclear genome, and substantial deviations in the mutational profile among various model organisms.
Collapse
|
266
|
Zhou Q, Wang J, Huang L, Nie W, Wang J, Liu Y, Zhao X, Yang F, Wang W. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes. Genome Biol 2008; 9:R98. [PMID: 18554412 PMCID: PMC2481430 DOI: 10.1186/gb-2008-9-6-r98] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 03/04/2008] [Accepted: 06/14/2008] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The regular mammalian X and Y chromosomes diverged from each other at least 166 to 148 million years ago, leaving few traces of their early evolution, including degeneration of the Y chromosome and evolution of dosage compensation. RESULTS We studied the intriguing case of black muntjac, in which a recent X-autosome fusion and a subsequent large autosomal inversion within just the past 0.5 million years have led to inheritance patterns identical to the traditional X-Y (neo-sex chromosomes). We compared patterns of genome evolution in 35-kilobase noncoding regions and 23 gene pairs on the homologous neo-sex chromosomes. We found that neo-Y alleles have accumulated more mutations, comprising a wide variety of mutation types, which indicates cessation of recombination and is consistent with an ongoing neo-Y degeneration process. Putative deleterious mutations were observed in coding regions of eight investigated genes as well as cis-regulatory regions of two housekeeping genes. In vivo assays characterized a neo-Y insertion in the promoter of the CLTC gene that causes a significant reduction in allelic expression. A neo-Y-linked deletion in the 3'-untranslated region of gene SNX22 abolished a microRNA target site. Finally, expression analyses revealed complex patterns of expression divergence between neo-Y and neo-X alleles. CONCLUSION The nascent neo-sex chromosome system of black muntjacs is a valuable model in which to study the evolution of sex chromosomes in mammals. Our results illustrate the degeneration scenarios in various genomic regions. Of particular importance, we report--for the first time--that regulatory mutations were probably able to accelerate the degeneration process of Y and contribute to further evolution of dosage compensation.
Collapse
Affiliation(s)
- Qi Zhou
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
- Graduate School of Chinese Academy Sciences, 19# Yu-quan Road, Beijing 100039, People's Republic of China
| | - Jun Wang
- The Institute of Human Genetics, University of Aarhus, Nordre Ringgade 1, DK-8000 Aarhus C, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
- Beijing Genomics Institute, Bei-shan Road, Shenzhen 518083, People's Republic of China
| | - Ling Huang
- Graduate School of Chinese Academy Sciences, 19# Yu-quan Road, Beijing 100039, People's Republic of China
- Kunming Cell Bank, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
| | - Wenhui Nie
- Kunming Cell Bank, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
| | - Jinhuan Wang
- Kunming Cell Bank, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
| | - Yan Liu
- Graduate School of Chinese Academy Sciences, 19# Yu-quan Road, Beijing 100039, People's Republic of China
- Kunming Cell Bank, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
| | - Xiangyi Zhao
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Ickleton Road, Hinxton, Cambridge, CB10 1SA, UK
| | - Wen Wang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
| |
Collapse
|
267
|
Zhou Q, Zhang G, Zhang Y, Xu S, Zhao R, Zhan Z, Li X, Ding Y, Yang S, Wang W. On the origin of new genes in Drosophila. Genome Res 2008; 18:1446-55. [PMID: 18550802 DOI: 10.1101/gr.076588.108] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several mechanisms have been proposed to account for the origination of new genes. Despite extensive case studies, the general principles governing this fundamental process are still unclear at the whole-genome level. Here, we unveil genome-wide patterns for the mutational mechanisms leading to new genes and their subsequent lineage-specific evolution at different time nodes in the Drosophila melanogaster species subgroup. We find that (1) tandem gene duplication has generated approximately 80% of the nascent duplicates that are limited to single species (D. melanogaster or Drosophila yakuba); (2) the most abundant new genes shared by multiple species (44.1%) are dispersed duplicates, and are more likely to be retained and be functional; (3) de novo gene origination from noncoding sequences plays an unexpectedly important role during the origin of new genes, and is responsible for 11.9% of the new genes; (4) retroposition is also an important mechanism, and had generated approximately 10% of the new genes; (5) approximately 30% of the new genes in the D. melanogaster species complex recruited various genomic sequences and formed chimeric gene structures, suggesting structure innovation as an important way to help fixation of new genes; and (6) the rate of the origin of new functional genes is estimated to be five to 11 genes per million years in the D. melanogaster subgroup. Finally, we survey gene frequencies among 19 globally derived strains for D. melanogaster-specific new genes and reveal that 44.4% of them show copy number polymorphisms within a population. In conclusion, we provide a panoramic picture for the origin of new genes in Drosophila species.
Collapse
Affiliation(s)
- Qi Zhou
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Cohuet A, Krishnakumar S, Simard F, Morlais I, Koutsos A, Fontenille D, Mindrinos M, Kafatos FC. SNP discovery and molecular evolution in Anopheles gambiae, with special emphasis on innate immune system. BMC Genomics 2008; 9:227. [PMID: 18489733 PMCID: PMC2405807 DOI: 10.1186/1471-2164-9-227] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 05/19/2008] [Indexed: 01/10/2023] Open
Abstract
Background Anopheles innate immunity affects Plasmodium development and is a potential target of innovative malaria control strategies. The extent and distribution of nucleotide diversity in immunity genes might provide insights into the evolutionary forces that condition pathogen-vector interactions. The discovery of polymorphisms is an essential step towards association studies of susceptibility to infection. Results We sequenced coding fragments of 72 immune related genes in natural populations of Anopheles gambiae and of 37 randomly chosen genes to provide a background measure of genetic diversity across the genome. Mean nucleotide diversity (π) was 0.0092 in the A. gambiae S form, 0.0076 in the M form and 0.0064 in A. arabiensis. Within each species, no statistically significant differences in mean nucleotide diversity were detected between immune related and non immune related genes. Strong purifying selection was detected in genes of both categories, presumably reflecting strong functional constraints. Conclusion Our results suggest similar patterns and rates of molecular evolution in immune and non-immune genes in A. gambiae. The 3,214 Single Nucleotide Polymorphisms (SNPs) that we identified are the first large set of Anopheles SNPs from fresh, field-collected material and are relevant markers for future phenotype-association studies.
Collapse
Affiliation(s)
- Anna Cohuet
- Institut de Recherche pour le Développement, UR 016, BP 64501, 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Morrow EH, Stewart AD, Rice WR. Assessing the extent of genome-wide intralocus sexual conflict via experimentally enforced gender-limited selection. J Evol Biol 2008; 21:1046-54. [PMID: 18462311 DOI: 10.1111/j.1420-9101.2008.01542.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intralocus sexual conflict, which occurs when a trait is selected in opposite directions in the two sexes, is a taxonomically widespread phenomenon. The strongest genetic evidence for a gender load due to intralocus sexual conflict comes from the Drosophila melanogaster laboratory model system, in which a negative genetic correlation between male and female lifetime fitness has been observed. Here, using a D. melanogaster model system, we utilize a novel modification of the 'middle class neighbourhood' design to relax selection in one sex, while maintaining selection in the other. After 26 generations of asymmetrical selection, we observed the expected drop in fitness of the non-selected sex compared to that of the selected sex, consistent with previous studies of intralocus sexual conflict in this species. However, the fitness of the selected sex also dropped compared to the base population. The overall decline in fitness of both the selected and the unselected sex indicates that most new mutations are harmful to both sexes, causing recurrent mutation to build a positive genetic correlation for fitness between the sexes. However, the steeper decay in the fitness of the unselected sex indicates that a substantial number of mutations are gender-limited in expression or sexually antagonistic. Our experiment cannot definitively resolve these two possibilities, but we use recent genomic data and results from previous studies to argue that sexually antagonistic alleles are the more likely explanation.
Collapse
Affiliation(s)
- E H Morrow
- Department of Ecology, Evolution & Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | | | | |
Collapse
|
270
|
Erratum: Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 2008. [DOI: 10.1038/nature06946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
271
|
Abstract
Although mutation rates are a key determinant of the rate of evolution they are difficult to measure precisely and global mutations rates (mutations per genome per generation) are often extrapolated from the per-base-pair mutation rate assuming that mutation rate is uniform across the genome. Using budding yeast, we describe an improved method for the accurate calculation of mutation rates based on the fluctuation assay. Our analysis suggests that the per-base-pair mutation rates at two genes differ significantly (3.80x10(-10) at URA3 and 6.44x10(-10) at CAN1) and we propose a definition for the effective target size of genes (the probability that a mutation inactivates the gene) that acknowledges that the mutation rate is nonuniform across the genome.
Collapse
|
272
|
Tsai IJ, Bensasson D, Burt A, Koufopanou V. Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. Proc Natl Acad Sci U S A 2008; 105:4957-62. [PMID: 18344325 PMCID: PMC2290798 DOI: 10.1073/pnas.0707314105] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Indexed: 01/12/2023] Open
Abstract
Most microbes have complex life cycles with multiple modes of reproduction that differ in their effects on DNA sequence variation. Population genomic analyses can therefore be used to estimate the relative frequencies of these different modes in nature. The life cycle of the wild yeast Saccharomyces paradoxus is complex, including clonal reproduction, outcrossing, and two different modes of inbreeding. To quantify these different aspects we analyzed DNA sequence variation in the third chromosome among 20 isolates from two populations. Measures of mutational and recombinational diversity were used to make two independent estimates of the population size. In an obligately sexual population these values should be approximately equal. Instead there is a discrepancy of about three orders of magnitude between our two estimates of population size, indicating that S. paradoxus goes through a sexual cycle approximately once in every 1,000 asexual generations. Chromosome III also contains the mating type locus (MAT), which is the most outbred part in the entire genome, and by comparing recombinational diversity as a function of distance from MAT we estimate the frequency of matings to be approximately 94% from within the same tetrad, 5% with a clonemate after switching the mating type, and 1% outcrossed. Our study illustrates the utility of population genomic data in quantifying life cycles.
Collapse
Affiliation(s)
- Isheng J. Tsai
- Division of Biology, Imperial College London, Silwood Park, Ascot, Berks SL5 7PY, United Kingdom
| | - Douda Bensasson
- Division of Biology, Imperial College London, Silwood Park, Ascot, Berks SL5 7PY, United Kingdom
| | - Austin Burt
- Division of Biology, Imperial College London, Silwood Park, Ascot, Berks SL5 7PY, United Kingdom
| | - Vassiliki Koufopanou
- Division of Biology, Imperial College London, Silwood Park, Ascot, Berks SL5 7PY, United Kingdom
| |
Collapse
|
273
|
Loewe L, Lamatsch DK. Quantifying the threat of extinction from Muller's ratchet in the diploid Amazon molly (Poecilia formosa). BMC Evol Biol 2008; 8:88. [PMID: 18366680 PMCID: PMC2292145 DOI: 10.1186/1471-2148-8-88] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 03/19/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Amazon molly (Poecilia formosa) is a small unisexual fish that has been suspected of being threatened by extinction from the stochastic accumulation of slightly deleterious mutations that is caused by Muller's ratchet in non-recombining populations. However, no detailed quantification of the extent of this threat is available. RESULTS Here we quantify genomic decay in this fish by using a simple model of Muller's ratchet with the most realistic parameter combinations available employing the evolution@home global computing system. We also describe simple extensions of the standard model of Muller's ratchet that allow us to deal with selfing diploids, triploids and mitotic recombination. We show that Muller's ratchet creates a threat of extinction for the Amazon molly for many biologically realistic parameter combinations. In most cases, extinction is expected to occur within a time frame that is less than previous estimates of the age of the species, leading to a genomic decay paradox. CONCLUSION How then does the Amazon molly survive? Several biological processes could individually or in combination solve this genomic decay paradox, including paternal leakage of undamaged DNA from sexual sister species, compensatory mutations and many others. More research is needed to quantify the contribution of these potential solutions towards the survival of the Amazon molly and other (ancient) asexual species.
Collapse
Affiliation(s)
- Laurence Loewe
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh EH9 3JT, UK
- Centre for Systems Biology Edinburgh, School of Biological Sciences, University of Edinburgh, Darwin Building, King's Buildings, Edinburgh EH9 3JU, UK
| | - Dunja K Lamatsch
- Universität Würzburg, Institute of Physiological Chemistry I, Biocenter, Würzburg, 97074 Würzburg, Germany
- Freshwater Biology, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B – 1000 Brussels, Belgium
- University of Sheffield, Department of Animal and Plant Sciences, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
- Austrian Academy of Sciences, Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria
| |
Collapse
|
274
|
Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics 2008; 177:2251-61. [PMID: 18073430 DOI: 10.1534/genetics.107.080663] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distribution of fitness effects of new mutations (DFE) is important for addressing several questions in genetics, including the nature of quantitative variation and the evolutionary fate of small populations. Properties of the DFE can be inferred by comparing the distributions of the frequencies of segregating nucleotide polymorphisms at selected and neutral sites in a population sample, but demographic changes alter the spectrum of allele frequencies at both neutral and selected sites, so can bias estimates of the DFE if not accounted for. We have developed a maximum-likelihood approach, based on the expected allele-frequency distribution generated by transition matrix methods, to estimate parameters of the DFE while simultaneously estimating parameters of a demographic model that allows a population size change at some time in the past. We tested the method using simulations and found that it accurately recovers simulated parameter values, even if the simulated demography differs substantially from that assumed in our analysis. We use our method to estimate parameters of the DFE for amino acid-changing mutations in humans and Drosophila melanogaster. For a model of unconditionally deleterious mutations, with effects sampled from a gamma distribution, the mean estimate for the distribution shape parameter is approximately 0.2 for human populations, which implies that the DFE is strongly leptokurtic. For Drosophila populations, we estimate that the shape parameter is approximately 0.35. Differences in the shape of the distribution and the mean selection coefficient between humans and Drosophila result in significantly more strongly deleterious mutations in Drosophila than in humans, and, conversely, nearly neutral mutations are significantly less frequent.
Collapse
|
275
|
Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol 2008; 5:e310. [PMID: 17988176 PMCID: PMC2062478 DOI: 10.1371/journal.pbio.0050310] [Citation(s) in RCA: 489] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 09/26/2007] [Indexed: 01/13/2023] Open
Abstract
The population genetic perspective is that the processes shaping genomic variation can be revealed only through simultaneous investigation of sequence polymorphism and divergence within and between closely related species. Here we present a population genetic analysis of Drosophila simulans based on whole-genome shotgun sequencing of multiple inbred lines and comparison of the resulting data to genome assemblies of the closely related species, D. melanogaster and D. yakuba. We discovered previously unknown, large-scale fluctuations of polymorphism and divergence along chromosome arms, and significantly less polymorphism and faster divergence on the X chromosome. We generated a comprehensive list of functional elements in the D. simulans genome influenced by adaptive evolution. Finally, we characterized genomic patterns of base composition for coding and noncoding sequence. These results suggest several new hypotheses regarding the genetic and biological mechanisms controlling polymorphism and divergence across the Drosophila genome, and provide a rich resource for the investigation of adaptive evolution and functional variation in D. simulans. Population genomics, the study of genome-wide patterns of sequence variation within and between closely related species, can provide a comprehensive view of the relative importance of mutation, recombination, natural selection, and genetic drift in evolution. It can also provide fundamental insights into the biological attributes of organisms that are specifically shaped by adaptive evolution. One approach for generating population genomic datasets is to align DNA sequences from whole-genome shotgun projects to a standard reference sequence. We used this approach to carry out whole-genome analysis of polymorphism and divergence in Drosophila simulans, a close relative of the model system, D. melanogaster. We find that polymorphism and divergence fluctuate on a large scale across the genome and that these fluctuations are probably explained by natural selection rather than by variation in mutation rates. Our analysis suggests that adaptive protein evolution is common and is often related to biological processes that may be associated with gene expression, chromosome biology, and reproduction. The approaches presented here will have broad applicability to future analysis of population genomic variation in other systems, including humans. Low-coverage genome sequences from multiple Drosophila simulans strains provide the first comprehensive view of polymorphism and divergence in the fruit fly.
Collapse
|
276
|
Sharp NP, Agrawal AF. MATING DENSITY AND THE STRENGTH OF SEXUAL SELECTION AGAINST DELETERIOUS ALLELES INDROSOPHILA MELANOGASTER. Evolution 2008; 62:857-67. [DOI: 10.1111/j.1558-5646.2008.00333.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
277
|
Tenaillon MI, Austerlitz F, Tenaillon O. Apparent mutational hotspots and long distance linkage disequilibrium resulting from a bottleneck. J Evol Biol 2008; 21:541-50. [PMID: 18205779 DOI: 10.1111/j.1420-9101.2007.01490.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genome wide patterns of nucleotide diversity and recombination reveal considerable variation including hotspots. Some studies suggest that these patterns are primarily dictated by individual locus history related at a broader scale to the population demographic history. Because bottlenecks have occurred in the history of numerous species, we undertook a simulation approach to investigate their impact on the patterns of aggregation of polymorphic sites and linkage disequilibrium (LD). We developed a new index (Polymorphism Aggregation Index) to characterize this aggregation and showed that variation in the density of polymorphic sites results from an interplay between the bottleneck scenario and the recombination rate. Under particular conditions, aggregation is maximized and apparent mutation hotspots resulting in a 50-fold increase in polymorphic sites density can occur. In similar conditions, long distance LD can be detected.
Collapse
Affiliation(s)
- M I Tenaillon
- UMR8120 de Génétique Végétale, INRA/Univ. Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
278
|
Sexual selection and the evolution of obligatory sex. BMC Evol Biol 2007; 7:245. [PMID: 18096075 PMCID: PMC2248195 DOI: 10.1186/1471-2148-7-245] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 12/20/2007] [Indexed: 11/10/2022] Open
Abstract
Background Among the long-standing conundrums of evolutionary theory, obligatory sex is one of the hardest. Current theory suggests multiple factors that might explain the benefits of sex when compared with complete asexuality, but no satisfactory explanation for the prevalence of obligatory sex in the face of facultative sexual reproduction. Results and Conclusion We show that when sexual selection is present obligatory sex can evolve and be maintained even against facultative sex, under common scenarios of deleterious mutations and environmental changes.
Collapse
|
279
|
Macpherson JM, Sella G, Davis JC, Petrov DA. Genomewide spatial correspondence between nonsynonymous divergence and neutral polymorphism reveals extensive adaptation in Drosophila. Genetics 2007; 177:2083-99. [PMID: 18073425 PMCID: PMC2219485 DOI: 10.1534/genetics.107.080226] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 09/18/2007] [Indexed: 11/18/2022] Open
Abstract
The effect of recurrent selective sweeps is a spatially heterogeneous reduction in neutral polymorphism throughout the genome. The pattern of reduction depends on the selective advantage and recurrence rate of the sweeps. Because many adaptive substitutions responsible for these sweeps also contribute to nonsynonymous divergence, the spatial distribution of nonsynonymous divergence also reflects the distribution of adaptive substitutions. Thus, the spatial correspondence between neutral polymorphism and nonsynonymous divergence may be especially informative about the process of adaptation. Here we study this correspondence using genomewide polymorphism data from Drosophila simulans and the divergence between D. simulans and D. melanogaster. Focusing on highly recombining portions of the autosomes, at a spatial scale appropriate to the study of selective sweeps, we find that neutral polymorphism is both lower and, as measured by a new statistic Q(S), less homogeneous where nonsynonymous divergence is higher and that the spatial structure of this correlation is best explained by the action of strong recurrent selective sweeps. We introduce a method to infer, from the spatial correspondence between polymorphism and divergence, the rate and selective strength of adaptation. Our results independently confirm a high rate of adaptive substitution (approximately 1/3000 generations) and newly suggest that many adaptations are of surprisingly great selective effect (approximately 1%), reducing the effective population size by approximately 15% even in highly recombining regions of the genome.
Collapse
|
280
|
Abstract
In the immune system, many tolerance checkpoints exist to prevent self-antigens from stimulating the relentless growth of self-reactive B and T lymphocytes. The genes and molecular pathways underpinning these checkpoints overlap with those involved in tumor suppression. As with an inherited predisposition to cancer, inherited defects in self-tolerance genes typically precipitate autoimmune disease stochastically after a latent phase. Multiple mutations, inherited and somatic, may be needed before a self-reactive clone bypasses sequential tolerance checkpoints resulting in the emergence of autoimmune disease.
Collapse
Affiliation(s)
- Christopher C Goodnow
- John Curtin School of Medical Research and Australian Phenomics Facility, The Australian National University, Canberra ACT 2601, Australia.
| |
Collapse
|
281
|
Andolfatto P. Hitchhiking effects of recurrent beneficial amino acid substitutions in the Drosophila melanogaster genome. Genome Res 2007; 17:1755-62. [PMID: 17989248 DOI: 10.1101/gr.6691007] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several recent studies have estimated that a large fraction of amino acid divergence between species of Drosophila was fixed by positive selection, using statistical approaches based on the McDonald-Kreitman test. However, little is known about associated selection coefficients of beneficial amino acid mutations. Recurrent selective sweeps associated with adaptive substitutions should leave a characteristic signature in genome variability data that contains information about the frequency and strength of selection. Here, I document a significant negative correlation between the level and the frequency of synonymous site polymorphism and the rate of protein evolution in highly recombining regions of the X chromosome of D. melanogaster. This pattern is predicted by recurrent adaptive protein evolution and suggests that adaptation is an important determinant of patterns of neutral variation genome-wide. Using a maximum likelihood approach, I estimate the product of the rate and strength of selection under a recurrent genetic hitchhiking model, lambda2N(e)s approximately 3 x 10(-8). Using an approach based on the McDonald-Kreitman test, I estimate that approximately 50% of divergent amino acids were driven to fixation by positive selection, implying that beneficial amino acid substitutions are of weak effect on average, on the order of 10(-5) (i.e., 2N(e)s approximately 40). Two implications of these results are that most adaptive substitutions will be difficult to detect in genome scans of selection and that population size (and genetic drift) may be an important determinant of the evolutionary dynamics of protein adaptation.
Collapse
Affiliation(s)
- Peter Andolfatto
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
282
|
Evans AL, Mena PA, McAllister BF. Positive selection near an inversion breakpoint on the neo-X chromosome of Drosophila americana. Genetics 2007; 177:1303-19. [PMID: 17660565 PMCID: PMC2147947 DOI: 10.1534/genetics.107.073932] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 07/25/2007] [Indexed: 12/23/2022] Open
Abstract
Unique features of heteromorphic sex chromosomes are produced as a consequence of sex-linked transmission. Alternative models concerning the evolution of sex chromosomes can be classified in terms of genetic drift or positive selection being the primary mechanism of divergence between this chromosomal pair. This study examines early changes on a newly acquired chromosomal arm of the X in Drosophila americana, which was derived from a centromeric fusion between the ancestral X and previously autosomal chromosome 4 (element B). Breakpoints of a chromosomal inversion In(4)a, which is restricted to the neo-X, are identified and used to guide a sequence analysis along chromosome 4. Loci flanking the distal breakpoint exhibit patterns of sequence diversity consistent with neutral evolution, yet loci near the proximal breakpoint reveal distinct imprints of positive selection within the neo-X chromosomal class containing In(4)a. Data from six separate positions examined throughout the proximal region reveal a pattern of recent turnover driven by two independent sweeps among chromosomes with the inverted gene arrangement. Selection-mediated establishment of an extended haplotype associated with recombination-suppressing inversions on the neo-X indicates a pattern of active coadaptation apparently initiated by X-linked transmission and potentially sustained by intralocus sexual conflict.
Collapse
Affiliation(s)
- Amy L Evans
- Department of Biological Sciences and the Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
283
|
Mitchell-Olds T, Willis JH, Goldstein DB. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 2007; 8:845-56. [DOI: 10.1038/nrg2207] [Citation(s) in RCA: 384] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
284
|
Ort BS, Pogson GH. Molecular population genetics of the male and female mitochondrial DNA molecules of the California sea mussel, Mytilus californianus. Genetics 2007; 177:1087-99. [PMID: 17720935 PMCID: PMC2034615 DOI: 10.1534/genetics.107.072934] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 08/19/2007] [Indexed: 02/06/2023] Open
Abstract
The presence of two gender-associated mitochondrial genomes in marine mussels provides a unique opportunity to investigate the dynamics of mtDNA evolution without complications inherent in interspecific comparisons. Here, we assess the relative importance of selection, mutation, and differential constraint in shaping the patterns of polymorphism within and divergence between the male (M) and female (F) mitochondrial genomes of the California sea mussel, Mytilus californianus. Partial sequences were obtained from homologous regions of four genes (nad2, cox1, atp6, and nad5) totaling 2307 bp in length. The M and F mtDNA molecules of M. californianus exhibited extensive levels of nucleotide polymorphism and were more highly diverged than observed in other mytilids (overall Tamura-Nei distances >40%). Consistent with previous studies, the M molecule had significantly higher levels of silent and replacement polymorphism relative to F. Both genomes possessed large numbers of singleton and low-frequency mutations that gave rise to significantly negative Tajima's D values. Mutation-rate scalars estimated for silent and replacement mutations were elevated in the M genome but were not sufficient to account for its higher level of polymorphism. McDonald-Kreitman tests were highly significant at all loci due to excess numbers of fixed replacement mutations between molecules. Strong purifying selection was evident in both genomes in keeping the majority of replacement mutations at low population frequencies but appeared to be slightly relaxed in M. Our results suggest that a reduction in selective constraint acting on the M genome remains the best explanation for its greater levels of polymorphism and faster rate of evolution.
Collapse
Affiliation(s)
- Brian S Ort
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
285
|
Johnson SG, Howard RS. Contrasting patterns of synonymous and nonsynonymous sequence evolution in asexual and sexual freshwater snail lineages. Evolution 2007; 61:2728-35. [PMID: 17908244 DOI: 10.1111/j.1558-5646.2007.00233.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In asexual lineages, both synonymous and nonsynonymous sequence polymorphism may be reduced due to severe founder effects when asexual lineages originate. However, mildly deleterious (nonsynonymous) mutations may accumulate after asexual lineages are formed, because the efficiency of purifying selection is reduced even in the nonrecombining mitochondrial genome. Here we examine patterns of synonymous and nonsynonymous mitochondrial sequence polymorphism in asexual and sexual lineages of the freshwater snail Campeloma. Using clade-specific estimates, we found that synonymous sequence polymorphism was significantly reduced by 75% in asexuals relative to sexuals, whereas nonsynonymous sequence polymorphism did not differ significantly between sexuals and asexuals. Two asexual clades had high negative values for Tajima's D statistic. Coalescent simulations confirmed that various bottleneck scenarios can account for this result. We also used branch-specific estimates of the ratio of amino acid to silent substitutions, K(a)/K(s). Our study revealed that K(a)/K(s) ratios are six times higher in terminal branches of independent asexual lineages compared to sexuals. Coalescent-based reconstruction of gene networks for all sexual and asexual clades indicated that nonsynonymous mutations occurred at a higher frequency in recently derived asexual haplotypes. These findings suggest that patterns of synonymous and nonsynonymous nucleotide polymorphism in asexual snail lineages may be shaped by both severe founder effect and relaxed purifying selection.
Collapse
Affiliation(s)
- Steven G Johnson
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | | |
Collapse
|
286
|
Baer CF, Miyamoto MM, Denver DR. Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet 2007; 8:619-31. [PMID: 17637734 DOI: 10.1038/nrg2158] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A basic knowledge about mutation rates is central to our understanding of a myriad of evolutionary phenomena, including the maintenance of sex and rates of molecular evolution. Although there is substantial evidence that mutation rates vary among taxa, relatively little is known about the factors that underlie this variation at an empirical level, particularly in multicellular eukaryotes. Here we integrate several disparate lines of theoretical and empirical inquiry into a unified framework to guide future studies that are aimed at understanding why and how mutation rates evolve in multicellular species.
Collapse
Affiliation(s)
- Charles F Baer
- Department of Zoology, University of Florida, Gainesville, Florida 32611, USA.
| | | | | |
Collapse
|
287
|
Blumenstiel JP. Sperm competition can drive a male-biased mutation rate. J Theor Biol 2007; 249:624-32. [PMID: 17919661 DOI: 10.1016/j.jtbi.2007.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 08/24/2007] [Indexed: 11/29/2022]
Abstract
A pattern of male-biased mutation has been found in a wide range of species. The standard explanation for this bias is that there are greater numbers of mitotic cell divisions in the history of the average sperm, compared to the average egg, and that mutations typically result from errors made during replication. However, this fails to provide an ultimate evolutionary explanation for why the male germline would tolerate more mutations that are typically deleterious. One possibility is that if there is a tradeoff between producing large numbers of sperm and expending energetic resources in maintaining a lower mutation rate, sperm competition would select for males that produce larger numbers of sperm despite a higher resulting mutation rate. Here I describe a model that jointly considers the fitness consequences of deleterious mutation and mating success in the face of sperm competition. I show that a moderate level of sperm competition can account for the observation that the male germline tolerates a higher mutation rate than the female germline.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
288
|
Abstract
SUMMARYA key aim of anthelmintic resistance research is to identify molecular markers that could form the basis of sensitive and accurate diagnostic tests. These would provide powerful tools to study the origin and spread of anthelmintic resistance in the field and to monitor strategies aimed at preventing and managing resistance. Molecular markers could also form the basis of routine diagnostic tests for use in surveillance and clinical veterinary practice. Much of the research conducted to date has focused on the investigation of possible associations of particular candidate genes with the resistance phenotype. In the future, as full parasite genome sequences become available, there will be an opportunity to apply genome-wide approaches to identify the genetic loci that underlie anthelmintic resistance. Both the interpretation of candidate gene studies and the application of genome-wide approaches require a good understanding of the genetics and population biology of the relevant parasites as well as knowledge of how resistance mutations arise and are selected in populations. Unfortunately, much of this information is lacking for parasitic nematodes. This review deals with a number of aspects of genetics and population biology that are pertinent to these issues. We discuss the possible origins of resistance mutations and the likely effects of subsequent selection on the genetic variation at the resistance-conferring locus. We also review some of the experimental approaches that have been used to test associations between candidate genes and anthelmintic resistance phenotypes and highlight implications for future genome-wide studies.
Collapse
Affiliation(s)
- J S Gilleard
- Division of Infection and Immunity, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, UK G61 1QH.
| | | |
Collapse
|
289
|
Haag CR, Roze D. Genetic load in sexual and asexual diploids: segregation, dominance and genetic drift. Genetics 2007; 176:1663-78. [PMID: 17483409 PMCID: PMC1931546 DOI: 10.1534/genetics.107.073080] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 04/19/2007] [Indexed: 11/18/2022] Open
Abstract
In diploid organisms, sexual reproduction rearranges allelic combinations between loci (recombination) as well as within loci (segregation). Several studies have analyzed the effect of segregation on the genetic load due to recurrent deleterious mutations, but considered infinite populations, thus neglecting the effects of genetic drift. Here, we use single-locus models to explore the combined effects of segregation, selection, and drift. We find that, for partly recessive deleterious alleles, segregation affects both the deterministic component of the change in allele frequencies and the stochastic component due to drift. As a result, we find that the mutation load may be far greater in asexuals than in sexuals in finite and/or subdivided populations. In finite populations, this effect arises primarily because, in the absence of segregation, heterozygotes may reach high frequencies due to drift, while homozygotes are still efficiently selected against; this is not possible with segregation, as matings between heterozygotes constantly produce new homozygotes. If deleterious alleles are partly, but not fully recessive, this causes an excess load in asexuals at intermediate population sizes. In subdivided populations without extinction, drift mostly occurs locally, which reduces the efficiency of selection in both sexuals and asexuals, but does not lead to global fixation. Yet, local drift is stronger in asexuals than in sexuals, leading to a higher mutation load in asexuals. In metapopulations with turnover, global drift becomes again important, leading to similar results as in finite, unstructured populations. Overall, the mutation load that arises through the absence of segregation in asexuals may greatly exceed previous predictions that ignored genetic drift.
Collapse
Affiliation(s)
- Christoph R Haag
- University of Edinburgh, Institute of Evolutionary Biology, Edinburgh EH9 3JT, United Kingdom.
| | | |
Collapse
|
290
|
Bergman CM, Bensasson D. Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:11340-5. [PMID: 17592135 PMCID: PMC2040900 DOI: 10.1073/pnas.0702552104] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LTR and non-LTR retrotransposons exhibit distinct patterns of abundance within the Drosophila melanogaster genome, yet the causes of these differences remain unknown. Here we investigate whether genomic differences between LTR and non-LTR retrotransposons reflect systematic differences in their insertion history. We find that for 17 LTR and 10 non-LTR retrotransposon families that evolve under a pseudogene-like mode of evolution, most elements from LTR families have integrated in the very recent past since colonization of non-African habitats ( approximately 16,000 years ago), whereas elements from non-LTR families have been accumulating in overlapping waves since the divergence of D. melanogaster from its sister species, Drosophila simulans ( approximately 5.4 Mya). LTR elements are significantly younger than non-LTR elements, individually and by family, in regions of high and low recombination, and in genic and intergenic regions. We show that analysis of transposable element (TE) nesting provides a method to calculate transposition rates from genome sequences, which we estimate to be one to two orders of magnitude lower than those that are based on mutation accumulation studies. Recent LTR integration provides a nonequilibrium alternative for the low population frequency of LTR elements in this species, a pattern that is classically interpreted as evidence for selection against the transpositional increase of TEs. Our results call for a new class of population genetic models that incorporate TE copy number, allele frequency, and the age of insertions to provide more powerful and robust inferences about the forces that control the evolution of TEs in natural populations.
Collapse
Affiliation(s)
- Casey M Bergman
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | |
Collapse
|
291
|
Gachon CMM, Day JG, Campbell CN, Pröschold T, Saxon RJ, Küpper FC. The Culture Collection of Algae and Protozoa (CCAP): a biological resource for protistan genomics. Gene 2007; 406:51-7. [PMID: 17614217 DOI: 10.1016/j.gene.2007.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/16/2007] [Accepted: 05/24/2007] [Indexed: 11/25/2022]
Abstract
CCAP, the largest European protistan culture collection, is based at the Scottish Association for Marine Science near Oban, Scotland (http://www.ccap.ac.uk). The Collection comprises more than 2700 strains in the public domain, of which 1050 are marine algae, 1300 freshwater algae, and 350 protozoa. The primary mission of CCAP is to maintain and distribute defined cultures and their associated information to its customers. It also has a support and advisory function on all aspects of protistan science. In addition, it is involved in the training of students and researchers in algal identification and culture techniques. In light of the increasing number of fully sequenced protists, the CCAP is striving to provide targeted services and support to workers involved in all aspects of genomic research. At present, the Collection holds several hundred strains of genomic model taxa including: Acanthamoeba, Cafeteria, Cercomonas, Chlamydomonas, Chlorella, Cyanophora, Dictyostelium, Dunaliella, Ectocarpus, Emiliania, Euglena, Micromonas, Naegleria, Nephroselmis, Paramecium, Pavlova, Phaeodactylum, Porphyra, Pseudendoclonium, Pylaiella, Rhodomonas, Scenedesmus, Staurastrum, Tetrahymena, Thalassiosira, Volvox and Zygnema. These strains provide a defined representation of natural variation within model organisms, an increasingly useful resource for post-genomics approaches. Our aim over the next 2-5 years is to add value to the Collection by increasing the number of genome model species, and by offering an integrated, up-to-date, easy-to-use resource that would provide curated information on our strain holdings. In collaboration with other major Biological Resource Centres worldwide, we intend to build a hub providing access to both protistan cultures and their associated bioinformatics data.
Collapse
Affiliation(s)
- Claire M M Gachon
- Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Dunbeg by Oban, Argyll, PA37 1QA, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
292
|
|
293
|
Ostrow D, Phillips N, Avalos A, Blanton D, Boggs A, Keller T, Levy L, Rosenbloom J, Baer CF. Mutational bias for body size in rhabditid nematodes. Genetics 2007; 176:1653-61. [PMID: 17483403 PMCID: PMC1931521 DOI: 10.1534/genetics.107.074666] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutational bias is a potentially important agent of evolution, but it is difficult to disentangle the effects of mutation from those of natural selection. Mutation-accumulation experiments, in which mutations are allowed to accumulate at very small population size, thus minimizing the efficiency of natural selection, are the best way to separate the effects of mutation from those of selection. Body size varies greatly among species of nematode in the family rhabditidae; mutational biases are both a potential cause and a consequence of that variation. We report data on the cumulative effects of mutations that affect body size in three species of rhabditid nematode that vary fivefold in adult size. Results are very consistent with previous studies of mutations underlying fitness in the same strains: two strains of Caenorhabditis briggsae decline in body size about twice as fast as two strains of C. elegans, with a concomitant higher point estimate of the genomic mutation rate; the confamilial Oscheius myriophila is intermediate. There is an overall mutational bias, such that mutations reduce size on average, but the bias appears consistent between species. The genetic correlation between mutations that affect size and those underlying fitness is large and positive, on average.
Collapse
Affiliation(s)
- Dejerianne Ostrow
- Department of Zoology, University of Florida, Gainesville, Florida 32611-8525, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Affiliation(s)
- Naoyuki Takahata
- Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan.
| |
Collapse
|
295
|
Sawyer SA, Parsch J, Zhang Z, Hartl DL. Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. Proc Natl Acad Sci U S A 2007; 104:6504-10. [PMID: 17409186 PMCID: PMC1871816 DOI: 10.1073/pnas.0701572104] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have estimated the selective effects of amino acid replacements in natural populations by comparing levels of polymorphism in 91 genes in African populations of Drosophila melanogaster with their divergence from Drosophila simulans. The genes include about equal numbers whose level of expression in adults is greater in males, greater in females, or approximately equal in the sexes. Markov chain Monte Carlo methods were used to sample key parameters in the stationary distribution of polymorphism and divergence in a model in which the selective effect of each nonsynonymous mutation is regarded as a random sample from some underlying normal distribution whose mean may differ from one gene to the next. Our analysis suggests that approximately 95% of all nonsynonymous mutations that could contribute to polymorphism or divergence are deleterious, and that the average proportion of deleterious amino acid polymorphisms in samples is approximately 70%. On the other hand, approximately 95% of fixed differences between species are positively selected, although the scaled selection coefficient (N(e)s) is very small. We estimate that approximately 46% of amino acid replacements have N(e)s < 2, approximately 84% have N(e)s < 4, and approximately 99% have N(e)s < 7. Although positive selection among amino acid differences between species seems pervasive, most of the selective effects could be regarded as nearly neutral. There are significant differences in selection between sex-biased and unbiased genes, which relate primarily to the mean of the distributions of mutational effects and the fraction of slightly deleterious and weakly beneficial mutations that are fixed.
Collapse
Affiliation(s)
- Stanley A. Sawyer
- *Department of Mathematics, Washington University, St. Louis, MO 63130
| | - John Parsch
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Munich, Germany; and
| | - Zhi Zhang
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Munich, Germany; and
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
296
|
Kouyos RD, Silander OK, Bonhoeffer S. Epistasis between deleterious mutations and the evolution of recombination. Trends Ecol Evol 2007; 22:308-15. [PMID: 17337087 DOI: 10.1016/j.tree.2007.02.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 01/29/2007] [Accepted: 02/19/2007] [Indexed: 11/26/2022]
Abstract
Epistasis and the evolution of recombination are closely intertwined: epistasis generates linkage disequilibria (i.e. statistical associations between alleles), whereas recombination breaks them up. The mutational deterministic hypothesis (MDH) states that high recombination rates are maintained because the breaking up of linkage disequilibria generated by negative epistasis enables more efficient purging of deleterious mutations. However, recent theoretical and experimental work challenges the MDH. Experimental evidence suggests that negative epistasis, required by the MDH, is relatively uncommon. On the theoretical side, population genetic models suggest that, compared with the combined effects of drift and selection, epistasis generates a negligible amount of linkage disequilibria. Here, we assess these criticisms and discuss to what extent they invalidate the MDH as an explanation for the evolution of recombination.
Collapse
Affiliation(s)
- Roger D Kouyos
- Institute of Integrative Biology, ETH Zürich Universitätsstrasse 16, 8092, Zürich, Switzerland
| | | | | |
Collapse
|
297
|
Loewe L, Charlesworth B. Background selection in single genes may explain patterns of codon bias. Genetics 2007; 175:1381-93. [PMID: 17194784 PMCID: PMC1840058 DOI: 10.1534/genetics.106.065557] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 12/23/2006] [Indexed: 11/18/2022] Open
Abstract
Background selection involves the reduction in effective population size caused by the removal of recurrent deleterious mutations from a population. Previous work has examined this process for large genomic regions. Here we focus on the level of a single gene or small group of genes and investigate how the effects of background selection caused by nonsynonymous mutations are influenced by the lengths of coding sequences, the number and length of introns, intergenic distances, neighboring genes, mutation rate, and recombination rate. We generate our predictions from estimates of the distribution of the fitness effects of nonsynonymous mutations, obtained from DNA sequence diversity data in Drosophila. Results for genes in regions with typical frequencies of crossing over in Drosophila melanogaster suggest that background selection may influence the effective population sizes of different regions of the same gene, consistent with observed differences in codon usage bias along genes. It may also help to cause the observed effects of gene length and introns on codon usage. Gene conversion plays a crucial role in determining the sizes of these effects. The model overpredicts the effects of background selection with large groups of nonrecombining genes, because it ignores Hill-Robertson interference among the mutations involved.
Collapse
Affiliation(s)
- Laurence Loewe
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | |
Collapse
|